]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-linux-nat.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
0b302171
JB
3 Copyright (C) 1988-1989, 1991-1992, 1994, 1996, 2000-2012 Free
4 Software Foundation, Inc.
c877c8e6
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
20
21#include "defs.h"
e162d11b 22#include "gdb_string.h"
6ffbb7ab 23#include "observer.h"
c877c8e6
KB
24#include "frame.h"
25#include "inferior.h"
6ffbb7ab 26#include "gdbthread.h"
c877c8e6 27#include "gdbcore.h"
4e052eda 28#include "regcache.h"
383f0f5b 29#include "gdb_assert.h"
10d6c8cd
DJ
30#include "target.h"
31#include "linux-nat.h"
c877c8e6 32
411cb3f9 33#include <stdint.h>
c877c8e6
KB
34#include <sys/types.h>
35#include <sys/param.h>
36#include <signal.h>
37#include <sys/user.h>
38#include <sys/ioctl.h>
2555fe1a 39#include "gdb_wait.h"
c877c8e6
KB
40#include <fcntl.h>
41#include <sys/procfs.h>
45229ea4 42#include <sys/ptrace.h>
c877c8e6 43
0df8b418 44/* Prototypes for supply_gregset etc. */
c60c0f5f 45#include "gregset.h"
16333c4f 46#include "ppc-tdep.h"
7284e1be
UW
47#include "ppc-linux-tdep.h"
48
b7622095
LM
49/* Required when using the AUXV. */
50#include "elf/common.h"
51#include "auxv.h"
52
7284e1be
UW
53/* This sometimes isn't defined. */
54#ifndef PT_ORIG_R3
55#define PT_ORIG_R3 34
56#endif
57#ifndef PT_TRAP
58#define PT_TRAP 40
59#endif
c60c0f5f 60
69abc51c
TJB
61/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
62 If they aren't, we can provide them ourselves (their values are fixed
63 because they are part of the kernel ABI). They are used in the AT_HWCAP
64 entry of the AUXV. */
f4d9bade
UW
65#ifndef PPC_FEATURE_CELL
66#define PPC_FEATURE_CELL 0x00010000
67#endif
b7622095
LM
68#ifndef PPC_FEATURE_BOOKE
69#define PPC_FEATURE_BOOKE 0x00008000
70#endif
f04c6d38
TJB
71#ifndef PPC_FEATURE_HAS_DFP
72#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69abc51c 73#endif
b7622095 74
9abe5450
EZ
75/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
76 configure time check. Some older glibc's (for instance 2.2.1)
77 don't have a specific powerpc version of ptrace.h, and fall back on
78 a generic one. In such cases, sys/ptrace.h defines
79 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
80 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
81 PTRACE_SETVRREGS to be. This also makes a configury check pretty
82 much useless. */
83
84/* These definitions should really come from the glibc header files,
85 but Glibc doesn't know about the vrregs yet. */
86#ifndef PTRACE_GETVRREGS
87#define PTRACE_GETVRREGS 18
88#define PTRACE_SETVRREGS 19
89#endif
90
604c2f83
LM
91/* PTRACE requests for POWER7 VSX registers. */
92#ifndef PTRACE_GETVSXREGS
93#define PTRACE_GETVSXREGS 27
94#define PTRACE_SETVSXREGS 28
95#endif
01904826
JB
96
97/* Similarly for the ptrace requests for getting / setting the SPE
98 registers (ev0 -- ev31, acc, and spefscr). See the description of
99 gdb_evrregset_t for details. */
100#ifndef PTRACE_GETEVRREGS
101#define PTRACE_GETEVRREGS 20
102#define PTRACE_SETEVRREGS 21
103#endif
104
6ffbb7ab
TJB
105/* Similarly for the hardware watchpoint support. These requests are used
106 when the BookE kernel interface is not available. */
e0d24f8d
WZ
107#ifndef PTRACE_GET_DEBUGREG
108#define PTRACE_GET_DEBUGREG 25
109#endif
110#ifndef PTRACE_SET_DEBUGREG
111#define PTRACE_SET_DEBUGREG 26
112#endif
113#ifndef PTRACE_GETSIGINFO
114#define PTRACE_GETSIGINFO 0x4202
115#endif
01904826 116
6ffbb7ab
TJB
117/* These requests are used when the BookE kernel interface is available.
118 It exposes the additional debug features of BookE processors, such as
119 ranged breakpoints and watchpoints and hardware-accelerated condition
120 evaluation. */
121#ifndef PPC_PTRACE_GETHWDBGINFO
122
123/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
124 interface is not present in ptrace.h, so we'll have to pretty much include
125 it all here so that the code at least compiles on older systems. */
126#define PPC_PTRACE_GETHWDBGINFO 0x89
127#define PPC_PTRACE_SETHWDEBUG 0x88
128#define PPC_PTRACE_DELHWDEBUG 0x87
129
130struct ppc_debug_info
131{
0df8b418 132 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
133 uint32_t num_instruction_bps;
134 uint32_t num_data_bps;
135 uint32_t num_condition_regs;
136 uint32_t data_bp_alignment;
0df8b418 137 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
138 uint64_t features;
139};
140
141/* Features will have bits indicating whether there is support for: */
142#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
143#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
144#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
145#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
146
147struct ppc_hw_breakpoint
148{
149 uint32_t version; /* currently, version must be 1 */
150 uint32_t trigger_type; /* only some combinations allowed */
151 uint32_t addr_mode; /* address match mode */
152 uint32_t condition_mode; /* break/watchpoint condition flags */
153 uint64_t addr; /* break/watchpoint address */
154 uint64_t addr2; /* range end or mask */
155 uint64_t condition_value; /* contents of the DVC register */
156};
157
158/* Trigger type. */
159#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
160#define PPC_BREAKPOINT_TRIGGER_READ 0x2
161#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
162#define PPC_BREAKPOINT_TRIGGER_RW 0x6
163
164/* Address mode. */
165#define PPC_BREAKPOINT_MODE_EXACT 0x0
166#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
167#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
168#define PPC_BREAKPOINT_MODE_MASK 0x3
169
170/* Condition mode. */
171#define PPC_BREAKPOINT_CONDITION_NONE 0x0
172#define PPC_BREAKPOINT_CONDITION_AND 0x1
173#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
174#define PPC_BREAKPOINT_CONDITION_OR 0x2
175#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
176#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
177#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
178#define PPC_BREAKPOINT_CONDITION_BE(n) \
179 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
180#endif /* PPC_PTRACE_GETHWDBGINFO */
181
182
183
1dfe79e8
SDJ
184/* Similarly for the general-purpose (gp0 -- gp31)
185 and floating-point registers (fp0 -- fp31). */
186#ifndef PTRACE_GETREGS
187#define PTRACE_GETREGS 12
188#endif
189#ifndef PTRACE_SETREGS
190#define PTRACE_SETREGS 13
191#endif
192#ifndef PTRACE_GETFPREGS
193#define PTRACE_GETFPREGS 14
194#endif
195#ifndef PTRACE_SETFPREGS
196#define PTRACE_SETFPREGS 15
197#endif
198
9abe5450
EZ
199/* This oddity is because the Linux kernel defines elf_vrregset_t as
200 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
201 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
202 the vrsave as an extra 4 bytes at the end. I opted for creating a
203 flat array of chars, so that it is easier to manipulate for gdb.
