]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/objfiles.h
Rename objfile::sections
[thirdparty/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
213516ef 3 Copyright (C) 1992-2023 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
bf31fd38 24#include "gdbsupport/gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
d320c2b5 30#include "psymtab.h"
7d7167ce 31#include <atomic>
1b7a07cb 32#include <bitset>
b5ec771e 33#include <vector>
268a13a5
TT
34#include "gdbsupport/next-iterator.h"
35#include "gdbsupport/safe-iterator.h"
b366c208 36#include "bcache.h"
0d12e84c 37#include "gdbarch.h"
7d7167ce 38#include "gdbsupport/refcounted-object.h"
238b5c9f 39#include "jit.h"
39298a5d 40#include "quick-symbol.h"
e1114590 41#include <forward_list>
3956d554 42
2de7ced7 43struct htab;
4a4b3fed 44struct objfile_data;
af5bf4ad 45struct partial_symbol;
08c0b5bc 46
c906108c
SS
47/* This structure maintains information on a per-objfile basis about the
48 "entry point" of the objfile, and the scope within which the entry point
49 exists. It is possible that gdb will see more than one objfile that is
50 executable, each with its own entry point.
51
52 For example, for dynamically linked executables in SVR4, the dynamic linker
53 code is contained within the shared C library, which is actually executable
54 and is run by the kernel first when an exec is done of a user executable
55 that is dynamically linked. The dynamic linker within the shared C library
56 then maps in the various program segments in the user executable and jumps
57 to the user executable's recorded entry point, as if the call had been made
58 directly by the kernel.
59
73c1e0a1
AC
60 The traditional gdb method of using this info was to use the
61 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
62 the debugging information, where these values are the starting
63 address (inclusive) and ending address (exclusive) of the
64 instruction space in the executable which correspond to the
0df8b418 65 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
66 be a startup file and frames with pc's inside it are treated as
67 nonexistent. Setting these variables is necessary so that
68 backtraces do not fly off the bottom of the stack.
69
70 NOTE: cagney/2003-09-09: It turns out that this "traditional"
71 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 72 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 73 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
74 testcase are broken for some targets. In this test the functions
75 are all implemented as part of one file and the testcase is not
76 necessarily linked with a start file (depending on the target).
30baf67b
TV
77 What happens is, that the first frame is printed normally and
78 following frames are treated as being inside the entry file then.
627b3ba2
AC
79 This way, only the #0 frame is printed in the backtrace output.''
80 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
81
82 Gdb also supports an alternate method to avoid running off the bottom
83 of the stack.
84
85 There are two frames that are "special", the frame for the function
86 containing the process entry point, since it has no predecessor frame,
87 and the frame for the function containing the user code entry point
88 (the main() function), since all the predecessor frames are for the
89 process startup code. Since we have no guarantee that the linked
90 in startup modules have any debugging information that gdb can use,
91 we need to avoid following frame pointers back into frames that might
95cf5869 92 have been built in the startup code, as we might get hopelessly
c906108c
SS
93 confused. However, we almost always have debugging information
94 available for main().
95
618ce49f
AC
96 These variables are used to save the range of PC values which are
97 valid within the main() function and within the function containing
98 the process entry point. If we always consider the frame for
99 main() as the outermost frame when debugging user code, and the
100 frame for the process entry point function as the outermost frame
101 when debugging startup code, then all we have to do is have
102 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
103 current PC is within the range specified by these variables. In
104 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
105 not proceed when following the frame chain back up the stack.
