]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mt-tdep.c
Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
[thirdparty/binutils-gdb.git] / gdb / mt-tdep.c
CommitLineData
d031aafb 1/* Target-dependent code for Morpho mt processor, for GDB.
61def6bd 2
618f726f 3 Copyright (C) 2005-2016 Free Software Foundation, Inc.
61def6bd
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
61def6bd
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
61def6bd
KB
19
20/* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "dis-asm.h"
28#include "arch-utils.h"
29#include "gdbtypes.h"
61def6bd
KB
30#include "regcache.h"
31#include "reggroups.h"
32#include "gdbcore.h"
33#include "trad-frame.h"
34#include "inferior.h"
35#include "dwarf2-frame.h"
36#include "infcall.h"
d8ca156b 37#include "language.h"
79a45b7d 38#include "valprint.h"
61def6bd 39
d031aafb 40enum mt_arch_constants
61def6bd 41{
d031aafb 42 MT_MAX_STRUCT_SIZE = 16
61def6bd
KB
43};
44
d031aafb 45enum mt_gdb_regnums
61def6bd 46{
d031aafb
NS
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
61def6bd
KB
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
d031aafb 72 MT_INT_ENABLE_REGNUM,
61def6bd
KB
73 /* End of CPU regs. */
74
d031aafb 75 MT_NUM_CPU_REGS,
61def6bd
KB
76
77 /* Co-processor registers. */
d031aafb
NS
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
61def6bd 100 six bytes). */
d031aafb
NS
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
03a73f77
MM
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
61def6bd
KB
116
117 /* Number of real registers. */
d031aafb 118 MT_NUM_REGS,
61def6bd
KB
119
120 /* Pseudo-registers. */
d031aafb
NS
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
60e81fcc
NS
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
03a73f77
MM
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
61def6bd
KB
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
60e81fcc
NS
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
61def6bd
KB
138};
139
df4df182
UW
140/* The tdep structure. */
141struct gdbarch_tdep
142{
143 /* ISA-specific types. */
144 struct type *copro_type;
145};
146
147
61def6bd
KB
148/* Return name of register number specified by REGNUM. */
149
150static const char *
d93859e2 151mt_register_name (struct gdbarch *gdbarch, int regnum)
61def6bd 152{
58b78171 153 static const char *const register_names[] = {
61def6bd
KB
154 /* CPU regs. */
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
157 "pc", "IE",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
03a73f77 164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
61def6bd
KB
165 /* Pseudo-registers. */
166 "coprocessor", "MAC"
167 };
60e81fcc
NS
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
171
172 if (regnum < 0)
173 return "";
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178
179 {
180 char *name;
181 const char *stub;
182 unsigned dim_1;
183 unsigned dim_2;
184 unsigned index;
185
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
191
03a73f77 192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
03a73f77 194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
60e81fcc
NS
195 stub = "";
196 else
197 stub = register_names[index + MT_CPR0_REGNUM];
198 if (!*stub)
199 {
200 array_names[regnum] = stub;
201 return stub;
202 }
224c3ddb 203 name = (char *) xmalloc (30);
60e81fcc
NS
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
206 return name;
207 }
208}
61def6bd 209
60e81fcc
NS
210/* Return the type of a coprocessor register. */
211
212static struct type *
213mt_copro_register_type (struct gdbarch *arch, int regnum)
214{
215 switch (regnum)
216 {
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
df4df182 222 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
223 case MT_BYPA_REGNUM:
224 case MT_BYPB_REGNUM:
225 case MT_BYPC_REGNUM:
226 case MT_Z1_REGNUM:
227 case MT_Z2_REGNUM:
228 case MT_OUT_REGNUM:
03a73f77
MM
229 case MT_ZI2_REGNUM:
230 case MT_ZQ2_REGNUM:
df4df182 231 return builtin_type (arch)->builtin_int16;
60e81fcc
NS
232 case MT_EXMAC_REGNUM:
233 case MT_MAC_REGNUM:
df4df182 234 return builtin_type (arch)->builtin_uint32;
60e81fcc 235 case MT_CONTEXT_REGNUM:
0dfff4cb 236 return builtin_type (arch)->builtin_long_long;
60e81fcc 237 case MT_FLAG_REGNUM:
0dfff4cb 238 return builtin_type (arch)->builtin_unsigned_char;
60e81fcc
NS
239 default:
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
df4df182 241 return builtin_type (arch)->builtin_int16;
03a73f77 242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc
NS
243 {
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
df4df182 246 return builtin_type (arch)->builtin_uint64;
60e81fcc 247 else
df4df182 248 return builtin_type (arch)->builtin_uint32;
60e81fcc
NS
249 }
250 else
df4df182 251 return builtin_type (arch)->builtin_uint32;
60e81fcc 252 }
61def6bd
KB
253}
254
255/* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
257
258static struct type *