204
205 There are 32 vector registers 16 bytes longs, plus a VSCR register
206 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 207 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
208 Appended to this there is space for the VRSAVE register: 4 bytes.
209 Even though this vrsave register is not included in the regset
210 typedef, it is handled by the ptrace requests.
211
212 Note that GNU/Linux doesn't support little endian PPC hardware,
213 therefore the offset at which the real value of the VSCR register
214 is located will be always 12 bytes.
215
216 The layout is like this (where x is the actual value of the vscr reg): */
217
218/* *INDENT-OFF* */
219/*
220 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
221 <-------> <-------><-------><->
222 VR0 VR31 VSCR VRSAVE
223*/
224/* *INDENT-ON* */
225
226#define SIZEOF_VRREGS 33*16+4
227
228typedef char gdb_vrregset_t[SIZEOF_VRREGS];
229
604c2f83
LM
230/* This is the layout of the POWER7 VSX registers and the way they overlap
231 with the existing FPR and VMX registers.
232
233 VSR doubleword 0 VSR doubleword 1
234 ----------------------------------------------------------------
235 VSR[0] | FPR[0] | |
236 ----------------------------------------------------------------
237 VSR[1] | FPR[1] | |
238 ----------------------------------------------------------------
239 | ... | |
240 | ... | |
241 ----------------------------------------------------------------
242 VSR[30] | FPR[30] | |
243 ----------------------------------------------------------------
244 VSR[31] | FPR[31] | |
245 ----------------------------------------------------------------
246 VSR[32] | VR[0] |
247 ----------------------------------------------------------------
248 VSR[33] | VR[1] |
249 ----------------------------------------------------------------
250 | ... |
251 | ... |
252 ----------------------------------------------------------------
253 VSR[62] | VR[30] |
254 ----------------------------------------------------------------
255 VSR[63] | VR[31] |
256 ----------------------------------------------------------------
257
258 VSX has 64 128bit registers. The first 32 registers overlap with
259 the FP registers (doubleword 0) and hence extend them with additional
260 64 bits (doubleword 1). The other 32 regs overlap with the VMX
261 registers. */
262#define SIZEOF_VSXREGS 32*8
263
264typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 265
b021a221 266/* On PPC processors that support the Signal Processing Extension
01904826 267 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
268 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
269 ptrace calls only access the lower half of each register, to allow
270 them to behave the same way they do on non-SPE systems. There's a
271 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
272 read and write the top halves of all the general-purpose registers
273 at once, along with some SPE-specific registers.
01904826
JB
274
275 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 276 bits long. It has unnamed raw registers that hold the upper halves
b021a221 277 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
278 'ev0' -- 'ev31', are pseudo-registers that splice the top and
279 bottom halves together.
