]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/parse.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / parse.c
CommitLineData
c906108c 1/* Parse expressions for GDB.
cce74817 2 Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc.
c906108c
SS
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
c5aa993b 31
cce74817
JM
32#include <ctype.h>
33
c906108c
SS
34#include "defs.h"
35#include "gdb_string.h"
c906108c
SS
36#include "symtab.h"
37#include "gdbtypes.h"
38#include "frame.h"
39#include "expression.h"
40#include "value.h"
41#include "command.h"
42#include "language.h"
43#include "parser-defs.h"
44#include "gdbcmd.h"
c5aa993b 45#include "symfile.h" /* for overlay functions */
c906108c
SS
46\f
47/* Global variables declared in parser-defs.h (and commented there). */
48struct expression *expout;
49int expout_size;
50int expout_ptr;
51struct block *expression_context_block;
52struct block *innermost_block;
53int arglist_len;
54union type_stack_elt *type_stack;
55int type_stack_depth, type_stack_size;
56char *lexptr;
57char *namecopy;
58int paren_depth;
59int comma_terminates;
60\f
c906108c 61static int expressiondebug = 0;
c906108c
SS
62
63extern int hp_som_som_object_present;
64
65static void
66free_funcalls PARAMS ((void));
67
68static void
69prefixify_expression PARAMS ((struct expression *));
70
71static void
72prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
73
392a587b
JM
74void _initialize_parse PARAMS ((void));
75
c906108c
SS
76/* Data structure for saving values of arglist_len for function calls whose
77 arguments contain other function calls. */
78
79struct funcall
80 {
81 struct funcall *next;
82 int arglist_len;
83 };
84
85static struct funcall *funcall_chain;
86
87/* Assign machine-independent names to certain registers
88 (unless overridden by the REGISTER_NAMES table) */
89
c906108c 90unsigned num_std_regs = 0;
cce74817 91struct std_regs *std_regs;
c906108c
SS
92
93/* The generic method for targets to specify how their registers are
94 named. The mapping can be derived from three sources:
95 REGISTER_NAME; std_regs; or a target specific alias hook. */
96
97int
98target_map_name_to_register (str, len)
99 char *str;
100 int len;
101{
102 int i;
103
104 /* First try target specific aliases. We try these first because on some
105 systems standard names can be context dependent (eg. $pc on a
106 multiprocessor can be could be any of several PCs). */
107#ifdef REGISTER_NAME_ALIAS_HOOK
c5aa993b 108 i = REGISTER_NAME_ALIAS_HOOK (str, len);
c906108c
SS
109 if (i >= 0)
110 return i;
111#endif
112
113 /* Search architectural register name space. */
114 for (i = 0; i < NUM_REGS; i++)
115 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
116 && STREQN (str, REGISTER_NAME (i), len))
117 {
118 return i;
119 }
120
121 /* Try standard aliases */
122 for (i = 0; i < num_std_regs; i++)
123 if (std_regs[i].name && len == strlen (std_regs[i].name)
124 && STREQN (str, std_regs[i].name, len))
125 {
126 return std_regs[i].regnum;
127 }
128
129 return -1;
130}
131
132/* Begin counting arguments for a function call,
133 saving the data about any containing call. */
134
135void
136start_arglist ()
137{
138 register struct funcall *new;
139
140 new = (struct funcall *) xmalloc (sizeof (struct funcall));
141 new->next = funcall_chain;
142 new->arglist_len = arglist_len;
143 arglist_len = 0;
144 funcall_chain = new;
145}
146
147/* Return the number of arguments in a function call just terminated,
148 and restore the data for the containing function call. */
149
150int
151end_arglist ()
152{
153 register int val = arglist_len;
154 register struct funcall *call = funcall_chain;
155 funcall_chain = call->next;
156 arglist_len = call->arglist_len;
c5aa993b 157 free ((PTR) call);
c906108c
SS
158 return val;
159}
160
161/* Free everything in the funcall chain.
162 Used when there is an error inside parsing. */
163
164static void
165free_funcalls ()
166{
167 register struct funcall *call, *next;
168
169 for (call = funcall_chain; call; call = next)
170 {
171 next = call->next;
c5aa993b 172 free ((PTR) call);
c906108c
SS
173 }
174}
175\f
176/* This page contains the functions for adding data to the struct expression
177 being constructed. */
178
179/* Add one element to the end of the expression. */
180
181/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
182 a register through here */
183
184void
185write_exp_elt (expelt)
186 union exp_element expelt;
187{
188 if (expout_ptr >= expout_size)
189 {
190 expout_size *= 2;
191 expout = (struct expression *)
192 xrealloc ((char *) expout, sizeof (struct expression)
193 + EXP_ELEM_TO_BYTES (expout_size));
194 }
195 expout->elts[expout_ptr++] = expelt;
196}
197
198void
199write_exp_elt_opcode (expelt)
200 enum exp_opcode expelt;
201{
202 union exp_element tmp;
203
204 tmp.opcode = expelt;
205
206 write_exp_elt (tmp);
207}
208
209void
210write_exp_elt_sym (expelt)
211 struct symbol *expelt;
212{
213 union exp_element tmp;
214
215 tmp.symbol = expelt;
216
217 write_exp_elt (tmp);
218}
219
220void
221write_exp_elt_block (b)
222 struct block *b;
223{
224 union exp_element tmp;
225 tmp.block = b;
226 write_exp_elt (tmp);
227}
228
229void
230write_exp_elt_longcst (expelt)
231 LONGEST expelt;
232{
233 union exp_element tmp;
234
235 tmp.longconst = expelt;
236
237 write_exp_elt (tmp);
238}
239
240void
241write_exp_elt_dblcst (expelt)
242 DOUBLEST expelt;
243{
244 union exp_element tmp;
245
246 tmp.doubleconst = expelt;
247
248 write_exp_elt (tmp);
249}
250
251void
252write_exp_elt_type (expelt)
253 struct type *expelt;
254{
255 union exp_element tmp;
256
257 tmp.type = expelt;
258
259 write_exp_elt (tmp);
260}
261
262void
263write_exp_elt_intern (expelt)
264 struct internalvar *expelt;
265{
266 union exp_element tmp;
267
268 tmp.internalvar = expelt;
269
270 write_exp_elt (tmp);
271}
272
273/* Add a string constant to the end of the expression.
