]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/objfiles.h
Use domain_search_flags in lookup_global_symbol_language
[thirdparty/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
1d506c26 3 Copyright (C) 1992-2024 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
ef0f16cc 24#include "gdbsupport/gdb_obstack.h"
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
7d7167ce 30#include <atomic>
1b7a07cb 31#include <bitset>
b5ec771e 32#include <vector>
268a13a5
TT
33#include "gdbsupport/next-iterator.h"
34#include "gdbsupport/safe-iterator.h"
b366c208 35#include "bcache.h"
0d12e84c 36#include "gdbarch.h"
7d7167ce 37#include "gdbsupport/refcounted-object.h"
238b5c9f 38#include "jit.h"
39298a5d 39#include "quick-symbol.h"
e1114590 40#include <forward_list>
3956d554 41
2de7ced7 42struct htab;
4a4b3fed 43struct objfile_data;
af5bf4ad 44struct partial_symbol;
08c0b5bc 45
c906108c
SS
46/* This structure maintains information on a per-objfile basis about the
47 "entry point" of the objfile, and the scope within which the entry point
48 exists. It is possible that gdb will see more than one objfile that is
49 executable, each with its own entry point.
50
51 For example, for dynamically linked executables in SVR4, the dynamic linker
52 code is contained within the shared C library, which is actually executable
53 and is run by the kernel first when an exec is done of a user executable
54 that is dynamically linked. The dynamic linker within the shared C library
55 then maps in the various program segments in the user executable and jumps
56 to the user executable's recorded entry point, as if the call had been made
57 directly by the kernel.
58
73c1e0a1
AC
59 The traditional gdb method of using this info was to use the
60 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
61 the debugging information, where these values are the starting
62 address (inclusive) and ending address (exclusive) of the
63 instruction space in the executable which correspond to the
0df8b418 64 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
65 be a startup file and frames with pc's inside it are treated as
66 nonexistent. Setting these variables is necessary so that
67 backtraces do not fly off the bottom of the stack.
68
69 NOTE: cagney/2003-09-09: It turns out that this "traditional"
70 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 71 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 72 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
73 testcase are broken for some targets. In this test the functions
74 are all implemented as part of one file and the testcase is not
75 necessarily linked with a start file (depending on the target).
30baf67b
TV
76 What happens is, that the first frame is printed normally and
77 following frames are treated as being inside the entry file then.
627b3ba2
AC
78 This way, only the #0 frame is printed in the backtrace output.''
79 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
80
81 Gdb also supports an alternate method to avoid running off the bottom
82 of the stack.
83
84 There are two frames that are "special", the frame for the function
85 containing the process entry point, since it has no predecessor frame,
86 and the frame for the function containing the user code entry point
87 (the main() function), since all the predecessor frames are for the
88 process startup code. Since we have no guarantee that the linked
89 in startup modules have any debugging information that gdb can use,
90 we need to avoid following frame pointers back into frames that might
95cf5869 91 have been built in the startup code, as we might get hopelessly
c906108c
SS
92 confused. However, we almost always have debugging information
93 available for main().
94
618ce49f
AC
95 These variables are used to save the range of PC values which are
96 valid within the main() function and within the function containing
97 the process entry point. If we always consider the frame for
98 main() as the outermost frame when debugging user code, and the
99 frame for the process entry point function as the outermost frame
100 when debugging startup code, then all we have to do is have
101 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
102 current PC is within the range specified by these variables. In
103 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
104 not proceed when following the frame chain back up the stack.
