]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-linux-nat.c
Remove cleanup from print_mention_exception
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
76727919 21#include "observable.h"
c877c8e6
KB
22#include "frame.h"
23#include "inferior.h"
6ffbb7ab 24#include "gdbthread.h"
c877c8e6 25#include "gdbcore.h"
4e052eda 26#include "regcache.h"
10d6c8cd
DJ
27#include "target.h"
28#include "linux-nat.h"
c877c8e6 29#include <sys/types.h>
c877c8e6
KB
30#include <signal.h>
31#include <sys/user.h>
32#include <sys/ioctl.h>
2555fe1a 33#include "gdb_wait.h"
c877c8e6
KB
34#include <fcntl.h>
35#include <sys/procfs.h>
5826e159 36#include "nat/gdb_ptrace.h"
bcc0c096 37#include "inf-ptrace.h"
c877c8e6 38
0df8b418 39/* Prototypes for supply_gregset etc. */
c60c0f5f 40#include "gregset.h"
16333c4f 41#include "ppc-tdep.h"
7284e1be
UW
42#include "ppc-linux-tdep.h"
43
b7622095
LM
44/* Required when using the AUXV. */
45#include "elf/common.h"
46#include "auxv.h"
47
514c5338 48#include "nat/ppc-linux.h"
01904826 49
6ffbb7ab 50/* Similarly for the hardware watchpoint support. These requests are used
926bf92d 51 when the PowerPC HWDEBUG ptrace interface is not available. */
e0d24f8d
WZ
52#ifndef PTRACE_GET_DEBUGREG
53#define PTRACE_GET_DEBUGREG 25
54#endif
55#ifndef PTRACE_SET_DEBUGREG
56#define PTRACE_SET_DEBUGREG 26
57#endif
58#ifndef PTRACE_GETSIGINFO
59#define PTRACE_GETSIGINFO 0x4202
60#endif
01904826 61
926bf92d
UW
62/* These requests are used when the PowerPC HWDEBUG ptrace interface is
63 available. It exposes the debug facilities of PowerPC processors, as well
64 as additional features of BookE processors, such as ranged breakpoints and
65 watchpoints and hardware-accelerated condition evaluation. */
6ffbb7ab
TJB
66#ifndef PPC_PTRACE_GETHWDBGINFO
67
926bf92d
UW
68/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
69 ptrace interface is not present in ptrace.h, so we'll have to pretty much
70 include it all here so that the code at least compiles on older systems. */
6ffbb7ab
TJB
71#define PPC_PTRACE_GETHWDBGINFO 0x89
72#define PPC_PTRACE_SETHWDEBUG 0x88
73#define PPC_PTRACE_DELHWDEBUG 0x87
74
75struct ppc_debug_info
76{
0df8b418 77 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
78 uint32_t num_instruction_bps;
79 uint32_t num_data_bps;
80 uint32_t num_condition_regs;
81 uint32_t data_bp_alignment;
0df8b418 82 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
83 uint64_t features;
84};
85
86/* Features will have bits indicating whether there is support for: */
87#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
88#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
89#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
90#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
91
92struct ppc_hw_breakpoint
93{
94 uint32_t version; /* currently, version must be 1 */
95 uint32_t trigger_type; /* only some combinations allowed */
96 uint32_t addr_mode; /* address match mode */
97 uint32_t condition_mode; /* break/watchpoint condition flags */
98 uint64_t addr; /* break/watchpoint address */
99 uint64_t addr2; /* range end or mask */
100 uint64_t condition_value; /* contents of the DVC register */
101};
102
103/* Trigger type. */
104#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
105#define PPC_BREAKPOINT_TRIGGER_READ 0x2
106#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
107#define PPC_BREAKPOINT_TRIGGER_RW 0x6
108
109/* Address mode. */
110#define PPC_BREAKPOINT_MODE_EXACT 0x0
111#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
112#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
113#define PPC_BREAKPOINT_MODE_MASK 0x3
114
115/* Condition mode. */
116#define PPC_BREAKPOINT_CONDITION_NONE 0x0
117#define PPC_BREAKPOINT_CONDITION_AND 0x1
118#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
119#define PPC_BREAKPOINT_CONDITION_OR 0x2
120#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
121#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
122#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
123#define PPC_BREAKPOINT_CONDITION_BE(n) \
124 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
125#endif /* PPC_PTRACE_GETHWDBGINFO */
126
e23b9d6e
UW
127/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
128 watchpoint (up to 512 bytes). */
129#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
130#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
131#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
6ffbb7ab 132
1dfe79e8
SDJ
133/* Similarly for the general-purpose (gp0 -- gp31)
134 and floating-point registers (fp0 -- fp31). */
135#ifndef PTRACE_GETREGS
136#define PTRACE_GETREGS 12
137#endif
138#ifndef PTRACE_SETREGS
139#define PTRACE_SETREGS 13
140#endif
141#ifndef PTRACE_GETFPREGS
142#define PTRACE_GETFPREGS 14
143#endif
144#ifndef PTRACE_SETFPREGS
145#define PTRACE_SETFPREGS 15
146#endif
147
9abe5450
EZ
148/* This oddity is because the Linux kernel defines elf_vrregset_t as
149 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
150 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
151 the vrsave as an extra 4 bytes at the end. I opted for creating a
152 flat array of chars, so that it is easier to manipulate for gdb.
153
154 There are 32 vector registers 16 bytes longs, plus a VSCR register
155 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 156 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
157 Appended to this there is space for the VRSAVE register: 4 bytes.
158 Even though this vrsave register is not included in the regset
159 typedef, it is handled by the ptrace requests.
160
161 Note that GNU/Linux doesn't support little endian PPC hardware,
162 therefore the offset at which the real value of the VSCR register
163 is located will be always 12 bytes.
164
165 The layout is like this (where x is the actual value of the vscr reg): */
166
167/* *INDENT-OFF* */
168/*
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
171 VR0 VR31 VSCR VRSAVE
172*/
173/* *INDENT-ON* */
174
175#define SIZEOF_VRREGS 33*16+4
176
177typedef char gdb_vrregset_t[SIZEOF_VRREGS];
178
604c2f83
LM
179/* This is the layout of the POWER7 VSX registers and the way they overlap
180 with the existing FPR and VMX registers.
181
182 VSR doubleword 0 VSR doubleword 1
183 ----------------------------------------------------------------
184 VSR[0] | FPR[0] | |
185 ----------------------------------------------------------------
186 VSR[1] | FPR[1] | |
187 ----------------------------------------------------------------
188 | ... | |
189 | ... | |
190 ----------------------------------------------------------------
191 VSR[30] | FPR[30] | |
192 ----------------------------------------------------------------
193 VSR[31] | FPR[31] | |
194 ----------------------------------------------------------------
195 VSR[32] | VR[0] |
196 ----------------------------------------------------------------
197 VSR[33] | VR[1] |
198 ----------------------------------------------------------------
199 | ... |
200 | ... |
201 ----------------------------------------------------------------
202 VSR[62] | VR[30] |
203 ----------------------------------------------------------------
204 VSR[63] | VR[31] |
205 ----------------------------------------------------------------
206
207 VSX has 64 128bit registers. The first 32 registers overlap with
208 the FP registers (doubleword 0) and hence extend them with additional
209 64 bits (doubleword 1). The other 32 regs overlap with the VMX
210 registers. */
211#define SIZEOF_VSXREGS 32*8
212
213typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 214
b021a221 215/* On PPC processors that support the Signal Processing Extension
01904826 216 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
01904826
JB
223
224 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 225 bits long. It has unnamed raw registers that hold the upper halves
b021a221 226 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
01904826
JB
229
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232struct gdb_evrregset_t
233{
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
237};
238
604c2f83
LM
239/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244int have_ptrace_getsetvsxregs = 1;
01904826
JB
245
246/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
249 error. */
9abe5450
EZ
250int have_ptrace_getvrregs = 1;
251
01904826
JB
252/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
255 error. */
256int have_ptrace_getsetevrregs = 1;
257
1dfe79e8
SDJ
258/* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262int have_ptrace_getsetregs = 1;
263
264/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268int have_ptrace_getsetfpregs = 1;
269
f6ac5f3d
PA
270struct ppc_linux_nat_target final : public linux_nat_target
271{
272 /* Add our register access methods. */
273 void fetch_registers (struct regcache *, int) override;
274 void store_registers (struct regcache *, int) override;
275
276 /* Add our breakpoint/watchpoint methods. */
277 int can_use_hw_breakpoint (enum bptype, int, int) override;
278
279 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
280 override;
281
282 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
283 override;
284
285 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
286
287 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
288 struct expression *) override;
289
290 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
291 struct expression *) override;
292
293 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
294 override;
295
296 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
297 override;
298
57810aa7 299 bool stopped_by_watchpoint () override;
f6ac5f3d 300
57810aa7 301 bool stopped_data_address (CORE_ADDR *) override;
f6ac5f3d 302
57810aa7 303 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
f6ac5f3d 304
57810aa7 305 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
f6ac5f3d
PA
306 override;
307
308 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
309
310 int ranged_break_num_registers () override;
311
312 const struct target_desc *read_description () override;
313
314 int auxv_parse (gdb_byte **readptr,
315 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
316 override;
135340af
PA
317
318 /* Override linux_nat_target low methods. */
319 void low_new_thread (struct lwp_info *lp) override;
f6ac5f3d
PA
320};
321
322static ppc_linux_nat_target the_ppc_linux_nat_target;
323
16333c4f
EZ
324/* *INDENT-OFF* */
325/* registers layout, as presented by the ptrace interface:
326PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
327PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
328PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
329PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
330PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
331PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
332PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
333PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
334PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
335PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
336PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
337PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
338PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
339/* *INDENT_ON * */
c877c8e6 340
45229ea4 341static int
e101270f 342ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 343{
16333c4f 344 int u_addr = -1;
e101270f 345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
346 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
347 interface, and not the wordsize of the program's ABI. */
411cb3f9 348 int wordsize = sizeof (long);
16333c4f 349
0df8b418 350 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
351 if (regno >= tdep->ppc_gp0_regnum
352 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 353 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 354
49ff75ad
JB
355 /* Floating point regs: eight bytes each in both 32- and 64-bit
356 ptrace interfaces. Thus, two slots each in 32-bit interface, one
357 slot each in 64-bit interface. */
383f0f5b
JB
358 if (tdep->ppc_fp0_regnum >= 0
359 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
360 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
361 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 362
0df8b418 363 /* UISA special purpose registers: 1 slot each. */
