]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/macroexp.c
GDB copyright headers update after running GDB's copyright.py script.
[thirdparty/binutils-gdb.git] / gdb / macroexp.c
CommitLineData
ec2bcbe7 1/* C preprocessor macro expansion for GDB.
618f726f 2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
ec2bcbe7
JB
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ec2bcbe7
JB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ec2bcbe7
JB
19
20#include "defs.h"
04ea0df1 21#include "gdb_obstack.h"
ec2bcbe7
JB
22#include "bcache.h"
23#include "macrotab.h"
24#include "macroexp.h"
6c7a06a3 25#include "c-lang.h"
ec2bcbe7
JB
26
27
28\f
29/* A resizeable, substringable string type. */
30
31
32/* A string type that we can resize, quickly append to, and use to
33 refer to substrings of other strings. */
34struct macro_buffer
35{
36 /* An array of characters. The first LEN bytes are the real text,
37 but there are SIZE bytes allocated to the array. If SIZE is
38 zero, then this doesn't point to a malloc'ed block. If SHARED is
39 non-zero, then this buffer is actually a pointer into some larger
40 string, and we shouldn't append characters to it, etc. Because
41 of sharing, we can't assume in general that the text is
42 null-terminated. */
43 char *text;
44
45 /* The number of characters in the string. */
46 int len;
47
48 /* The number of characters allocated to the string. If SHARED is
49 non-zero, this is meaningless; in this case, we set it to zero so
50 that any "do we have room to append something?" tests will fail,
51 so we don't always have to check SHARED before using this field. */
52 int size;
53
54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55 block). Non-zero if TEXT is actually pointing into the middle of
56 some other block, and we shouldn't reallocate it. */
57 int shared;
58
59 /* For detecting token splicing.
60
61 This is the index in TEXT of the first character of the token
62 that abuts the end of TEXT. If TEXT contains no tokens, then we
63 set this equal to LEN. If TEXT ends in whitespace, then there is
64 no token abutting the end of TEXT (it's just whitespace), and
65 again, we set this equal to LEN. We set this to -1 if we don't
66 know the nature of TEXT. */
67 int last_token;
68
69 /* If this buffer is holding the result from get_token, then this
70 is non-zero if it is an identifier token, zero otherwise. */
71 int is_identifier;
72};
73
74
75/* Set the macro buffer *B to the empty string, guessing that its
76 final contents will fit in N bytes. (It'll get resized if it
77 doesn't, so the guess doesn't have to be right.) Allocate the
78 initial storage with xmalloc. */
79static void
80init_buffer (struct macro_buffer *b, int n)
81{
ec2bcbe7
JB
82 b->size = n;
83 if (n > 0)
84 b->text = (char *) xmalloc (n);
85 else
a86bc61c 86 b->text = NULL;
ec2bcbe7
JB
87 b->len = 0;
88 b->shared = 0;
89 b->last_token = -1;
90}
91
92
93/* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
94 shared substring. */
95static void
96init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
97{
98 buf->text = addr;
99 buf->len = len;
100 buf->shared = 1;
101 buf->size = 0;
102 buf->last_token = -1;
103}
104
105
106/* Free the text of the buffer B. Raise an error if B is shared. */
107static void
108free_buffer (struct macro_buffer *b)
109{
110 gdb_assert (! b->shared);
111 if (b->size)
112 xfree (b->text);
113}
114
abc9d0dc
TT
115/* Like free_buffer, but return the text as an xstrdup()d string.
116 This only exists to try to make the API relatively clean. */
117
118static char *
119free_buffer_return_text (struct macro_buffer *b)
120{
121 gdb_assert (! b->shared);
122 gdb_assert (b->size);
123 /* Nothing to do. */
124 return b->text;
125}
ec2bcbe7
JB
126
127/* A cleanup function for macro buffers. */
128static void
129cleanup_macro_buffer (void *untyped_buf)
130{
131 free_buffer ((struct macro_buffer *) untyped_buf);
132}
133
134
135/* Resize the buffer B to be at least N bytes long. Raise an error if
136 B shouldn't be resized. */
137static void
138resize_buffer (struct macro_buffer *b, int n)
139{
140 /* We shouldn't be trying to resize shared strings. */
141 gdb_assert (! b->shared);
142
143 if (b->size == 0)
144 b->size = n;
145 else
146 while (b->size <= n)
147 b->size *= 2;
148
224c3ddb 149 b->text = (char *) xrealloc (b->text, b->size);
ec2bcbe7
JB
150}
151
152
153/* Append the character C to the buffer B. */
39efb398 154static void
ec2bcbe7
JB
155appendc (struct macro_buffer *b, int c)
156{
157 int new_len = b->len + 1;
158
159 if (new_len > b->size)
160 resize_buffer (b, new_len);
161
162 b->text[b->len] = c;
163 b->len = new_len;
164}
165
166
167/* Append the LEN bytes at ADDR to the buffer B. */
39efb398 168static void
ec2bcbe7
JB
169appendmem (struct macro_buffer *b, char *addr, int len)
170{
171 int new_len = b->len + len;
172