d031aafb 259mt_register_type (struct gdbarch *arch, int regnum)
61def6bd 260{
df4df182 261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
61def6bd 262
d031aafb 263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
61def6bd 264 {
61def6bd
KB
265 switch (regnum)
266 {
d031aafb
NS
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
fde6c819 270 return builtin_type (arch)->builtin_func_ptr;
d031aafb
NS
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
fde6c819 273 return builtin_type (arch)->builtin_data_ptr;
d031aafb
NS
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
df4df182
UW
276 if (tdep->copro_type == NULL)
277 {
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
280 }
281 return tdep->copro_type;
d031aafb 282 case MT_MAC_PSEUDOREG_REGNUM:
60e81fcc
NS
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
03a73f77 285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
61def6bd 286 default:
d031aafb 287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
df4df182 288 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
61def6bd
KB
298 }
299 }
300 internal_error (__FILE__, __LINE__,
d031aafb 301 _("mt_register_type: illegal register number %d"), regnum);
61def6bd
KB
302}
303
304/* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307static int
d031aafb 308mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
61def6bd
KB
309 struct reggroup *group)
310{
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
d031aafb 314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
d93859e2 315 && mt_register_name (gdbarch, regnum)[0] != '\0');
61def6bd
KB
316
317 if (group == general_reggroup)
d031aafb 318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
61def6bd
KB
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328}
329
330/* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335static enum return_value_convention
6a3a010b 336mt_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
61def6bd 339{
e17a4113
UW
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341
61def6bd
KB
342 if (TYPE_LENGTH (type) > 4)
343 {
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
346 if (readbuf)
347 {
348 ULONGEST addr;
349
d031aafb 350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
352 }
353
354 if (writebuf)
355 {
356 ULONGEST addr;
357
d031aafb 358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
360 }
361
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
363 }
364 else
365 {
366 if (readbuf)
367 {
368 ULONGEST temp;
369
370 /* Return values of <= 4 bytes are returned in R11. */
d031aafb 371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
e17a4113
UW
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
373 byte_order, temp);
61def6bd
KB
374 }
375
376 if (writebuf)
377 {
378 if (TYPE_LENGTH (type) < 4)
379 {
380 gdb_byte buf[4];
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
d031aafb 385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
61def6bd
KB
386 }
387 else /* (TYPE_LENGTH (type) == 4 */
d031aafb 388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
61def6bd
KB
389 }
390
391 return RETURN_VALUE_REGISTER_CONVENTION;
392 }
393}
394
395/* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
397 address.
398
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
402 call. */
403
404static CORE_ADDR
6093d2eb 405mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
61def6bd 406{
e17a4113 407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd 408 CORE_ADDR func_addr = 0, func_end = 0;
2c02bd72 409 const char *func_name;
61def6bd
KB
410 unsigned long instr;
411
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
413 {
414 struct symtab_and_line sal;
415 struct symbol *sym;
416
417 /* Found a function. */
835a09d9 418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
61def6bd
KB
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
420 {
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
423
424 if (sal.end && sal.end < func_end)
425 {
426 /* Found a line number, use it as end of prologue. */
427 return sal.end;
428 }
429 }
430 }
431
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
433 for (;; pc += 4)
434 {
e17a4113 435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
61def6bd
KB
436 if (instr == 0x12000000) /* nop */
437 continue;
438 if (instr == 0x12ddc000) /* copy sp into fp */
439 continue;
440 instr >>= 16;
441 if (instr == 0x05dd) /* subi sp, sp, imm */
442 continue;
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
444 continue;
445 /* Not an obvious prologue instruction. */
446 break;
447 }
448
449 return pc;
450}
451
d19280ad
YQ
452static int
453mt_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
454{
455 return 4;
456}
61def6bd
KB
457
458static const gdb_byte *
d19280ad 459mt_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
61def6bd 460{
d19280ad
YQ
461 /* The breakpoint instruction must be the same size as the smallest
462 instruction in the instruction set.