e101270f 364 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 365 u_addr = PT_NIP * wordsize;
dc5cfeb6 366 if (regno == tdep->ppc_lr_regnum)
49ff75ad 367 u_addr = PT_LNK * wordsize;
dc5cfeb6 368 if (regno == tdep->ppc_cr_regnum)
49ff75ad 369 u_addr = PT_CCR * wordsize;
dc5cfeb6 370 if (regno == tdep->ppc_xer_regnum)
49ff75ad 371 u_addr = PT_XER * wordsize;
dc5cfeb6 372 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 373 u_addr = PT_CTR * wordsize;
f8c59253 374#ifdef PT_MQ
dc5cfeb6 375 if (regno == tdep->ppc_mq_regnum)
49ff75ad 376 u_addr = PT_MQ * wordsize;
f8c59253 377#endif
dc5cfeb6 378 if (regno == tdep->ppc_ps_regnum)
49ff75ad 379 u_addr = PT_MSR * wordsize;
7284e1be
UW
380 if (regno == PPC_ORIG_R3_REGNUM)
381 u_addr = PT_ORIG_R3 * wordsize;
382 if (regno == PPC_TRAP_REGNUM)
383 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
384 if (tdep->ppc_fpscr_regnum >= 0
385 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
386 {
387 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
388 kernel headers incorrectly contained the 32-bit definition of
389 PT_FPSCR. For the 32-bit definition, floating-point
390 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 391 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
392 the FPSCR instead occupies the full 64-bit 2-word-slot and
393 hence no adjustment is necessary. Hack around this. */
394 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
395 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
396 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
397 slot and not just its second word. The PT_FPSCR supplied when
398 GDB is compiled as a 32-bit app doesn't reflect this. */
399 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
400 && PT_FPSCR == (48 + 2*32 + 1))
401 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
402 else
403 u_addr = PT_FPSCR * wordsize;
404 }
16333c4f 405 return u_addr;
c877c8e6
KB
406}
407
604c2f83
LM
408/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
409 registers set mechanism, as opposed to the interface for all the
410 other registers, that stores/fetches each register individually. */
411static void
412fetch_vsx_register (struct regcache *regcache, int tid, int regno)
413{
414 int ret;
415 gdb_vsxregset_t regs;
ac7936df 416 struct gdbarch *gdbarch = regcache->arch ();
604c2f83
LM
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
419
420 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
421 if (ret < 0)
422 {
423 if (errno == EIO)
424 {
425 have_ptrace_getsetvsxregs = 0;
426 return;
427 }
428 perror_with_name (_("Unable to fetch VSX register"));
429 }
430
431 regcache_raw_supply (regcache, regno,
432 regs + (regno - tdep->ppc_vsr0_upper_regnum)
433 * vsxregsize);
434}
435
9abe5450
EZ
436/* The Linux kernel ptrace interface for AltiVec registers uses the
437 registers set mechanism, as opposed to the interface for all the
438 other registers, that stores/fetches each register individually. */
439static void
56be3814 440fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
441{
442 int ret;
443 int offset = 0;
444 gdb_vrregset_t regs;
ac7936df 445 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1
MD
446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
447 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
448
449 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
450 if (ret < 0)
451 {
452 if (errno == EIO)
453 {
454 have_ptrace_getvrregs = 0;
455 return;
456 }
e2e0b3e5 457 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
458 }
459
460 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
461 long on the hardware. We deal only with the lower 4 bytes of the
462 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
463 there is no need to define an offset for it. */
464 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 465 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 466
56be3814 467 regcache_raw_supply (regcache, regno,
0df8b418
MS
468 regs + (regno
469 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
470}
471
01904826
JB
472/* Fetch the top 32 bits of TID's general-purpose registers and the
473 SPE-specific registers, and place the results in EVRREGSET. If we
474 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
475 zeros.
476
477 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
478 PTRACE_SETEVRREGS requests are supported is isolated here, and in
479 set_spe_registers. */
480static void
481get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
482{
483 if (have_ptrace_getsetevrregs)
484 {
485 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
486 return;
487 else
488 {
489 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
490 we just return zeros. */
491 if (errno == EIO)
492 have_ptrace_getsetevrregs = 0;
493 else
494 /* Anything else needs to be reported. */
e2e0b3e5 495 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
496 }
497 }
498
499 memset (evrregset, 0, sizeof (*evrregset));
500}
501
6ced10dd
JB
502/* Supply values from TID for SPE-specific raw registers: the upper
503 halves of the GPRs, the accumulator, and the spefscr. REGNO must
504 be the number of an upper half register, acc, spefscr, or -1 to
505 supply the values of all registers. */
01904826 506static void
56be3814 507fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 508{
ac7936df 509 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
511 struct gdb_evrregset_t evrregs;
512
6ced10dd 513 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 514 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 515 gdb_assert (sizeof (evrregs.acc)
40a6adc1 516 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 517 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 518 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 519
01904826
JB
520 get_spe_registers (tid, &evrregs);
521
6ced10dd 522 if (regno == -1)
01904826 523 {
6ced10dd
JB
524 int i;
525
526 for (i = 0; i < ppc_num_gprs; i++)
56be3814 527 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 528 &evrregs.evr[i]);
01904826 529 }
6ced10dd
JB
530 else if (tdep->ppc_ev0_upper_regnum <= regno
531 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 532 regcache_raw_supply (regcache, regno,
6ced10dd
JB
533 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
534
535 if (regno == -1
536 || regno == tdep->ppc_acc_regnum)
56be3814 537 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
538
539 if (regno == -1
540 || regno == tdep->ppc_spefscr_regnum)
56be3814 541 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 542 &evrregs.spefscr);
01904826
JB
543}
544
45229ea4 545static void
56be3814 546fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 547{
ac7936df 548 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 549 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 550 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 551 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 552 int bytes_transferred;
0df8b418 553 unsigned int offset; /* Offset of registers within the u area. */
0f068fb5 554 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 555
be8626e0 556 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
557 {
558 /* If this is the first time through, or if it is not the first
559 time through, and we have comfirmed that there is kernel
560 support for such a ptrace request, then go and fetch the
561 register. */
562 if (have_ptrace_getvrregs)
563 {
56be3814 564 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
565 return;
566 }
567 /* If we have discovered that there is no ptrace support for
568 AltiVec registers, fall through and return zeroes, because
569 regaddr will be -1 in this case. */
570 }
604c2f83
LM
571 if (vsx_register_p (gdbarch, regno))
572 {
573 if (have_ptrace_getsetvsxregs)
574 {
575 fetch_vsx_register (regcache, tid, regno);
576 return;
577 }
578 }
be8626e0 579 else if (spe_register_p (gdbarch, regno))
01904826 580 {
56be3814 581 fetch_spe_register (regcache, tid, regno);
01904826
JB
582 return;
583 }
9abe5450 584
45229ea4
EZ
585 if (regaddr == -1)
586 {
40a6adc1 587 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 588 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
589 return;
590 }
591
411cb3f9 592 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
593 32-bit platform, 64-bit floating-point registers will require two
594 transfers. */
4a19ea35 595 for (bytes_transferred = 0;
40a6adc1 596 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 597 bytes_transferred += sizeof (long))
45229ea4 598 {
11fde611
JK
599 long l;
600
45229ea4 601 errno = 0;
11fde611 602 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 603 regaddr += sizeof (long);
45229ea4
EZ
604 if (errno != 0)
605 {
bc97b3ba 606 char message[128];
8c042590
PM
607 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
608 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 609 perror_with_name (message);
45229ea4 610 }
11fde611 611 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 612 }
56d0d96a 613
4a19ea35
JB
614 /* Now supply the register. Keep in mind that the regcache's idea
615 of the register's size may not be a multiple of sizeof
411cb3f9 616 (long). */
40a6adc1 617 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
618 {
619 /* Little-endian values are always found at the left end of the
620 bytes transferred. */
56be3814 621 regcache_raw_supply (regcache, regno, buf);
4a19ea35 622 }
40a6adc1 623 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
624 {
625 /* Big-endian values are found at the right end of the bytes
626 transferred. */
40a6adc1 627 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 628 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
629 }
630 else
a44bddec 631 internal_error (__FILE__, __LINE__,
e2e0b3e5 632 _("fetch_register: unexpected byte order: %d"),
40a6adc1 633 gdbarch_byte_order (gdbarch));
45229ea4
EZ
634}
635
604c2f83
LM
636static void
637supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
638{
639 int i;
ac7936df 640 struct gdbarch *gdbarch = regcache->arch ();
604c2f83
LM
641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
642 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
643
644 for (i = 0; i < ppc_num_vshrs; i++)
645 {
646 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
647 *vsxregsetp + i * vsxregsize);
648 }
649}
650
9abe5450 651static void
56be3814 652supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
653{
654 int i;
ac7936df 655 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 656 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 657 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
658 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
659 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
660
661 for (i = 0; i < num_of_vrregs; i++)
662 {
663 /* The last 2 registers of this set are only 32 bit long, not
664 128. However an offset is necessary only for VSCR because it
665 occupies a whole vector, while VRSAVE occupies a full 4 bytes
666 slot. */
667 if (i == (num_of_vrregs - 2))
56be3814 668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 669 *vrregsetp + i * vrregsize + offset);
9abe5450 670 else
56be3814 671 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 672 *vrregsetp + i * vrregsize);
9abe5450
EZ
673 }
674}
675
604c2f83
LM
676static void
677fetch_vsx_registers (struct regcache *regcache, int tid)
678{
679 int ret;
680 gdb_vsxregset_t regs;
681
682 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
683 if (ret < 0)
684 {
685 if (errno == EIO)
686 {
687 have_ptrace_getsetvsxregs = 0;
688 return;
689 }
690 perror_with_name (_("Unable to fetch VSX registers"));
691 }
692 supply_vsxregset (regcache, &regs);
693}
694
9abe5450 695static void
56be3814 696fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
697{
698 int ret;
699 gdb_vrregset_t regs;
700
701 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
702 if (ret < 0)
703 {
704 if (errno == EIO)
705 {
706 have_ptrace_getvrregs = 0;
707 return;
708 }
e2e0b3e5 709 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 710 }
56be3814 711 supply_vrregset (regcache, &regs);
9abe5450
EZ
712}
713
1dfe79e8
SDJ
714/* This function actually issues the request to ptrace, telling
715 it to get all general-purpose registers and put them into the
716 specified regset.