01904826
JB
280
281 This is the structure filled in by PTRACE_GETEVRREGS and written to
282 the inferior's registers by PTRACE_SETEVRREGS. */
283struct gdb_evrregset_t
284{
285 unsigned long evr[32];
286 unsigned long long acc;
287 unsigned long spefscr;
288};
289
604c2f83
LM
290/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
291 PTRACE_SETVSXREGS requests, for reading and writing the VSX
292 POWER7 registers 0 through 31. Zero if we've tried one of them and
293 gotten an error. Note that VSX registers 32 through 63 overlap
294 with VR registers 0 through 31. */
295int have_ptrace_getsetvsxregs = 1;
01904826
JB
296
297/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
298 PTRACE_SETVRREGS requests, for reading and writing the Altivec
299 registers. Zero if we've tried one of them and gotten an
300 error. */
9abe5450
EZ
301int have_ptrace_getvrregs = 1;
302
01904826
JB
303/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
304 PTRACE_SETEVRREGS requests, for reading and writing the SPE
305 registers. Zero if we've tried one of them and gotten an
306 error. */
307int have_ptrace_getsetevrregs = 1;
308
1dfe79e8
SDJ
309/* Non-zero if our kernel may support the PTRACE_GETREGS and
310 PTRACE_SETREGS requests, for reading and writing the
311 general-purpose registers. Zero if we've tried one of
312 them and gotten an error. */
313int have_ptrace_getsetregs = 1;
314
315/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
316 PTRACE_SETFPREGS requests, for reading and writing the
317 floating-pointers registers. Zero if we've tried one of
318 them and gotten an error. */
319int have_ptrace_getsetfpregs = 1;
320
16333c4f
EZ
321/* *INDENT-OFF* */
322/* registers layout, as presented by the ptrace interface:
323PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
327PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
335PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336/* *INDENT_ON * */
c877c8e6 337
45229ea4 338static int
e101270f 339ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 340{
16333c4f 341 int u_addr = -1;
e101270f 342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
411cb3f9 345 int wordsize = sizeof (long);
16333c4f 346
0df8b418 347 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 351
49ff75ad
JB
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
383f0f5b
JB
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 359
0df8b418 360 /* UISA special purpose registers: 1 slot each. */
e101270f 361 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 362 u_addr = PT_NIP * wordsize;
dc5cfeb6 363 if (regno == tdep->ppc_lr_regnum)
49ff75ad 364 u_addr = PT_LNK * wordsize;
dc5cfeb6 365 if (regno == tdep->ppc_cr_regnum)
49ff75ad 366 u_addr = PT_CCR * wordsize;
dc5cfeb6 367 if (regno == tdep->ppc_xer_regnum)
49ff75ad 368 u_addr = PT_XER * wordsize;
dc5cfeb6 369 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 370 u_addr = PT_CTR * wordsize;
f8c59253 371#ifdef PT_MQ
dc5cfeb6 372 if (regno == tdep->ppc_mq_regnum)
49ff75ad 373 u_addr = PT_MQ * wordsize;
f8c59253 374#endif
dc5cfeb6 375 if (regno == tdep->ppc_ps_regnum)
49ff75ad 376 u_addr = PT_MSR * wordsize;
7284e1be
UW
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 388 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
16333c4f 402 return u_addr;
c877c8e6
KB
403}
404
604c2f83
LM
405/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408static void
409fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410{
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = get_regcache_arch (regcache);
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431}
432
9abe5450
EZ
433/* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436static void
56be3814 437fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
438{
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
40a6adc1
MD
442 struct gdbarch *gdbarch = get_regcache_arch (regcache);
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
e2e0b3e5 454 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 463
56be3814 464 regcache_raw_supply (regcache, regno,
0df8b418
MS
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
467}
468
01904826
JB
469/* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477static void
478get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479{
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
e2e0b3e5 492 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497}
498
6ced10dd
JB
499/* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
01904826 503static void
56be3814 504fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 505{
40a6adc1
MD
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
508 struct gdb_evrregset_t evrregs;
509
6ced10dd 510 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 512 gdb_assert (sizeof (evrregs.acc)
40a6adc1 513 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 514 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 516
01904826
JB
517 get_spe_registers (tid, &evrregs);
518
6ced10dd 519 if (regno == -1)
01904826 520 {
6ced10dd
JB
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
56be3814 524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 525 &evrregs.evr[i]);
01904826 526 }
6ced10dd
JB
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 529 regcache_raw_supply (regcache, regno,
6ced10dd
JB
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
56be3814 534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
56be3814 538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 539 &evrregs.spefscr);
01904826
JB
540}
541
45229ea4 542static void
56be3814 543fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 544{
40a6adc1
MD
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 547 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 549 int bytes_transferred;
0df8b418 550 unsigned int offset; /* Offset of registers within the u area. */
d9d9c31f 551 char buf[MAX_REGISTER_SIZE];
45229ea4 552
be8626e0 553 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
56be3814 561 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
604c2f83
LM
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
be8626e0 576 else if (spe_register_p (gdbarch, regno))
01904826 577 {
56be3814 578 fetch_spe_register (regcache, tid, regno);
01904826
JB
579 return;
580 }
9abe5450 581
45229ea4
EZ
582 if (regaddr == -1)
583 {
40a6adc1 584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 585 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
586 return;
587 }
588
411cb3f9 589 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
4a19ea35 592 for (bytes_transferred = 0;
40a6adc1 593 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 594 bytes_transferred += sizeof (long))
45229ea4 595 {
11fde611
JK
596 long l;
597
45229ea4 598 errno = 0;
11fde611 599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 600 regaddr += sizeof (long);
45229ea4
EZ
601 if (errno != 0)
602 {
bc97b3ba 603 char message[128];
8c042590
PM
604 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 606 perror_with_name (message);
45229ea4 607 }
11fde611 608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 609 }
56d0d96a 610
4a19ea35
JB
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
411cb3f9 613 (long). */
40a6adc1 614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
56be3814 618 regcache_raw_supply (regcache, regno, buf);
4a19ea35 619 }
40a6adc1 620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
40a6adc1 624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 625 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
626 }
627 else
a44bddec 628 internal_error (__FILE__, __LINE__,
e2e0b3e5 629 _("fetch_register: unexpected byte order: %d"),
40a6adc1 630 gdbarch_byte_order (gdbarch));
45229ea4
EZ
631}
632
604c2f83
LM
633static void
634supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635{
636 int i;
637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646}
647
9abe5450 648static void
56be3814 649supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
650{
651 int i;
40a6adc1
MD
652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
56be3814 665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 666 *vrregsetp + i * vrregsize + offset);
9abe5450 667 else
56be3814 668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 669 *vrregsetp + i * vrregsize);
9abe5450
EZ
670 }
671}
672
604c2f83
LM
673static void
674fetch_vsx_registers (struct regcache *regcache, int tid)
675{
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690}
691
9abe5450 692static void
56be3814 693fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
694{
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
e2e0b3e5 706 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 707 }
56be3814 708 supply_vrregset (regcache, &regs);
9abe5450
EZ
709}
710
1dfe79e8
SDJ
711/* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719static int
720fetch_all_gp_regs (struct regcache *regcache, int tid)
721{
722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739}
740
741/* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747static void
748fetch_gp_regs (struct regcache *regcache, int tid)
749{
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763}
764
765/* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773static int
774fetch_all_fp_regs (struct regcache *regcache, int tid)
775{
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791}
792
793/* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799static void
800fetch_fp_regs (struct regcache *regcache, int tid)
801{
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815}
816
45229ea4 817static void
56be3814 818fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
819{
820 int i;
40a6adc1
MD
821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 823
1dfe79e8 824 fetch_gp_regs (regcache, tid);
32b99774 825 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 826 fetch_fp_regs (regcache, tid);
40a6adc1 827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 828 if (tdep->ppc_ps_regnum != -1)
56be3814 829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 830 if (tdep->ppc_cr_regnum != -1)
56be3814 831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 832 if (tdep->ppc_lr_regnum != -1)
56be3814 833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 834 if (tdep->ppc_ctr_regnum != -1)
56be3814 835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 836 if (tdep->ppc_xer_regnum != -1)
56be3814 837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 838 if (tdep->ppc_mq_regnum != -1)
56be3814 839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
32b99774 845 if (tdep->ppc_fpscr_regnum != -1)
56be3814 846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 849 fetch_altivec_registers (regcache, tid);
604c2f83
LM
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
6ced10dd 853 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 854 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
855}
856
857/* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
10d6c8cd 860static void
28439f5e
PA
861ppc_linux_fetch_inferior_registers (struct target_ops *ops,
862 struct regcache *regcache, int regno)
45229ea4 863{
0df8b418 864 /* Overload thread id onto process id. */
05f13b9c
EZ
865 int tid = TIDGET (inferior_ptid);
866
0df8b418 867 /* No thread id, just use process id. */
05f13b9c
EZ
868 if (tid == 0)
869 tid = PIDGET (inferior_ptid);
870
9abe5450 871 if (regno == -1)
56be3814 872 fetch_ppc_registers (regcache, tid);
45229ea4 873 else
56be3814 874 fetch_register (regcache, tid, regno);
45229ea4
EZ
875}
876
0df8b418 877/* Store one VSX register. */
604c2f83
LM
878static void
879store_vsx_register (const struct regcache *regcache, int tid, int regno)
880{
881 int ret;
882 gdb_vsxregset_t regs;
883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
886
9fe70b4f 887 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
888 if (ret < 0)
889 {
890 if (errno == EIO)
891 {
892 have_ptrace_getsetvsxregs = 0;
893 return;
894 }
895 perror_with_name (_("Unable to fetch VSX register"));
896 }
897
898 regcache_raw_collect (regcache, regno, regs +
899 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
900
901 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
902 if (ret < 0)
903 perror_with_name (_("Unable to store VSX register"));
904}
905
0df8b418 906/* Store one register. */
9abe5450 907static void
56be3814 908store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
909{
910 int ret;
911 int offset = 0;
912 gdb_vrregset_t regs;
40a6adc1
MD
913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
916
917 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
918 if (ret < 0)
919 {
920 if (errno == EIO)
921 {
922 have_ptrace_getvrregs = 0;
923 return;
924 }
e2e0b3e5 925 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
926 }
927
928 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
929 long on the hardware. */
930 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 931 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 932
56be3814 933 regcache_raw_collect (regcache, regno,
0df8b418
MS
934 regs + (regno
935 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
936
937 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
938 if (ret < 0)
e2e0b3e5 939 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
940}
941
01904826
JB
942/* Assuming TID referrs to an SPE process, set the top halves of TID's
943 general-purpose registers and its SPE-specific registers to the
944 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
945 nothing.
946
947 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
948 PTRACE_SETEVRREGS requests are supported is isolated here, and in
949 get_spe_registers. */
950static void
951set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
952{
953 if (have_ptrace_getsetevrregs)
954 {
955 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 return;
957 else
958 {
959 /* EIO means that the PTRACE_SETEVRREGS request isn't
960 supported; we fail silently, and don't try the call
961 again. */
962 if (errno == EIO)
963 have_ptrace_getsetevrregs = 0;
964 else
965 /* Anything else needs to be reported. */
e2e0b3e5 966 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
967 }
968 }
969}
970
6ced10dd
JB
971/* Write GDB's value for the SPE-specific raw register REGNO to TID.
972 If REGNO is -1, write the values of all the SPE-specific
973 registers. */
01904826 974static void
56be3814 975store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 976{
40a6adc1
MD
977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
979 struct gdb_evrregset_t evrregs;
980
6ced10dd 981 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 982 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 983 gdb_assert (sizeof (evrregs.acc)
40a6adc1 984 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 985 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 986 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 987
6ced10dd
JB
988 if (regno == -1)
989 /* Since we're going to write out every register, the code below
990 should store to every field of evrregs; if that doesn't happen,
991 make it obvious by initializing it with suspicious values. */
992 memset (&evrregs, 42, sizeof (evrregs));
993 else
994 /* We can only read and write the entire EVR register set at a
995 time, so to write just a single register, we do a
996 read-modify-write maneuver. */
997 get_spe_registers (tid, &evrregs);
998
999 if (regno == -1)
01904826 1000 {
6ced10dd
JB
1001 int i;
1002
1003 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1004 regcache_raw_collect (regcache,