173 if (new_len > b->size)
174 resize_buffer (b, new_len);
175
176 memcpy (b->text + b->len, addr, len);
177 b->len = new_len;
178}
179
180
181\f
182/* Recognizing preprocessor tokens. */
183
184
d7d9f01e
TT
185int
186macro_is_whitespace (int c)
ec2bcbe7
JB
187{
188 return (c == ' '
189 || c == '\t'
190 || c == '\n'
191 || c == '\v'
192 || c == '\f');
193}
194
195
d7d9f01e
TT
196int
197macro_is_digit (int c)
ec2bcbe7
JB
198{
199 return ('0' <= c && c <= '9');
200}
201
202
d7d9f01e
TT
203int
204macro_is_identifier_nondigit (int c)
ec2bcbe7
JB
205{
206 return (c == '_'
207 || ('a' <= c && c <= 'z')
208 || ('A' <= c && c <= 'Z'));
209}
210
211
212static void
213set_token (struct macro_buffer *tok, char *start, char *end)
214{
215 init_shared_buffer (tok, start, end - start);
216 tok->last_token = 0;
217
025bb325 218 /* Presumed; get_identifier may overwrite this. */
ec2bcbe7
JB
219 tok->is_identifier = 0;
220}
221
222
223static int
224get_comment (struct macro_buffer *tok, char *p, char *end)
225{
226 if (p + 2 > end)
227 return 0;
228 else if (p[0] == '/'
229 && p[1] == '*')
230 {
231 char *tok_start = p;
232
233 p += 2;
234
235 for (; p < end; p++)
236 if (p + 2 <= end
237 && p[0] == '*'
238 && p[1] == '/')
239 {
240 p += 2;
241 set_token (tok, tok_start, p);
242 return 1;
243 }
244
8a3fe4f8 245 error (_("Unterminated comment in macro expansion."));
ec2bcbe7
JB
246 }
247 else if (p[0] == '/'
248 && p[1] == '/')
249 {
250 char *tok_start = p;
251
252 p += 2;
253 for (; p < end; p++)
254 if (*p == '\n')
255 break;
256
257 set_token (tok, tok_start, p);
258 return 1;
259 }
260 else
261 return 0;
262}
263
264
265static int
266get_identifier (struct macro_buffer *tok, char *p, char *end)
267{
268 if (p < end
d7d9f01e 269 && macro_is_identifier_nondigit (*p))
ec2bcbe7
JB
270 {
271 char *tok_start = p;
272
273 while (p < end
d7d9f01e
TT
274 && (macro_is_identifier_nondigit (*p)
275 || macro_is_digit (*p)))
ec2bcbe7
JB
276 p++;
277
278 set_token (tok, tok_start, p);
279 tok->is_identifier = 1;
280 return 1;
281 }
282 else
283 return 0;
284}
285
286
287static int
288get_pp_number (struct macro_buffer *tok, char *p, char *end)
289{
290 if (p < end
d7d9f01e 291 && (macro_is_digit (*p)
17c8aaf5
TT
292 || (*p == '.'
293 && p + 2 <= end
294 && macro_is_digit (p[1]))))
ec2bcbe7
JB
295 {
296 char *tok_start = p;
297
298 while (p < end)
299 {
17c8aaf5
TT
300 if (p + 2 <= end
301 && strchr ("eEpP", *p)
302 && (p[1] == '+' || p[1] == '-'))
ec2bcbe7 303 p += 2;
17c8aaf5
TT
304 else if (macro_is_digit (*p)
305 || macro_is_identifier_nondigit (*p)
306 || *p == '.')
307 p++;
ec2bcbe7
JB
308 else
309 break;
310 }
311
312 set_token (tok, tok_start, p);
313 return 1;
314 }
315 else
316 return 0;
317}
318
319
320
321/* If the text starting at P going up to (but not including) END
322 starts with a character constant, set *TOK to point to that
323 character constant, and return 1. Otherwise, return zero.
324 Signal an error if it contains a malformed or incomplete character
325 constant. */
326static int
327get_character_constant (struct macro_buffer *tok, char *p, char *end)
328{
329 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
330 But of course, what really matters is that we handle it the same
331 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
332 to handle escape sequences. */
333 if ((p + 1 <= end && *p == '\'')
6c7a06a3
TT
334 || (p + 2 <= end
335 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
336 && p[1] == '\''))
ec2bcbe7
JB
337 {
338 char *tok_start = p;
6c7a06a3 339 int char_count = 0;
ec2bcbe7
JB
340
341 if (*p == '\'')
342 p++;
6c7a06a3 343 else if (*p == 'L' || *p == 'u' || *p == 'U')
ec2bcbe7
JB
344 p += 2;
345 else
f3574227 346 gdb_assert_not_reached ("unexpected character constant");
ec2bcbe7 347
ec2bcbe7
JB
348 for (;;)
349 {
350 if (p >= end)
8a3fe4f8 351 error (_("Unmatched single quote."));
ec2bcbe7
JB
352 else if (*p == '\'')
353 {
6c7a06a3 354 if (!char_count)
8a3fe4f8
AC
355 error (_("A character constant must contain at least one "
356 "character."));
ec2bcbe7
JB
357 p++;
358 break;
359 }
360 else if (*p == '\\')
361 {
d7561cbb
KS
362 const char *s, *o;
363
364 s = o = ++p;
365 char_count += c_parse_escape (&s, NULL);
366 p += s - o;
ec2bcbe7
JB
367 }
368 else
6c7a06a3
TT
369 {
370 p++;
371 char_count++;
372 }
ec2bcbe7
JB
373 }
374
375 set_token (tok, tok_start, p);
376 return 1;
377 }
378 else
379 return 0;
380}
381
382
383/* If the text starting at P going up to (but not including) END
384 starts with a string literal, set *TOK to point to that string
385 literal, and return 1. Otherwise, return zero. Signal an error if
386 it contains a malformed or incomplete string literal. */
387static int
388get_string_literal (struct macro_buffer *tok, char *p, char *end)
389{
390 if ((p + 1 <= end
6c7a06a3 391 && *p == '"')
ec2bcbe7 392 || (p + 2 <= end
6c7a06a3