717
718 If the ptrace request does not exist, this function returns 0
719 and properly sets the have_ptrace_* flag. If the request fails,
720 this function calls perror_with_name. Otherwise, if the request
721 succeeds, then the regcache gets filled and 1 is returned. */
722static int
723fetch_all_gp_regs (struct regcache *regcache, int tid)
724{
ac7936df 725 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
727 gdb_gregset_t gregset;
728
729 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
730 {
731 if (errno == EIO)
732 {
733 have_ptrace_getsetregs = 0;
734 return 0;
735 }
736 perror_with_name (_("Couldn't get general-purpose registers."));
737 }
738
739 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
740
741 return 1;
742}
743
744/* This is a wrapper for the fetch_all_gp_regs function. It is
745 responsible for verifying if this target has the ptrace request
746 that can be used to fetch all general-purpose registers at one
747 shot. If it doesn't, then we should fetch them using the
748 old-fashioned way, which is to iterate over the registers and
749 request them one by one. */
750static void
751fetch_gp_regs (struct regcache *regcache, int tid)
752{
ac7936df 753 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
755 int i;
756
757 if (have_ptrace_getsetregs)
758 if (fetch_all_gp_regs (regcache, tid))
759 return;
760
761 /* If we've hit this point, it doesn't really matter which
762 architecture we are using. We just need to read the
763 registers in the "old-fashioned way". */
764 for (i = 0; i < ppc_num_gprs; i++)
765 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
766}
767
768/* This function actually issues the request to ptrace, telling
769 it to get all floating-point registers and put them into the
770 specified regset.
771
772 If the ptrace request does not exist, this function returns 0
773 and properly sets the have_ptrace_* flag. If the request fails,
774 this function calls perror_with_name. Otherwise, if the request
775 succeeds, then the regcache gets filled and 1 is returned. */
776static int
777fetch_all_fp_regs (struct regcache *regcache, int tid)
778{
779 gdb_fpregset_t fpregs;
780
781 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
782 {
783 if (errno == EIO)
784 {
785 have_ptrace_getsetfpregs = 0;
786 return 0;
787 }
788 perror_with_name (_("Couldn't get floating-point registers."));
789 }
790
791 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
792
793 return 1;
794}
795
796/* This is a wrapper for the fetch_all_fp_regs function. It is
797 responsible for verifying if this target has the ptrace request
798 that can be used to fetch all floating-point registers at one
799 shot. If it doesn't, then we should fetch them using the
800 old-fashioned way, which is to iterate over the registers and
801 request them one by one. */
802static void
803fetch_fp_regs (struct regcache *regcache, int tid)
804{
ac7936df 805 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
806 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
807 int i;
808
809 if (have_ptrace_getsetfpregs)
810 if (fetch_all_fp_regs (regcache, tid))
811 return;
812
813 /* If we've hit this point, it doesn't really matter which
814 architecture we are using. We just need to read the
815 registers in the "old-fashioned way". */
816 for (i = 0; i < ppc_num_fprs; i++)
817 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
818}
819
45229ea4 820static void
56be3814 821fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
822{
823 int i;
ac7936df 824 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 826
1dfe79e8 827 fetch_gp_regs (regcache, tid);
32b99774 828 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 829 fetch_fp_regs (regcache, tid);
40a6adc1 830 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 831 if (tdep->ppc_ps_regnum != -1)
56be3814 832 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 833 if (tdep->ppc_cr_regnum != -1)
56be3814 834 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 835 if (tdep->ppc_lr_regnum != -1)
56be3814 836 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 837 if (tdep->ppc_ctr_regnum != -1)
56be3814 838 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 839 if (tdep->ppc_xer_regnum != -1)
56be3814 840 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 841 if (tdep->ppc_mq_regnum != -1)
56be3814 842 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
843 if (ppc_linux_trap_reg_p (gdbarch))
844 {
845 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
846 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
847 }
32b99774 848 if (tdep->ppc_fpscr_regnum != -1)
56be3814 849 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
850 if (have_ptrace_getvrregs)
851 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 852 fetch_altivec_registers (regcache, tid);
604c2f83
LM
853 if (have_ptrace_getsetvsxregs)
854 if (tdep->ppc_vsr0_upper_regnum != -1)
855 fetch_vsx_registers (regcache, tid);
6ced10dd 856 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 857 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
858}
859
860/* Fetch registers from the child process. Fetch all registers if
861 regno == -1, otherwise fetch all general registers or all floating
862 point registers depending upon the value of regno. */
f6ac5f3d
PA
863void
864ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
45229ea4 865{
bcc0c096 866 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
05f13b9c 867
9abe5450 868 if (regno == -1)
56be3814 869 fetch_ppc_registers (regcache, tid);
45229ea4 870 else
56be3814 871 fetch_register (regcache, tid, regno);
45229ea4
EZ
872}
873
0df8b418 874/* Store one VSX register. */
604c2f83
LM
875static void
876store_vsx_register (const struct regcache *regcache, int tid, int regno)
877{
878 int ret;
879 gdb_vsxregset_t regs;
ac7936df 880 struct gdbarch *gdbarch = regcache->arch ();
604c2f83
LM
881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
882 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
883
9fe70b4f 884 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
885 if (ret < 0)
886 {
887 if (errno == EIO)
888 {
889 have_ptrace_getsetvsxregs = 0;
890 return;
891 }
892 perror_with_name (_("Unable to fetch VSX register"));
893 }
894
895 regcache_raw_collect (regcache, regno, regs +
896 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
897
898 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
899 if (ret < 0)
900 perror_with_name (_("Unable to store VSX register"));
901}
902
0df8b418 903/* Store one register. */
9abe5450 904static void
56be3814 905store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
906{
907 int ret;
908 int offset = 0;
909 gdb_vrregset_t regs;
ac7936df 910 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1
MD
911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
912 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
913
914 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
915 if (ret < 0)
916 {
917 if (errno == EIO)
918 {
919 have_ptrace_getvrregs = 0;
920 return;
921 }
e2e0b3e5 922 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
923 }
924
925 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
926 long on the hardware. */
927 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 928 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 929
56be3814 930 regcache_raw_collect (regcache, regno,
0df8b418
MS
931 regs + (regno
932 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
933
934 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
935 if (ret < 0)
e2e0b3e5 936 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
937}
938
01904826
JB
939/* Assuming TID referrs to an SPE process, set the top halves of TID's
940 general-purpose registers and its SPE-specific registers to the
941 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
942 nothing.
943
944 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
945 PTRACE_SETEVRREGS requests are supported is isolated here, and in
946 get_spe_registers. */
947static void
948set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
949{
950 if (have_ptrace_getsetevrregs)
951 {
952 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
953 return;
954 else
955 {
956 /* EIO means that the PTRACE_SETEVRREGS request isn't
957 supported; we fail silently, and don't try the call
958 again. */
959 if (errno == EIO)
960 have_ptrace_getsetevrregs = 0;
961 else
962 /* Anything else needs to be reported. */
e2e0b3e5 963 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
964 }
965 }
966}
967
6ced10dd
JB
968/* Write GDB's value for the SPE-specific raw register REGNO to TID.