6ced10dd
JB
1005 tdep->ppc_ev0_upper_regnum + i,
1006 &evrregs.evr[i]);
01904826 1007 }
6ced10dd
JB
1008 else if (tdep->ppc_ev0_upper_regnum <= regno
1009 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 1010 regcache_raw_collect (regcache, regno,
6ced10dd
JB
1011 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_acc_regnum)
56be3814 1015 regcache_raw_collect (regcache,
6ced10dd
JB
1016 tdep->ppc_acc_regnum,
1017 &evrregs.acc);
1018
1019 if (regno == -1
1020 || regno == tdep->ppc_spefscr_regnum)
56be3814 1021 regcache_raw_collect (regcache,
6ced10dd
JB
1022 tdep->ppc_spefscr_regnum,
1023 &evrregs.spefscr);
01904826
JB
1024
1025 /* Write back the modified register set. */
1026 set_spe_registers (tid, &evrregs);
1027}
1028
45229ea4 1029static void
56be3814 1030store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1031{
40a6adc1
MD
1032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 1034 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1035 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1036 int i;
4a19ea35 1037 size_t bytes_to_transfer;
d9d9c31f 1038 char buf[MAX_REGISTER_SIZE];
45229ea4 1039
be8626e0 1040 if (altivec_register_p (gdbarch, regno))
45229ea4 1041 {
56be3814 1042 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
1043 return;
1044 }
604c2f83
LM
1045 if (vsx_register_p (gdbarch, regno))
1046 {
1047 store_vsx_register (regcache, tid, regno);
1048 return;
1049 }
be8626e0 1050 else if (spe_register_p (gdbarch, regno))
01904826 1051 {
56be3814 1052 store_spe_register (regcache, tid, regno);
01904826
JB
1053 return;
1054 }
45229ea4 1055
9abe5450
EZ
1056 if (regaddr == -1)
1057 return;
1058
4a19ea35
JB
1059 /* First collect the register. Keep in mind that the regcache's
1060 idea of the register's size may not be a multiple of sizeof
411cb3f9 1061 (long). */
56d0d96a 1062 memset (buf, 0, sizeof buf);
40a6adc1
MD
1063 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1064 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1065 {
1066 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1067 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1068 }
40a6adc1 1069 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1070 {
1071 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1072 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1073 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1074 }
1075
411cb3f9 1076 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1077 {
11fde611
JK
1078 long l;
1079
1080 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1081 errno = 0;
11fde611 1082 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1083 regaddr += sizeof (long);
e3f36dbd
KB
1084
1085 if (errno == EIO
7284e1be
UW
1086 && (regno == tdep->ppc_fpscr_regnum
1087 || regno == PPC_ORIG_R3_REGNUM
1088 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1089 {
7284e1be
UW
1090 /* Some older kernel versions don't allow fpscr, orig_r3
1091 or trap to be written. */
e3f36dbd
KB
1092 continue;
1093 }
1094
45229ea4
EZ
1095 if (errno != 0)
1096 {
bc97b3ba 1097 char message[128];
8c042590
PM
1098 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1099 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1100 perror_with_name (message);
45229ea4
EZ
1101 }
1102 }
1103}
1104
604c2f83
LM
1105static void
1106fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1107{
1108 int i;
1109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1112
1113 for (i = 0; i < ppc_num_vshrs; i++)
1114 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1115 *vsxregsetp + i * vsxregsize);
1116}
1117
9abe5450 1118static void
56be3814 1119fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1120{
1121 int i;
40a6adc1
MD
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1124 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1125 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1126 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1127
1128 for (i = 0; i < num_of_vrregs; i++)
1129 {
1130 /* The last 2 registers of this set are only 32 bit long, not
1131 128, but only VSCR is fetched as a 16 bytes quantity. */
1132 if (i == (num_of_vrregs - 2))
56be3814 1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1134 *vrregsetp + i * vrregsize + offset);
9abe5450 1135 else
56be3814 1136 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1137 *vrregsetp + i * vrregsize);
9abe5450
EZ
1138 }
1139}
1140
604c2f83
LM
1141static void
1142store_vsx_registers (const struct regcache *regcache, int tid)
1143{
1144 int ret;
1145 gdb_vsxregset_t regs;
1146
1147 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1148 if (ret < 0)
1149 {
1150 if (errno == EIO)
1151 {
1152 have_ptrace_getsetvsxregs = 0;
1153 return;
1154 }
1155 perror_with_name (_("Couldn't get VSX registers"));
1156 }
1157
1158 fill_vsxregset (regcache, &regs);
1159
1160 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1161 perror_with_name (_("Couldn't write VSX registers"));
1162}
1163
9abe5450 1164static void
56be3814 1165store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1166{
1167 int ret;
1168 gdb_vrregset_t regs;
1169
0897f59b 1170 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1171 if (ret < 0)
1172 {
1173 if (errno == EIO)
1174 {
1175 have_ptrace_getvrregs = 0;
1176 return;
1177 }
e2e0b3e5 1178 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1179 }
1180
56be3814 1181 fill_vrregset (regcache, &regs);
9abe5450 1182
0897f59b 1183 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1184 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1185}
1186
1dfe79e8
SDJ
1187/* This function actually issues the request to ptrace, telling
1188 it to store all general-purpose registers present in the specified
1189 regset.
1190
1191 If the ptrace request does not exist, this function returns 0
1192 and properly sets the have_ptrace_* flag. If the request fails,
1193 this function calls perror_with_name. Otherwise, if the request
1194 succeeds, then the regcache is stored and 1 is returned. */
1195static int
1196store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1197{
1198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1200 gdb_gregset_t gregset;
1201
1202 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 {
1204 if (errno == EIO)
1205 {
1206 have_ptrace_getsetregs = 0;
1207 return 0;
1208 }
1209 perror_with_name (_("Couldn't get general-purpose registers."));
1210 }
1211
1212 fill_gregset (regcache, &gregset, regno);
1213
1214 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 have_ptrace_getsetregs = 0;
1219 return 0;
1220 }
1221 perror_with_name (_("Couldn't set general-purpose registers."));
1222 }
1223
1224 return 1;
1225}
1226
1227/* This is a wrapper for the store_all_gp_regs function. It is
1228 responsible for verifying if this target has the ptrace request
1229 that can be used to store all general-purpose registers at one
1230 shot. If it doesn't, then we should store them using the
1231 old-fashioned way, which is to iterate over the registers and
1232 store them one by one. */
45229ea4 1233static void
1dfe79e8 1234store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1235{
40a6adc1
MD
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1238 int i;
1239
1240 if (have_ptrace_getsetregs)
1241 if (store_all_gp_regs (regcache, tid, regno))
1242 return;
1243
1244 /* If we hit this point, it doesn't really matter which
1245 architecture we are using. We just need to store the
1246 registers in the "old-fashioned way". */
6ced10dd 1247 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1248 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1249}
1250
1251/* This function actually issues the request to ptrace, telling
1252 it to store all floating-point registers present in the specified
1253 regset.