106
107 A nice side effect is that we can still debug startup code without
108 running off the end of the frame chain, assuming that we have usable
109 debugging information in the startup modules, and if we choose to not
110 use the block at main, or can't find it for some reason, everything
111 still works as before. And if we have no startup code debugging
112 information but we do have usable information for main(), backtraces
6e4c6c91 113 from user code don't go wandering off into the startup code. */
c906108c
SS
114
115struct entry_info
95cf5869
DE
116{
117 /* The unrelocated value we should use for this objfile entry point. */
118 CORE_ADDR entry_point;
c906108c 119
95cf5869
DE
120 /* The index of the section in which the entry point appears. */
121 int the_bfd_section_index;
53eddfa6 122
95cf5869
DE
123 /* Set to 1 iff ENTRY_POINT contains a valid value. */
124 unsigned entry_point_p : 1;
6ef55de7 125
95cf5869
DE
126 /* Set to 1 iff this object was initialized. */
127 unsigned initialized : 1;
128};
c906108c 129
b3b3bada 130#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
9ed8433a 131 for (osect = objfile->sections_start; osect < objfile->sections_end; osect++) \
b3b3bada
SM
132 if (osect->the_bfd_section == NULL) \
133 { \
134 /* Nothing. */ \
135 } \
136 else
137
138#define SECT_OFF_DATA(objfile) \
139 ((objfile->sect_index_data == -1) \
f34652de 140 ? (internal_error (_("sect_index_data not initialized")), -1) \
b3b3bada
SM
141 : objfile->sect_index_data)
142
143#define SECT_OFF_RODATA(objfile) \
144 ((objfile->sect_index_rodata == -1) \
f34652de 145 ? (internal_error (_("sect_index_rodata not initialized")), -1) \
b3b3bada
SM
146 : objfile->sect_index_rodata)
147
148#define SECT_OFF_TEXT(objfile) \
149 ((objfile->sect_index_text == -1) \
f34652de 150 ? (internal_error (_("sect_index_text not initialized")), -1) \
b3b3bada
SM
151 : objfile->sect_index_text)
152
153/* Sometimes the .bss section is missing from the objfile, so we don't
154 want to die here. Let the users of SECT_OFF_BSS deal with an
155 uninitialized section index. */
156#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
157
c906108c
SS
158/* The "objstats" structure provides a place for gdb to record some
159 interesting information about its internal state at runtime, on a
160 per objfile basis, such as information about the number of symbols
0df8b418 161 read, size of string table (if any), etc. */
c906108c 162
c5aa993b 163struct objstats
95cf5869 164{
95cf5869 165 /* Number of full symbols read. */
9e86da07 166 int n_syms = 0;
95cf5869
DE
167
168 /* Number of ".stabs" read (if applicable). */
9e86da07 169 int n_stabs = 0;
95cf5869
DE
170
171 /* Number of types. */
9e86da07 172 int n_types = 0;
95cf5869
DE
173
174 /* Size of stringtable, (if applicable). */
9e86da07 175 int sz_strtab = 0;
95cf5869 176};
c906108c
SS
177
178#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
179#define OBJSTATS struct objstats stats
a14ed312 180extern void print_objfile_statistics (void);
c906108c 181
9227b5eb 182/* Number of entries in the minimal symbol hash table. */
375f3d86 183#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 184
7932255d
TT
185/* An iterator for minimal symbols. */
186
187struct minimal_symbol_iterator
188{
189 typedef minimal_symbol_iterator self_type;
190 typedef struct minimal_symbol *value_type;
191 typedef struct minimal_symbol *&reference;
192 typedef struct minimal_symbol **pointer;
193 typedef std::forward_iterator_tag iterator_category;
194 typedef int difference_type;
195
196 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
197 : m_msym (msym)
198 {
199 }
200
201 value_type operator* () const
202 {
203 return m_msym;
204 }
205
206 bool operator== (const self_type &other) const
207 {
208 return m_msym == other.m_msym;
209 }
210
211 bool operator!= (const self_type &other) const
212 {
213 return m_msym != other.m_msym;
214 }
215
216 self_type &operator++ ()
217 {
218 ++m_msym;
219 return *this;
220 }
221
222private:
223 struct minimal_symbol *m_msym;
224};
225
706e3705
TT
226/* Some objfile data is hung off the BFD. This enables sharing of the
227 data across all objfiles using the BFD. The data is stored in an
228 instance of this structure, and associated with the BFD using the
229 registry system. */
230
231struct objfile_per_bfd_storage
232{
0072c873
SM
233 objfile_per_bfd_storage (bfd *bfd)
234 : minsyms_read (false), m_bfd (bfd)
23732b1e
PA
235 {}
236
d6797f46
TT
237 ~objfile_per_bfd_storage ();
238
4a4f97c1
SM
239 /* Intern STRING in this object's string cache and return the unique copy.