TT
393 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
394 && p[1] == '"'))
ec2bcbe7
JB
395 {
396 char *tok_start = p;
397
6c7a06a3 398 if (*p == '"')
ec2bcbe7 399 p++;
6c7a06a3 400 else if (*p == 'L' || *p == 'u' || *p == 'U')
ec2bcbe7
JB
401 p += 2;
402 else
f3574227 403 gdb_assert_not_reached ("unexpected string literal");
ec2bcbe7
JB
404
405 for (;;)
406 {
407 if (p >= end)
8a3fe4f8 408 error (_("Unterminated string in expression."));
6c7a06a3 409 else if (*p == '"')
ec2bcbe7
JB
410 {
411 p++;
412 break;
413 }
414 else if (*p == '\n')
8a3fe4f8
AC
415 error (_("Newline characters may not appear in string "
416 "constants."));
ec2bcbe7
JB
417 else if (*p == '\\')
418 {
d7561cbb
KS
419 const char *s, *o;
420
421 s = o = ++p;
422 c_parse_escape (&s, NULL);
423 p += s - o;
ec2bcbe7
JB
424 }
425 else
426 p++;
427 }
428
429 set_token (tok, tok_start, p);
430 return 1;
431 }
432 else
433 return 0;
434}
435
436
437static int
438get_punctuator (struct macro_buffer *tok, char *p, char *end)
439{
440 /* Here, speed is much less important than correctness and clarity. */
441
ccb3ac8a
TT
442 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
443 Note that this table is ordered in a special way. A punctuator
444 which is a prefix of another punctuator must appear after its
445 "extension". Otherwise, the wrong token will be returned. */
ec2bcbe7 446 static const char * const punctuators[] = {
ccb3ac8a
TT
447 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
448 "...", ".",
449 "->", "--", "-=", "-",
450 "++", "+=", "+",
451 "*=", "*",
452 "!=", "!",
453 "&&", "&=", "&",
454 "/=", "/",
455 "%>", "%:%:", "%:", "%=", "%",
456 "^=", "^",
457 "##", "#",
458 ":>", ":",
459 "||", "|=", "|",
460 "<<=", "<<", "<=", "<:", "<%", "<",
461 ">>=", ">>", ">=", ">",
462 "==", "=",
ec2bcbe7
JB
463 0
464 };
465
466 int i;
467
468 if (p + 1 <= end)
469 {
470 for (i = 0; punctuators[i]; i++)
471 {
472 const char *punctuator = punctuators[i];
473
474 if (p[0] == punctuator[0])
475 {
476 int len = strlen (punctuator);
477
478 if (p + len <= end
479 && ! memcmp (p, punctuator, len))
480 {
481 set_token (tok, p, p + len);
482 return 1;
483 }
484 }
485 }
486 }
487
488 return 0;
489}
490
491
492/* Peel the next preprocessor token off of SRC, and put it in TOK.
493 Mutate TOK to refer to the first token in SRC, and mutate SRC to
494 refer to the text after that token. SRC must be a shared buffer;
495 the resulting TOK will be shared, pointing into the same string SRC
496 does. Initialize TOK's last_token field. Return non-zero if we
497 succeed, or 0 if we didn't find any more tokens in SRC. */
498static int
499get_token (struct macro_buffer *tok,
500 struct macro_buffer *src)
501{
502 char *p = src->text;
503 char *end = p + src->len;
504
505 gdb_assert (src->shared);
506
507 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
508
509 preprocessing-token:
510 header-name
511 identifier
512 pp-number
513 character-constant
514 string-literal
515 punctuator
516 each non-white-space character that cannot be one of the above
517
518 We don't have to deal with header-name tokens, since those can
519 only occur after a #include, which we will never see. */
520
521 while (p < end)
d7d9f01e 522 if (macro_is_whitespace (*p))
ec2bcbe7
JB
523 p++;
524 else if (get_comment (tok, p, end))
525 p += tok->len;
526 else if (get_pp_number (tok, p, end)
527 || get_character_constant (tok, p, end)
528 || get_string_literal (tok, p, end)
529 /* Note: the grammar in the standard seems to be
530 ambiguous: L'x' can be either a wide character
531 constant, or an identifier followed by a normal
532 character constant. By trying `get_identifier' after
533 we try get_character_constant and get_string_literal,
534 we give the wide character syntax precedence. Now,
535 since GDB doesn't handle wide character constants
536 anyway, is this the right thing to do? */
537 || get_identifier (tok, p, end)
538 || get_punctuator (tok, p, end))
539 {
540 /* How many characters did we consume, including whitespace? */
541 int consumed = p - src->text + tok->len;
b8d56208 542
ec2bcbe7
JB
543 src->text += consumed;
544 src->len -= consumed;
545 return 1;
546 }
547 else
548 {
549 /* We have found a "non-whitespace character that cannot be
550 one of the above." Make a token out of it. */
551 int consumed;
552
553 set_token (tok, p, p + 1);
554 consumed = p - src->text + tok->len;
555 src->text += consumed;
556 src->len -= consumed;
557 return 1;
558 }
559
560 return 0;
561}
562
563
564\f
565/* Appending token strings, with and without splicing */
566
567
568/* Append the macro buffer SRC to the end of DEST, and ensure that
569 doing so doesn't splice the token at the end of SRC with the token
570 at the beginning of DEST. SRC and DEST must have their last_token
571 fields set. Upon return, DEST's last_token field is set correctly.