463
464 The BP for ms1 is defined as 0x68000000 (BREAK).
465 The BP for ms2 is defined as 0x69000000 (illegal). */
3950dc3f
NS
466 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
467 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
61def6bd 468
d19280ad
YQ
469 *size = kind;
470
67d57894 471 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
3950dc3f 472 return ms2_breakpoint;
d19280ad 473
3950dc3f 474 return ms1_breakpoint;
61def6bd
KB
475}
476
d19280ad
YQ
477GDBARCH_BREAKPOINT_FROM_PC (mt)
478
60e81fcc
NS
479/* Select the correct coprocessor register bank. Return the pseudo
480 regnum we really want to read. */
481
482static int
483mt_select_coprocessor (struct gdbarch *gdbarch,
484 struct regcache *regcache, int regno)
485{
e17a4113 486 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
60e81fcc
NS
487 unsigned index, base;
488 gdb_byte copro[4];
489
025bb325 490 /* Get the copro pseudo regnum. */
60e81fcc 491 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
e17a4113
UW
492 base = ((extract_signed_integer (&copro[0], 2, byte_order)
493 * MT_COPRO_PSEUDOREG_DIM_2)
494 + extract_signed_integer (&copro[2], 2, byte_order));
60e81fcc
NS
495
496 regno -= MT_COPRO_PSEUDOREG_ARRAY;
497 index = regno % MT_COPRO_PSEUDOREG_REGS;
498 regno /= MT_COPRO_PSEUDOREG_REGS;
499 if (base != regno)
500 {
501 /* Select the correct coprocessor register bank. Invalidate the
502 coprocessor register cache. */
503 unsigned ix;
504
e17a4113
UW
505 store_signed_integer (&copro[0], 2, byte_order,
506 regno / MT_COPRO_PSEUDOREG_DIM_2);
507 store_signed_integer (&copro[2], 2, byte_order,
508 regno % MT_COPRO_PSEUDOREG_DIM_2);
60e81fcc
NS
509 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
510
511 /* We must flush the cache, as it is now invalid. */
512 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
9c5ea4d9 513 regcache_invalidate (regcache, ix);
60e81fcc
NS
514 }
515
516 return index;
517}
518
61def6bd
KB
519/* Fetch the pseudo registers:
520
60e81fcc 521 There are two regular pseudo-registers:
61def6bd
KB
522 1) The 'coprocessor' pseudo-register (which mirrors the
523 "real" coprocessor register sent by the target), and
524 2) The 'MAC' pseudo-register (which represents the union
525 of the original 32 bit target MAC register and the new
60e81fcc
NS
526 8-bit extended-MAC register).
527
528 Additionally there is an array of coprocessor registers which track
529 the coprocessor registers for each coprocessor. */
61def6bd 530
05d1431c 531static enum register_status
d031aafb 532mt_pseudo_register_read (struct gdbarch *gdbarch,
05d1431c 533 struct regcache *regcache, int regno, gdb_byte *buf)
61def6bd 534{
e17a4113
UW
535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
536
61def6bd
KB
537 switch (regno)
538 {
d031aafb
NS
539 case MT_COPRO_REGNUM:
540 case MT_COPRO_PSEUDOREG_REGNUM:
05d1431c 541 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
d031aafb
NS
542 case MT_MAC_REGNUM:
543 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
544 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
545 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 546 {
05d1431c 547 enum register_status status;
61def6bd
KB
548 ULONGEST oldmac = 0, ext_mac = 0;
549 ULONGEST newmac;
550
05d1431c
PA
551 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
552 if (status != REG_VALID)
553 return status;
554
d031aafb 555 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
05d1431c
PA
556 if (status != REG_VALID)
557 return status;
558
61def6bd
KB
559 newmac =
560 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
e17a4113 561 store_signed_integer (buf, 8, byte_order, newmac);
05d1431c
PA
562
563 return REG_VALID;
61def6bd
KB
564 }
565 else
05d1431c 566 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
567 break;
568 default:
60e81fcc
NS
569 {
570 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
571
03a73f77 572 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
05d1431c
PA
573 return mt_pseudo_register_read (gdbarch, regcache,
574 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc 575 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
05d1431c
PA
576 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
577 else
578 /* ??? */
579 return REG_VALID;
60e81fcc 580 }
61def6bd
KB
581 break;
582 }
583}
584
585/* Write the pseudo registers:
586
d031aafb 587 Mt pseudo-registers are stored directly to the target. The
61def6bd
KB
588 'coprocessor' register is special, because when it is modified, all
589 the other coprocessor regs must be flushed from the reg cache. */
590
591static void
d031aafb 592mt_pseudo_register_write (struct gdbarch *gdbarch,
61def6bd
KB
593 struct regcache *regcache,