240 The copy has the same lifetime as this object.
241
242 STRING must be null-terminated. */
243
244 const char *intern (const char *str)
245 {
246 return (const char *) string_cache.insert (str, strlen (str) + 1);
247 }
248
249 /* Same as the above, but for an std::string. */
250
251 const char *intern (const std::string &str)
252 {
253 return (const char *) string_cache.insert (str.c_str (), str.size () + 1);
254 }
255
0072c873
SM
256 /* Get the BFD this object is associated to. */
257
258 bfd *get_bfd () const
259 {
260 return m_bfd;
261 }
262
706e3705
TT
263 /* The storage has an obstack of its own. */
264
23732b1e 265 auto_obstack storage_obstack;
95cf5869 266
be1e3d3e 267 /* String cache. */
706e3705 268
be1e3d3e 269 gdb::bcache string_cache;
df6d5441
TT
270
271 /* The gdbarch associated with the BFD. Note that this gdbarch is
272 determined solely from BFD information, without looking at target
273 information. The gdbarch determined from a running target may
274 differ from this e.g. with respect to register types and names. */
275
23732b1e 276 struct gdbarch *gdbarch = NULL;
84a1243b
TT
277
278 /* Hash table for mapping symbol names to demangled names. Each
c7ee338a
CB
279 entry in the hash table is a demangled_name_entry struct, storing the
280 language and two consecutive strings, both null-terminated; the first one
281 is a mangled or linkage name, and the second is the demangled name or just
282 a zero byte if the name doesn't demangle. */
95cf5869 283
db92718b 284 htab_up demangled_names_hash;
6ef55de7
TT
285
286 /* The per-objfile information about the entry point, the scope (file/func)
287 containing the entry point, and the scope of the user's main() func. */
288
23732b1e 289 entry_info ei {};
3d548a53
TT
290
291 /* The name and language of any "main" found in this objfile. The
292 name can be NULL, which means that the information was not
293 recorded. */
294
23732b1e
PA
295 const char *name_of_main = NULL;
296 enum language language_of_main = language_unknown;
34643a32
TT
297
298 /* Each file contains a pointer to an array of minimal symbols for all
299 global symbols that are defined within the file. The array is
300 terminated by a "null symbol", one that has a NULL pointer for the
301 name and a zero value for the address. This makes it easy to walk
302 through the array when passed a pointer to somewhere in the middle
303 of it. There is also a count of the number of symbols, which does
042d75e4 304 not include the terminating null symbol. */
34643a32 305
042d75e4 306 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
23732b1e 307 int minimal_symbol_count = 0;
34643a32 308
5f6cac40
TT
309 /* The number of minimal symbols read, before any minimal symbol
310 de-duplication is applied. Note in particular that this has only
311 a passing relationship with the actual size of the table above;
312 use minimal_symbol_count if you need the true size. */
95cf5869 313
23732b1e 314 int n_minsyms = 0;
5f6cac40 315
34643a32
TT
316 /* This is true if minimal symbols have already been read. Symbol
317 readers can use this to bypass minimal symbol reading. Also, the
318 minimal symbol table management code in minsyms.c uses this to
319 suppress new minimal symbols. You might think that MSYMBOLS or
320 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
321 for multiple readers to install minimal symbols into a given
322 per-BFD. */
323
23732b1e 324 bool minsyms_read : 1;
34643a32 325
c7ee338a
CB
326 /* This is a hash table used to index the minimal symbols by (mangled)
327 name. */
34643a32 328
23732b1e 329 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
330
331 /* This hash table is used to index the minimal symbols by their
c7ee338a
CB
332 demangled names. Uses a language-specific hash function via
333 search_name_hash. */
34643a32 334
23732b1e 335 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
336
337 /* All the different languages of symbols found in the demangled
1b7a07cb
TT
338 hash table. */
339 std::bitset<nr_languages> demangled_hash_languages;
0072c873
SM
340
341private:
342 /* The BFD this object is associated to. */
343
344 bfd *m_bfd;
706e3705
TT
345};
346
e9ad22ee
TT
347/* An iterator that first returns a parent objfile, and then each
348 separate debug objfile. */
349
350class separate_debug_iterator
351{
352public:
353
354 explicit separate_debug_iterator (struct objfile *objfile)
355 : m_objfile (objfile),
356 m_parent (objfile)
357 {
358 }
359
360 bool operator!= (const separate_debug_iterator &other)
361 {
362 return m_objfile != other.m_objfile;
363 }
364
365 separate_debug_iterator &operator++ ();
366
367 struct objfile *operator* ()
368 {
369 return m_objfile;
370 }
371
372private:
373
374 struct objfile *m_objfile;
375 struct objfile *m_parent;
376};
377
378/* A range adapter wrapping separate_debug_iterator. */
379
177ac6e4 380typedef iterator_range<separate_debug_iterator> separate_debug_range;
e9ad22ee 381
c906108c
SS
382/* Master structure for keeping track of each file from which
383 gdb reads symbols. There are several ways these get allocated: 1.
384 The main symbol file, symfile_objfile, set by the symbol-file command,
385 2. Additional symbol files added by the add-symbol-file command,
386 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
387 for modules that were loaded when GDB attached to a remote system
4ee94178
CB
388 (see remote-vx.c).