969 If REGNO is -1, write the values of all the SPE-specific
970 registers. */
01904826 971static void
56be3814 972store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 973{
ac7936df 974 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
976 struct gdb_evrregset_t evrregs;
977
6ced10dd 978 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 979 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 980 gdb_assert (sizeof (evrregs.acc)
40a6adc1 981 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 982 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 983 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 984
6ced10dd
JB
985 if (regno == -1)
986 /* Since we're going to write out every register, the code below
987 should store to every field of evrregs; if that doesn't happen,
988 make it obvious by initializing it with suspicious values. */
989 memset (&evrregs, 42, sizeof (evrregs));
990 else
991 /* We can only read and write the entire EVR register set at a
992 time, so to write just a single register, we do a
993 read-modify-write maneuver. */
994 get_spe_registers (tid, &evrregs);
995
996 if (regno == -1)
01904826 997 {
6ced10dd
JB
998 int i;
999
1000 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1001 regcache_raw_collect (regcache,
6ced10dd
JB
1002 tdep->ppc_ev0_upper_regnum + i,
1003 &evrregs.evr[i]);
01904826 1004 }
6ced10dd
JB
1005 else if (tdep->ppc_ev0_upper_regnum <= regno
1006 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 1007 regcache_raw_collect (regcache, regno,
6ced10dd
JB
1008 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1009
1010 if (regno == -1
1011 || regno == tdep->ppc_acc_regnum)
56be3814 1012 regcache_raw_collect (regcache,
6ced10dd
JB
1013 tdep->ppc_acc_regnum,
1014 &evrregs.acc);
1015
1016 if (regno == -1
1017 || regno == tdep->ppc_spefscr_regnum)
56be3814 1018 regcache_raw_collect (regcache,
6ced10dd
JB
1019 tdep->ppc_spefscr_regnum,
1020 &evrregs.spefscr);
01904826
JB
1021
1022 /* Write back the modified register set. */
1023 set_spe_registers (tid, &evrregs);
1024}
1025
45229ea4 1026static void
56be3814 1027store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1028{
ac7936df 1029 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 1030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 1031 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1032 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1033 int i;
4a19ea35 1034 size_t bytes_to_transfer;
0f068fb5 1035 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 1036
be8626e0 1037 if (altivec_register_p (gdbarch, regno))
45229ea4 1038 {
56be3814 1039 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
1040 return;
1041 }
604c2f83
LM
1042 if (vsx_register_p (gdbarch, regno))
1043 {
1044 store_vsx_register (regcache, tid, regno);
1045 return;
1046 }
be8626e0 1047 else if (spe_register_p (gdbarch, regno))
01904826 1048 {
56be3814 1049 store_spe_register (regcache, tid, regno);
01904826
JB
1050 return;
1051 }
45229ea4 1052
9abe5450
EZ
1053 if (regaddr == -1)
1054 return;
1055
4a19ea35
JB
1056 /* First collect the register. Keep in mind that the regcache's
1057 idea of the register's size may not be a multiple of sizeof
411cb3f9 1058 (long). */
56d0d96a 1059 memset (buf, 0, sizeof buf);
40a6adc1
MD
1060 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1061 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1062 {
1063 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1064 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1065 }
40a6adc1 1066 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1067 {
1068 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1069 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1070 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1071 }
1072
411cb3f9 1073 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1074 {
11fde611
JK
1075 long l;
1076
1077 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1078 errno = 0;
11fde611 1079 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1080 regaddr += sizeof (long);
e3f36dbd
KB
1081
1082 if (errno == EIO
7284e1be
UW
1083 && (regno == tdep->ppc_fpscr_regnum
1084 || regno == PPC_ORIG_R3_REGNUM
1085 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1086 {
7284e1be
UW
1087 /* Some older kernel versions don't allow fpscr, orig_r3
1088 or trap to be written. */
e3f36dbd
KB
1089 continue;
1090 }
1091
45229ea4
EZ
1092 if (errno != 0)
1093 {
bc97b3ba 1094 char message[128];
8c042590
PM
1095 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1096 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1097 perror_with_name (message);
45229ea4
EZ
1098 }
1099 }
1100}
1101
604c2f83
LM
1102static void
1103fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1104{
1105 int i;
ac7936df 1106 struct gdbarch *gdbarch = regcache->arch ();
604c2f83
LM
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1108 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1109
1110 for (i = 0; i < ppc_num_vshrs; i++)
1111 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1112 *vsxregsetp + i * vsxregsize);
1113}
1114
9abe5450 1115static void
56be3814 1116fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1117{
1118 int i;
ac7936df 1119 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1121 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1122 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1123 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1124
1125 for (i = 0; i < num_of_vrregs; i++)
1126 {
1127 /* The last 2 registers of this set are only 32 bit long, not
1128 128, but only VSCR is fetched as a 16 bytes quantity. */
1129 if (i == (num_of_vrregs - 2))
56be3814 1130 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1131 *vrregsetp + i * vrregsize + offset);
9abe5450 1132 else
56be3814 1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1134 *vrregsetp + i * vrregsize);
9abe5450
EZ
1135 }
1136}
1137
604c2f83
LM
1138static void
1139store_vsx_registers (const struct regcache *regcache, int tid)
1140{
1141 int ret;
1142 gdb_vsxregset_t regs;
1143
1144 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1145 if (ret < 0)
1146 {
1147 if (errno == EIO)
1148 {
1149 have_ptrace_getsetvsxregs = 0;
1150 return;
1151 }
1152 perror_with_name (_("Couldn't get VSX registers"));
1153 }
1154
1155 fill_vsxregset (regcache, &regs);
1156
1157 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1158 perror_with_name (_("Couldn't write VSX registers"));
1159}
1160
9abe5450 1161static void
56be3814 1162store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1163{
1164 int ret;
1165 gdb_vrregset_t regs;
1166
0897f59b 1167 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1168 if (ret < 0)
1169 {
1170 if (errno == EIO)
1171 {
1172 have_ptrace_getvrregs = 0;
1173 return;
1174 }
e2e0b3e5 1175 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1176 }
1177
56be3814 1178 fill_vrregset (regcache, &regs);
9abe5450 1179
0897f59b 1180 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1181 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1182}
1183
1dfe79e8
SDJ
1184/* This function actually issues the request to ptrace, telling
1185 it to store all general-purpose registers present in the specified
1186 regset.
1187
1188 If the ptrace request does not exist, this function returns 0
1189 and properly sets the have_ptrace_* flag. If the request fails,
1190 this function calls perror_with_name. Otherwise, if the request
1191 succeeds, then the regcache is stored and 1 is returned. */
1192static int
1193store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1194{
ac7936df 1195 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
1196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1197 gdb_gregset_t gregset;
1198
1199 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1200 {
1201 if (errno == EIO)
1202 {
1203 have_ptrace_getsetregs = 0;
1204 return 0;
1205 }
1206 perror_with_name (_("Couldn't get general-purpose registers."));
1207 }
1208
1209 fill_gregset (regcache, &gregset, regno);
1210
1211 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1212 {
1213 if (errno == EIO)
1214 {
1215 have_ptrace_getsetregs = 0;
1216 return 0;
1217 }
1218 perror_with_name (_("Couldn't set general-purpose registers."));
1219 }
1220
1221 return 1;
1222}
1223
1224/* This is a wrapper for the store_all_gp_regs function. It is
1225 responsible for verifying if this target has the ptrace request
1226 that can be used to store all general-purpose registers at one
1227 shot. If it doesn't, then we should store them using the
1228 old-fashioned way, which is to iterate over the registers and
1229 store them one by one. */
45229ea4 1230static void
1dfe79e8 1231store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1232{
ac7936df 1233 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 1234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1235 int i;
1236
1237 if (have_ptrace_getsetregs)
1238 if (store_all_gp_regs (regcache, tid, regno))
1239 return;
1240
1241 /* If we hit this point, it doesn't really matter which
1242 architecture we are using. We just need to store the
1243 registers in the "old-fashioned way". */
6ced10dd 1244 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1245 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1246}
1247
1248/* This function actually issues the request to ptrace, telling
1249 it to store all floating-point registers present in the specified
1250 regset.
1251
1252 If the ptrace request does not exist, this function returns 0
1253 and properly sets the have_ptrace_* flag. If the request fails,
1254 this function calls perror_with_name. Otherwise, if the request
1255 succeeds, then the regcache is stored and 1 is returned. */
1256static int
1257store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1258{
1259 gdb_fpregset_t fpregs;
1260
1261 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1262 {
1263 if (errno == EIO)
1264 {
1265 have_ptrace_getsetfpregs = 0;
1266 return 0;
1267 }
1268 perror_with_name (_("Couldn't get floating-point registers."));
1269 }
1270
1271 fill_fpregset (regcache, &fpregs, regno);
1272
1273 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1274 {
1275 if (errno == EIO)
1276 {
1277 have_ptrace_getsetfpregs = 0;
1278 return 0;
1279 }
1280 perror_with_name (_("Couldn't set floating-point registers."));
1281 }
1282
1283 return 1;
1284}
1285
1286/* This is a wrapper for the store_all_fp_regs function. It is
1287 responsible for verifying if this target has the ptrace request
1288 that can be used to store all floating-point registers at one
1289 shot. If it doesn't, then we should store them using the
1290 old-fashioned way, which is to iterate over the registers and
1291 store them one by one. */
1292static void
1293store_fp_regs (const struct regcache *regcache, int tid, int regno)
1294{
ac7936df 1295 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
1296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1297 int i;
1298
1299 if (have_ptrace_getsetfpregs)
1300 if (store_all_fp_regs (regcache, tid, regno))
1301 return;
1302
1303 /* If we hit this point, it doesn't really matter which
1304 architecture we are using. We just need to store the
1305 registers in the "old-fashioned way". */
1306 for (i = 0; i < ppc_num_fprs; i++)
1307 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1308}
1309
1310static void
1311store_ppc_registers (const struct regcache *regcache, int tid)
1312{
1313 int i;
ac7936df 1314 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
1315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1316
1317 store_gp_regs (regcache, tid, -1);
32b99774 1318 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1319 store_fp_regs (regcache, tid, -1);
40a6adc1 1320 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1321 if (tdep->ppc_ps_regnum != -1)
56be3814 1322 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1323 if (tdep->ppc_cr_regnum != -1)
56be3814 1324 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1325 if (tdep->ppc_lr_regnum != -1)
56be3814 1326 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1327 if (tdep->ppc_ctr_regnum != -1)
56be3814 1328 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1329 if (tdep->ppc_xer_regnum != -1)
56be3814 1330 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1331 if (tdep->ppc_mq_regnum != -1)
56be3814 1332 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1333 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1334 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1335 if (ppc_linux_trap_reg_p (gdbarch))
1336 {
1337 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1338 store_register (regcache, tid, PPC_TRAP_REGNUM);
1339 }
9abe5450
EZ
1340 if (have_ptrace_getvrregs)
1341 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1342 store_altivec_registers (regcache, tid);
604c2f83
LM
1343 if (have_ptrace_getsetvsxregs)
1344 if (tdep->ppc_vsr0_upper_regnum != -1)
1345 store_vsx_registers (regcache, tid);
6ced10dd 1346 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1347 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1348}
1349
6ffbb7ab 1350/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1351static unsigned long
1352ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1353{
1354 CORE_ADDR field;
1355
f6ac5f3d 1356 if (target_auxv_search (target_stack, AT_HWCAP, &field))
6ffbb7ab
TJB
1357 return (unsigned long) field;
1358
1359 return 0;
1360}
1361
1362/* The cached DABR value, to install in new threads.