594 int regno, const gdb_byte *buf)
595{
e17a4113 596 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd
KB
597 int i;
598
599 switch (regno)
600 {
d031aafb
NS
601 case MT_COPRO_REGNUM:
602 case MT_COPRO_PSEUDOREG_REGNUM:
603 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
604 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
9c5ea4d9 605 regcache_invalidate (regcache, i);
61def6bd 606 break;
d031aafb
NS
607 case MT_MAC_REGNUM:
608 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
609 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
610 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
611 {
612 /* The 8-byte MAC pseudo-register must be broken down into two
613 32-byte registers. */
614 unsigned int oldmac, ext_mac;
615 ULONGEST newmac;
616
e17a4113 617 newmac = extract_unsigned_integer (buf, 8, byte_order);
61def6bd
KB
618 oldmac = newmac & 0xffffffff;
619 ext_mac = (newmac >> 32) & 0xff;
d031aafb
NS
620 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
621 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
61def6bd
KB
622 }
623 else
d031aafb 624 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
625 break;
626 default:
60e81fcc
NS
627 {
628 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
629
03a73f77 630 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 631 mt_pseudo_register_write (gdbarch, regcache,
03a73f77 632 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
633 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
634 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
635 }
61def6bd
KB
636 break;
637 }
638}
639
640static CORE_ADDR
d031aafb 641mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
61def6bd
KB
642{
643 /* Register size is 4 bytes. */
644 return align_down (sp, 4);
645}
646
647/* Implements the "info registers" command. When ``all'' is non-zero,
648 the coprocessor registers will be printed in addition to the rest
649 of the registers. */
650
651static void
d031aafb 652mt_registers_info (struct gdbarch *gdbarch,
d93859e2
UW
653 struct ui_file *file,
654 struct frame_info *frame, int regnum, int all)
61def6bd 655{
e17a4113
UW
656 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
657
61def6bd
KB
658 if (regnum == -1)
659 {
660 int lim;
661
d031aafb 662 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
61def6bd
KB
663
664 for (regnum = 0; regnum < lim; regnum++)
665 {
666 /* Don't display the Qchannel register since it will be displayed
667 along with Ichannel. (See below.) */
d031aafb 668 if (regnum == MT_QCHANNEL_REGNUM)
61def6bd
KB
669 continue;
670
d031aafb 671 mt_registers_info (gdbarch, file, frame, regnum, all);
61def6bd
KB
672
673 /* Display the Qchannel register immediately after Ichannel. */
d031aafb
NS
674 if (regnum == MT_ICHANNEL_REGNUM)
675 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
61def6bd
KB
676 }
677 }
678 else
679 {
d031aafb 680 if (regnum == MT_EXMAC_REGNUM)
61def6bd 681 return;
d031aafb 682 else if (regnum == MT_CONTEXT_REGNUM)
61def6bd
KB
683 {
684 /* Special output handling for 38-bit context register. */
685 unsigned char *buff;
870f88f7 686 unsigned int i, regsize;
61def6bd
KB
687
688 regsize = register_size (gdbarch, regnum);
689
224c3ddb 690 buff = (unsigned char *) alloca (regsize);
61def6bd 691
ca9d61b9 692 deprecated_frame_register_read (frame, regnum, buff);
61def6bd 693
c9f4d572 694 fputs_filtered (gdbarch_register_name
d93859e2 695 (gdbarch, regnum), file);
c9f4d572 696 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 697 (gdbarch, regnum)),
c9f4d572 698 file);
61def6bd
KB
699 fputs_filtered ("0x", file);
700
701 for (i = 0; i < regsize; i++)
702 fprintf_filtered (file, "%02x", (unsigned int)
e17a4113 703 extract_unsigned_integer (buff + i, 1, byte_order));
61def6bd
KB
704 fputs_filtered ("\t", file);
705 print_longest (file, 'd', 0,
e17a4113 706 extract_unsigned_integer (buff, regsize, byte_order));
61def6bd
KB
707 fputs_filtered ("\n", file);
708 }
d031aafb
NS
709 else if (regnum == MT_COPRO_REGNUM
710 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
61def6bd
KB
711 {
712 /* Special output handling for the 'coprocessor' register. */
58b78171 713 gdb_byte *buf;
79a45b7d 714 struct value_print_options opts;
61def6bd 715
224c3ddb 716 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
ca9d61b9 717 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
61def6bd 718 /* And print. */
d031aafb 719 regnum = MT_COPRO_PSEUDOREG_REGNUM;
d93859e2 720 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
721 file);
722 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 723 (gdbarch, regnum)),
c9f4d572 724 file);
915dd369 725 get_no_prettyformat_print_options (&opts);
79a45b7d 726 opts.deref_ref = 1;