274
275 String constants are stored by first writing an expression element
276 that contains the length of the string, then stuffing the string
277 constant itself into however many expression elements are needed
278 to hold it, and then writing another expression element that contains
279 the length of the string. I.E. an expression element at each end of
280 the string records the string length, so you can skip over the
281 expression elements containing the actual string bytes from either
282 end of the string. Note that this also allows gdb to handle
283 strings with embedded null bytes, as is required for some languages.
284
285 Don't be fooled by the fact that the string is null byte terminated,
286 this is strictly for the convenience of debugging gdb itself. Gdb
287 Gdb does not depend up the string being null terminated, since the
288 actual length is recorded in expression elements at each end of the
289 string. The null byte is taken into consideration when computing how
290 many expression elements are required to hold the string constant, of
291 course. */
292
293
294void
295write_exp_string (str)
296 struct stoken str;
297{
298 register int len = str.length;
299 register int lenelt;
300 register char *strdata;
301
302 /* Compute the number of expression elements required to hold the string
303 (including a null byte terminator), along with one expression element
304 at each end to record the actual string length (not including the
305 null byte terminator). */
306
307 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
308
309 /* Ensure that we have enough available expression elements to store
310 everything. */
311
312 if ((expout_ptr + lenelt) >= expout_size)
313 {
314 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
315 expout = (struct expression *)
316 xrealloc ((char *) expout, (sizeof (struct expression)
317 + EXP_ELEM_TO_BYTES (expout_size)));
318 }
319
320 /* Write the leading length expression element (which advances the current
321 expression element index), then write the string constant followed by a
322 terminating null byte, and then write the trailing length expression
323 element. */
324
325 write_exp_elt_longcst ((LONGEST) len);
326 strdata = (char *) &expout->elts[expout_ptr];
327 memcpy (strdata, str.ptr, len);
328 *(strdata + len) = '\0';
329 expout_ptr += lenelt - 2;
330 write_exp_elt_longcst ((LONGEST) len);
331}
332
333/* Add a bitstring constant to the end of the expression.
334
335 Bitstring constants are stored by first writing an expression element
336 that contains the length of the bitstring (in bits), then stuffing the
337 bitstring constant itself into however many expression elements are
338 needed to hold it, and then writing another expression element that
339 contains the length of the bitstring. I.E. an expression element at
340 each end of the bitstring records the bitstring length, so you can skip
341 over the expression elements containing the actual bitstring bytes from
342 either end of the bitstring. */
343
344void
345write_exp_bitstring (str)
346 struct stoken str;
347{
348 register int bits = str.length; /* length in bits */
349 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
350 register int lenelt;
351 register char *strdata;
352
353 /* Compute the number of expression elements required to hold the bitstring,
354 along with one expression element at each end to record the actual
355 bitstring length in bits. */
356
357 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
358
359 /* Ensure that we have enough available expression elements to store
360 everything. */
361
362 if ((expout_ptr + lenelt) >= expout_size)
363 {
364 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
365 expout = (struct expression *)
366 xrealloc ((char *) expout, (sizeof (struct expression)
367 + EXP_ELEM_TO_BYTES (expout_size)));
368 }
369
370 /* Write the leading length expression element (which advances the current
371 expression element index), then write the bitstring constant, and then
372 write the trailing length expression element. */
373
374 write_exp_elt_longcst ((LONGEST) bits);
375 strdata = (char *) &expout->elts[expout_ptr];
376 memcpy (strdata, str.ptr, len);
377 expout_ptr += lenelt - 2;
378 write_exp_elt_longcst ((LONGEST) bits);
379}
380
381/* Add the appropriate elements for a minimal symbol to the end of
382 the expression. The rationale behind passing in text_symbol_type and
383 data_symbol_type was so that Modula-2 could pass in WORD for
384 data_symbol_type. Perhaps it still is useful to have those types vary
385 based on the language, but they no longer have names like "int", so
386 the initial rationale is gone. */
387
388static struct type *msym_text_symbol_type;
389static struct type *msym_data_symbol_type;
390static struct type *msym_unknown_symbol_type;
391
392void
393write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
394 struct minimal_symbol *msymbol;
395 struct type *text_symbol_type;
396 struct type *data_symbol_type;
397{
398 CORE_ADDR addr;
399
400 write_exp_elt_opcode (OP_LONG);
401 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
402
403 addr = SYMBOL_VALUE_ADDRESS (msymbol);
404 if (overlay_debugging)
405 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
406 write_exp_elt_longcst ((LONGEST) addr);
c5aa993b 407
c906108c
SS
408 write_exp_elt_opcode (OP_LONG);
409
410 write_exp_elt_opcode (UNOP_MEMVAL);
c5aa993b 411 switch (msymbol->type)
c906108c
SS
412 {
413 case mst_text:
414 case mst_file_text:
415 case mst_solib_trampoline:
416 write_exp_elt_type (msym_text_symbol_type);
417 break;
418
419 case mst_data:
420 case mst_file_data:
421 case mst_bss:
422 case mst_file_bss:
423 write_exp_elt_type (msym_data_symbol_type);
424 break;
425
426 default:
427 write_exp_elt_type (msym_unknown_symbol_type);
428 break;
429 }
430 write_exp_elt_opcode (UNOP_MEMVAL);
431}
432\f
433/* Recognize tokens that start with '$'. These include:
434
c5aa993b
JM
435 $regname A native register name or a "standard
436 register name".