389
390 GDB typically reads symbols twice -- first an initial scan which just
391 reads "partial symbols"; these are partial information for the
4d080b46
TT
392 static/global symbols in a symbol file. When later looking up
393 symbols, lookup_symbol is used to check if we only have a partial
4ee94178 394 symbol and if so, read and expand the full compunit. */
c906108c
SS
395
396struct objfile
95cf5869 397{
bda13cdc
TT
398private:
399
400 /* The only way to create an objfile is to call objfile::make. */
98badbfd 401 objfile (gdb_bfd_ref_ptr, const char *, objfile_flags);
bda13cdc
TT
402
403public:
404
7d7167ce
TT
405 /* Normally you should not call delete. Instead, call 'unlink' to
406 remove it from the program space's list. In some cases, you may
407 need to hold a reference to an objfile that is independent of its
408 existence on the program space's list; for this case, the
e2904e1f 409 destructor must be public so that unique_ptr can reference
7d7167ce
TT
410 it. */
411 ~objfile ();
412
bda13cdc 413 /* Create an objfile. */
98badbfd
TT
414 static objfile *make (gdb_bfd_ref_ptr bfd_, const char *name_,
415 objfile_flags flags_, objfile *parent = nullptr);
bda13cdc 416
268e4f09
TT
417 /* Remove an objfile from the current program space, and free
418 it. */
419 void unlink ();
9e86da07
TT
420
421 DISABLE_COPY_AND_ASSIGN (objfile);
422
b669c953
TT
423 /* A range adapter that makes it possible to iterate over all
424 compunits in one objfile. */
425
9be25986 426 compunit_symtab_range compunits ()
b669c953 427 {
9be25986 428 return compunit_symtab_range (compunit_symtabs);
b669c953 429 }
6d6a12bf 430
7932255d
TT
431 /* A range adapter that makes it possible to iterate over all
432 minimal symbols of an objfile. */
433
177ac6e4 434 typedef iterator_range<minimal_symbol_iterator> msymbols_range;
7932255d
TT
435
436 /* Return a range adapter for iterating over all minimal
437 symbols. */
438
439 msymbols_range msymbols ()
440 {
177ac6e4
TT
441 auto start = minimal_symbol_iterator (per_bfd->msymbols.get ());
442 auto end = minimal_symbol_iterator (per_bfd->msymbols.get ()
443 + per_bfd->minimal_symbol_count);
444 return msymbols_range (start, end);
7932255d
TT
445 }
446
e9ad22ee
TT
447 /* Return a range adapter for iterating over all the separate debug
448 objfiles of this objfile. */
449
450 separate_debug_range separate_debug_objfiles ()
451 {
177ac6e4
TT
452 auto start = separate_debug_iterator (this);
453 auto end = separate_debug_iterator (nullptr);
454 return separate_debug_range (start, end);
e9ad22ee
TT
455 }
456
b3b3bada
SM
457 CORE_ADDR text_section_offset () const
458 {
459 return section_offsets[SECT_OFF_TEXT (this)];
460 }
461
462 CORE_ADDR data_section_offset () const
463 {
464 return section_offsets[SECT_OFF_DATA (this)];
465 }
7932255d 466
be1e3d3e
TT
467 /* Intern STRING and return the unique copy. The copy has the same
468 lifetime as the per-BFD object. */
469 const char *intern (const char *str)
470 {
4a4f97c1 471 return per_bfd->intern (str);
be1e3d3e
TT
472 }
473
474 /* Intern STRING and return the unique copy. The copy has the same
475 lifetime as the per-BFD object. */
476 const char *intern (const std::string &str)
477 {
4a4f97c1 478 return per_bfd->intern (str);
be1e3d3e
TT
479 }
480
08feed99
TT
481 /* Retrieve the gdbarch associated with this objfile. */
482 struct gdbarch *arch () const
483 {
484 return per_bfd->gdbarch;
485 }
486
a8ad4f3c
TT
487 /* Return true if OBJFILE has partial symbols. */
488
fae2120b 489 bool has_partial_symbols ();
be1e3d3e 490
fc4d5ebf
AB
491 /* Return true if this objfile has any unexpanded symbols. A return
492 value of false indicates either, that this objfile has all its
493 symbols fully expanded (i.e. fully read in), or that this objfile has
494 no symbols at all (i.e. no debug information). */
495 bool has_unexpanded_symtabs ();
496
4d080b46
TT
497 /* See quick_symbol_functions. */
498 struct symtab *find_last_source_symtab ();
499
500 /* See quick_symbol_functions. */
501 void forget_cached_source_info ();
502
536a40f3
TT
503 /* Expand and iterate over each "partial" symbol table in OBJFILE
504 where the source file is named NAME.