105
106 A nice side effect is that we can still debug startup code without
107 running off the end of the frame chain, assuming that we have usable
108 debugging information in the startup modules, and if we choose to not
109 use the block at main, or can't find it for some reason, everything
110 still works as before. And if we have no startup code debugging
111 information but we do have usable information for main(), backtraces
6e4c6c91 112 from user code don't go wandering off into the startup code. */
c906108c
SS
113
114struct entry_info
95cf5869
DE
115{
116 /* The unrelocated value we should use for this objfile entry point. */
117 CORE_ADDR entry_point;
c906108c 118
95cf5869
DE
119 /* The index of the section in which the entry point appears. */
120 int the_bfd_section_index;
53eddfa6 121
95cf5869
DE
122 /* Set to 1 iff ENTRY_POINT contains a valid value. */
123 unsigned entry_point_p : 1;
6ef55de7 124
95cf5869
DE
125 /* Set to 1 iff this object was initialized. */
126 unsigned initialized : 1;
127};
c906108c 128
b3b3bada
SM
129#define SECT_OFF_DATA(objfile) \
130 ((objfile->sect_index_data == -1) \
f34652de 131 ? (internal_error (_("sect_index_data not initialized")), -1) \
b3b3bada
SM
132 : objfile->sect_index_data)
133
134#define SECT_OFF_RODATA(objfile) \
135 ((objfile->sect_index_rodata == -1) \
f34652de 136 ? (internal_error (_("sect_index_rodata not initialized")), -1) \
b3b3bada
SM
137 : objfile->sect_index_rodata)
138
139#define SECT_OFF_TEXT(objfile) \
140 ((objfile->sect_index_text == -1) \
f34652de 141 ? (internal_error (_("sect_index_text not initialized")), -1) \
b3b3bada
SM
142 : objfile->sect_index_text)
143
144/* Sometimes the .bss section is missing from the objfile, so we don't
145 want to die here. Let the users of SECT_OFF_BSS deal with an
146 uninitialized section index. */
147#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
148
c906108c
SS
149/* The "objstats" structure provides a place for gdb to record some
150 interesting information about its internal state at runtime, on a
151 per objfile basis, such as information about the number of symbols
0df8b418 152 read, size of string table (if any), etc. */
c906108c 153
c5aa993b 154struct objstats
95cf5869 155{
95cf5869 156 /* Number of full symbols read. */
9e86da07 157 int n_syms = 0;
95cf5869
DE
158
159 /* Number of ".stabs" read (if applicable). */
9e86da07 160 int n_stabs = 0;
95cf5869
DE
161
162 /* Number of types. */
9e86da07 163 int n_types = 0;
95cf5869
DE
164
165 /* Size of stringtable, (if applicable). */
9e86da07 166 int sz_strtab = 0;
95cf5869 167};
c906108c
SS
168
169#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
170#define OBJSTATS struct objstats stats
a14ed312 171extern void print_objfile_statistics (void);
c906108c 172
9227b5eb 173/* Number of entries in the minimal symbol hash table. */
375f3d86 174#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 175
7932255d
TT
176/* An iterator for minimal symbols. */
177
178struct minimal_symbol_iterator
179{
180 typedef minimal_symbol_iterator self_type;
181 typedef struct minimal_symbol *value_type;
182 typedef struct minimal_symbol *&reference;
183 typedef struct minimal_symbol **pointer;
184 typedef std::forward_iterator_tag iterator_category;
185 typedef int difference_type;
186
187 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
188 : m_msym (msym)
189 {
190 }
191
192 value_type operator* () const
193 {
194 return m_msym;
195 }
196
197 bool operator== (const self_type &other) const
198 {
199 return m_msym == other.m_msym;
200 }
201
202 bool operator!= (const self_type &other) const
203 {
204 return m_msym != other.m_msym;
205 }
206
207 self_type &operator++ ()
208 {
209 ++m_msym;
210 return *this;
211 }
212
213private:
214 struct minimal_symbol *m_msym;
215};
216
706e3705
TT
217/* Some objfile data is hung off the BFD. This enables sharing of the
218 data across all objfiles using the BFD. The data is stored in an
219 instance of this structure, and associated with the BFD using the
220 registry system. */
221
222struct objfile_per_bfd_storage
223{
0072c873
SM
224 objfile_per_bfd_storage (bfd *bfd)
225 : minsyms_read (false), m_bfd (bfd)
23732b1e
PA
226 {}
227
d6797f46
TT
228 ~objfile_per_bfd_storage ();
229
4a4f97c1
SM
230 /* Intern STRING in this object's string cache and return the unique copy.
231 The copy has the same lifetime as this object.
232
233 STRING must be null-terminated. */
234
235 const char *intern (const char *str)
236 {
237 return (const char *) string_cache.insert (str, strlen (str) + 1);
238 }
239
240 /* Same as the above, but for an std::string. */
241
242 const char *intern (const std::string &str)
243 {
244 return (const char *) string_cache.insert (str.c_str (), str.size () + 1);
245 }
246
0072c873
SM
247 /* Get the BFD this object is associated to. */
248
249 bfd *get_bfd () const
250 {
251 return m_bfd;
252 }
253
706e3705
TT
254 /* The storage has an obstack of its own. */
255
23732b1e 256 auto_obstack storage_obstack;
95cf5869 257
be1e3d3e 258 /* String cache. */
706e3705 259
be1e3d3e 260 gdb::bcache string_cache;
df6d5441
TT
261
262 /* The gdbarch associated with the BFD. Note that this gdbarch is
263 determined solely from BFD information, without looking at target
264 information. The gdbarch determined from a running target may