926bf92d
UW
1363 This variable is used when the PowerPC HWDEBUG ptrace
1364 interface is not available. */
6ffbb7ab
TJB
1365static long saved_dabr_value;
1366
1367/* Global structure that will store information about the available
926bf92d
UW
1368 features provided by the PowerPC HWDEBUG ptrace interface. */
1369static struct ppc_debug_info hwdebug_info;
6ffbb7ab
TJB
1370
1371/* Global variable that holds the maximum number of slots that the
926bf92d
UW
1372 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1373 is available. */
6ffbb7ab
TJB
1374static size_t max_slots_number = 0;
1375
1376struct hw_break_tuple
1377{
1378 long slot;
1379 struct ppc_hw_breakpoint *hw_break;
1380};
1381
1382/* This is an internal VEC created to store information about *points inserted
926bf92d
UW
1383 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1384 available. */
6ffbb7ab
TJB
1385typedef struct thread_points
1386 {
1387 /* The TID to which this *point relates. */
1388 int tid;
1389 /* Information about the *point, such as its address, type, etc.
1390
1391 Each element inside this vector corresponds to a hardware
1392 breakpoint or watchpoint in the thread represented by TID. The maximum
1393 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1394 the tuple is NULL, then the position in the vector is free. */
1395 struct hw_break_tuple *hw_breaks;
1396 } *thread_points_p;
1397DEF_VEC_P (thread_points_p);
1398
1399VEC(thread_points_p) *ppc_threads = NULL;
1400
926bf92d
UW
1401/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1402 available. */
6ffbb7ab
TJB
1403#define PPC_DEBUG_CURRENT_VERSION 1
1404
926bf92d 1405/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
e0d24f8d 1406static int
926bf92d 1407have_ptrace_hwdebug_interface (void)
e0d24f8d 1408{
926bf92d 1409 static int have_ptrace_hwdebug_interface = -1;
e0d24f8d 1410
926bf92d 1411 if (have_ptrace_hwdebug_interface == -1)
6ffbb7ab
TJB
1412 {
1413 int tid;
e0d24f8d 1414
dfd4cc63 1415 tid = ptid_get_lwp (inferior_ptid);
6ffbb7ab 1416 if (tid == 0)
dfd4cc63 1417 tid = ptid_get_pid (inferior_ptid);
e0d24f8d 1418
926bf92d
UW
1419 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1420 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
6ffbb7ab 1421 {
926bf92d 1422 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
0c56f59b 1423 provides any supported feature. */
926bf92d 1424 if (hwdebug_info.features != 0)
0c56f59b 1425 {
926bf92d
UW
1426 have_ptrace_hwdebug_interface = 1;
1427 max_slots_number = hwdebug_info.num_instruction_bps
1428 + hwdebug_info.num_data_bps
1429 + hwdebug_info.num_condition_regs;
1430 return have_ptrace_hwdebug_interface;
0c56f59b 1431 }
6ffbb7ab 1432 }
926bf92d
UW
1433 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1434 have_ptrace_hwdebug_interface = 0;
1435 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1436 }
1437
926bf92d 1438 return have_ptrace_hwdebug_interface;
e0d24f8d
WZ
1439}
1440
f6ac5f3d
PA
1441int
1442ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
b7622095 1443{
6ffbb7ab 1444 int total_hw_wp, total_hw_bp;
b7622095 1445
926bf92d 1446 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1447 {
926bf92d
UW
1448 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1449 available hardware watchpoints and breakpoints is stored at the
1450 hwdebug_info struct. */
1451 total_hw_bp = hwdebug_info.num_instruction_bps;
1452 total_hw_wp = hwdebug_info.num_data_bps;
6ffbb7ab
TJB
1453 }
1454 else
1455 {
926bf92d
UW
1456 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1457 consider having 1 hardware watchpoint and no hardware breakpoints. */
6ffbb7ab
TJB
1458 total_hw_bp = 0;
1459 total_hw_wp = 1;
1460 }
b7622095 1461
6ffbb7ab
TJB
1462 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1463 || type == bp_access_watchpoint || type == bp_watchpoint)
1464 {
bb08bdbd 1465 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1466 return -1;
1467 }
1468 else if (type == bp_hardware_breakpoint)
1469 {
572f6555
EBM
1470 if (total_hw_bp == 0)
1471 {
1472 /* No hardware breakpoint support. */
1473 return 0;
1474 }
6ffbb7ab
TJB
1475 if (cnt > total_hw_bp)
1476 return -1;
1477 }
1478
926bf92d 1479 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1480 {
1481 int tid;
1482 ptid_t ptid = inferior_ptid;
1483
0df8b418
MS
1484 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1485 and whether the target has DABR. If either answer is no, the
1486 ptrace call will return -1. Fail in that case. */
dfd4cc63 1487 tid = ptid_get_lwp (ptid);
6ffbb7ab 1488 if (tid == 0)
dfd4cc63 1489 tid = ptid_get_pid (ptid);
6ffbb7ab
TJB
1490
1491 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1492 return 0;
1493 }
1494
1495 return 1;
b7622095
LM
1496}
1497
f6ac5f3d
PA
1498int
1499ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
e0d24f8d
WZ
1500{
1501 /* Handle sub-8-byte quantities. */
1502 if (len <= 0)
1503 return 0;
1504
926bf92d
UW
1505 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1506 restrictions for watchpoints in the processors. In that case, we use that
1507 information to determine the hardcoded watchable region for
1508 watchpoints. */
1509 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1510 {
e23b9d6e 1511 int region_size;
4feebbdd
EBM
1512 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1513 watchpoints and can watch any access within an arbitrary memory
1514 region. This is useful to watch arrays and structs, for instance. It
1515 takes two hardware watchpoints though. */
e09342b5 1516 if (len > 1
926bf92d 1517 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
4feebbdd 1518 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
e09342b5 1519 return 2;
e23b9d6e
UW
1520 /* Check if the processor provides DAWR interface. */
1521 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1522 /* DAWR interface allows to watch up to 512 byte wide ranges which
1523 can't cross a 512 byte boundary. */
1524 region_size = 512;
1525 else
1526 region_size = hwdebug_info.data_bp_alignment;
4feebbdd
EBM
1527 /* Server processors provide one hardware watchpoint and addr+len should
1528 fall in the watchable region provided by the ptrace interface. */
e23b9d6e
UW
1529 if (region_size
1530 && (addr + len > (addr & ~(region_size - 1)) + region_size))
0cf6dd15 1531 return 0;
6ffbb7ab 1532 }
b7622095 1533 /* addr+len must fall in the 8 byte watchable region for DABR-based
926bf92d
UW
1534 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1535 ptrace interface, DAC-based processors (i.e., embedded processors) will
1536 use addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1537 passed in the old ptrace interface. */
1538 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1539 && (addr + len) > (addr & ~3) + 4)
1540 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1541 return 0;
1542
1543 return 1;
1544}
1545
6ffbb7ab 1546/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1547static int
926bf92d 1548hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
6ffbb7ab 1549{
ad422571
TJB
1550 return (a->trigger_type == b->trigger_type
1551 && a->addr_mode == b->addr_mode
1552 && a->condition_mode == b->condition_mode
1553 && a->addr == b->addr
1554 && a->addr2 == b->addr2
6ffbb7ab
TJB
1555 && a->condition_value == b->condition_value);
1556}
1557
1558/* This function can be used to retrieve a thread_points by the TID of the
1559 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1560 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1561 provided TID will be created and returned. */
1562static struct thread_points *
926bf92d 1563hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
6ffbb7ab
TJB
1564{
1565 int i;
1566 struct thread_points *t;
1567
1568 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1569 if (t->tid == tid)
1570 return t;
1571
1572 t = NULL;
1573
1574 /* Do we need to allocate a new point_item
1575 if the wanted one does not exist? */
1576 if (alloc_new)
1577 {
8d749320
SM
1578 t = XNEW (struct thread_points);
1579 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
6ffbb7ab
TJB
1580 t->tid = tid;
1581 VEC_safe_push (thread_points_p, ppc_threads, t);
1582 }
1583
1584 return t;
1585}
1586
1587/* This function is a generic wrapper that is responsible for inserting a
1588 *point (i.e., calling `ptrace' in order to issue the request to the
1589 kernel) and registering it internally in GDB. */
1590static void
926bf92d 1591hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1592{
1593 int i;
1594 long slot;
a90ecff8 1595 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
6ffbb7ab 1596 struct hw_break_tuple *hw_breaks;
6ffbb7ab
TJB
1597 struct thread_points *t;
1598 struct hw_break_tuple *tuple;
1599
6ffbb7ab 1600 errno = 0;
a90ecff8 1601 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
6ffbb7ab
TJB
1602 if (slot < 0)
1603 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1604
1605 /* Everything went fine, so we have to register this *point. */
926bf92d 1606 t = hwdebug_find_thread_points_by_tid (tid, 1);
6ffbb7ab
TJB
1607 gdb_assert (t != NULL);
1608 hw_breaks = t->hw_breaks;
1609
1610 /* Find a free element in the hw_breaks vector. */
1611 for (i = 0; i < max_slots_number; i++)
1612 if (hw_breaks[i].hw_break == NULL)
1613 {
1614 hw_breaks[i].slot = slot;
a90ecff8 1615 hw_breaks[i].hw_break = p.release ();
6ffbb7ab
TJB
1616 break;
1617 }
1618
1619 gdb_assert (i != max_slots_number);
6ffbb7ab
TJB
1620}
1621
1622/* This function is a generic wrapper that is responsible for removing a
1623 *point (i.e., calling `ptrace' in order to issue the request to the
1624 kernel), and unregistering it internally at GDB. */
1625static void
926bf92d 1626hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1627{
1628 int i;