1254
1255 If the ptrace request does not exist, this function returns 0
1256 and properly sets the have_ptrace_* flag. If the request fails,
1257 this function calls perror_with_name. Otherwise, if the request
1258 succeeds, then the regcache is stored and 1 is returned. */
1259static int
1260store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1261{
1262 gdb_fpregset_t fpregs;
1263
1264 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 {
1266 if (errno == EIO)
1267 {
1268 have_ptrace_getsetfpregs = 0;
1269 return 0;
1270 }
1271 perror_with_name (_("Couldn't get floating-point registers."));
1272 }
1273
1274 fill_fpregset (regcache, &fpregs, regno);
1275
1276 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 {
1278 if (errno == EIO)
1279 {
1280 have_ptrace_getsetfpregs = 0;
1281 return 0;
1282 }
1283 perror_with_name (_("Couldn't set floating-point registers."));
1284 }
1285
1286 return 1;
1287}
1288
1289/* This is a wrapper for the store_all_fp_regs function. It is
1290 responsible for verifying if this target has the ptrace request
1291 that can be used to store all floating-point registers at one
1292 shot. If it doesn't, then we should store them using the
1293 old-fashioned way, which is to iterate over the registers and
1294 store them one by one. */
1295static void
1296store_fp_regs (const struct regcache *regcache, int tid, int regno)
1297{
1298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int i;
1301
1302 if (have_ptrace_getsetfpregs)
1303 if (store_all_fp_regs (regcache, tid, regno))
1304 return;
1305
1306 /* If we hit this point, it doesn't really matter which
1307 architecture we are using. We just need to store the
1308 registers in the "old-fashioned way". */
1309 for (i = 0; i < ppc_num_fprs; i++)
1310 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311}
1312
1313static void
1314store_ppc_registers (const struct regcache *regcache, int tid)
1315{
1316 int i;
1317 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 store_gp_regs (regcache, tid, -1);
32b99774 1321 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1322 store_fp_regs (regcache, tid, -1);
40a6adc1 1323 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1324 if (tdep->ppc_ps_regnum != -1)
56be3814 1325 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1326 if (tdep->ppc_cr_regnum != -1)
56be3814 1327 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1328 if (tdep->ppc_lr_regnum != -1)
56be3814 1329 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1330 if (tdep->ppc_ctr_regnum != -1)
56be3814 1331 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1332 if (tdep->ppc_xer_regnum != -1)
56be3814 1333 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1334 if (tdep->ppc_mq_regnum != -1)
56be3814 1335 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1336 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1337 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1338 if (ppc_linux_trap_reg_p (gdbarch))
1339 {
1340 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1341 store_register (regcache, tid, PPC_TRAP_REGNUM);
1342 }
9abe5450
EZ
1343 if (have_ptrace_getvrregs)
1344 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1345 store_altivec_registers (regcache, tid);
604c2f83
LM
1346 if (have_ptrace_getsetvsxregs)
1347 if (tdep->ppc_vsr0_upper_regnum != -1)
1348 store_vsx_registers (regcache, tid);
6ced10dd 1349 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1350 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1351}
1352
6ffbb7ab 1353/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1354static unsigned long
1355ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1356{
1357 CORE_ADDR field;
1358
1359 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1360 return (unsigned long) field;
1361
1362 return 0;
1363}
1364
1365/* The cached DABR value, to install in new threads.
1366 This variable is used when we are dealing with non-BookE
1367 processors. */
1368static long saved_dabr_value;
1369
1370/* Global structure that will store information about the available
1371 features on this BookE processor. */
1372static struct ppc_debug_info booke_debug_info;
1373
1374/* Global variable that holds the maximum number of slots that the
1375 kernel will use. This is only used when the processor is BookE. */
1376static size_t max_slots_number = 0;
1377
1378struct hw_break_tuple
1379{
1380 long slot;
1381 struct ppc_hw_breakpoint *hw_break;
1382};
1383
1384/* This is an internal VEC created to store information about *points inserted
1385 for each thread. This is used for BookE processors. */
1386typedef struct thread_points
1387 {
1388 /* The TID to which this *point relates. */
1389 int tid;
1390 /* Information about the *point, such as its address, type, etc.