265 differ from this e.g. with respect to register types and names. */
266
23732b1e 267 struct gdbarch *gdbarch = NULL;
84a1243b
TT
268
269 /* Hash table for mapping symbol names to demangled names. Each
c7ee338a
CB
270 entry in the hash table is a demangled_name_entry struct, storing the
271 language and two consecutive strings, both null-terminated; the first one
272 is a mangled or linkage name, and the second is the demangled name or just
273 a zero byte if the name doesn't demangle. */
95cf5869 274
db92718b 275 htab_up demangled_names_hash;
6ef55de7
TT
276
277 /* The per-objfile information about the entry point, the scope (file/func)
278 containing the entry point, and the scope of the user's main() func. */
279
23732b1e 280 entry_info ei {};
3d548a53
TT
281
282 /* The name and language of any "main" found in this objfile. The
283 name can be NULL, which means that the information was not
284 recorded. */
285
23732b1e
PA
286 const char *name_of_main = NULL;
287 enum language language_of_main = language_unknown;
34643a32
TT
288
289 /* Each file contains a pointer to an array of minimal symbols for all
290 global symbols that are defined within the file. The array is
291 terminated by a "null symbol", one that has a NULL pointer for the
292 name and a zero value for the address. This makes it easy to walk
293 through the array when passed a pointer to somewhere in the middle
294 of it. There is also a count of the number of symbols, which does
042d75e4 295 not include the terminating null symbol. */
34643a32 296
042d75e4 297 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
23732b1e 298 int minimal_symbol_count = 0;
34643a32 299
5f6cac40
TT
300 /* The number of minimal symbols read, before any minimal symbol
301 de-duplication is applied. Note in particular that this has only
302 a passing relationship with the actual size of the table above;
303 use minimal_symbol_count if you need the true size. */
95cf5869 304
23732b1e 305 int n_minsyms = 0;
5f6cac40 306
34643a32
TT
307 /* This is true if minimal symbols have already been read. Symbol
308 readers can use this to bypass minimal symbol reading. Also, the
309 minimal symbol table management code in minsyms.c uses this to
310 suppress new minimal symbols. You might think that MSYMBOLS or
311 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
312 for multiple readers to install minimal symbols into a given
313 per-BFD. */
314
23732b1e 315 bool minsyms_read : 1;
34643a32 316
c7ee338a
CB
317 /* This is a hash table used to index the minimal symbols by (mangled)
318 name. */
34643a32 319
23732b1e 320 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
321
322 /* This hash table is used to index the minimal symbols by their
c7ee338a
CB
323 demangled names. Uses a language-specific hash function via
324 search_name_hash. */
34643a32 325
23732b1e 326 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
327
328 /* All the different languages of symbols found in the demangled
1b7a07cb
TT
329 hash table. */
330 std::bitset<nr_languages> demangled_hash_languages;
0072c873
SM
331
332private:
333 /* The BFD this object is associated to. */
334
335 bfd *m_bfd;
706e3705
TT
336};
337
e9ad22ee
TT
338/* An iterator that first returns a parent objfile, and then each
339 separate debug objfile. */
340
341class separate_debug_iterator
342{
343public:
344
345 explicit separate_debug_iterator (struct objfile *objfile)
346 : m_objfile (objfile),
347 m_parent (objfile)
348 {
349 }
350
351 bool operator!= (const separate_debug_iterator &other)
352 {
353 return m_objfile != other.m_objfile;
354 }
355
356 separate_debug_iterator &operator++ ();
357
358 struct objfile *operator* ()
359 {
360 return m_objfile;
361 }
362
363private:
364
365 struct objfile *m_objfile;
366 struct objfile *m_parent;
367};
368
369/* A range adapter wrapping separate_debug_iterator. */
370
177ac6e4 371typedef iterator_range<separate_debug_iterator> separate_debug_range;
e9ad22ee 372
5250cbc8
TT
373/* Sections in an objfile. The section offsets are stored in the
374 OBJFILE. */
375
376struct obj_section
377{
378 /* Relocation offset applied to the section. */
379 CORE_ADDR offset () const;
380
381 /* Set the relocation offset applied to the section. */
382 void set_offset (CORE_ADDR offset);
383
384 /* The memory address of the section (vma + offset). */
385 CORE_ADDR addr () const
386 {
387 return bfd_section_vma (this->the_bfd_section) + this->offset ();
388 }
389
390 /* The one-passed-the-end memory address of the section
391 (vma + size + offset). */
392 CORE_ADDR endaddr () const
393 {
394 return this->addr () + bfd_section_size (this->the_bfd_section);
395 }
396
397 /* BFD section pointer */
398 struct bfd_section *the_bfd_section;
399
400 /* Objfile this section is part of. */
401 struct objfile *objfile;
402
403 /* True if this "overlay section" is mapped into an "overlay region". */
404 int ovly_mapped;
405};
406
c906108c
SS
407/* Master structure for keeping track of each file from which
408 gdb reads symbols. There are several ways these get allocated: 1.
409 The main symbol file, symfile_objfile, set by the symbol-file command,
410 2. Additional symbol files added by the add-symbol-file command,
411 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
412 for modules that were loaded when GDB attached to a remote system
4ee94178
CB
413 (see remote-vx.c).