505
506 If NAME is not absolute, a match after a '/' in the symbol table's
507 file name will also work, REAL_PATH is NULL then. If NAME is
508 absolute then REAL_PATH is non-NULL absolute file name as resolved
509 via gdb_realpath from NAME.
510
511 If a match is found, the "partial" symbol table is expanded.
512 Then, this calls iterate_over_some_symtabs (or equivalent) over
513 all newly-created symbol tables, passing CALLBACK to it.
514 The result of this call is returned. */
4d080b46
TT
515 bool map_symtabs_matching_filename
516 (const char *name, const char *real_path,
517 gdb::function_view<bool (symtab *)> callback);
518
84d865e3
TT
519 /* Check to see if the symbol is defined in a "partial" symbol table
520 of this objfile. BLOCK_INDEX should be either GLOBAL_BLOCK or
521 STATIC_BLOCK, depending on whether we want to search global
522 symbols or static symbols. NAME is the name of the symbol to
523 look for. DOMAIN indicates what sort of symbol to search for.
524
525 Returns the newly-expanded compunit in which the symbol is
526 defined, or NULL if no such symbol table exists. If OBJFILE
527 contains !TYPE_OPAQUE symbol prefer its compunit. If it contains
528 only TYPE_OPAQUE symbol(s), return at least that compunit. */
4d080b46
TT
529 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
530 domain_enum domain);
531
532 /* See quick_symbol_functions. */
4829711b 533 void print_stats (bool print_bcache);
4d080b46
TT
534
535 /* See quick_symbol_functions. */
536 void dump ();
537
7089bd88
TT
538 /* Find all the symbols in OBJFILE named FUNC_NAME, and ensure that
539 the corresponding symbol tables are loaded. */
4d080b46
TT
540 void expand_symtabs_for_function (const char *func_name);
541
542 /* See quick_symbol_functions. */
543 void expand_all_symtabs ();
544
90160b57
TT
545 /* Read all symbol tables associated with OBJFILE which have
546 symtab_to_fullname equal to FULLNAME.
547 This is for the purposes of examining code only, e.g., expand_line_sal.
548 The routine may ignore debug info that is known to not be useful with
549 code, e.g., DW_TAG_type_unit for dwarf debug info. */
4d080b46
TT
550 void expand_symtabs_with_fullname (const char *fullname);
551
552 /* See quick_symbol_functions. */
0b7b2c2a 553 void expand_matching_symbols
4d080b46
TT
554 (const lookup_name_info &name, domain_enum domain,
555 int global,
4d080b46
TT
556 symbol_compare_ftype *ordered_compare);
557
558 /* See quick_symbol_functions. */
df35e626 559 bool expand_symtabs_matching
4d080b46
TT
560 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
561 const lookup_name_info *lookup_name,
562 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
563 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
03a8ea51 564 block_search_flags search_flags,
3bfa51a7 565 domain_enum domain,
4d080b46
TT
566 enum search_domain kind);
567
568 /* See quick_symbol_functions. */
569 struct compunit_symtab *find_pc_sect_compunit_symtab
570 (struct bound_minimal_symbol msymbol,
571 CORE_ADDR pc,
572 struct obj_section *section,
573 int warn_if_readin);
574
575 /* See quick_symbol_functions. */
f4655dee
TT
576 void map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
577 bool need_fullname);
4d080b46
TT
578
579 /* See quick_symbol_functions. */
580 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
581
582 /* See quick_symbol_functions. */
583 enum language lookup_global_symbol_language (const char *name,
584 domain_enum domain,
585 bool *symbol_found_p);
586
d1eef86d
TT
587 /* See quick_symbol_functions. */
588 void require_partial_symbols (bool verbose);
589
0c1bcd23
SM
590 /* Return the relocation offset applied to SECTION. */
591 CORE_ADDR section_offset (bfd_section *section) const
592 {
593 /* The section's owner can be nullptr if it is one of the _bfd_std_section
594 section. */
595 gdb_assert (section->owner == nullptr || section->owner == this->obfd);
596
98badbfd 597 int idx = gdb_bfd_section_index (this->obfd.get (), section);
0c1bcd23
SM
598 return this->section_offsets[idx];
599 }
600
601 /* Set the relocation offset applied to SECTION. */
602 void set_section_offset (bfd_section *section, CORE_ADDR offset)
603 {
604 /* The section's owner can be nullptr if it is one of the _bfd_std_section
605 section. */
606 gdb_assert (section->owner == nullptr || section->owner == this->obfd);
607
98badbfd 608 int idx = gdb_bfd_section_index (this->obfd.get (), section);
0c1bcd23
SM
609 this->section_offsets[idx] = offset;
610 }
4d080b46 611
fcf8e814
LS
612private:
613
614 /* Ensure that partial symbols have been read and return the "quick" (aka
615 partial) symbol functions for this symbol reader. */
616 const std::forward_list<quick_symbol_functions_up> &
617 qf_require_partial_symbols ()
618 {
619 this->require_partial_symbols (true);
620 return qf;
621 }
622
623public:
624
95cf5869
DE
625 /* The object file's original name as specified by the user,
626 made absolute, and tilde-expanded. However, it is not canonicalized
627 (i.e., it has not been passed through gdb_realpath).