c906108c 437
c5aa993b
JM
438 $variable A convenience variable with a name chosen
439 by the user.
c906108c 440
c5aa993b
JM
441 $digits Value history with index <digits>, starting
442 from the first value which has index 1.
c906108c 443
c5aa993b
JM
444 $$digits Value history with index <digits> relative
445 to the last value. I.E. $$0 is the last
446 value, $$1 is the one previous to that, $$2
447 is the one previous to $$1, etc.
c906108c 448
c5aa993b 449 $ | $0 | $$0 The last value in the value history.
c906108c 450
c5aa993b
JM
451 $$ An abbreviation for the second to the last
452 value in the value history, I.E. $$1
c906108c 453
c5aa993b 454 */
c906108c
SS
455
456void
457write_dollar_variable (str)
458 struct stoken str;
459{
460 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
461 and $$digits (equivalent to $<-digits> if you could type that). */
462
c5aa993b
JM
463 struct symbol *sym = NULL;
464 struct minimal_symbol *msym = NULL;
c906108c
SS
465
466 int negate = 0;
467 int i = 1;
468 /* Double dollar means negate the number and add -1 as well.
469 Thus $$ alone means -1. */
470 if (str.length >= 2 && str.ptr[1] == '$')
471 {
472 negate = 1;
473 i = 2;
474 }
475 if (i == str.length)
476 {
477 /* Just dollars (one or two) */
c5aa993b 478 i = -negate;
c906108c
SS
479 goto handle_last;
480 }
481 /* Is the rest of the token digits? */
482 for (; i < str.length; i++)
483 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
484 break;
485 if (i == str.length)
486 {
487 i = atoi (str.ptr + 1 + negate);
488 if (negate)
c5aa993b 489 i = -i;
c906108c
SS
490 goto handle_last;
491 }
c5aa993b 492
c906108c
SS
493 /* Handle tokens that refer to machine registers:
494 $ followed by a register name. */
c5aa993b
JM
495 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
496 if (i >= 0)
c906108c
SS
497 goto handle_register;
498
499 /* On HP-UX, certain system routines (millicode) have names beginning
500 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
501 calls on PA-RISC. Check for those, first. */
502
503 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
c5aa993b 504 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
c906108c
SS
505 if (sym)
506 {
507 write_exp_elt_opcode (OP_VAR_VALUE);
c5aa993b 508 write_exp_elt_block (block_found); /* set by lookup_symbol */
c906108c
SS
509 write_exp_elt_sym (sym);
510 write_exp_elt_opcode (OP_VAR_VALUE);
511 return;
512 }
513 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
514 if (msym)
515 {
516 write_exp_msymbol (msym,
c5aa993b
JM
517 lookup_function_type (builtin_type_int),
518 builtin_type_int);
c906108c
SS
519 return;
520 }
c5aa993b 521
c906108c
SS
522 /* Any other names starting in $ are debugger internal variables. */
523
524 write_exp_elt_opcode (OP_INTERNALVAR);
525 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
c5aa993b 526 write_exp_elt_opcode (OP_INTERNALVAR);
c906108c 527 return;
c5aa993b 528handle_last:
c906108c
SS
529 write_exp_elt_opcode (OP_LAST);
530 write_exp_elt_longcst ((LONGEST) i);
531 write_exp_elt_opcode (OP_LAST);
532 return;
c5aa993b 533handle_register:
c906108c
SS
534 write_exp_elt_opcode (OP_REGISTER);
535 write_exp_elt_longcst (i);
c5aa993b 536 write_exp_elt_opcode (OP_REGISTER);
c906108c
SS
537 return;
538}
539
540
541/* Parse a string that is possibly a namespace / nested class
542 specification, i.e., something of the form A::B::C::x. Input
543 (NAME) is the entire string; LEN is the current valid length; the
544 output is a string, TOKEN, which points to the largest recognized
545 prefix which is a series of namespaces or classes. CLASS_PREFIX is
546 another output, which records whether a nested class spec was
547 recognized (= 1) or a fully qualified variable name was found (=
548 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
549 string recognized and consumed by this routine.