414
415 GDB typically reads symbols twice -- first an initial scan which just
416 reads "partial symbols"; these are partial information for the
4d080b46
TT
417 static/global symbols in a symbol file. When later looking up
418 symbols, lookup_symbol is used to check if we only have a partial
4ee94178 419 symbol and if so, read and expand the full compunit. */
c906108c
SS
420
421struct objfile
95cf5869 422{
bda13cdc
TT
423private:
424
425 /* The only way to create an objfile is to call objfile::make. */
98badbfd 426 objfile (gdb_bfd_ref_ptr, const char *, objfile_flags);
bda13cdc
TT
427
428public:
429
7d7167ce
TT
430 /* Normally you should not call delete. Instead, call 'unlink' to
431 remove it from the program space's list. In some cases, you may
432 need to hold a reference to an objfile that is independent of its
433 existence on the program space's list; for this case, the
e2904e1f 434 destructor must be public so that unique_ptr can reference
7d7167ce
TT
435 it. */
436 ~objfile ();
437
bda13cdc 438 /* Create an objfile. */
98badbfd
TT
439 static objfile *make (gdb_bfd_ref_ptr bfd_, const char *name_,
440 objfile_flags flags_, objfile *parent = nullptr);
bda13cdc 441
268e4f09
TT
442 /* Remove an objfile from the current program space, and free
443 it. */
444 void unlink ();
9e86da07
TT
445
446 DISABLE_COPY_AND_ASSIGN (objfile);
447
b669c953
TT
448 /* A range adapter that makes it possible to iterate over all
449 compunits in one objfile. */
450
9be25986 451 compunit_symtab_range compunits ()
b669c953 452 {
9be25986 453 return compunit_symtab_range (compunit_symtabs);
b669c953 454 }
6d6a12bf 455
7932255d
TT
456 /* A range adapter that makes it possible to iterate over all
457 minimal symbols of an objfile. */
458
177ac6e4 459 typedef iterator_range<minimal_symbol_iterator> msymbols_range;
7932255d
TT
460
461 /* Return a range adapter for iterating over all minimal
462 symbols. */
463
464 msymbols_range msymbols ()
465 {
177ac6e4
TT
466 auto start = minimal_symbol_iterator (per_bfd->msymbols.get ());
467 auto end = minimal_symbol_iterator (per_bfd->msymbols.get ()
468 + per_bfd->minimal_symbol_count);
469 return msymbols_range (start, end);
7932255d
TT
470 }
471
e9ad22ee
TT
472 /* Return a range adapter for iterating over all the separate debug
473 objfiles of this objfile. */
474
475 separate_debug_range separate_debug_objfiles ()
476 {
177ac6e4
TT
477 auto start = separate_debug_iterator (this);
478 auto end = separate_debug_iterator (nullptr);
479 return separate_debug_range (start, end);
e9ad22ee
TT
480 }
481
b3b3bada
SM
482 CORE_ADDR text_section_offset () const
483 {
484 return section_offsets[SECT_OFF_TEXT (this)];
485 }
486
487 CORE_ADDR data_section_offset () const
488 {
489 return section_offsets[SECT_OFF_DATA (this)];
490 }
7932255d 491
be1e3d3e
TT
492 /* Intern STRING and return the unique copy. The copy has the same
493 lifetime as the per-BFD object. */
494 const char *intern (const char *str)
495 {
4a4f97c1 496 return per_bfd->intern (str);
be1e3d3e
TT
497 }
498
499 /* Intern STRING and return the unique copy. The copy has the same
500 lifetime as the per-BFD object. */
501 const char *intern (const std::string &str)
502 {
4a4f97c1 503 return per_bfd->intern (str);
be1e3d3e
TT
504 }
505
08feed99
TT
506 /* Retrieve the gdbarch associated with this objfile. */
507 struct gdbarch *arch () const
508 {
509 return per_bfd->gdbarch;
510 }
511
a8ad4f3c
TT
512 /* Return true if OBJFILE has partial symbols. */
513
fae2120b 514 bool has_partial_symbols ();
be1e3d3e 515
27807da5
AB
516 /* Look for a separate debug symbol file for this objfile, make use of
517 build-id, debug-link, and debuginfod as necessary. If a suitable
518 separate debug symbol file is found then it is loaded using a call to
519 symbol_file_add_separate (SYMFILE_FLAGS is passed through unmodified
520 to this call) and this function returns true. If no suitable separate
521 debug symbol file is found and loaded then this function returns
522 false. */
523
524 bool find_and_add_separate_symbol_file (symfile_add_flags symfile_flags);
525
fc4d5ebf
AB
526 /* Return true if this objfile has any unexpanded symbols. A return
527 value of false indicates either, that this objfile has all its
528 symbols fully expanded (i.e. fully read in), or that this objfile has
529 no symbols at all (i.e. no debug information). */
530 bool has_unexpanded_symtabs ();
531
4d080b46
TT
532 /* See quick_symbol_functions. */
533 struct symtab *find_last_source_symtab ();
534
535 /* See quick_symbol_functions. */
536 void forget_cached_source_info ();
537
536a40f3
TT
538 /* Expand and iterate over each "partial" symbol table in OBJFILE
539 where the source file is named NAME.