628 This pointer is never NULL. This does not have to be freed; it is
629 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 630
befcd486 631 const char *original_name = nullptr;
c906108c 632
9e86da07 633 CORE_ADDR addr_low = 0;
c906108c 634
b15cc25c 635 /* Some flag bits for this objfile. */
e4f6d2ec 636
b15cc25c 637 objfile_flags flags;
c906108c 638
95cf5869 639 /* The program space associated with this objfile. */
c906108c 640
95cf5869 641 struct program_space *pspace;
6c95b8df 642
95cf5869
DE
643 /* List of compunits.
644 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 645
9e86da07 646 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 647
95cf5869 648 /* The object file's BFD. Can be null if the objfile contains only
05a1f646
JV
649 minimal symbols (e.g. the run time common symbols for SunOS4) or
650 if the objfile is a dynamic objfile (e.g. created by JIT reader
651 API). */
c906108c 652
98badbfd 653 gdb_bfd_ref_ptr obfd;
c906108c 654
88c4cce8 655 /* The per-BFD data. */
c906108c 656
9e86da07 657 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 658
88c4cce8
TT
659 /* In some cases, the per_bfd object is owned by this objfile and
660 not by the BFD itself. In this situation, this holds the owning
661 pointer. */
662
663 std::unique_ptr<objfile_per_bfd_storage> per_bfd_storage;
664
95cf5869
DE
665 /* The modification timestamp of the object file, as of the last time
666 we read its symbols. */
706e3705 667
9e86da07 668 long mtime = 0;
c906108c 669
95cf5869
DE
670 /* Obstack to hold objects that should be freed when we load a new symbol
671 table from this object file. */
c906108c 672
075e4d6d 673 auto_obstack objfile_obstack;
b99607ea 674
95cf5869
DE
675 /* Structure which keeps track of functions that manipulate objfile's
676 of the same type as this objfile. I.e. the function to read partial
677 symbols for example. Note that this structure is in statically
678 allocated memory, and is shared by all objfiles that use the
679 object module reader of this type. */
c906108c 680
9e86da07 681 const struct sym_fns *sf = nullptr;
c906108c 682
5c3f1e5b
TT
683 /* The "quick" (aka partial) symbol functions for this symbol
684 reader. */
e1114590 685 std::forward_list<quick_symbol_functions_up> qf;
5c3f1e5b 686
95cf5869 687 /* Per objfile data-pointers required by other GDB modules. */
c906108c 688
08b8a139 689 registry<objfile> registry_fields;
0d0e1a63 690
95cf5869
DE
691 /* Set of relocation offsets to apply to each section.
692 The table is indexed by the_bfd_section->index, thus it is generally
693 as large as the number of sections in the binary.
0d0e1a63 694
95cf5869
DE
695 These offsets indicate that all symbols (including partial and
696 minimal symbols) which have been read have been relocated by this
697 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 698
6a053cb1 699 ::section_offsets section_offsets;
c906108c 700
95cf5869
DE
701 /* Indexes in the section_offsets array. These are initialized by the
702 *_symfile_offsets() family of functions (som_symfile_offsets,
703 xcoff_symfile_offsets, default_symfile_offsets). In theory they
704 should correspond to the section indexes used by bfd for the
705 current objfile. The exception to this for the time being is the
9e86da07
TT
706 SOM version.
707
708 These are initialized to -1 so that we can later detect if they
709 are used w/o being properly assigned to. */
c906108c 710
9e86da07
TT
711 int sect_index_text = -1;
712 int sect_index_data = -1;
713 int sect_index_bss = -1;
714 int sect_index_rodata = -1;
b8fbeb18 715
9ed8433a
TT
716 /* These pointers are used to locate the section table, which among
717 other things, is used to map pc addresses into sections.