550
551 The return value is a pointer to the symbol for the base class or
552 variable if found, or NULL if not found. Callers must check this
553 first -- if NULL, the outputs may not be correct.
554
555 This function is used c-exp.y. This is used specifically to get
556 around HP aCC (and possibly other compilers), which insists on
557 generating names with embedded colons for namespace or nested class
558 members.
559
560 (Argument LEN is currently unused. 1997-08-27)
561
562 Callers must free memory allocated for the output string TOKEN. */
563
c5aa993b
JM
564static const char coloncolon[2] =
565{':', ':'};
c906108c
SS
566
567struct symbol *
568parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr)
c5aa993b
JM
569 char *name;
570 int len;
571 char **token;
572 int *class_prefix;
573 char **argptr;
c906108c 574{
c5aa993b
JM
575 /* Comment below comes from decode_line_1 which has very similar
576 code, which is called for "break" command parsing. */
577
578 /* We have what looks like a class or namespace
c906108c
SS
579 scope specification (A::B), possibly with many
580 levels of namespaces or classes (A::B::C::D).
581
582 Some versions of the HP ANSI C++ compiler (as also possibly
583 other compilers) generate class/function/member names with
584 embedded double-colons if they are inside namespaces. To
585 handle this, we loop a few times, considering larger and
586 larger prefixes of the string as though they were single
587 symbols. So, if the initially supplied string is
588 A::B::C::D::foo, we have to look up "A", then "A::B",
589 then "A::B::C", then "A::B::C::D", and finally
590 "A::B::C::D::foo" as single, monolithic symbols, because
591 A, B, C or D may be namespaces.
592
593 Note that namespaces can nest only inside other
594 namespaces, and not inside classes. So we need only
595 consider *prefixes* of the string; there is no need to look up
596 "B::C" separately as a symbol in the previous example. */
597
c5aa993b
JM
598 register char *p;
599 char *start, *end;
600 char *prefix = NULL;
601 char *tmp;
602 struct symbol *sym_class = NULL;
603 struct symbol *sym_var = NULL;
604 struct type *t;
c906108c
SS
605 register int i;
606 int colons_found = 0;
607 int prefix_len = 0;
608 int done = 0;
c5aa993b 609 char *q;
c906108c
SS
610
611 /* Check for HP-compiled executable -- in other cases
612 return NULL, and caller must default to standard GDB
613 behaviour. */
614
615 if (!hp_som_som_object_present)
616 return (struct symbol *) NULL;
617
618 p = name;
619
c5aa993b
JM
620 /* Skip over whitespace and possible global "::" */
621 while (*p && (*p == ' ' || *p == '\t'))
622 p++;
c906108c
SS
623 if (p[0] == ':' && p[1] == ':')
624 p += 2;
c5aa993b
JM
625 while (*p && (*p == ' ' || *p == '\t'))
626 p++;
627
c906108c
SS
628 while (1)
629 {
630 /* Get to the end of the next namespace or class spec. */
631 /* If we're looking at some non-token, fail immediately */
632 start = p;
633 if (!(isalpha (*p) || *p == '$' || *p == '_'))
c5aa993b 634 return (struct symbol *) NULL;
c906108c 635 p++;
c5aa993b
JM
636 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
637 p++;
638
639 if (*p == '<')
640 {
641 /* If we have the start of a template specification,
642 scan right ahead to its end */
643 q = find_template_name_end (p);
644 if (q)
645 p = q;
646 }
647
c906108c
SS
648 end = p;
649
c5aa993b
JM
650 /* Skip over "::" and whitespace for next time around */
651 while (*p && (*p == ' ' || *p == '\t'))
652 p++;
c906108c 653 if (p[0] == ':' && p[1] == ':')
c5aa993b
JM
654 p += 2;
655 while (*p && (*p == ' ' || *p == '\t'))
656 p++;
c906108c 657
c5aa993b 658 /* Done with tokens? */
c906108c 659 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
c5aa993b 660 done = 1;
c906108c
SS
661
662 tmp = (char *) alloca (prefix_len + end - start + 3);
663 if (prefix)
c5aa993b
JM
664 {
665 memcpy (tmp, prefix, prefix_len);
666 memcpy (tmp + prefix_len, coloncolon, 2);
667 memcpy (tmp + prefix_len + 2, start, end - start);
668 tmp[prefix_len + 2 + end - start] = '\000';
669 }
c906108c 670 else
c5aa993b
JM
671 {
672 memcpy (tmp, start, end - start);
673 tmp[end - start] = '\000';
674 }
675
c906108c
SS
676 prefix = tmp;
677 prefix_len = strlen (prefix);
c5aa993b 678
c906108c
SS
679 /* See if the prefix we have now is something we know about */
680
c5aa993b
JM
681 if (!done)
682 {
683 /* More tokens to process, so this must be a class/namespace */
684 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
685 0, (struct symtab **) NULL);
686 }
c906108c 687 else
c5aa993b
JM
688 {
689 /* No more tokens, so try as a variable first */
690 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
691 0, (struct symtab **) NULL);
692 /* If failed, try as class/namespace */
693 if (!sym_var)
694 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
695 0, (struct symtab **) NULL);
696 }
c906108c
SS
697
698 if (sym_var ||
c5aa993b
JM