1391
1392 Each element inside this vector corresponds to a hardware
1393 breakpoint or watchpoint in the thread represented by TID. The maximum
1394 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1395 the tuple is NULL, then the position in the vector is free. */
1396 struct hw_break_tuple *hw_breaks;
1397 } *thread_points_p;
1398DEF_VEC_P (thread_points_p);
1399
1400VEC(thread_points_p) *ppc_threads = NULL;
1401
1402/* The version of the kernel interface that we will use if the processor is
1403 BookE. */
1404#define PPC_DEBUG_CURRENT_VERSION 1
1405
1406/* Returns non-zero if we support the ptrace interface which enables
1407 booke debugging resources. */
e0d24f8d 1408static int
6ffbb7ab 1409have_ptrace_booke_interface (void)
e0d24f8d 1410{
6ffbb7ab 1411 static int have_ptrace_booke_interface = -1;
e0d24f8d 1412
6ffbb7ab
TJB
1413 if (have_ptrace_booke_interface == -1)
1414 {
1415 int tid;
e0d24f8d 1416
6ffbb7ab
TJB
1417 tid = TIDGET (inferior_ptid);
1418 if (tid == 0)
1419 tid = PIDGET (inferior_ptid);
e0d24f8d 1420
6ffbb7ab
TJB
1421 /* Check for kernel support for BOOKE debug registers. */
1422 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1423 {
0c56f59b
EBM
1424 /* Check whether ptrace BOOKE interface is functional and
1425 provides any supported feature. */
1426 if (booke_debug_info.features != 0)
1427 {
1428 have_ptrace_booke_interface = 1;
1429 max_slots_number = booke_debug_info.num_instruction_bps
1430 + booke_debug_info.num_data_bps
1431 + booke_debug_info.num_condition_regs;
1432 return have_ptrace_booke_interface;
1433 }
6ffbb7ab 1434 }
0c56f59b
EBM
1435 /* Old school interface and no BOOKE debug registers support. */
1436 have_ptrace_booke_interface = 0;
1437 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1438 }
1439
1440 return have_ptrace_booke_interface;
e0d24f8d
WZ
1441}
1442
6ffbb7ab
TJB
1443static int
1444ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
b7622095 1445{
6ffbb7ab 1446 int total_hw_wp, total_hw_bp;
b7622095 1447
6ffbb7ab
TJB
1448 if (have_ptrace_booke_interface ())
1449 {
1450 /* For PPC BookE processors, the number of available hardware
1451 watchpoints and breakpoints is stored at the booke_debug_info
1452 struct. */
1453 total_hw_bp = booke_debug_info.num_instruction_bps;
1454 total_hw_wp = booke_debug_info.num_data_bps;
1455 }
1456 else
1457 {
1458 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1459 hardware breakpoints. */
1460 total_hw_bp = 0;
1461 total_hw_wp = 1;
1462 }
b7622095 1463
6ffbb7ab
TJB
1464 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1465 || type == bp_access_watchpoint || type == bp_watchpoint)
1466 {
bb08bdbd 1467 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1468 return -1;
1469 }
1470 else if (type == bp_hardware_breakpoint)
1471 {
1472 if (cnt > total_hw_bp)
1473 return -1;
1474 }
1475
1476 if (!have_ptrace_booke_interface ())
1477 {
1478 int tid;
1479 ptid_t ptid = inferior_ptid;
1480
0df8b418
MS
1481 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1482 and whether the target has DABR. If either answer is no, the
1483 ptrace call will return -1. Fail in that case. */
6ffbb7ab
TJB
1484 tid = TIDGET (ptid);
1485 if (tid == 0)
1486 tid = PIDGET (ptid);
1487
1488 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1489 return 0;
1490 }
1491
1492 return 1;
b7622095
LM
1493}
1494
e0d24f8d
WZ
1495static int
1496ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1497{
1498 /* Handle sub-8-byte quantities. */
1499 if (len <= 0)
1500 return 0;
1501
6ffbb7ab
TJB
1502 /* The new BookE ptrace interface tells if there are alignment restrictions
1503 for watchpoints in the processors. In that case, we use that information
1504 to determine the hardcoded watchable region for watchpoints. */
1505 if (have_ptrace_booke_interface ())
1506 {
e09342b5
TJB
1507 /* DAC-based processors (i.e., embedded processors), like the PowerPC 440
1508 have ranged watchpoints and can watch any access within an arbitrary
1509 memory region. This is useful to watch arrays and structs, for
1510 instance. It takes two hardware watchpoints though. */
1511 if (len > 1
1512 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)
1513 return 2;
1514 else if (booke_debug_info.data_bp_alignment
1515 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1516 + booke_debug_info.data_bp_alignment))
0cf6dd15 1517 return 0;
6ffbb7ab 1518 }
b7622095 1519 /* addr+len must fall in the 8 byte watchable region for DABR-based
6ffbb7ab
TJB
1520 processors (i.e., server processors). Without the new BookE ptrace
1521 interface, DAC-based processors (i.e., embedded processors) will use
b7622095 1522 addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1523 passed in the old ptrace interface. */
1524 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1525 && (addr + len) > (addr & ~3) + 4)
1526 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1527 return 0;
1528
1529 return 1;
1530}
1531
6ffbb7ab 1532/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1533static int
6ffbb7ab
TJB
1534booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1535{
ad422571
TJB
1536 return (a->trigger_type == b->trigger_type
1537 && a->addr_mode == b->addr_mode
1538 && a->condition_mode == b->condition_mode
1539 && a->addr == b->addr
1540 && a->addr2 == b->addr2
6ffbb7ab
TJB
1541 && a->condition_value == b->condition_value);
1542}
1543
1544/* This function can be used to retrieve a thread_points by the TID of the
1545 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1546 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1547 provided TID will be created and returned. */
1548static struct thread_points *
1549booke_find_thread_points_by_tid (int tid, int alloc_new)
1550{
1551 int i;
1552 struct thread_points *t;
1553
1554 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1555 if (t->tid == tid)
1556 return t;
1557
1558 t = NULL;
1559
1560 /* Do we need to allocate a new point_item
1561 if the wanted one does not exist? */
1562 if (alloc_new)
1563 {
1564 t = xmalloc (sizeof (struct thread_points));
0df8b418
MS
1565 t->hw_breaks
1566 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
6ffbb7ab
TJB
1567 t->tid = tid;
1568 VEC_safe_push (thread_points_p, ppc_threads, t);
1569 }
1570
1571 return t;
1572}
1573
1574/* This function is a generic wrapper that is responsible for inserting a
1575 *point (i.e., calling `ptrace' in order to issue the request to the
1576 kernel) and registering it internally in GDB. */
1577static void
1578booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1579{
1580 int i;
1581 long slot;
1582 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1583 struct hw_break_tuple *hw_breaks;