1629 struct hw_break_tuple *hw_breaks;
1630 struct thread_points *t;
1631
926bf92d 1632 t = hwdebug_find_thread_points_by_tid (tid, 0);
6ffbb7ab
TJB
1633 gdb_assert (t != NULL);
1634 hw_breaks = t->hw_breaks;
1635
1636 for (i = 0; i < max_slots_number; i++)
926bf92d 1637 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
6ffbb7ab
TJB
1638 break;
1639
1640 gdb_assert (i != max_slots_number);
1641
1642 /* We have to ignore ENOENT errors because the kernel implements hardware
1643 breakpoints/watchpoints as "one-shot", that is, they are automatically
1644 deleted when hit. */
1645 errno = 0;
1646 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1647 if (errno != ENOENT)
0df8b418
MS
1648 perror_with_name (_("Unexpected error deleting "
1649 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1650
1651 xfree (hw_breaks[i].hw_break);
1652 hw_breaks[i].hw_break = NULL;
1653}
9f0bdab8 1654
f1310107
TJB
1655/* Return the number of registers needed for a ranged breakpoint. */
1656
f6ac5f3d
PA
1657int
1658ppc_linux_nat_target::ranged_break_num_registers ()
f1310107 1659{
926bf92d
UW
1660 return ((have_ptrace_hwdebug_interface ()
1661 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
f1310107
TJB
1662 2 : -1);
1663}
1664
1665/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1666 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1667
f6ac5f3d
PA
1668int
1669ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1670 struct bp_target_info *bp_tgt)
e0d24f8d 1671{
9f0bdab8 1672 struct lwp_info *lp;
6ffbb7ab
TJB
1673 struct ppc_hw_breakpoint p;
1674
926bf92d 1675 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1676 return -1;
1677
ad422571
TJB
1678 p.version = PPC_DEBUG_CURRENT_VERSION;
1679 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571 1680 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
0d5ed153 1681 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
6ffbb7ab
TJB
1682 p.condition_value = 0;
1683
f1310107
TJB
1684 if (bp_tgt->length)
1685 {
1686 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1687
1688 /* The breakpoint will trigger if the address of the instruction is
1689 within the defined range, as follows: p.addr <= address < p.addr2. */
1690 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1691 }
1692 else
1693 {
1694 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1695 p.addr2 = 0;
1696 }
1697
4c38200f 1698 ALL_LWPS (lp)
dfd4cc63 1699 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1700
1701 return 0;
1702}
1703
f6ac5f3d
PA
1704int
1705ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1706 struct bp_target_info *bp_tgt)
6ffbb7ab 1707{
6ffbb7ab
TJB
1708 struct lwp_info *lp;
1709 struct ppc_hw_breakpoint p;
b7622095 1710
926bf92d 1711 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1712 return -1;
1713
ad422571
TJB
1714 p.version = PPC_DEBUG_CURRENT_VERSION;
1715 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1716 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1717 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1718 p.condition_value = 0;
1719
f1310107
TJB
1720 if (bp_tgt->length)
1721 {
1722 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1723
1724 /* The breakpoint will trigger if the address of the instruction is within
1725 the defined range, as follows: p.addr <= address < p.addr2. */
1726 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1727 }
1728 else
1729 {
1730 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1731 p.addr2 = 0;
1732 }
1733
4c38200f 1734 ALL_LWPS (lp)
dfd4cc63 1735 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1736
1737 return 0;
1738}
1739
1740static int
e76460db 1741get_trigger_type (enum target_hw_bp_type type)
6ffbb7ab
TJB
1742{
1743 int t;
1744
e76460db 1745 if (type == hw_read)
6ffbb7ab 1746 t = PPC_BREAKPOINT_TRIGGER_READ;
e76460db 1747 else if (type == hw_write)
6ffbb7ab 1748 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1749 else
6ffbb7ab
TJB
1750 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1751
1752 return t;
1753}
1754
9c06b0b4
TJB
1755/* Insert a new masked watchpoint at ADDR using the mask MASK.
1756 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1757 or hw_access for an access watchpoint. Returns 0 on success and throws
1758 an error on failure. */
1759
f6ac5f3d
PA
1760int
1761ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1762 target_hw_bp_type rw)
9c06b0b4 1763{
9c06b0b4
TJB
1764 struct lwp_info *lp;
1765 struct ppc_hw_breakpoint p;
1766
926bf92d 1767 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1768
1769 p.version = PPC_DEBUG_CURRENT_VERSION;
1770 p.trigger_type = get_trigger_type (rw);
1771 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1772 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1773 p.addr = addr;
1774 p.addr2 = mask;
1775 p.condition_value = 0;
1776
4c38200f 1777 ALL_LWPS (lp)
dfd4cc63 1778 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1779
1780 return 0;
1781}
1782
1783/* Remove a masked watchpoint at ADDR with the mask MASK.
1784 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1785 or hw_access for an access watchpoint. Returns 0 on success and throws
1786 an error on failure. */
1787
f6ac5f3d
PA
1788int
1789ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1790 target_hw_bp_type rw)
9c06b0b4 1791{
9c06b0b4
TJB
1792 struct lwp_info *lp;
1793 struct ppc_hw_breakpoint p;
1794
926bf92d 1795 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1796
1797 p.version = PPC_DEBUG_CURRENT_VERSION;
1798 p.trigger_type = get_trigger_type (rw);
1799 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1800 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1801 p.addr = addr;
1802 p.addr2 = mask;
1803 p.condition_value = 0;
1804
4c38200f 1805 ALL_LWPS (lp)
dfd4cc63 1806 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1807
1808 return 0;
1809}
1810
0cf6dd15
TJB
1811/* Check whether we have at least one free DVC register. */
1812static int
1813can_use_watchpoint_cond_accel (void)
1814{
1815 struct thread_points *p;
dfd4cc63 1816 int tid = ptid_get_lwp (inferior_ptid);
926bf92d 1817 int cnt = hwdebug_info.num_condition_regs, i;
0cf6dd15
TJB
1818 CORE_ADDR tmp_value;
1819
926bf92d 1820 if (!have_ptrace_hwdebug_interface () || cnt == 0)
0cf6dd15
TJB
1821 return 0;
1822
926bf92d 1823 p = hwdebug_find_thread_points_by_tid (tid, 0);
0cf6dd15
TJB
1824
1825 if (p)
1826 {
1827 for (i = 0; i < max_slots_number; i++)
1828 if (p->hw_breaks[i].hw_break != NULL
1829 && (p->hw_breaks[i].hw_break->condition_mode
1830 != PPC_BREAKPOINT_CONDITION_NONE))
1831 cnt--;
1832
1833 /* There are no available slots now. */
1834 if (cnt <= 0)
1835 return 0;
1836 }
1837
1838 return 1;
1839}
1840
1841/* Calculate the enable bits and the contents of the Data Value Compare
1842 debug register present in BookE processors.
1843
1844 ADDR is the address to be watched, LEN is the length of watched data
1845 and DATA_VALUE is the value which will trigger the watchpoint.
1846 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1847 CONDITION_VALUE will hold the value which should be put in the
1848 DVC register. */
1849static void
1850calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1851 uint32_t *condition_mode, uint64_t *condition_value)
1852{
1853 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1854 rightmost_enabled_byte;
1855 CORE_ADDR addr_end_data, addr_end_dvc;
1856
1857 /* The DVC register compares bytes within fixed-length windows which
1858 are word-aligned, with length equal to that of the DVC register.
1859 We need to calculate where our watch region is relative to that
1860 window and enable comparison of the bytes which fall within it. */
1861
926bf92d 1862 align_offset = addr % hwdebug_info.sizeof_condition;
0cf6dd15
TJB
1863 addr_end_data = addr + len;
1864 addr_end_dvc = (addr - align_offset
926bf92d 1865 + hwdebug_info.sizeof_condition);
0cf6dd15
TJB
1866 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1867 addr_end_data - addr_end_dvc : 0;
1868 num_byte_enable = len - num_bytes_off_dvc;
1869 /* Here, bytes are numbered from right to left. */
1870 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1871 addr_end_dvc - addr_end_data : 0;
1872
1873 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1874 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1875 *condition_mode
1876 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1877
1878 /* Now we need to match the position within the DVC of the comparison
1879 value with where the watch region is relative to the window
1880 (i.e., the ALIGN_OFFSET). */
1881
1882 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1883 << rightmost_enabled_byte * 8);
1884}
1885
1886/* Return the number of memory locations that need to be accessed to
1887 evaluate the expression which generated the given value chain.
1888 Returns -1 if there's any register access involved, or if there are
1889 other kinds of values which are not acceptable in a condition
1890 expression (e.g., lval_computed or lval_internalvar). */
1891static int
a6535de1 1892num_memory_accesses (const std::vector<value_ref_ptr> &chain)
0cf6dd15
TJB
1893{
1894 int found_memory_cnt = 0;
0cf6dd15
TJB
1895
1896 /* The idea here is that evaluating an expression generates a series
1897 of values, one holding the value of every subexpression. (The
1898 expression a*b+c has five subexpressions: a, b, a*b, c, and
1899 a*b+c.) GDB's values hold almost enough information to establish
1900 the criteria given above --- they identify memory lvalues,
1901 register lvalues, computed values, etcetera. So we can evaluate
1902 the expression, and then scan the chain of values that leaves
1903 behind to determine the memory locations involved in the evaluation
1904 of an expression.