572
573 For example:
574
575 If DEST is "(" and SRC is "y", then we can return with
576 DEST set to "(y" --- we've simply appended the two buffers.
577
578 However, if DEST is "x" and SRC is "y", then we must not return
579 with DEST set to "xy" --- that would splice the two tokens "x" and
580 "y" together to make a single token "xy". However, it would be
581 fine to return with DEST set to "x y". Similarly, "<" and "<" must
582 yield "< <", not "<<", etc. */
583static void
584append_tokens_without_splicing (struct macro_buffer *dest,
585 struct macro_buffer *src)
586{
587 int original_dest_len = dest->len;
588 struct macro_buffer dest_tail, new_token;
589
590 gdb_assert (src->last_token != -1);
591 gdb_assert (dest->last_token != -1);
592
593 /* First, just try appending the two, and call get_token to see if
594 we got a splice. */
595 appendmem (dest, src->text, src->len);
596
597 /* If DEST originally had no token abutting its end, then we can't
598 have spliced anything, so we're done. */
599 if (dest->last_token == original_dest_len)
600 {
601 dest->last_token = original_dest_len + src->last_token;
602 return;
603 }
604
605 /* Set DEST_TAIL to point to the last token in DEST, followed by
606 all the stuff we just appended. */
607 init_shared_buffer (&dest_tail,
608 dest->text + dest->last_token,
609 dest->len - dest->last_token);
610
611 /* Re-parse DEST's last token. We know that DEST used to contain
612 at least one token, so if it doesn't contain any after the
613 append, then we must have spliced "/" and "*" or "/" and "/" to
614 make a comment start. (Just for the record, I got this right
615 the first time. This is not a bug fix.) */
616 if (get_token (&new_token, &dest_tail)
617 && (new_token.text + new_token.len
618 == dest->text + original_dest_len))
619 {
620 /* No splice, so we're done. */
621 dest->last_token = original_dest_len + src->last_token;
622 return;
623 }
624
625 /* Okay, a simple append caused a splice. Let's chop dest back to
626 its original length and try again, but separate the texts with a
627 space. */
628 dest->len = original_dest_len;
629 appendc (dest, ' ');
630 appendmem (dest, src->text, src->len);
631
632 init_shared_buffer (&dest_tail,
633 dest->text + dest->last_token,
634 dest->len - dest->last_token);
635
636 /* Try to re-parse DEST's last token, as above. */
637 if (get_token (&new_token, &dest_tail)
638 && (new_token.text + new_token.len
639 == dest->text + original_dest_len))
640 {
641 /* No splice, so we're done. */
642 dest->last_token = original_dest_len + 1 + src->last_token;
643 return;
644 }
645
646 /* As far as I know, there's no case where inserting a space isn't
647 enough to prevent a splice. */
648 internal_error (__FILE__, __LINE__,
e2e0b3e5 649 _("unable to avoid splicing tokens during macro expansion"));
ec2bcbe7
JB
650}
651
2fae03e8
TT
652/* Stringify an argument, and insert it into DEST. ARG is the text to
653 stringify; it is LEN bytes long. */
654
655static void
abc9d0dc 656stringify (struct macro_buffer *dest, const char *arg, int len)
2fae03e8
TT
657{
658 /* Trim initial whitespace from ARG. */
659 while (len > 0 && macro_is_whitespace (*arg))
660 {
661 ++arg;
662 --len;
663 }
664
665 /* Trim trailing whitespace from ARG. */
666 while (len > 0 && macro_is_whitespace (arg[len - 1]))
667 --len;
668
669 /* Insert the string. */
670 appendc (dest, '"');
671 while (len > 0)
672 {
673 /* We could try to handle strange cases here, like control
674 characters, but there doesn't seem to be much point. */
675 if (macro_is_whitespace (*arg))
676 {
677 /* Replace a sequence of whitespace with a single space. */
678 appendc (dest, ' ');
679 while (len > 1 && macro_is_whitespace (arg[1]))
680 {
681 ++arg;
682 --len;
683 }
684 }
685 else if (*arg == '\\' || *arg == '"')
686 {
687 appendc (dest, '\\');
688 appendc (dest, *arg);
689 }
690 else
691 appendc (dest, *arg);
692 ++arg;
693 --len;
694 }
695 appendc (dest, '"');
696 dest->last_token = dest->len;
697}
ec2bcbe7 698
abc9d0dc
TT
699/* See macroexp.h. */
700
701char *
702macro_stringify (const char *str)
703{
704 struct macro_buffer buffer;
705 int len = strlen (str);
abc9d0dc
TT
706
707 init_buffer (&buffer, len);
708 stringify (&buffer, str, len);
e9e5e6b3 709 appendc (&buffer, '\0');
abc9d0dc
TT
710
711 return free_buffer_return_text (&buffer);
712}
713
ec2bcbe7
JB
714\f
715/* Expanding macros! */
716
717
718/* A singly-linked list of the names of the macros we are currently
719 expanding --- for detecting expansion loops. */
720struct macro_name_list {
721 const char *name;
722 struct macro_name_list *next;
723};
724
725
726/* Return non-zero if we are currently expanding the macro named NAME,
727 according to LIST; otherwise, return zero.
728
729 You know, it would be possible to get rid of all the NO_LOOP
730 arguments to these functions by simply generating a new lookup
731 function and baton which refuses to find the definition for a
732 particular macro, and otherwise delegates the decision to another
733 function/baton pair. But that makes the linked list of excluded
734 macros chained through untyped baton pointers, which will make it
025bb325 735 harder to debug. :( */
ec2bcbe7
JB
736static int
737currently_rescanning (struct macro_name_list *list, const char *name)
738{
739 for (; list; list = list->next)
a86bc61c 740 if (strcmp (name, list->name) == 0)
ec2bcbe7
JB
741 return 1;
742
743 return 0;
744}
745
746
747/* Gather the arguments to a macro expansion.
748
749 NAME is the name of the macro being invoked. (It's only used for
750 printing error messages.)
751
752 Assume that SRC is the text of the macro invocation immediately
753 following the macro name. For example, if we're processing the
754 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
755 baz).
756
757 If SRC doesn't start with an open paren ( token at all, return
758 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
759
760 If SRC doesn't contain a properly terminated argument list, then
761 raise an error.
2fae03e8
TT
762
763 For a variadic macro, NARGS holds the number of formal arguments to
764 the macro. For a GNU-style variadic macro, this should be the
765 number of named arguments. For a non-variadic macro, NARGS should
766 be -1.
ec2bcbe7
JB
767
768 Otherwise, return a pointer to the first element of an array of
769 macro buffers referring to the argument texts, and set *ARGC_P to
770 the number of arguments we found --- the number of elements in the
771 array. The macro buffers share their text with SRC, and their
772 last_token fields are initialized. The array is allocated with
773 xmalloc, and the caller is responsible for freeing it.
774
775 NOTE WELL: if SRC starts with a open paren ( token followed
776 immediately by a close paren ) token (e.g., the invocation looks
777 like "foo()"), we treat that as one argument, which happens to be
778 the empty list of tokens. The caller should keep in mind that such
779 a sequence of tokens is a valid way to invoke one-parameter
780 function-like macros, but also a valid way to invoke zero-parameter
781 function-like macros. Eeew.