699 (sym_class &&
700 (t = check_typedef (SYMBOL_TYPE (sym_class)),
701 (TYPE_CODE (t) == TYPE_CODE_STRUCT
702 || TYPE_CODE (t) == TYPE_CODE_UNION))))
703 {
704 /* We found a valid token */
705 *token = (char *) xmalloc (prefix_len + 1);
706 memcpy (*token, prefix, prefix_len);
707 (*token)[prefix_len] = '\000';
708 break;
709 }
710
711 /* No variable or class/namespace found, no more tokens */
c906108c 712 if (done)
c5aa993b 713 return (struct symbol *) NULL;
c906108c
SS
714 }
715
716 /* Out of loop, so we must have found a valid token */
717 if (sym_var)
718 *class_prefix = 0;
719 else
720 *class_prefix = 1;
721
722 if (argptr)
723 *argptr = done ? p : end;
724
c5aa993b 725 return sym_var ? sym_var : sym_class; /* found */
c906108c
SS
726}
727
728char *
729find_template_name_end (p)
c5aa993b 730 char *p;
c906108c
SS
731{
732 int depth = 1;
733 int just_seen_right = 0;
734 int just_seen_colon = 0;
735 int just_seen_space = 0;
c5aa993b 736
c906108c
SS
737 if (!p || (*p != '<'))
738 return 0;
739
740 while (*++p)
741 {
742 switch (*p)
c5aa993b
JM
743 {
744 case '\'':
745 case '\"':
746 case '{':
747 case '}':
748 /* In future, may want to allow these?? */
749 return 0;
750 case '<':
751 depth++; /* start nested template */
752 if (just_seen_colon || just_seen_right || just_seen_space)
753 return 0; /* but not after : or :: or > or space */
754 break;
755 case '>':
756 if (just_seen_colon || just_seen_right)
757 return 0; /* end a (nested?) template */
758 just_seen_right = 1; /* but not after : or :: */
759 if (--depth == 0) /* also disallow >>, insist on > > */
760 return ++p; /* if outermost ended, return */
761 break;
762 case ':':
763 if (just_seen_space || (just_seen_colon > 1))
764 return 0; /* nested class spec coming up */
765 just_seen_colon++; /* we allow :: but not :::: */
766 break;
767 case ' ':
768 break;
769 default:
770 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
771 (*p >= 'A' && *p <= 'Z') ||
772 (*p >= '0' && *p <= '9') ||
773 (*p == '_') || (*p == ',') || /* commas for template args */
774 (*p == '&') || (*p == '*') || /* pointer and ref types */
775 (*p == '(') || (*p == ')') || /* function types */
776 (*p == '[') || (*p == ']'))) /* array types */
777 return 0;
778 }
c906108c 779 if (*p != ' ')
c5aa993b 780 just_seen_space = 0;
c906108c 781 if (*p != ':')
c5aa993b 782 just_seen_colon = 0;
c906108c 783 if (*p != '>')
c5aa993b 784 just_seen_right = 0;
c906108c
SS
785 }
786 return 0;
787}
c5aa993b 788\f
c906108c
SS
789
790
c906108c
SS
791/* Return a null-terminated temporary copy of the name
792 of a string token. */
793
794char *
795copy_name (token)
796 struct stoken token;
797{
798 memcpy (namecopy, token.ptr, token.length);
799 namecopy[token.length] = 0;
800 return namecopy;
801}
802\f
803/* Reverse an expression from suffix form (in which it is constructed)
804 to prefix form (in which we can conveniently print or execute it). */
805
806static void
807prefixify_expression (expr)
808 register struct expression *expr;
809{
810 register int len =
c5aa993b 811 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
c906108c
SS
812 register struct expression *temp;
813 register int inpos = expr->nelts, outpos = 0;
814
815 temp = (struct expression *) alloca (len);
816
817 /* Copy the original expression into temp. */
818 memcpy (temp, expr, len);
819
820 prefixify_subexp (temp, expr, inpos, outpos);
821}
822
823/* Return the number of exp_elements in the subexpression of EXPR
824 whose last exp_element is at index ENDPOS - 1 in EXPR. */
825
826int
827length_of_subexp (expr, endpos)
828 register struct expression *expr;
829 register int endpos;
830{
831 register int oplen = 1;
832 register int args = 0;
833 register int i;
834
835 if (endpos < 1)
836 error ("?error in length_of_subexp");
837
838 i = (int) expr->elts[endpos - 1].opcode;
839
840 switch (i)
841 {
842 /* C++ */
843 case OP_SCOPE:
844 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
845 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
846 break;
847
848 case OP_LONG:
849 case OP_DOUBLE:
850 case OP_VAR_VALUE:
851 oplen = 4;
852 break;
853
854 case OP_TYPE:
855 case OP_BOOL:
856 case OP_LAST:
857 case OP_REGISTER:
858 case OP_INTERNALVAR:
859 oplen = 3;
860 break;
861
862 case OP_COMPLEX:
c5aa993b 863 oplen = 1;
c906108c 864 args = 2;
c5aa993b 865 break;
c906108c
SS
866
867 case OP_FUNCALL:
868 case OP_F77_UNDETERMINED_ARGLIST:
869 oplen = 3;
870 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
871 break;
872
873 case UNOP_MAX:
874 case UNOP_MIN:
875 oplen = 3;
876 break;
877
c5aa993b
JM
878 case BINOP_VAL:
879 case UNOP_CAST:
880 case UNOP_MEMVAL:
c906108c
SS
881 oplen = 3;
882 args = 1;
883 break;
884
885 case UNOP_ABS:
886 case UNOP_CAP:
887 case UNOP_CHR:
888 case UNOP_FLOAT:
889 case UNOP_HIGH:
890 case UNOP_ODD:
891 case UNOP_ORD:
892 case UNOP_TRUNC:
893 oplen = 1;
894 args = 1;
895 break;
896
897 case OP_LABELED:
898 case STRUCTOP_STRUCT:
899 case STRUCTOP_PTR:
900 args = 1;
901 /* fall through */
902 case OP_M2_STRING:
903 case OP_STRING:
904 case OP_NAME:
905 case OP_EXPRSTRING:
906 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
907 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
908 break;
909
910 case OP_BITSTRING:
911 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
912 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
913 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
914 break;
915
916 case OP_ARRAY:
917 oplen = 4;
918 args = longest_to_int (expr->elts[endpos - 2].longconst);
919 args -= longest_to_int (expr->elts[endpos - 3].longconst);
920 args += 1;
921 break;
922
923 case TERNOP_COND:
924 case TERNOP_SLICE:
925 case TERNOP_SLICE_COUNT:
926 args = 3;
927 break;
928
929 /* Modula-2 */
c5aa993b 930 case MULTI_SUBSCRIPT:
c906108c 931 oplen = 3;
c5aa993b 932 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
c906108c
SS
933 break;
934
935 case BINOP_ASSIGN_MODIFY:
936 oplen = 3;
937 args = 2;
938 break;
939
940 /* C++ */
941 case OP_THIS:
942 oplen = 2;
943 break;
944
945 default:
946 args = 1 + (i < (int) BINOP_END);
947 }
948
949 while (args > 0)
950 {
951 oplen += length_of_subexp (expr, endpos - oplen);
952 args--;
953 }
954
955 return oplen;
956}
957
958/* Copy the subexpression ending just before index INEND in INEXPR
959 into OUTEXPR, starting at index OUTBEG.
960 In the process, convert it from suffix to prefix form. */
961
962static void
963prefixify_subexp (inexpr, outexpr, inend, outbeg)
964 register struct expression *inexpr;
965 struct expression *outexpr;
966 register int inend;
967 int outbeg;
968{
969 register int oplen = 1;
970 register int args = 0;
971 register int i;
972 int *arglens;
973 enum exp_opcode opcode;
974
975 /* Compute how long the last operation is (in OPLEN),
976 and also how many preceding subexpressions serve as
977 arguments for it (in ARGS). */
978
979 opcode = inexpr->elts[inend - 1].opcode;
980 switch (opcode)
981 {
982 /* C++ */
983 case OP_SCOPE:
984 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
985 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
986 break;
987
988 case OP_LONG:
989 case OP_DOUBLE:
990 case OP_VAR_VALUE:
991 oplen = 4;
992 break;
993
994 case OP_TYPE:
995 case OP_BOOL:
996 case OP_LAST:
997 case OP_REGISTER:
998 case OP_INTERNALVAR:
999 oplen = 3;
1000 break;
1001
1002 case OP_COMPLEX:
c5aa993b
JM
1003 oplen = 1;
1004 args = 2;
1005 break;
c906108c
SS
1006
1007 case OP_FUNCALL:
1008 case OP_F77_UNDETERMINED_ARGLIST:
1009 oplen = 3;
1010 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1011 break;
1012
1013 case UNOP_MIN:
1014 case UNOP_MAX:
1015 oplen = 3;
1016 break;
1017
1018 case UNOP_CAST:
1019 case UNOP_MEMVAL:
1020 oplen = 3;
1021 args = 1;
1022 break;
1023
1024 case UNOP_ABS:
1025 case UNOP_CAP:
1026 case UNOP_CHR:
1027 case UNOP_FLOAT:
1028 case UNOP_HIGH:
1029 case UNOP_ODD:
1030 case UNOP_ORD:
1031 case UNOP_TRUNC:
c5aa993b
JM
1032 oplen = 1;
1033 args = 1;
c906108c
SS
1034 break;
1035
1036 case STRUCTOP_STRUCT:
1037 case STRUCTOP_PTR:
1038 case OP_LABELED:
1039 args = 1;
1040 /* fall through */
1041 case OP_M2_STRING:
1042 case OP_STRING:
1043 case OP_NAME:
1044 case OP_EXPRSTRING:
1045 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1046 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1047 break;
1048
1049 case OP_BITSTRING:
1050 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1051 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1052 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1053 break;
1054
1055 case OP_ARRAY:
1056 oplen = 4;
1057 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1058 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1059 args += 1;
1060 break;
1061
1062 case TERNOP_COND:
1063 case TERNOP_SLICE:
1064 case TERNOP_SLICE_COUNT:
1065 args = 3;
1066 break;
1067
1068 case BINOP_ASSIGN_MODIFY:
1069 oplen = 3;
1070 args = 2;
1071 break;
1072
1073 /* Modula-2 */
c5aa993b 1074 case MULTI_SUBSCRIPT:
c906108c
SS
1075 oplen = 3;
1076 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1077 break;
1078
1079 /* C++ */
1080 case OP_THIS:
1081 oplen = 2;
1082 break;
1083
1084 default:
1085 args = 1 + ((int) opcode < (int) BINOP_END);
1086 }
1087
1088 /* Copy the final operator itself, from the end of the input
1089 to the beginning of the output. */
1090 inend -= oplen;
1091 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1092 EXP_ELEM_TO_BYTES (oplen));
1093 outbeg += oplen;
1094
1095 /* Find the lengths of the arg subexpressions. */
1096 arglens = (int *) alloca (args * sizeof (int));
1097 for (i = args - 1; i >= 0; i--)
1098 {
1099 oplen = length_of_subexp (inexpr, inend);
1100 arglens[i] = oplen;
1101 inend -= oplen;
1102 }
1103
1104 /* Now copy each subexpression, preserving the order of
1105 the subexpressions, but prefixifying each one.