61def6bd 727 val_print (register_type (gdbarch, regnum), buf,
0e03807e
TT
728 0, 0, file, 0, NULL,
729 &opts, current_language);
61def6bd
KB
730 fputs_filtered ("\n", file);
731 }
d031aafb 732 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
61def6bd
KB
733 {
734 ULONGEST oldmac, ext_mac, newmac;
58b78171 735 gdb_byte buf[3 * sizeof (LONGEST)];
61def6bd
KB
736
737 /* Get the two "real" mac registers. */
ca9d61b9 738 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
3950dc3f 739 oldmac = extract_unsigned_integer
e17a4113 740 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
58b78171
NS
741 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
742 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 743 {
ca9d61b9 744 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
3950dc3f 745 ext_mac = extract_unsigned_integer
e17a4113 746 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
61def6bd
KB
747 }
748 else
749 ext_mac = 0;
750
751 /* Add them together. */
752 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
753
754 /* And print. */
d031aafb 755 regnum = MT_MAC_PSEUDOREG_REGNUM;
d93859e2 756 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
757 file);
758 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 759 (gdbarch, regnum)),
c9f4d572 760 file);
61def6bd
KB
761 fputs_filtered ("0x", file);
762 print_longest (file, 'x', 0, newmac);
763 fputs_filtered ("\t", file);
764 print_longest (file, 'u', 0, newmac);
765 fputs_filtered ("\n", file);
766 }
767 else
768 default_print_registers_info (gdbarch, file, frame, regnum, all);
769 }
770}
771
772/* Set up the callee's arguments for an inferior function call. The
773 arguments are pushed on the stack or are placed in registers as
774 appropriate. It also sets up the return address (which points to
775 the call dummy breakpoint).
776
777 Returns the updated (and aligned) stack pointer. */
778
779static CORE_ADDR
d031aafb 780mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
61def6bd
KB
781 struct regcache *regcache, CORE_ADDR bp_addr,
782 int nargs, struct value **args, CORE_ADDR sp,
783 int struct_return, CORE_ADDR struct_addr)
784{
785#define wordsize 4
e17a4113 786 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d031aafb
NS
787 gdb_byte buf[MT_MAX_STRUCT_SIZE];
788 int argreg = MT_1ST_ARGREG;
61def6bd
KB
789 int split_param_len = 0;
790 int stack_dest = sp;
791 int slacklen;
792 int typelen;
793 int i, j;
794
d031aafb
NS
795 /* First handle however many args we can fit into MT_1ST_ARGREG thru
796 MT_LAST_ARGREG. */
797 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
61def6bd 798 {
58b78171 799 const gdb_byte *val;
61def6bd
KB
800 typelen = TYPE_LENGTH (value_type (args[i]));
801 switch (typelen)
802 {
803 case 1:
804 case 2:
805 case 3:
806 case 4:
807 regcache_cooked_write_unsigned (regcache, argreg++,
808 extract_unsigned_integer
809 (value_contents (args[i]),
e17a4113 810 wordsize, byte_order));
61def6bd
KB
811 break;
812 case 8:
813 case 12:
814 case 16:
815 val = value_contents (args[i]);
816 while (typelen > 0)
817 {
d031aafb 818 if (argreg <= MT_LAST_ARGREG)
61def6bd
KB
819 {
820 /* This word of the argument is passed in a register. */
821 regcache_cooked_write_unsigned (regcache, argreg++,
822 extract_unsigned_integer
e17a4113 823 (val, wordsize, byte_order));
61def6bd
KB
824 typelen -= wordsize;
825 val += wordsize;
826 }
827 else
828 {
829 /* Remainder of this arg must be passed on the stack
830 (deferred to do later). */
831 split_param_len = typelen;
832 memcpy (buf, val, typelen);
833 break; /* No more args can be handled in regs. */
834 }
835 }
836 break;
837 default:
838 /* By reverse engineering of gcc output, args bigger than
839 16 bytes go on the stack, and their address is passed
840 in the argreg. */
841 stack_dest -= typelen;
842 write_memory (stack_dest, value_contents (args[i]), typelen);
843 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
844 break;
845 }
846 }
847
848 /* Next, the rest of the arguments go onto the stack, in reverse order. */
849 for (j = nargs - 1; j >= i; j--)
850 {
58b78171 851 gdb_byte *val;
ecfb0d68
SP
852 struct cleanup *back_to;
853 const gdb_byte *contents = value_contents (args[j]);
58b78171 854
61def6bd
KB
855 /* Right-justify the value in an aligned-length buffer. */
856 typelen = TYPE_LENGTH (value_type (args[j]));
857 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
224c3ddb 858 val = (gdb_byte *) xmalloc (typelen + slacklen);
ecfb0d68
SP
859 back_to = make_cleanup (xfree, val);
860 memcpy (val, contents, typelen);
61def6bd
KB
861 memset (val + typelen, 0, slacklen);
862 /* Now write this data to the stack. */
863 stack_dest -= typelen + slacklen;