540
541 If NAME is not absolute, a match after a '/' in the symbol table's
542 file name will also work, REAL_PATH is NULL then. If NAME is
543 absolute then REAL_PATH is non-NULL absolute file name as resolved
544 via gdb_realpath from NAME.
545
546 If a match is found, the "partial" symbol table is expanded.
547 Then, this calls iterate_over_some_symtabs (or equivalent) over
548 all newly-created symbol tables, passing CALLBACK to it.
549 The result of this call is returned. */
4d080b46
TT
550 bool map_symtabs_matching_filename
551 (const char *name, const char *real_path,
552 gdb::function_view<bool (symtab *)> callback);
553
84d865e3
TT
554 /* Check to see if the symbol is defined in a "partial" symbol table
555 of this objfile. BLOCK_INDEX should be either GLOBAL_BLOCK or
556 STATIC_BLOCK, depending on whether we want to search global
557 symbols or static symbols. NAME is the name of the symbol to
558 look for. DOMAIN indicates what sort of symbol to search for.
559
560 Returns the newly-expanded compunit in which the symbol is
561 defined, or NULL if no such symbol table exists. If OBJFILE
562 contains !TYPE_OPAQUE symbol prefer its compunit. If it contains
563 only TYPE_OPAQUE symbol(s), return at least that compunit. */
4d080b46
TT
564 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
565 domain_enum domain);
566
567 /* See quick_symbol_functions. */
4829711b 568 void print_stats (bool print_bcache);
4d080b46
TT
569
570 /* See quick_symbol_functions. */
571 void dump ();
572
7089bd88
TT
573 /* Find all the symbols in OBJFILE named FUNC_NAME, and ensure that
574 the corresponding symbol tables are loaded. */
4d080b46
TT
575 void expand_symtabs_for_function (const char *func_name);
576
577 /* See quick_symbol_functions. */
578 void expand_all_symtabs ();
579
90160b57
TT
580 /* Read all symbol tables associated with OBJFILE which have
581 symtab_to_fullname equal to FULLNAME.
582 This is for the purposes of examining code only, e.g., expand_line_sal.
583 The routine may ignore debug info that is known to not be useful with
584 code, e.g., DW_TAG_type_unit for dwarf debug info. */
4d080b46
TT
585 void expand_symtabs_with_fullname (const char *fullname);
586
4d080b46 587 /* See quick_symbol_functions. */
df35e626 588 bool expand_symtabs_matching
4d080b46
TT
589 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
590 const lookup_name_info *lookup_name,
591 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
592 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
03a8ea51 593 block_search_flags search_flags,
6c015214 594 domain_search_flags domain);
4d080b46
TT
595
596 /* See quick_symbol_functions. */
597 struct compunit_symtab *find_pc_sect_compunit_symtab
598 (struct bound_minimal_symbol msymbol,
599 CORE_ADDR pc,
600 struct obj_section *section,
601 int warn_if_readin);
602
603 /* See quick_symbol_functions. */
f4655dee
TT
604 void map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
605 bool need_fullname);
4d080b46 606
4ea870ef
TT
607 /* See quick_symbol_functions. */
608 void compute_main_name ();
609
4d080b46
TT
610 /* See quick_symbol_functions. */
611 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
612
613 /* See quick_symbol_functions. */
614 enum language lookup_global_symbol_language (const char *name,
6c015214 615 domain_search_flags domain,
4d080b46
TT
616 bool *symbol_found_p);
617
0c1bcd23
SM
618 /* Return the relocation offset applied to SECTION. */
619 CORE_ADDR section_offset (bfd_section *section) const
620 {
621 /* The section's owner can be nullptr if it is one of the _bfd_std_section
622 section. */
623 gdb_assert (section->owner == nullptr || section->owner == this->obfd);
624
98badbfd 625 int idx = gdb_bfd_section_index (this->obfd.get (), section);
0c1bcd23
SM
626 return this->section_offsets[idx];
627 }
628
629 /* Set the relocation offset applied to SECTION. */
630 void set_section_offset (bfd_section *section, CORE_ADDR offset)
631 {
632 /* The section's owner can be nullptr if it is one of the _bfd_std_section
633 section. */
634 gdb_assert (section->owner == nullptr || section->owner == this->obfd);
635
98badbfd 636 int idx = gdb_bfd_section_index (this->obfd.get (), section);
0c1bcd23
SM
637 this->section_offsets[idx] = offset;
638 }
4d080b46 639
5250cbc8
TT
640 class section_iterator
641 {
642 public:
643 section_iterator (const section_iterator &) = default;
644 section_iterator (section_iterator &&) = default;
645 section_iterator &operator= (const section_iterator &) = default;
646 section_iterator &operator= (section_iterator &&) = default;
647
648 typedef section_iterator self_type;
649 typedef obj_section *value_type;
650
651 value_type operator* ()
652 { return m_iter; }
653
654 section_iterator &operator++ ()
655 {
656 ++m_iter;
657 skip_null ();
658 return *this;
659 }
660
661 bool operator== (const section_iterator &other) const
662 { return m_iter == other.m_iter && m_end == other.m_end; }
663
664 bool operator!= (const section_iterator &other) const
665 { return !(*this == other); }
666
667 private:
668
669 friend class objfile;
670
671 section_iterator (obj_section *iter, obj_section *end)
672 : m_iter (iter),
673 m_end (end)
674 {
675 skip_null ();
676 }
677
678 void skip_null ()
679 {
680 while (m_iter < m_end && m_iter->the_bfd_section == nullptr)
681 ++m_iter;
682 }
683
684 value_type m_iter;
685 value_type m_end;
686 };
687
688 iterator_range<section_iterator> sections ()
689 {
690 return (iterator_range<section_iterator>
691 (section_iterator (sections_start, sections_end),
692 section_iterator (sections_end, sections_end)));
693 }
694
695 iterator_range<section_iterator> sections () const
696 {
697 return (iterator_range<section_iterator>
698 (section_iterator (sections_start, sections_end),
699 section_iterator (sections_end, sections_end)));
700 }
701
fcf8e814
LS
702public:
703
95cf5869
DE
704 /* The object file's original name as specified by the user,
705 made absolute, and tilde-expanded. However, it is not canonicalized
706 (i.e., it has not been passed through gdb_realpath).
707 This pointer is never NULL. This does not have to be freed; it is
708 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 709
befcd486 710 const char *original_name = nullptr;
c906108c 711
9e86da07 712 CORE_ADDR addr_low = 0;
c906108c 713
b15cc25c 714 /* Some flag bits for this objfile. */
e4f6d2ec 715
b15cc25c 716 objfile_flags flags;
c906108c 717
95cf5869 718 /* The program space associated with this objfile. */
c906108c 719
95cf5869 720 struct program_space *pspace;
6c95b8df 721
95cf5869
DE
722 /* List of compunits.
723 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 724
9e86da07 725 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 726
95cf5869 727 /* The object file's BFD. Can be null if the objfile contains only
05a1f646
JV
728 minimal symbols (e.g. the run time common symbols for SunOS4) or
729 if the objfile is a dynamic objfile (e.g. created by JIT reader
730 API). */
c906108c 731
98badbfd 732 gdb_bfd_ref_ptr obfd;
c906108c 733
88c4cce8 734 /* The per-BFD data. */
c906108c 735
9e86da07 736 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 737
88c4cce8
TT
738 /* In some cases, the per_bfd object is owned by this objfile and
739 not by the BFD itself. In this situation, this holds the owning
740 pointer. */
741
742 std::unique_ptr<objfile_per_bfd_storage> per_bfd_storage;
743
95cf5869
DE
744 /* The modification timestamp of the object file, as of the last time
745 we read its symbols. */
706e3705 746
9e86da07 747 long mtime = 0;
c906108c 748
95cf5869
DE
749 /* Obstack to hold objects that should be freed when we load a new symbol
750 table from this object file. */
c906108c 751
075e4d6d 752 auto_obstack objfile_obstack;
b99607ea 753
95cf5869
DE
754 /* Structure which keeps track of functions that manipulate objfile's
755 of the same type as this objfile. I.e. the function to read partial
756 symbols for example. Note that this structure is in statically
757 allocated memory, and is shared by all objfiles that use the
758 object module reader of this type. */
c906108c 759
9e86da07 760 const struct sym_fns *sf = nullptr;
c906108c 761
5c3f1e5b
TT
762 /* The "quick" (aka partial) symbol functions for this symbol
763 reader. */
e1114590 764 std::forward_list<quick_symbol_functions_up> qf;
5c3f1e5b 765
95cf5869 766 /* Per objfile data-pointers required by other GDB modules. */
c906108c 767
08b8a139 768 registry<objfile> registry_fields;
0d0e1a63 769
95cf5869
DE
770 /* Set of relocation offsets to apply to each section.
771 The table is indexed by the_bfd_section->index, thus it is generally
772 as large as the number of sections in the binary.