1905
1906 However, I don't think that the values returned by inferior
1907 function calls are special in any way. So this function may not
1908 notice that an expression contains an inferior function call.
1909 FIXME. */
1910
a6535de1 1911 for (const value_ref_ptr &iter : chain)
0cf6dd15 1912 {
a6535de1
TT
1913 struct value *v = iter.get ();
1914
0cf6dd15
TJB
1915 /* Constants and values from the history are fine. */
1916 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1917 continue;
1918 else if (VALUE_LVAL (v) == lval_memory)
1919 {
1920 /* A lazy memory lvalue is one that GDB never needed to fetch;
1921 we either just used its address (e.g., `a' in `a.b') or
1922 we never needed it at all (e.g., `a' in `a,b'). */
1923 if (!value_lazy (v))
1924 found_memory_cnt++;
1925 }
0df8b418 1926 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1927 else
1928 return -1;
1929 }
1930
1931 return found_memory_cnt;
1932}
1933
1934/* Verifies whether the expression COND can be implemented using the
1935 DVC (Data Value Compare) register in BookE processors. The expression
1936 must test the watch value for equality with a constant expression.
1937 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1938 which the watch value should be compared and LEN will contain the size
1939 of the constant. */
0cf6dd15
TJB
1940static int
1941check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1942 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1943{
1944 int pc = 1, num_accesses_left, num_accesses_right;
a6535de1
TT
1945 struct value *left_val, *right_val;
1946 std::vector<value_ref_ptr> left_chain, right_chain;
0cf6dd15
TJB
1947
1948 if (cond->elts[0].opcode != BINOP_EQUAL)
1949 return 0;
1950
3a1115a0 1951 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
0cf6dd15
TJB
1952 num_accesses_left = num_memory_accesses (left_chain);
1953
1954 if (left_val == NULL || num_accesses_left < 0)
a6535de1 1955 return 0;
0cf6dd15 1956
3a1115a0 1957 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
0cf6dd15
TJB
1958 num_accesses_right = num_memory_accesses (right_chain);
1959
1960 if (right_val == NULL || num_accesses_right < 0)
a6535de1 1961 return 0;
0cf6dd15
TJB
1962
1963 if (num_accesses_left == 1 && num_accesses_right == 0
1964 && VALUE_LVAL (left_val) == lval_memory
1965 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1966 {
1967 *data_value = value_as_long (right_val);
1968
1969 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1970 the same type as the memory region referenced by LEFT_VAL. */
1971 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1972 }
0cf6dd15
TJB
1973 else if (num_accesses_left == 0 && num_accesses_right == 1
1974 && VALUE_LVAL (right_val) == lval_memory
1975 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1976 {
1977 *data_value = value_as_long (left_val);
1978
1979 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1980 the same type as the memory region referenced by RIGHT_VAL. */
1981 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1982 }
0cf6dd15 1983 else
a6535de1 1984 return 0;
0cf6dd15
TJB
1985
1986 return 1;
1987}
1988
1989/* Return non-zero if the target is capable of using hardware to evaluate
1990 the condition expression, thus only triggering the watchpoint when it is
1991 true. */
57810aa7 1992bool
f6ac5f3d
PA
1993ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1994 int rw,
1995 struct expression *cond)
0cf6dd15
TJB
1996{
1997 CORE_ADDR data_value;
1998
926bf92d
UW
1999 return (have_ptrace_hwdebug_interface ()
2000 && hwdebug_info.num_condition_regs > 0
e7db58ea 2001 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2002}
2003
e09342b5
TJB
2004/* Set up P with the parameters necessary to request a watchpoint covering
2005 LEN bytes starting at ADDR and if possible with condition expression COND
2006 evaluated by hardware. INSERT tells if we are creating a request for
2007 inserting or removing the watchpoint. */
2008
2009static void
2010create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
e76460db
PA
2011 int len, enum target_hw_bp_type type,
2012 struct expression *cond, int insert)
e09342b5 2013{
f16c4e8b 2014 if (len == 1
926bf92d 2015 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2016 {
2017 int use_condition;
2018 CORE_ADDR data_value;
2019
2020 use_condition = (insert? can_use_watchpoint_cond_accel ()
926bf92d 2021 : hwdebug_info.num_condition_regs > 0);
e7db58ea
TJB
2022 if (cond && use_condition && check_condition (addr, cond,
2023 &data_value, &len))
e09342b5
TJB
2024 calculate_dvc (addr, len, data_value, &p->condition_mode,
2025 &p->condition_value);
2026 else
2027 {
2028 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2029 p->condition_value = 0;
2030 }
2031
2032 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2033 p->addr2 = 0;
2034 }
2035 else
2036 {
2037 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2038 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2039 p->condition_value = 0;
2040
2041 /* The watchpoint will trigger if the address of the memory access is
2042 within the defined range, as follows: p->addr <= address < p->addr2.
2043
2044 Note that the above sentence just documents how ptrace interprets
2045 its arguments; the watchpoint is set to watch the range defined by
2046 the user _inclusively_, as specified by the user interface. */
2047 p->addr2 = (uint64_t) addr + len;
2048 }
2049
2050 p->version = PPC_DEBUG_CURRENT_VERSION;
e76460db 2051 p->trigger_type = get_trigger_type (type);
e09342b5
TJB
2052 p->addr = (uint64_t) addr;
2053}
2054
f6ac5f3d
PA
2055int
2056ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2057 enum target_hw_bp_type type,
2058 struct expression *cond)
6ffbb7ab
TJB
2059{
2060 struct lwp_info *lp;
6ffbb7ab
TJB
2061 int ret = -1;
2062
926bf92d 2063 if (have_ptrace_hwdebug_interface ())
e0d24f8d 2064 {
6ffbb7ab
TJB
2065 struct ppc_hw_breakpoint p;
2066
e76460db 2067 create_watchpoint_request (&p, addr, len, type, cond, 1);
6ffbb7ab 2068
4c38200f 2069 ALL_LWPS (lp)
dfd4cc63 2070 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
2071
2072 ret = 0;
e0d24f8d 2073 }
6ffbb7ab
TJB
2074 else
2075 {
2076 long dabr_value;
2077 long read_mode, write_mode;
e0d24f8d 2078
6ffbb7ab
TJB
2079 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2080 {
2081 /* PowerPC 440 requires only the read/write flags to be passed
2082 to the kernel. */
ad422571 2083 read_mode = 1;
6ffbb7ab
TJB
2084 write_mode = 2;
2085 }
2086 else
2087 {
2088 /* PowerPC 970 and other DABR-based processors are required to pass
2089 the Breakpoint Translation bit together with the flags. */
ad422571 2090 read_mode = 5;
6ffbb7ab
TJB
2091 write_mode = 6;
2092 }
1c86e440 2093
6ffbb7ab 2094 dabr_value = addr & ~(read_mode | write_mode);
e76460db 2095 switch (type)
6ffbb7ab
TJB
2096 {
2097 case hw_read:
2098 /* Set read and translate bits. */
2099 dabr_value |= read_mode;
2100 break;
2101 case hw_write:
2102 /* Set write and translate bits. */
2103 dabr_value |= write_mode;
2104 break;
2105 case hw_access:
2106 /* Set read, write and translate bits. */
2107 dabr_value |= read_mode | write_mode;
2108 break;
2109 }
1c86e440 2110
6ffbb7ab
TJB
2111 saved_dabr_value = dabr_value;
2112
4c38200f 2113 ALL_LWPS (lp)
dfd4cc63 2114 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 2115 saved_dabr_value) < 0)
6ffbb7ab
TJB
2116 return -1;
2117
2118 ret = 0;
2119 }
2120
2121 return ret;
e0d24f8d
WZ
2122}
2123
f6ac5f3d
PA
2124int
2125ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2126 enum target_hw_bp_type type,
2127 struct expression *cond)
e0d24f8d 2128{
9f0bdab8 2129 struct lwp_info *lp;
6ffbb7ab 2130 int ret = -1;
9f0bdab8 2131
926bf92d 2132 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2133 {
2134 struct ppc_hw_breakpoint p;
2135
e76460db 2136 create_watchpoint_request (&p, addr, len, type, cond, 0);
6ffbb7ab 2137
4c38200f 2138 ALL_LWPS (lp)
dfd4cc63 2139 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
2140
2141 ret = 0;
2142 }
2143 else
2144 {
2145 saved_dabr_value = 0;
4c38200f 2146 ALL_LWPS (lp)
dfd4cc63 2147 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 2148 saved_dabr_value) < 0)
6ffbb7ab
TJB
2149 return -1;
2150
2151 ret = 0;
2152 }
2153
2154 return ret;
e0d24f8d
WZ
2155}
2156
135340af
PA
2157void
2158ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
e0d24f8d 2159{
dfd4cc63 2160 int tid = ptid_get_lwp (lp->ptid);
6ffbb7ab 2161
926bf92d 2162 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2163 {
2164 int i;
2165 struct thread_points *p;
2166 struct hw_break_tuple *hw_breaks;
2167
2168 if (VEC_empty (thread_points_p, ppc_threads))
2169 return;
2170
0df8b418 2171 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2172 p = VEC_last (thread_points_p, ppc_threads);
2173 hw_breaks = p->hw_breaks;
2174
0df8b418 2175 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2176 for (i = 0; i < max_slots_number; i++)
2177 if (hw_breaks[i].hw_break)
aacbb8a5
LM
2178 {
2179 /* Older kernels did not make new threads inherit their parent
2180 thread's debug state, so we always clear the slot and replicate
2181 the debug state ourselves, ensuring compatibility with all
2182 kernels. */
2183
2184 /* The ppc debug resource accounting is done through "slots".