864 write_memory (stack_dest, val, typelen + slacklen);
ecfb0d68 865 do_cleanups (back_to);
61def6bd
KB
866 }
867
868 /* Finally, if a param needs to be split between registers and stack,
869 write the second half to the stack now. */
870 if (split_param_len != 0)
871 {
872 stack_dest -= split_param_len;
873 write_memory (stack_dest, buf, split_param_len);
874 }
875
876 /* Set up return address (provided to us as bp_addr). */
d031aafb 877 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
61def6bd
KB
878
879 /* Store struct return address, if given. */
880 if (struct_return && struct_addr != 0)
d031aafb 881 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
61def6bd
KB
882
883 /* Set aside 16 bytes for the callee to save regs 1-4. */
884 stack_dest -= 16;
885
886 /* Update the stack pointer. */
d031aafb 887 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
61def6bd
KB
888
889 /* And that should do it. Return the new stack pointer. */
890 return stack_dest;
891}
892
893
894/* The 'unwind_cache' data structure. */
895
d031aafb 896struct mt_unwind_cache
61def6bd 897{
025bb325 898 /* The previous frame's inner most stack address.
61def6bd
KB
899 Used as this frame ID's stack_addr. */
900 CORE_ADDR prev_sp;
901 CORE_ADDR frame_base;
902 int framesize;
903 int frameless_p;
904
905 /* Table indicating the location of each and every register. */
906 struct trad_frame_saved_reg *saved_regs;
907};
908
909/* Initialize an unwind_cache. Build up the saved_regs table etc. for
910 the frame. */
911
d031aafb 912static struct mt_unwind_cache *
94afd7a6 913mt_frame_unwind_cache (struct frame_info *this_frame,
61def6bd
KB
914 void **this_prologue_cache)
915{
916 struct gdbarch *gdbarch;
d031aafb 917 struct mt_unwind_cache *info;
61def6bd
KB
918 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
919 unsigned long instr, upper_half, delayed_store = 0;
920 int regnum, offset;
921 ULONGEST sp, fp;
922
923 if ((*this_prologue_cache))
19ba03f4 924 return (struct mt_unwind_cache *) (*this_prologue_cache);
61def6bd 925
94afd7a6 926 gdbarch = get_frame_arch (this_frame);
d031aafb 927 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
61def6bd
KB
928 (*this_prologue_cache) = info;
929
930 info->prev_sp = 0;
931 info->framesize = 0;
932 info->frame_base = 0;
933 info->frameless_p = 1;
94afd7a6 934 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61def6bd 935
025bb325 936 /* Grab the frame-relative values of SP and FP, needed below.
61def6bd
KB
937 The frame_saved_register function will find them on the
938 stack or in the registers as appropriate. */
94afd7a6
UW
939 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
940 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
61def6bd 941
94afd7a6 942 start_addr = get_frame_func (this_frame);
61def6bd
KB
943
944 /* Return early if GDB couldn't find the function. */
945 if (start_addr == 0)
946 return info;
947
94afd7a6 948 end_addr = get_frame_pc (this_frame);
d80b854b 949 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
61def6bd
KB
950 if (end_addr == 0)
951 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
952 {
94afd7a6 953 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
025bb325 954 if (delayed_store) /* Previous instr was a push. */
61def6bd
KB
955 {
956 upper_half = delayed_store >> 16;
957 regnum = upper_half & 0xf;
958 offset = delayed_store & 0xffff;
959 switch (upper_half & 0xfff0)
960 {
025bb325 961 case 0x43c0: /* push using frame pointer. */
61def6bd
KB
962 info->saved_regs[regnum].addr = offset;
963 break;
025bb325 964 case 0x43d0: /* push using stack pointer. */
61def6bd
KB
965 info->saved_regs[regnum].addr = offset;
966 break;
967 default: /* lint */
968 break;
969 }
970 delayed_store = 0;
971 }
972
973 switch (instr)
974 {
975 case 0x12000000: /* NO-OP */
976 continue;
977 case 0x12ddc000: /* copy sp into fp */
025bb325
MS
978 info->frameless_p = 0; /* Record that the frame
979 pointer is in use. */
61def6bd
KB
980 continue;
981 default:
982 upper_half = instr >> 16;
983 if (upper_half == 0x05dd || /* subi sp, sp, imm */
984 upper_half == 0x07dd) /* subui sp, sp, imm */
985 {
986 /* Record the frame size. */
987 info->framesize = instr & 0xffff;
988 continue;
989 }
990 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
991 (upper_half & 0xfff0) == 0x43d0) /* stack push */
992 {
993 /* Save this instruction, but don't record the
994 pushed register as 'saved' until we see the
995 next instruction. That's because of deferred stores
996 on this target -- GDB won't be able to read the register
997 from the stack until one instruction later. */
998 delayed_store = instr;
999 continue;
1000 }
1001 /* Not a prologue instruction. Is this the end of the prologue?