0d0e1a63 773
95cf5869
DE
774 These offsets indicate that all symbols (including partial and
775 minimal symbols) which have been read have been relocated by this
776 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 777
6a053cb1 778 ::section_offsets section_offsets;
c906108c 779
95cf5869
DE
780 /* Indexes in the section_offsets array. These are initialized by the
781 *_symfile_offsets() family of functions (som_symfile_offsets,
782 xcoff_symfile_offsets, default_symfile_offsets). In theory they
783 should correspond to the section indexes used by bfd for the
784 current objfile. The exception to this for the time being is the
9e86da07
TT
785 SOM version.
786
787 These are initialized to -1 so that we can later detect if they
788 are used w/o being properly assigned to. */
c906108c 789
9e86da07
TT
790 int sect_index_text = -1;
791 int sect_index_data = -1;
792 int sect_index_bss = -1;
793 int sect_index_rodata = -1;
b8fbeb18 794
9ed8433a
TT
795 /* These pointers are used to locate the section table, which among
796 other things, is used to map pc addresses into sections.
797 SECTIONS_START points to the first entry in the table, and
798 SECTIONS_END points to the first location past the last entry in
799 the table. The table is stored on the objfile_obstack. The
800 sections are indexed by the BFD section index; but the structure
801 data is only valid for certain sections (e.g. non-empty,
802 SEC_ALLOC). */
b8fbeb18 803
9ed8433a 804 struct obj_section *sections_start = nullptr;
9e86da07 805 struct obj_section *sections_end = nullptr;
c906108c 806
95cf5869
DE
807 /* GDB allows to have debug symbols in separate object files. This is
808 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
809 Although this is a tree structure, GDB only support one level
810 (ie a separate debug for a separate debug is not supported). Note that
811 separate debug object are in the main chain and therefore will be
2030c079 812 visited by objfiles & co iterators. Separate debug objfile always
95cf5869 813 has a non-nul separate_debug_objfile_backlink. */
c906108c 814
95cf5869 815 /* Link to the first separate debug object, if any. */
15d123c9 816
9e86da07 817 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 818
95cf5869
DE
819 /* If this is a separate debug object, this is used as a link to the
820 actual executable objfile. */
15d123c9 821
9e86da07 822 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 823
95cf5869
DE
824 /* If this is a separate debug object, this is a link to the next one
825 for the same executable objfile. */
5c4e30ca 826
9e86da07 827 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
828
829 /* Place to stash various statistics about this objfile. */
830
831 OBJSTATS;
832
833 /* A linked list of symbols created when reading template types or
834 function templates. These symbols are not stored in any symbol
835 table, so we have to keep them here to relocate them
836 properly. */
837
9e86da07 838 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
839
840 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
841 block *) that have one.
842
843 In the context of nested functions (available in Pascal, Ada and GNU C,
844 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
845 for a function is a way to get the frame corresponding to the enclosing
846 function.
847
848 Very few blocks have a static link, so it's more memory efficient to
849 store these here rather than in struct block. Static links must be
850 allocated on the objfile's obstack. */
cf250e36 851 htab_up static_links;
238b5c9f 852
0e74a041
SM
853 /* JIT-related data for this objfile, if the objfile is a JITer;
854 that is, it produces JITed objfiles. */
855 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
856
857 /* JIT-related data for this objfile, if the objfile is JITed;
858 that is, it was produced by a JITer. */
859 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
a7b4ff4f
SM
860
861 /* A flag that is set to true if the JIT interface symbols are not
862 found in this objfile, so that we can skip the symbol lookup the
863 next time. If an objfile does not have the symbols, it will
864 never have them. */
865 bool skip_jit_symbol_lookup = false;
62669649
KB
866
867 /* Flag which indicates, when true, that the object format
868 potentially supports copy relocations. ABIs for some
869 architectures that use ELF have a copy relocation in which the
870 initialization for a global variable defined in a shared object
871 will be copied to memory allocated to the main program during
872 dynamic linking. Therefore this flag will be set for ELF
873 objfiles. Other object formats that use the same copy relocation
874 mechanism as ELF should set this flag too. This flag is used in
875 conjunction with the minimal_symbol::maybe_copied method. */
876 bool object_format_has_copy_relocs = false;
95cf5869 877};
c906108c 878
268e4f09
TT
879/* A deleter for objfile. */
880
881struct objfile_deleter
882{
883 void operator() (objfile *ptr) const
884 {
885 ptr->unlink ();
886 }
887};
888
889/* A unique pointer that holds an objfile. */
890
891typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
892
5250cbc8
TT
893/* Relocation offset applied to the section. */
894inline CORE_ADDR
895obj_section::offset () const