2185 Ask the kernel the deallocate this specific *point's slot. */
2186 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2187
926bf92d 2188 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
aacbb8a5 2189 }
6ffbb7ab
TJB
2190 }
2191 else
2192 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2193}
2194
2195static void
2196ppc_linux_thread_exit (struct thread_info *tp, int silent)
2197{
2198 int i;
dfd4cc63 2199 int tid = ptid_get_lwp (tp->ptid);
6ffbb7ab
TJB
2200 struct hw_break_tuple *hw_breaks;
2201 struct thread_points *t = NULL, *p;
2202
926bf92d 2203 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2204 return;
2205
2206 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2207 if (p->tid == tid)
2208 {
2209 t = p;
2210 break;
2211 }
2212
2213 if (t == NULL)
2214 return;
2215
2216 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2217
2218 hw_breaks = t->hw_breaks;
2219
2220 for (i = 0; i < max_slots_number; i++)
2221 if (hw_breaks[i].hw_break)
2222 xfree (hw_breaks[i].hw_break);
2223
2224 xfree (t->hw_breaks);
2225 xfree (t);
e0d24f8d
WZ
2226}
2227
57810aa7 2228bool
f6ac5f3d 2229ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
e0d24f8d 2230{
f865ee35 2231 siginfo_t siginfo;
e0d24f8d 2232
f865ee35 2233 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
57810aa7 2234 return false;
e0d24f8d 2235
f865ee35
JK
2236 if (siginfo.si_signo != SIGTRAP
2237 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
57810aa7 2238 return false;
e0d24f8d 2239
926bf92d 2240 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2241 {
2242 int i;
2243 struct thread_points *t;
2244 struct hw_break_tuple *hw_breaks;
2245 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2246 int slot = siginfo.si_errno;
6ffbb7ab 2247
dfd4cc63 2248 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
6ffbb7ab
TJB
2249
2250 /* Find out if this *point is a hardware breakpoint.
2251 If so, we should return 0. */
2252 if (t)
2253 {
2254 hw_breaks = t->hw_breaks;
2255 for (i = 0; i < max_slots_number; i++)
2256 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2257 && hw_breaks[i].hw_break->trigger_type
2258 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
57810aa7 2259 return false;
6ffbb7ab
TJB
2260 }
2261 }
2262
f865ee35 2263 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
57810aa7 2264 return true;
e0d24f8d
WZ
2265}
2266
57810aa7 2267bool
f6ac5f3d 2268ppc_linux_nat_target::stopped_by_watchpoint ()
9f0bdab8
DJ
2269{
2270 CORE_ADDR addr;
f6ac5f3d 2271 return stopped_data_address (&addr);
9f0bdab8
DJ
2272}
2273
57810aa7 2274bool
f6ac5f3d
PA
2275ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2276 CORE_ADDR start,
2277 int length)
5009afc5 2278{
b7622095
LM
2279 int mask;
2280
926bf92d 2281 if (have_ptrace_hwdebug_interface ()
6ffbb7ab
TJB
2282 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2283 return start <= addr && start + length >= addr;
2284 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2285 mask = 3;
2286 else
2287 mask = 7;
2288
2289 addr &= ~mask;
2290
0df8b418 2291 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2292 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2293}
2294
9c06b0b4
TJB
2295/* Return the number of registers needed for a masked hardware watchpoint. */
2296
f6ac5f3d
PA
2297int
2298ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
9c06b0b4 2299{
926bf92d
UW
2300 if (!have_ptrace_hwdebug_interface ()
2301 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
9c06b0b4
TJB
2302 return -1;
2303 else if ((mask & 0xC0000000) != 0xC0000000)
2304 {
2305 warning (_("The given mask covers kernel address space "
2306 "and cannot be used.\n"));
2307
2308 return -2;
2309 }
2310 else
2311 return 2;
2312}
2313
f6ac5f3d
PA
2314void
2315ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
45229ea4 2316{
bcc0c096 2317 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
05f13b9c 2318
45229ea4 2319 if (regno >= 0)
56be3814 2320 store_register (regcache, tid, regno);
45229ea4 2321 else
56be3814 2322 store_ppc_registers (regcache, tid);
45229ea4
EZ
2323}
2324
f2db237a
AM
2325/* Functions for transferring registers between a gregset_t or fpregset_t
2326 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2327 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2328 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2329 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2330
50c9bd31 2331void
7f7fe91e 2332supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2333{
f2db237a 2334 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2335
f2db237a 2336 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2337}
2338
fdb28ac4 2339void
7f7fe91e
UW
2340fill_gregset (const struct regcache *regcache,
2341 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2342{
f2db237a 2343 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2344
f2db237a
AM
2345 if (regno == -1)
2346 memset (gregsetp, 0, sizeof (*gregsetp));
2347 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2348}
2349
50c9bd31 2350void
7f7fe91e 2351supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2352{
f2db237a
AM
2353 const struct regset *regset = ppc_linux_fpregset ();
2354
2355 ppc_supply_fpregset (regset, regcache, -1,
2356 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2357}
fdb28ac4 2358
fdb28ac4 2359void
7f7fe91e
UW
2360fill_fpregset (const struct regcache *regcache,
2361 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2362{
f2db237a
AM
2363 const struct regset *regset = ppc_linux_fpregset ();
2364
2365 ppc_collect_fpregset (regset, regcache, regno,
2366 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2367}
10d6c8cd 2368
409c383c
UW
2369static int
2370ppc_linux_target_wordsize (void)
2371{
2372 int wordsize = 4;
2373
2374 /* Check for 64-bit inferior process. This is the case when the host is
2375 64-bit, and in addition the top bit of the MSR register is set. */
2376#ifdef __powerpc64__
2377 long msr;
2378
dfd4cc63 2379 int tid = ptid_get_lwp (inferior_ptid);
409c383c 2380 if (tid == 0)
dfd4cc63 2381 tid = ptid_get_pid (inferior_ptid);
409c383c
UW
2382
2383 errno = 0;
2384 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
cdf43629 2385 if (errno == 0 && ppc64_64bit_inferior_p (msr))
409c383c
UW
2386 wordsize = 8;
2387#endif
2388
2389 return wordsize;
2390}
2391
f6ac5f3d
PA
2392int
2393ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2394 gdb_byte *endptr, CORE_ADDR *typep,
2395 CORE_ADDR *valp)
409c383c
UW
2396{
2397 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2398 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2399 gdb_byte *ptr = *readptr;
2400
2401 if (endptr == ptr)
2402 return 0;
2403
2404 if (endptr - ptr < sizeof_auxv_field * 2)
2405 return -1;
2406
e17a4113 2407 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2408 ptr += sizeof_auxv_field;
e17a4113 2409 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2410 ptr += sizeof_auxv_field;
2411
2412 *readptr = ptr;
2413 return 1;
2414}
2415
f6ac5f3d
PA
2416const struct target_desc *
2417ppc_linux_nat_target::read_description ()
310a98e1 2418{
7284e1be 2419 int altivec = 0;
604c2f83 2420 int vsx = 0;
69abc51c 2421 int isa205 = 0;
f4d9bade 2422 int cell = 0;
7284e1be 2423
dfd4cc63 2424 int tid = ptid_get_lwp (inferior_ptid);
7284e1be 2425 if (tid == 0)
dfd4cc63 2426 tid = ptid_get_pid (inferior_ptid);
7284e1be 2427
310a98e1
DJ
2428 if (have_ptrace_getsetevrregs)
2429 {
2430 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2431
2432 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2433 return tdesc_powerpc_e500l;
2434
2435 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2436 Anything else needs to be reported. */
2437 else if (errno != EIO)
2438 perror_with_name (_("Unable to fetch SPE registers"));
2439 }
2440
0154d990
EBM
2441 if (have_ptrace_getsetvsxregs
2442 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX))
604c2f83
LM
2443 {
2444 gdb_vsxregset_t vsxregset;
2445
2446 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2447 vsx = 1;
2448
2449 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2450 Anything else needs to be reported. */
2451 else if (errno != EIO)
2452 perror_with_name (_("Unable to fetch VSX registers"));
2453 }
2454
0154d990
EBM
2455 if (have_ptrace_getvrregs
2456 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC))
7284e1be
UW
2457 {
2458 gdb_vrregset_t vrregset;
2459
2460 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2461 altivec = 1;
2462
2463 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2464 Anything else needs to be reported. */
2465 else if (errno != EIO)
2466 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2467 }
2468
f04c6d38 2469 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2470 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2471 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2472 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2473 half of the register are for Decimal Floating Point, we check if that
2474 feature is available to decide the size of the FPSCR. */
2475 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2476 isa205 = 1;
2477
f4d9bade
UW
2478 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2479 cell = 1;
2480
409c383c
UW
2481 if (ppc_linux_target_wordsize () == 8)
2482 {
f4d9bade
UW
2483 if (cell)
2484 return tdesc_powerpc_cell64l;
2485 else if (vsx)
409c383c
UW
2486 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2487 else if (altivec)
0df8b418
MS
2488 return isa205
2489 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2490
2491 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2492 }
7284e1be 2493
f4d9bade
UW
2494 if (cell)
2495 return tdesc_powerpc_cell32l;
2496 else if (vsx)
69abc51c 2497 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2498 else if (altivec)
69abc51c 2499 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2500
69abc51c 2501 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2502}
2503
10d6c8cd
DJ
2504void
2505_initialize_ppc_linux_nat (void)
2506{
f6ac5f3d 2507 linux_target = &the_ppc_linux_nat_target;
310a98e1 2508
76727919 2509 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
6ffbb7ab 2510
10d6c8cd 2511 /* Register the target. */
d9f719f1 2512 add_inf_child_target (linux_target);
10d6c8cd 2513}