1002 This is the most difficult decision; when to stop scanning.
1003
1004 If we have no line symbol, then the best thing we can do
1005 is to stop scanning when we encounter an instruction that
1006 is not likely to be a part of the prologue.
1007
1008 But if we do have a line symbol, then we should
1009 keep scanning until we reach it (or we reach end_addr). */
1010
1011 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
025bb325 1012 continue; /* Keep scanning, recording saved_regs etc. */
61def6bd 1013 else
025bb325 1014 break; /* Quit scanning: breakpoint can be set here. */
61def6bd
KB
1015 }
1016 }
1017
1018 /* Special handling for the "saved" address of the SP:
1019 The SP is of course never saved on the stack at all, so
1020 by convention what we put here is simply the previous
1021 _value_ of the SP (as opposed to an address where the
1022 previous value would have been pushed). This will also
1023 give us the frame base address. */
1024
1025 if (info->frameless_p)
1026 {
1027 info->frame_base = sp + info->framesize;
1028 info->prev_sp = sp + info->framesize;
1029 }
1030 else
1031 {
1032 info->frame_base = fp + info->framesize;
1033 info->prev_sp = fp + info->framesize;
1034 }
1035 /* Save prev_sp in saved_regs as a value, not as an address. */
d031aafb 1036 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
61def6bd
KB
1037
1038 /* Now convert frame offsets to actual addresses (not offsets). */
d031aafb 1039 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
61def6bd
KB
1040 if (trad_frame_addr_p (info->saved_regs, regnum))
1041 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1042
1043 /* The call instruction moves the caller's PC in the callee's RA reg.
1044 Since this is an unwind, do the reverse. Copy the location of RA
1045 into PC (the address / regnum) so that a request for PC will be
1046 converted into a request for the RA. */
d031aafb 1047 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
61def6bd
KB
1048
1049 return info;
1050}
1051
1052static CORE_ADDR
d031aafb 1053mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1054{
1055 ULONGEST pc;
1056
11411de3 1057 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
61def6bd
KB
1058 return pc;
1059}
1060
1061static CORE_ADDR
d031aafb 1062mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1063{
1064 ULONGEST sp;
1065
11411de3 1066 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
61def6bd
KB
1067 return sp;
1068}
1069
94afd7a6
UW
1070/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1071 frame. The frame ID's base needs to match the TOS value saved by
1072 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
61def6bd
KB
1073
1074static struct frame_id
94afd7a6 1075mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61def6bd 1076{
94afd7a6
UW
1077 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1078 return frame_id_build (sp, get_frame_pc (this_frame));
61def6bd
KB
1079}
1080
1081/* Given a GDB frame, determine the address of the calling function's
1082 frame. This will be used to create a new GDB frame struct. */
1083
1084static void
94afd7a6 1085mt_frame_this_id (struct frame_info *this_frame,
61def6bd
KB
1086 void **this_prologue_cache, struct frame_id *this_id)
1087{
d031aafb 1088 struct mt_unwind_cache *info =
94afd7a6 1089 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1090
1091 if (!(info == NULL || info->prev_sp == 0))
94afd7a6 1092 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
93d42b30 1093
61def6bd
KB
1094 return;
1095}
1096
94afd7a6
UW
1097static struct value *
1098mt_frame_prev_register (struct frame_info *this_frame,
1099 void **this_prologue_cache, int regnum)
61def6bd 1100{
d031aafb 1101 struct mt_unwind_cache *info =
94afd7a6 1102 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd 1103
94afd7a6 1104 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61def6bd
KB
1105}
1106
1107static CORE_ADDR
94afd7a6 1108mt_frame_base_address (struct frame_info *this_frame,
61def6bd
KB
1109 void **this_prologue_cache)
1110{
d031aafb 1111 struct mt_unwind_cache *info =
94afd7a6 1112 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1113
1114 return info->frame_base;
1115}
1116
1117/* This is a shared interface: the 'frame_unwind' object is what's
1118 returned by the 'sniffer' function, and in turn specifies how to
1119 get a frame's ID and prev_regs.