718 SECTIONS_START points to the first entry in the table, and
719 SECTIONS_END points to the first location past the last entry in
720 the table. The table is stored on the objfile_obstack. The
721 sections are indexed by the BFD section index; but the structure
722 data is only valid for certain sections (e.g. non-empty,
723 SEC_ALLOC). */
b8fbeb18 724
9ed8433a 725 struct obj_section *sections_start = nullptr;
9e86da07 726 struct obj_section *sections_end = nullptr;
c906108c 727
95cf5869
DE
728 /* GDB allows to have debug symbols in separate object files. This is
729 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
730 Although this is a tree structure, GDB only support one level
731 (ie a separate debug for a separate debug is not supported). Note that
732 separate debug object are in the main chain and therefore will be
2030c079 733 visited by objfiles & co iterators. Separate debug objfile always
95cf5869 734 has a non-nul separate_debug_objfile_backlink. */
c906108c 735
95cf5869 736 /* Link to the first separate debug object, if any. */
15d123c9 737
9e86da07 738 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 739
95cf5869
DE
740 /* If this is a separate debug object, this is used as a link to the
741 actual executable objfile. */
15d123c9 742
9e86da07 743 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 744
95cf5869
DE
745 /* If this is a separate debug object, this is a link to the next one
746 for the same executable objfile. */
5c4e30ca 747
9e86da07 748 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
749
750 /* Place to stash various statistics about this objfile. */
751
752 OBJSTATS;
753
754 /* A linked list of symbols created when reading template types or
755 function templates. These symbols are not stored in any symbol
756 table, so we have to keep them here to relocate them
757 properly. */
758
9e86da07 759 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
760
761 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
762 block *) that have one.
763
764 In the context of nested functions (available in Pascal, Ada and GNU C,
765 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
766 for a function is a way to get the frame corresponding to the enclosing
767 function.
768
769 Very few blocks have a static link, so it's more memory efficient to
770 store these here rather than in struct block. Static links must be
771 allocated on the objfile's obstack. */
cf250e36 772 htab_up static_links;
238b5c9f 773
0e74a041
SM
774 /* JIT-related data for this objfile, if the objfile is a JITer;
775 that is, it produces JITed objfiles. */
776 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
777
778 /* JIT-related data for this objfile, if the objfile is JITed;
779 that is, it was produced by a JITer. */
780 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
a7b4ff4f
SM
781
782 /* A flag that is set to true if the JIT interface symbols are not
783 found in this objfile, so that we can skip the symbol lookup the
784 next time. If an objfile does not have the symbols, it will
785 never have them. */
786 bool skip_jit_symbol_lookup = false;
95cf5869 787};
c906108c 788
268e4f09
TT
789/* A deleter for objfile. */
790
791struct objfile_deleter
792{
793 void operator() (objfile *ptr) const
794 {
795 ptr->unlink ();
796 }
797};
798
799/* A unique pointer that holds an objfile. */
800
801typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
802
0c1bcd23
SM
803
804/* Sections in an objfile. The section offsets are stored in the
805 OBJFILE. */
806
807struct obj_section
808{
809 /* Relocation offset applied to the section. */
810 CORE_ADDR offset () const
811 {
812 return this->objfile->section_offset (this->the_bfd_section);
813 }
814
815 /* Set the relocation offset applied to the section. */
816 void set_offset (CORE_ADDR offset)
817 {
818 this->objfile->set_section_offset (this->the_bfd_section, offset);
819 }
820
821 /* The memory address of the section (vma + offset). */
822 CORE_ADDR addr () const
823 {
824 return bfd_section_vma (this->the_bfd_section) + this->offset ();
825 }
826
827 /* The one-passed-the-end memory address of the section
828 (vma + size + offset). */
829 CORE_ADDR endaddr () const
830 {
831 return this->addr () + bfd_section_size (this->the_bfd_section);
832 }
833
834 /* BFD section pointer */
835 struct bfd_section *the_bfd_section;
836
837 /* Objfile this section is part of. */
838 struct objfile *objfile;
839
840 /* True if this "overlay section" is mapped into an "overlay region". */
841 int ovly_mapped;
842};
843
c906108c
SS
844/* Declarations for functions defined in objfiles.c */
845
abd0a5fa
JK
846extern int entry_point_address_query (CORE_ADDR *entry_p);
847
9ab9195f
EZ