0c1bcd23 896{
5250cbc8
TT
897 return this->objfile->section_offset (this->the_bfd_section);
898}
0c1bcd23 899
5250cbc8
TT
900/* Set the relocation offset applied to the section. */
901inline void
902obj_section::set_offset (CORE_ADDR offset)
903{
904 this->objfile->set_section_offset (this->the_bfd_section, offset);
905}
0c1bcd23 906
c906108c
SS
907/* Declarations for functions defined in objfiles.c */
908
abd0a5fa
JK
909extern int entry_point_address_query (CORE_ADDR *entry_p);
910
9ab9195f
EZ
911extern CORE_ADDR entry_point_address (void);
912
d82ea6a8 913extern void build_objfile_section_table (struct objfile *);
c906108c 914
15d123c9
TG
915extern void free_objfile_separate_debug (struct objfile *);
916
6a053cb1 917extern void objfile_relocate (struct objfile *, const section_offsets &);
4141a416 918extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 919
55333a84
DE
920extern int objfile_has_full_symbols (struct objfile *objfile);
921
e361b228
TG
922extern int objfile_has_symbols (struct objfile *objfile);
923
a14ed312 924extern int have_partial_symbols (void);
c906108c 925
a14ed312 926extern int have_full_symbols (void);
c906108c 927
8fb8eb5c
DE
928extern void objfile_set_sym_fns (struct objfile *objfile,
929 const struct sym_fns *sf);
930
bb272892 931extern void objfiles_changed (void);
63644780 932
02ff80c2
SM
933/* Return true if ADDR maps into one of the sections of OBJFILE and false
934 otherwise. */
935
936extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 937
d03de421
PA
938/* Return true if ADDRESS maps into one of the sections of a
939 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 940
02ff80c2 941extern bool shared_objfile_contains_address_p (struct program_space *pspace,
dda83cd7 942 CORE_ADDR address);
08351840 943
c906108c
SS
944/* This operation deletes all objfile entries that represent solibs that
945 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
946 command. */
947
a14ed312 948extern void objfile_purge_solibs (void);
c906108c
SS
949
950/* Functions for dealing with the minimal symbol table, really a misc
951 address<->symbol mapping for things we don't have debug symbols for. */
952
a14ed312 953extern int have_minimal_symbols (void);
c906108c 954
a14ed312 955extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 956
6ec27270
TT
957/* Return true if PC is in a section called NAME. */
958extern bool pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
959
960/* Return non-zero if PC is in a SVR4-style procedure linkage table
961 section. */
962
963static inline int
964in_plt_section (CORE_ADDR pc)
965{
5fae2a2c
TV
966 return (pc_in_section (pc, ".plt")
967 || pc_in_section (pc, ".plt.sec"));
3e5d3a5a 968}
c906108c 969
607ece04
GB
970/* In normal use, the section map will be rebuilt by find_pc_section
971 if objfiles have been added, removed or relocated since it was last
972 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
973 behavior until the returned scoped_restore object is destroyed. If
974 you call inhibit_section_map_updates you must ensure that every
975 call to find_pc_section in the inhibited region relates to a
976 section that is already in the section map and has not since been
977 removed or relocated. */
978extern scoped_restore_tmpl<int> inhibit_section_map_updates
979 (struct program_space *pspace);
607ece04 980
19630284 981extern void default_iterate_over_objfiles_in_search_order
6e9cd73e
SM
982 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
983 objfile *current_objfile);
b8fbeb18 984
706e3705
TT
985/* Reset the per-BFD storage area on OBJ. */
986
987void set_objfile_per_bfd (struct objfile *obj);
988
e02c96a7
DE
989/* Return canonical name for OBJFILE.
990 This is the real file name if the file has been opened.
991 Otherwise it is the original name supplied by the user. */
992
4262abfb
JK
993const char *objfile_name (const struct objfile *objfile);
994
e02c96a7
DE
995/* Return the (real) file name of OBJFILE if the file has been opened,
996 otherwise return NULL. */
997
998const char *objfile_filename (const struct objfile *objfile);
999
cc485e62
DE
1000/* Return the name to print for OBJFILE in debugging messages. */
1001
1002extern const char *objfile_debug_name (const struct objfile *objfile);
1003
015d2e7e
DE
1004/* Return the name of the file format of OBJFILE if the file has been opened,
1005 otherwise return NULL. */
1006
1007const char *objfile_flavour_name (struct objfile *objfile);
1008
3d548a53
TT
1009/* Set the objfile's notion of the "main" name and language. */
1010
1011extern void set_objfile_main_name (struct objfile *objfile,
1012 const char *name, enum language lang);
1013
b3a01ce2
WP
1014/* Find an integer type SIZE_IN_BYTES bytes in size from OF and return it.
1015 UNSIGNED_P controls if the integer is unsigned or not. */
1016extern struct type *objfile_int_type (struct objfile *of, int size_in_bytes,
1017 bool unsigned_p);
1018
63e43d3a
PMR
1019extern void objfile_register_static_link
1020 (struct objfile *objfile,
1021 const struct block *block,
1022 const struct dynamic_prop *static_link);
1023
1024extern const struct dynamic_prop *objfile_lookup_static_link
1025 (struct objfile *objfile, const struct block *block);
1026
c5aa993b 1027#endif /* !defined (OBJFILES_H) */