1120
1121 This exports the 'prev_register' and 'this_id' methods. */
1122
d031aafb 1123static const struct frame_unwind mt_frame_unwind = {
61def6bd 1124 NORMAL_FRAME,
8fbca658 1125 default_frame_unwind_stop_reason,
d031aafb 1126 mt_frame_this_id,
94afd7a6
UW
1127 mt_frame_prev_register,
1128 NULL,
1129 default_frame_sniffer
61def6bd
KB
1130};
1131
61def6bd
KB
1132/* Another shared interface: the 'frame_base' object specifies how to
1133 unwind a frame and secure the base addresses for frame objects
1134 (locals, args). */
1135
d031aafb
NS
1136static struct frame_base mt_frame_base = {
1137 &mt_frame_unwind,
1138 mt_frame_base_address,
1139 mt_frame_base_address,
1140 mt_frame_base_address
61def6bd
KB
1141};
1142
1143static struct gdbarch *
d031aafb 1144mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
61def6bd
KB
1145{
1146 struct gdbarch *gdbarch;
df4df182 1147 struct gdbarch_tdep *tdep;
61def6bd
KB
1148
1149 /* Find a candidate among the list of pre-declared architectures. */
1150 arches = gdbarch_list_lookup_by_info (arches, &info);
1151 if (arches != NULL)
1152 return arches->gdbarch;
1153
1154 /* None found, create a new architecture from the information
1155 provided. */
fc270c35 1156 tdep = XCNEW (struct gdbarch_tdep);
df4df182 1157 gdbarch = gdbarch_alloc (&info, tdep);
61def6bd 1158
cb5c8c39
DJ
1159 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1160 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1161 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
61def6bd 1162
d031aafb
NS
1163 set_gdbarch_register_name (gdbarch, mt_register_name);
1164 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1165 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1166 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1167 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1168 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1169 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1170 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
61def6bd 1171 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
d19280ad 1172 SET_GDBARCH_BREAKPOINT_MANIPULATION (mt);
61def6bd
KB
1173 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1174 set_gdbarch_frame_args_skip (gdbarch, 0);
d031aafb
NS
1175 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1176 set_gdbarch_register_type (gdbarch, mt_register_type);
1177 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
61def6bd 1178
d031aafb
NS
1179 set_gdbarch_return_value (gdbarch, mt_return_value);
1180 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
61def6bd 1181
d031aafb 1182 set_gdbarch_frame_align (gdbarch, mt_frame_align);
61def6bd 1183
d031aafb 1184 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
61def6bd 1185
d031aafb 1186 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
61def6bd
KB
1187
1188 /* Target builtin data types. */
1189 set_gdbarch_short_bit (gdbarch, 16);
1190 set_gdbarch_int_bit (gdbarch, 32);
1191 set_gdbarch_long_bit (gdbarch, 32);
1192 set_gdbarch_long_long_bit (gdbarch, 64);
1193 set_gdbarch_float_bit (gdbarch, 32);
1194 set_gdbarch_double_bit (gdbarch, 64);
1195 set_gdbarch_long_double_bit (gdbarch, 64);
1196 set_gdbarch_ptr_bit (gdbarch, 32);
1197
1198 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1199 based sniffer. */
94afd7a6
UW
1200 dwarf2_append_unwinders (gdbarch);
1201 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
d031aafb 1202 frame_base_set_default (gdbarch, &mt_frame_base);
61def6bd
KB
1203
1204 /* Register the 'unwind_pc' method. */
d031aafb
NS
1205 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1206 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
61def6bd 1207
025bb325 1208 /* Methods for saving / extracting a dummy frame's ID.
61def6bd
KB
1209 The ID's stack address must match the SP value returned by
1210 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1211 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
61def6bd
KB
1212
1213 return gdbarch;
1214}
1215
63807e1d
PA
1216/* Provide a prototype to silence -Wmissing-prototypes. */
1217extern initialize_file_ftype _initialize_mt_tdep;
1218
61def6bd 1219void
d031aafb 1220_initialize_mt_tdep (void)
61def6bd 1221{
d031aafb 1222 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
61def6bd 1223}