782
783 Consume the tokens from SRC; after this call, SRC contains the text
784 following the invocation. */
785
786static struct macro_buffer *
2fae03e8
TT
787gather_arguments (const char *name, struct macro_buffer *src,
788 int nargs, int *argc_p)
ec2bcbe7
JB
789{
790 struct macro_buffer tok;
791 int args_len, args_size;
a86bc61c 792 struct macro_buffer *args = NULL;
ec2bcbe7
JB
793 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
794
795 /* Does SRC start with an opening paren token? Read from a copy of
796 SRC, so SRC itself is unaffected if we don't find an opening
797 paren. */
798 {
799 struct macro_buffer temp;
b8d56208 800
ec2bcbe7
JB
801 init_shared_buffer (&temp, src->text, src->len);
802
803 if (! get_token (&tok, &temp)
804 || tok.len != 1
805 || tok.text[0] != '(')
806 {
807 discard_cleanups (back_to);
808 return 0;
809 }
810 }
811
812 /* Consume SRC's opening paren. */
813 get_token (&tok, src);
814
815 args_len = 0;
b1ddacc7 816 args_size = 6;
8d749320 817 args = XNEWVEC (struct macro_buffer, args_size);
ec2bcbe7
JB
818
819 for (;;)
820 {
821 struct macro_buffer *arg;
822 int depth;
823
824 /* Make sure we have room for the next argument. */
825 if (args_len >= args_size)
826 {
827 args_size *= 2;
224c3ddb 828 args = XRESIZEVEC (struct macro_buffer, args, args_size);
ec2bcbe7
JB
829 }
830
831 /* Initialize the next argument. */
832 arg = &args[args_len++];
833 set_token (arg, src->text, src->text);
834
835 /* Gather the argument's tokens. */
836 depth = 0;
837 for (;;)
838 {
ec2bcbe7 839 if (! get_token (&tok, src))
8a3fe4f8 840 error (_("Malformed argument list for macro `%s'."), name);
ec2bcbe7
JB
841
842 /* Is tok an opening paren? */
843 if (tok.len == 1 && tok.text[0] == '(')
844 depth++;
845
846 /* Is tok is a closing paren? */
847 else if (tok.len == 1 && tok.text[0] == ')')
848 {
849 /* If it's a closing paren at the top level, then that's
850 the end of the argument list. */
851 if (depth == 0)
852 {
2fae03e8
TT
853 /* In the varargs case, the last argument may be
854 missing. Add an empty argument in this case. */
855 if (nargs != -1 && args_len == nargs - 1)
856 {
857 /* Make sure we have room for the argument. */
858 if (args_len >= args_size)
859 {
860 args_size++;
224c3ddb
SM
861 args = XRESIZEVEC (struct macro_buffer, args,
862 args_size);
2fae03e8
TT
863 }
864 arg = &args[args_len++];
865 set_token (arg, src->text, src->text);
866 }
867
ec2bcbe7
JB
868 discard_cleanups (back_to);
869 *argc_p = args_len;
870 return args;
871 }
872
873 depth--;
874 }
875
876 /* If tok is a comma at top level, then that's the end of
2fae03e8
TT
877 the current argument. However, if we are handling a
878 variadic macro and we are computing the last argument, we
879 want to include the comma and remaining tokens. */
880 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
881 && (nargs == -1 || args_len < nargs))
ec2bcbe7
JB
882 break;
883
884 /* Extend the current argument to enclose this token. If
885 this is the current argument's first token, leave out any
886 leading whitespace, just for aesthetics. */
887 if (arg->len == 0)
888 {
889 arg->text = tok.text;
890 arg->len = tok.len;
891 arg->last_token = 0;
892 }
893 else
894 {
895 arg->len = (tok.text + tok.len) - arg->text;
896 arg->last_token = tok.text - arg->text;
897 }
898 }
899 }
900}
901
902
903/* The `expand' and `substitute_args' functions both invoke `scan'
904 recursively, so we need a forward declaration somewhere. */
905static void scan (struct macro_buffer *dest,
906 struct macro_buffer *src,
907 struct macro_name_list *no_loop,
908 macro_lookup_ftype *lookup_func,
909 void *lookup_baton);
910
911
2fae03e8
TT
912/* A helper function for substitute_args.
913
914 ARGV is a vector of all the arguments; ARGC is the number of
915 arguments. IS_VARARGS is true if the macro being substituted is a
916 varargs macro; in this case VA_ARG_NAME is the name of the
917 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
918 false.
919
920 If the token TOK is the name of a parameter, return the parameter's
921 index. If TOK is not an argument, return -1. */
922
923static int
924find_parameter (const struct macro_buffer *tok,
925 int is_varargs, const struct macro_buffer *va_arg_name,
926 int argc, const char * const *argv)
927{
928 int i;
929
930 if (! tok->is_identifier)
931 return -1;
932
933 for (i = 0; i < argc; ++i)
3e43a32a
MS
934 if (tok->len == strlen (argv[i])
935 && !memcmp (tok->text, argv[i], tok->len))
2fae03e8
TT
936 return i;
937
938 if (is_varargs && tok->len == va_arg_name->len
939 && ! memcmp (tok->text, va_arg_name->text, tok->len))
940 return argc - 1;
941
942 return -1;
943}
944
ec2bcbe7
JB
945/* Given the macro definition DEF, being invoked with the actual
946 arguments given by ARGC and ARGV, substitute the arguments into the
947 replacement list, and store the result in DEST.
948
2fae03e8
TT
949 IS_VARARGS should be true if DEF is a varargs macro. In this case,
950 VA_ARG_NAME should be the name of the "variable" argument -- either
951 __VA_ARGS__ for c99-style varargs, or the final argument name, for
952 GNU-style varargs. If IS_VARARGS is false, this parameter is
953 ignored.