1106 In this loop, inend starts at the beginning of
1107 the expression this level is working on
1108 and marches forward over the arguments.
1109 outbeg does similarly in the output. */
1110 for (i = 0; i < args; i++)
1111 {
1112 oplen = arglens[i];
1113 inend += oplen;
1114 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1115 outbeg += oplen;
1116 }
1117}
1118\f
1119/* This page contains the two entry points to this file. */
1120
1121/* Read an expression from the string *STRINGPTR points to,
1122 parse it, and return a pointer to a struct expression that we malloc.
1123 Use block BLOCK as the lexical context for variable names;
1124 if BLOCK is zero, use the block of the selected stack frame.
1125 Meanwhile, advance *STRINGPTR to point after the expression,
1126 at the first nonwhite character that is not part of the expression
1127 (possibly a null character).
1128
1129 If COMMA is nonzero, stop if a comma is reached. */
1130
1131struct expression *
1132parse_exp_1 (stringptr, block, comma)
1133 char **stringptr;
1134 struct block *block;
1135 int comma;
1136{
1137 struct cleanup *old_chain;
1138
1139 lexptr = *stringptr;
1140
1141 paren_depth = 0;
1142 type_stack_depth = 0;
1143
1144 comma_terminates = comma;
1145
1146 if (lexptr == 0 || *lexptr == 0)
1147 error_no_arg ("expression to compute");
1148
1149 old_chain = make_cleanup ((make_cleanup_func) free_funcalls, 0);
1150 funcall_chain = 0;
1151
1152 expression_context_block = block ? block : get_selected_block ();
1153
1154 namecopy = (char *) alloca (strlen (lexptr) + 1);
1155 expout_size = 10;
1156 expout_ptr = 0;
1157 expout = (struct expression *)
1158 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1159 expout->language_defn = current_language;
1160 make_cleanup ((make_cleanup_func) free_current_contents, &expout);
1161
1162 if (current_language->la_parser ())
1163 current_language->la_error (NULL);
1164
1165 discard_cleanups (old_chain);
1166
1167 /* Record the actual number of expression elements, and then
1168 reallocate the expression memory so that we free up any
1169 excess elements. */
1170
1171 expout->nelts = expout_ptr;
1172 expout = (struct expression *)
1173 xrealloc ((char *) expout,
1174 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1175
1176 /* Convert expression from postfix form as generated by yacc
1177 parser, to a prefix form. */
1178
c906108c 1179 if (expressiondebug)
9846de1b 1180 dump_prefix_expression (expout, gdb_stdlog,
c906108c 1181 "before conversion to prefix form");
c906108c
SS
1182
1183 prefixify_expression (expout);
1184
c906108c 1185 if (expressiondebug)
9846de1b 1186 dump_postfix_expression (expout, gdb_stdlog,
c906108c 1187 "after conversion to prefix form");
c906108c
SS
1188
1189 *stringptr = lexptr;
1190 return expout;
1191}
1192
1193/* Parse STRING as an expression, and complain if this fails
1194 to use up all of the contents of STRING. */
1195
1196struct expression *
1197parse_expression (string)
1198 char *string;
1199{
1200 register struct expression *exp;
1201 exp = parse_exp_1 (&string, 0, 0);
1202 if (*string)
1203 error ("Junk after end of expression.");
1204 return exp;
1205}
1206\f
1207/* Stuff for maintaining a stack of types. Currently just used by C, but
1208 probably useful for any language which declares its types "backwards". */
1209
c5aa993b 1210void
c906108c
SS
1211push_type (tp)
1212 enum type_pieces tp;
1213{
1214 if (type_stack_depth == type_stack_size)
1215 {
1216 type_stack_size *= 2;
1217 type_stack = (union type_stack_elt *)
1218 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1219 }
1220 type_stack[type_stack_depth++].piece = tp;
1221}
1222
1223void
1224push_type_int (n)
1225 int n;
1226{
1227 if (type_stack_depth == type_stack_size)
1228 {
1229 type_stack_size *= 2;
1230 type_stack = (union type_stack_elt *)
1231 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1232 }
1233 type_stack[type_stack_depth++].int_val = n;
1234}
1235
c5aa993b 1236enum type_pieces
c906108c
SS
1237pop_type ()
1238{
1239 if (type_stack_depth)
1240 return type_stack[--type_stack_depth].piece;
1241 return tp_end;
1242}
1243
1244int
1245pop_type_int ()