848extern CORE_ADDR entry_point_address (void);
849
d82ea6a8 850extern void build_objfile_section_table (struct objfile *);
c906108c 851
15d123c9
TG
852extern void free_objfile_separate_debug (struct objfile *);
853
6a053cb1 854extern void objfile_relocate (struct objfile *, const section_offsets &);
4141a416 855extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 856
55333a84
DE
857extern int objfile_has_full_symbols (struct objfile *objfile);
858
e361b228
TG
859extern int objfile_has_symbols (struct objfile *objfile);
860
a14ed312 861extern int have_partial_symbols (void);
c906108c 862
a14ed312 863extern int have_full_symbols (void);
c906108c 864
8fb8eb5c
DE
865extern void objfile_set_sym_fns (struct objfile *objfile,
866 const struct sym_fns *sf);
867
bb272892 868extern void objfiles_changed (void);
63644780 869
02ff80c2
SM
870/* Return true if ADDR maps into one of the sections of OBJFILE and false
871 otherwise. */
872
873extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 874
d03de421
PA
875/* Return true if ADDRESS maps into one of the sections of a
876 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 877
02ff80c2 878extern bool shared_objfile_contains_address_p (struct program_space *pspace,
dda83cd7 879 CORE_ADDR address);
08351840 880
c906108c
SS
881/* This operation deletes all objfile entries that represent solibs that
882 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
883 command. */
884
a14ed312 885extern void objfile_purge_solibs (void);
c906108c
SS
886
887/* Functions for dealing with the minimal symbol table, really a misc
888 address<->symbol mapping for things we don't have debug symbols for. */
889
a14ed312 890extern int have_minimal_symbols (void);
c906108c 891
a14ed312 892extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 893
6ec27270
TT
894/* Return true if PC is in a section called NAME. */
895extern bool pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
896
897/* Return non-zero if PC is in a SVR4-style procedure linkage table
898 section. */
899
900static inline int
901in_plt_section (CORE_ADDR pc)
902{
5fae2a2c
TV
903 return (pc_in_section (pc, ".plt")
904 || pc_in_section (pc, ".plt.sec"));
3e5d3a5a 905}
c906108c 906
607ece04
GB
907/* In normal use, the section map will be rebuilt by find_pc_section
908 if objfiles have been added, removed or relocated since it was last
909 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
910 behavior until the returned scoped_restore object is destroyed. If
911 you call inhibit_section_map_updates you must ensure that every
912 call to find_pc_section in the inhibited region relates to a
913 section that is already in the section map and has not since been
914 removed or relocated. */
915extern scoped_restore_tmpl<int> inhibit_section_map_updates
916 (struct program_space *pspace);
607ece04 917
19630284 918extern void default_iterate_over_objfiles_in_search_order
6e9cd73e
SM
919 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
920 objfile *current_objfile);
b8fbeb18 921
706e3705
TT
922/* Reset the per-BFD storage area on OBJ. */
923
924void set_objfile_per_bfd (struct objfile *obj);
925
e02c96a7
DE
926/* Return canonical name for OBJFILE.
927 This is the real file name if the file has been opened.
928 Otherwise it is the original name supplied by the user. */
929
4262abfb
JK
930const char *objfile_name (const struct objfile *objfile);
931
e02c96a7
DE
932/* Return the (real) file name of OBJFILE if the file has been opened,
933 otherwise return NULL. */
934
935const char *objfile_filename (const struct objfile *objfile);
936
cc485e62
DE
937/* Return the name to print for OBJFILE in debugging messages. */
938
939extern const char *objfile_debug_name (const struct objfile *objfile);
940
015d2e7e
DE
941/* Return the name of the file format of OBJFILE if the file has been opened,
942 otherwise return NULL. */
943
944const char *objfile_flavour_name (struct objfile *objfile);
945
3d548a53
TT
946/* Set the objfile's notion of the "main" name and language. */
947
948extern void set_objfile_main_name (struct objfile *objfile,
949 const char *name, enum language lang);
950
b3a01ce2
WP
951/* Find an integer type SIZE_IN_BYTES bytes in size from OF and return it.
952 UNSIGNED_P controls if the integer is unsigned or not. */
953extern struct type *objfile_int_type (struct objfile *of, int size_in_bytes,
954 bool unsigned_p);
955
63e43d3a
PMR
956extern void objfile_register_static_link
957 (struct objfile *objfile,
958 const struct block *block,
959 const struct dynamic_prop *static_link);
960
961extern const struct dynamic_prop *objfile_lookup_static_link
962 (struct objfile *objfile, const struct block *block);
963
c5aa993b 964#endif /* !defined (OBJFILES_H) */