954
ec2bcbe7
JB
955 If it is necessary to expand macro invocations in one of the
956 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
957 definitions, and don't expand invocations of the macros listed in
958 NO_LOOP. */
2fae03e8 959
ec2bcbe7
JB
960static void
961substitute_args (struct macro_buffer *dest,
962 struct macro_definition *def,
2fae03e8 963 int is_varargs, const struct macro_buffer *va_arg_name,
ec2bcbe7
JB
964 int argc, struct macro_buffer *argv,
965 struct macro_name_list *no_loop,
966 macro_lookup_ftype *lookup_func,
967 void *lookup_baton)
968{
969 /* A macro buffer for the macro's replacement list. */
970 struct macro_buffer replacement_list;
2fae03e8
TT
971 /* The token we are currently considering. */
972 struct macro_buffer tok;
973 /* The replacement list's pointer from just before TOK was lexed. */
974 char *original_rl_start;
975 /* We have a single lookahead token to handle token splicing. */
976 struct macro_buffer lookahead;
977 /* The lookahead token might not be valid. */
978 int lookahead_valid;
979 /* The replacement list's pointer from just before LOOKAHEAD was
980 lexed. */
981 char *lookahead_rl_start;
ec2bcbe7
JB
982
983 init_shared_buffer (&replacement_list, (char *) def->replacement,
984 strlen (def->replacement));
985
986 gdb_assert (dest->len == 0);
987 dest->last_token = 0;
988
2fae03e8
TT
989 original_rl_start = replacement_list.text;
990 if (! get_token (&tok, &replacement_list))
991 return;
992 lookahead_rl_start = replacement_list.text;
993 lookahead_valid = get_token (&lookahead, &replacement_list);
994
ec2bcbe7
JB
995 for (;;)
996 {
ec2bcbe7
JB
997 /* Just for aesthetics. If we skipped some whitespace, copy
998 that to DEST. */
999 if (tok.text > original_rl_start)
1000 {
1001 appendmem (dest, original_rl_start, tok.text - original_rl_start);
1002 dest->last_token = dest->len;
1003 }
1004
1005 /* Is this token the stringification operator? */
1006 if (tok.len == 1
1007 && tok.text[0] == '#')
2fae03e8
TT
1008 {
1009 int arg;
ec2bcbe7 1010
2fae03e8
TT
1011 if (!lookahead_valid)
1012 error (_("Stringification operator requires an argument."));
ec2bcbe7 1013
2fae03e8
TT
1014 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1015 def->argc, def->argv);
1016 if (arg == -1)
1017 error (_("Argument to stringification operator must name "
1018 "a macro parameter."));
ec2bcbe7 1019
2fae03e8
TT
1020 stringify (dest, argv[arg].text, argv[arg].len);
1021
1022 /* Read one token and let the loop iteration code handle the
1023 rest. */
1024 lookahead_rl_start = replacement_list.text;
1025 lookahead_valid = get_token (&lookahead, &replacement_list);
1026 }
1027 /* Is this token the splicing operator? */
1028 else if (tok.len == 2
1029 && tok.text[0] == '#'
1030 && tok.text[1] == '#')
1031 error (_("Stray splicing operator"));
1032 /* Is the next token the splicing operator? */
1033 else if (lookahead_valid
1034 && lookahead.len == 2
1035 && lookahead.text[0] == '#'
1036 && lookahead.text[1] == '#')
1037 {
308d96ed 1038 int finished = 0;
2fae03e8
TT
1039 int prev_was_comma = 0;
1040
1041 /* Note that GCC warns if the result of splicing is not a
1042 token. In the debugger there doesn't seem to be much
1043 benefit from doing this. */
1044
1045 /* Insert the first token. */
1046 if (tok.len == 1 && tok.text[0] == ',')
1047 prev_was_comma = 1;
1048 else
1049 {
1050 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1051 def->argc, def->argv);
b8d56208 1052
2fae03e8
TT
1053 if (arg != -1)
1054 appendmem (dest, argv[arg].text, argv[arg].len);
1055 else
1056 appendmem (dest, tok.text, tok.len);
1057 }
1058
1059 /* Apply a possible sequence of ## operators. */
1060 for (;;)
1061 {
1062 if (! get_token (&tok, &replacement_list))
1063 error (_("Splicing operator at end of macro"));
1064
1065 /* Handle a comma before a ##. If we are handling
1066 varargs, and the token on the right hand side is the
1067 varargs marker, and the final argument is empty or
1068 missing, then drop the comma. This is a GNU
1069 extension. There is one ambiguous case here,
1070 involving pedantic behavior with an empty argument,
1071 but we settle that in favor of GNU-style (GCC uses an
1072 option). If we aren't dealing with varargs, we
1073 simply insert the comma. */
1074 if (prev_was_comma)
1075 {
1076 if (! (is_varargs
1077 && tok.len == va_arg_name->len
1078 && !memcmp (tok.text, va_arg_name->text, tok.len)
1079 && argv[argc - 1].len == 0))
1080 appendmem (dest, ",", 1);
1081 prev_was_comma = 0;
1082 }
1083
1084 /* Insert the token. If it is a parameter, insert the
1085 argument. If it is a comma, treat it specially. */
1086 if (tok.len == 1 && tok.text[0] == ',')
1087 prev_was_comma = 1;
1088 else
1089 {
1090 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1091 def->argc, def->argv);
b8d56208 1092
2fae03e8
TT
1093 if (arg != -1)
1094 appendmem (dest, argv[arg].text, argv[arg].len);
1095 else
1096 appendmem (dest, tok.text, tok.len);
1097 }
1098
1099 /* Now read another token. If it is another splice, we
1100 loop. */
1101 original_rl_start = replacement_list.text;
1102 if (! get_token (&tok, &replacement_list))
1103 {
1104 finished = 1;
1105 break;
1106 }
1107
1108 if (! (tok.len == 2
1109 && tok.text[0] == '#'
1110 && tok.text[1] == '#'))
1111 break;
1112 }
1113
1114 if (prev_was_comma)
1115 {
1116 /* We saw a comma. Insert it now. */
1117 appendmem (dest, ",", 1);
1118 }
1119
1120 dest->last_token = dest->len;
1121 if (finished)
1122 lookahead_valid = 0;
1123 else
1124 {
1125 /* Set up for the loop iterator. */
1126 lookahead = tok;
1127 lookahead_rl_start = original_rl_start;
1128 lookahead_valid = 1;
1129 }
1130 }
1131 else
1132 {
1133 /* Is this token an identifier? */
1134 int substituted = 0;
1135 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1136 def->argc, def->argv);
1137
1138 if (arg != -1)
1139 {
1140 struct macro_buffer arg_src;
1141
1142 /* Expand any macro invocations in the argument text,
1143 and append the result to dest. Remember that scan
1144 mutates its source, so we need to scan a new buffer
1145 referring to the argument's text, not the argument
1146 itself. */
1147 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1148 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1149 substituted = 1;
1150 }
1151
1152 /* If it wasn't a parameter, then just copy it across. */
1153 if (! substituted)
1154 append_tokens_without_splicing (dest, &tok);
1155 }
1156
1157 if (! lookahead_valid)
1158 break;
1159
1160 tok = lookahead;
1161 original_rl_start = lookahead_rl_start;
1162
1163 lookahead_rl_start = replacement_list.text;
1164 lookahead_valid = get_token (&lookahead, &replacement_list);
ec2bcbe7
JB
1165 }
1166}
1167
1168
1169/* Expand a call to a macro named ID, whose definition is DEF. Append
1170 its expansion to DEST. SRC is the input text following the ID
1171 token. We are currently rescanning the expansions of the macros
1172 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
025bb325 1173 LOOKUP_BATON to find definitions for any nested macro references.