1246{
1247 if (type_stack_depth)
1248 return type_stack[--type_stack_depth].int_val;
1249 /* "Can't happen". */
1250 return 0;
1251}
1252
1253/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1254 as modified by all the stuff on the stack. */
1255struct type *
1256follow_types (follow_type)
1257 struct type *follow_type;
1258{
1259 int done = 0;
1260 int array_size;
1261 struct type *range_type;
1262
1263 while (!done)
1264 switch (pop_type ())
1265 {
1266 case tp_end:
1267 done = 1;
1268 break;
1269 case tp_pointer:
1270 follow_type = lookup_pointer_type (follow_type);
1271 break;
1272 case tp_reference:
1273 follow_type = lookup_reference_type (follow_type);
1274 break;
1275 case tp_array:
1276 array_size = pop_type_int ();
1277 /* FIXME-type-allocation: need a way to free this type when we are
1278 done with it. */
1279 range_type =
1280 create_range_type ((struct type *) NULL,
1281 builtin_type_int, 0,
1282 array_size >= 0 ? array_size - 1 : 0);
1283 follow_type =
1284 create_array_type ((struct type *) NULL,
1285 follow_type, range_type);
1286 if (array_size < 0)
c5aa993b 1287 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
c906108c
SS
1288 = BOUND_CANNOT_BE_DETERMINED;
1289 break;
1290 case tp_function:
1291 /* FIXME-type-allocation: need a way to free this type when we are
1292 done with it. */
1293 follow_type = lookup_function_type (follow_type);
1294 break;
1295 }
1296 return follow_type;
1297}
1298\f
ac9a91a7
JM
1299static void build_parse PARAMS ((void));
1300static void
1301build_parse ()
c906108c 1302{
cce74817
JM
1303 int i;
1304
c906108c
SS
1305 msym_text_symbol_type =
1306 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1307 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1308 msym_data_symbol_type =
1309 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1310 "<data variable, no debug info>", NULL);
1311 msym_unknown_symbol_type =
1312 init_type (TYPE_CODE_INT, 1, 0,
1313 "<variable (not text or data), no debug info>",
1314 NULL);
cce74817
JM
1315
1316 /* create the std_regs table */
1317
1318 num_std_regs = 0;
1319#ifdef PC_REGNUM
1320 if (PC_REGNUM >= 0)
1321 num_std_regs++;
1322#endif
1323#ifdef FP_REGNUM
1324 if (FP_REGNUM >= 0)
1325 num_std_regs++;
1326#endif
1327#ifdef FP_REGNUM
1328 if (SP_REGNUM >= 0)
1329 num_std_regs++;
1330#endif
1331#ifdef PS_REGNUM
1332 if (PS_REGNUM >= 0)
1333 num_std_regs++;
1334#endif
1335 /* create an empty table */
1336 std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs);
1337 i = 0;
1338 /* fill it in */
1339#ifdef PC_REGNUM
1340 std_regs[i].name = "pc";
1341 std_regs[i].regnum = PC_REGNUM;
1342 i++;
1343#endif
1344#ifdef FP_REGNUM
1345 std_regs[i].name = "fp";
1346 std_regs[i].regnum = FP_REGNUM;
1347 i++;
1348#endif
1349#ifdef SP_REGNUM
1350 std_regs[i].name = "sp";
1351 std_regs[i].regnum = SP_REGNUM;
1352 i++;
1353#endif
1354#ifdef PS_REGNUM
1355 std_regs[i].name = "ps";
1356 std_regs[i].regnum = PS_REGNUM;
1357 i++;
1358#endif
1359 memset (&std_regs[i], 0, sizeof (std_regs[i]));
ac9a91a7
JM
1360}
1361
1362void
1363_initialize_parse ()
1364{
1365 type_stack_size = 80;
1366 type_stack_depth = 0;
1367 type_stack = (union type_stack_elt *)
1368 xmalloc (type_stack_size * sizeof (*type_stack));
1369
1370 build_parse ();
c906108c 1371
0f71a2f6
JM
1372 /* FIXME - For the moment, handle types by swapping them in and out.
1373 Should be using the per-architecture data-pointer and a large
1374 struct. */
1375 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1376 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1377 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1378
1379 register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL);
1380 register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL);
1381 register_gdbarch_swap (NULL, 0, build_parse);
1382
c906108c 1383 add_show_from_set (
c5aa993b
JM
1384 add_set_cmd ("expressiondebug", class_maintenance, var_zinteger,
1385 (char *) &expressiondebug,
1386 "Set expression debugging.\n\
c906108c 1387When non-zero, the internal representation of expressions will be printed.",
c5aa993b
JM
1388 &setlist),
1389 &showlist);
c906108c 1390}