ec2bcbe7
JB
1174
1175 Return 1 if we decided to expand it, zero otherwise. (If it's a
1176 function-like macro name that isn't followed by an argument list,
1177 we don't expand it.) If we return zero, leave SRC unchanged. */
1178static int
1179expand (const char *id,
1180 struct macro_definition *def,
1181 struct macro_buffer *dest,
1182 struct macro_buffer *src,
1183 struct macro_name_list *no_loop,
1184 macro_lookup_ftype *lookup_func,
1185 void *lookup_baton)
1186{
1187 struct macro_name_list new_no_loop;
1188
1189 /* Create a new node to be added to the front of the no-expand list.
1190 This list is appropriate for re-scanning replacement lists, but
1191 it is *not* appropriate for scanning macro arguments; invocations
1192 of the macro whose arguments we are gathering *do* get expanded
1193 there. */
1194 new_no_loop.name = id;
1195 new_no_loop.next = no_loop;
1196
1197 /* What kind of macro are we expanding? */
1198 if (def->kind == macro_object_like)
1199 {
1200 struct macro_buffer replacement_list;
1201
1202 init_shared_buffer (&replacement_list, (char *) def->replacement,
1203 strlen (def->replacement));
1204
1205 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1206 return 1;
1207 }
1208 else if (def->kind == macro_function_like)
1209 {
1210 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
0a029df5 1211 int argc = 0;
a86bc61c 1212 struct macro_buffer *argv = NULL;
ec2bcbe7
JB
1213 struct macro_buffer substituted;
1214 struct macro_buffer substituted_src;
ee6436e3 1215 struct macro_buffer va_arg_name = {0};
2fae03e8
TT
1216 int is_varargs = 0;
1217
1218 if (def->argc >= 1)
1219 {
1220 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1221 {
1222 /* In C99-style varargs, substitution is done using
1223 __VA_ARGS__. */
1224 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1225 strlen ("__VA_ARGS__"));
1226 is_varargs = 1;
1227 }
1228 else
1229 {
1230 int len = strlen (def->argv[def->argc - 1]);
b8d56208 1231
2fae03e8
TT
1232 if (len > 3
1233 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1234 {
1235 /* In GNU-style varargs, the name of the
1236 substitution parameter is the name of the formal
1237 argument without the "...". */
1238 init_shared_buffer (&va_arg_name,
1239 (char *) def->argv[def->argc - 1],
1240 len - 3);
1241 is_varargs = 1;
1242 }
1243 }
1244 }
ec2bcbe7
JB
1245
1246 make_cleanup (free_current_contents, &argv);
2fae03e8
TT
1247 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1248 &argc);
ec2bcbe7
JB
1249
1250 /* If we couldn't find any argument list, then we don't expand
1251 this macro. */
1252 if (! argv)
1253 {
1254 do_cleanups (back_to);
1255 return 0;
1256 }
1257
1258 /* Check that we're passing an acceptable number of arguments for
1259 this macro. */
1260 if (argc != def->argc)
1261 {
2fae03e8
TT
1262 if (is_varargs && argc >= def->argc - 1)
1263 {
1264 /* Ok. */
1265 }
ec2bcbe7
JB
1266 /* Remember that a sequence of tokens like "foo()" is a
1267 valid invocation of a macro expecting either zero or one
1268 arguments. */
2fae03e8
TT
1269 else if (! (argc == 1
1270 && argv[0].len == 0
1271 && def->argc == 0))
8a3fe4f8
AC
1272 error (_("Wrong number of arguments to macro `%s' "
1273 "(expected %d, got %d)."),
ec2bcbe7
JB
1274 id, def->argc, argc);
1275 }
1276
1277 /* Note that we don't expand macro invocations in the arguments
1278 yet --- we let subst_args take care of that. Parameters that
1279 appear as operands of the stringifying operator "#" or the
1280 splicing operator "##" don't get macro references expanded,
1281 so we can't really tell whether it's appropriate to macro-
1282 expand an argument until we see how it's being used. */
1283 init_buffer (&substituted, 0);
1284 make_cleanup (cleanup_macro_buffer, &substituted);
2fae03e8
TT
1285 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1286 argc, argv, no_loop, lookup_func, lookup_baton);
ec2bcbe7
JB
1287
1288 /* Now `substituted' is the macro's replacement list, with all
1289 argument values substituted into it properly. Re-scan it for
1290 macro references, but don't expand invocations of this macro.
1291
1292 We create a new buffer, `substituted_src', which points into
1293 `substituted', and scan that. We can't scan `substituted'
1294 itself, since the tokenization process moves the buffer's
1295 text pointer around, and we still need to be able to find
1296 `substituted's original text buffer after scanning it so we
1297 can free it. */
1298 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1299 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1300
1301 do_cleanups (back_to);
1302
1303 return 1;
1304 }
1305 else
e2e0b3e5 1306 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
ec2bcbe7
JB
1307}
1308
1309
1310/* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1311 constitute a macro invokation not forbidden in NO_LOOP, append its
1312 expansion to DEST and return non-zero. Otherwise, return zero, and
1313 leave DEST unchanged.
1314
1315 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1316 SRC_FIRST must be a string built by get_token. */
1317static int
1318maybe_expand (struct macro_buffer *dest,
1319 struct macro_buffer *src_first,
1320 struct macro_buffer *src_rest,
1321 struct macro_name_list *no_loop,
1322 macro_lookup_ftype *lookup_func,
1323 void *lookup_baton)
1324{
1325 gdb_assert (src_first->shared);
1326 gdb_assert (src_rest->shared);
1327 gdb_assert (! dest->shared);
1328
1329 /* Is this token an identifier? */
1330 if (src_first->is_identifier)
1331 {
1332 /* Make a null-terminated copy of it, since that's what our
1333 lookup function expects. */
224c3ddb 1334 char *id = (char *) xmalloc (src_first->len + 1);
ec2bcbe7 1335 struct cleanup *back_to = make_cleanup (xfree, id);
b8d56208 1336
ec2bcbe7
JB
1337 memcpy (id, src_first->text, src_first->len);
1338 id[src_first->len] = 0;
1339
1340 /* If we're currently re-scanning the result of expanding
1341 this macro, don't expand it again. */
1342 if (! currently_rescanning (no_loop, id))
1343 {
1344 /* Does this identifier have a macro definition in scope? */
1345 struct macro_definition *def = lookup_func (id, lookup_baton);
1346
1347 if (def && expand (id, def, dest, src_rest, no_loop,
1348 lookup_func, lookup_baton))
1349 {
1350 do_cleanups (back_to);
1351 return 1;
1352 }
1353 }
1354
1355 do_cleanups (back_to);
1356 }
1357
1358 return 0;
1359}
1360
1361
1362/* Expand macro references in SRC, appending the results to DEST.
1363 Assume we are re-scanning the result of expanding the macros named
1364 in NO_LOOP, and don't try to re-expand references to them.
1365
1366 SRC must be a shared buffer; DEST must not be one. */
1367static void
1368scan (struct macro_buffer *dest,
1369 struct macro_buffer *src,
1370 struct macro_name_list *no_loop,
1371 macro_lookup_ftype *lookup_func,
1372 void *lookup_baton)
1373{
1374 gdb_assert (src->shared);
1375 gdb_assert (! dest->shared);
1376
1377 for (;;)
1378 {
1379 struct macro_buffer tok;
1380 char *original_src_start = src->text;
1381
1382 /* Find the next token in SRC. */
1383 if (! get_token (&tok, src))
1384 break;
1385
1386 /* Just for aesthetics. If we skipped some whitespace, copy
1387 that to DEST. */
1388 if (tok.text > original_src_start)
1389 {
1390 appendmem (dest, original_src_start, tok.text - original_src_start);
1391 dest->last_token = dest->len;
1392 }
1393
1394 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1395 /* We didn't end up expanding tok as a macro reference, so
1396 simply append it to dest. */
1397 append_tokens_without_splicing (dest, &tok);
1398 }
1399
1400 /* Just for aesthetics. If there was any trailing whitespace in
1401 src, copy it to dest. */
1402 if (src->len)
1403 {
1404 appendmem (dest, src->text, src->len);
1405 dest->last_token = dest->len;
1406 }
1407}
1408
1409
1410char *
1411macro_expand (const char *source,
1412 macro_lookup_ftype *lookup_func,
1413 void *lookup_func_baton)
1414{
1415 struct macro_buffer src, dest;
1416 struct cleanup *back_to;
1417
1418 init_shared_buffer (&src, (char *) source, strlen (source));
1419
1420 init_buffer (&dest, 0);
1421 dest.last_token = 0;
1422 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1423
1424 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1425
1426 appendc (&dest, '\0');
1427
1428 discard_cleanups (back_to);
1429 return dest.text;
1430}
1431
1432
1433char *
1434macro_expand_once (const char *source,
1435 macro_lookup_ftype *lookup_func,
1436 void *lookup_func_baton)
1437{
8a3fe4f8 1438 error (_("Expand-once not implemented yet."));
ec2bcbe7
JB
1439}
1440
1441
1442char *
d7561cbb 1443macro_expand_next (const char **lexptr,
ec2bcbe7
JB
1444 macro_lookup_ftype *lookup_func,
1445 void *lookup_baton)
1446{
1447 struct macro_buffer src, dest, tok;
1448 struct cleanup *back_to;
1449
1450 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
d7561cbb 1451 init_shared_buffer (&src, (char *) *lexptr, strlen (*lexptr));
ec2bcbe7
JB
1452
1453 /* Set up DEST to receive the expansion, if there is one. */
1454 init_buffer (&dest, 0);
1455 dest.last_token = 0;
1456 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1457
1458 /* Get the text's first preprocessing token. */
1459 if (! get_token (&tok, &src))
1460 {
1461 do_cleanups (back_to);
1462 return 0;
1463 }
1464
1465 /* If it's a macro invocation, expand it. */
1466 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1467 {
1468 /* It was a macro invocation! Package up the expansion as a
1469 null-terminated string and return it. Set *lexptr to the
1470 start of the next token in the input. */
1471 appendc (&dest, '\0');
1472 discard_cleanups (back_to);
1473 *lexptr = src.text;
1474 return dest.text;
1475 }
1476 else
1477 {
1478 /* It wasn't a macro invocation. */
1479 do_cleanups (back_to);
1480 return 0;
1481 }
1482}