1584 struct cleanup *c = make_cleanup (xfree, p);
1585 struct thread_points *t;
1586 struct hw_break_tuple *tuple;
1587
1588 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1589
1590 errno = 0;
1591 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1592 if (slot < 0)
1593 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1594
1595 /* Everything went fine, so we have to register this *point. */
1596 t = booke_find_thread_points_by_tid (tid, 1);
1597 gdb_assert (t != NULL);
1598 hw_breaks = t->hw_breaks;
1599
1600 /* Find a free element in the hw_breaks vector. */
1601 for (i = 0; i < max_slots_number; i++)
1602 if (hw_breaks[i].hw_break == NULL)
1603 {
1604 hw_breaks[i].slot = slot;
1605 hw_breaks[i].hw_break = p;
1606 break;
1607 }
1608
1609 gdb_assert (i != max_slots_number);
1610
1611 discard_cleanups (c);
1612}
1613
1614/* This function is a generic wrapper that is responsible for removing a
1615 *point (i.e., calling `ptrace' in order to issue the request to the
1616 kernel), and unregistering it internally at GDB. */
1617static void
1618booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1619{
1620 int i;
1621 struct hw_break_tuple *hw_breaks;
1622 struct thread_points *t;
1623
1624 t = booke_find_thread_points_by_tid (tid, 0);
1625 gdb_assert (t != NULL);
1626 hw_breaks = t->hw_breaks;
1627
1628 for (i = 0; i < max_slots_number; i++)
1629 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1630 break;
1631
1632 gdb_assert (i != max_slots_number);
1633
1634 /* We have to ignore ENOENT errors because the kernel implements hardware
1635 breakpoints/watchpoints as "one-shot", that is, they are automatically
1636 deleted when hit. */
1637 errno = 0;
1638 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1639 if (errno != ENOENT)
0df8b418
MS
1640 perror_with_name (_("Unexpected error deleting "
1641 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1642
1643 xfree (hw_breaks[i].hw_break);
1644 hw_breaks[i].hw_break = NULL;
1645}
9f0bdab8 1646
f1310107
TJB
1647/* Return the number of registers needed for a ranged breakpoint. */
1648
1649static int
1650ppc_linux_ranged_break_num_registers (struct target_ops *target)
1651{
1652 return ((have_ptrace_booke_interface ()
1653 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1654 2 : -1);
1655}
1656
1657/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1658 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1659
2c387241 1660static int
6ffbb7ab
TJB
1661ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1662 struct bp_target_info *bp_tgt)
e0d24f8d 1663{
9f0bdab8 1664 struct lwp_info *lp;
6ffbb7ab
TJB
1665 struct ppc_hw_breakpoint p;
1666
1667 if (!have_ptrace_booke_interface ())
1668 return -1;
1669
ad422571
TJB
1670 p.version = PPC_DEBUG_CURRENT_VERSION;
1671 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1672 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1673 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1674 p.condition_value = 0;
1675
f1310107
TJB
1676 if (bp_tgt->length)
1677 {
1678 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1679
1680 /* The breakpoint will trigger if the address of the instruction is
1681 within the defined range, as follows: p.addr <= address < p.addr2. */
1682 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1683 }
1684 else
1685 {
1686 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1687 p.addr2 = 0;
1688 }
1689
4c38200f
PA
1690 ALL_LWPS (lp)
1691 booke_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1692
1693 return 0;
1694}
1695
1696static int
1697ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1698 struct bp_target_info *bp_tgt)
1699{
6ffbb7ab
TJB
1700 struct lwp_info *lp;
1701 struct ppc_hw_breakpoint p;
b7622095 1702
6ffbb7ab
TJB
1703 if (!have_ptrace_booke_interface ())
1704 return -1;
1705
ad422571
TJB
1706 p.version = PPC_DEBUG_CURRENT_VERSION;
1707 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1708 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1709 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1710 p.condition_value = 0;
1711
f1310107
TJB
1712 if (bp_tgt->length)
1713 {
1714 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1715
1716 /* The breakpoint will trigger if the address of the instruction is within
1717 the defined range, as follows: p.addr <= address < p.addr2. */
1718 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1719 }
1720 else
1721 {
1722 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1723 p.addr2 = 0;
1724 }
1725
4c38200f
PA
1726 ALL_LWPS (lp)
1727 booke_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1728
1729 return 0;
1730}
1731
1732static int
1733get_trigger_type (int rw)
1734{
1735 int t;
1736
1737 if (rw == hw_read)
1738 t = PPC_BREAKPOINT_TRIGGER_READ;
1739 else if (rw == hw_write)
1740 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1741 else
6ffbb7ab
TJB
1742 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1743
1744 return t;
1745}
1746
9c06b0b4
TJB
1747/* Insert a new masked watchpoint at ADDR using the mask MASK.
1748 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1749 or hw_access for an access watchpoint. Returns 0 on success and throws
1750 an error on failure. */
1751
1752static int
1753ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1754 CORE_ADDR mask, int rw)
1755{
9c06b0b4
TJB
1756 struct lwp_info *lp;
1757 struct ppc_hw_breakpoint p;
1758
1759 gdb_assert (have_ptrace_booke_interface ());
1760
1761 p.version = PPC_DEBUG_CURRENT_VERSION;
1762 p.trigger_type = get_trigger_type (rw);
1763 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1764 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1765 p.addr = addr;
1766 p.addr2 = mask;
1767 p.condition_value = 0;
1768
4c38200f
PA
1769 ALL_LWPS (lp)
1770 booke_insert_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1771
1772 return 0;
1773}
1774
1775/* Remove a masked watchpoint at ADDR with the mask MASK.
1776 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1777 or hw_access for an access watchpoint. Returns 0 on success and throws
1778 an error on failure. */
1779
1780static int
1781ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1782 CORE_ADDR mask, int rw)
1783{
9c06b0b4
TJB
1784 struct lwp_info *lp;
1785 struct ppc_hw_breakpoint p;
1786
1787 gdb_assert (have_ptrace_booke_interface ());
1788
1789 p.version = PPC_DEBUG_CURRENT_VERSION;
1790 p.trigger_type = get_trigger_type (rw);
1791 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1792 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1793 p.addr = addr;
1794 p.addr2 = mask;
1795 p.condition_value = 0;
1796
4c38200f
PA
1797 ALL_LWPS (lp)
1798 booke_remove_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1799
1800 return 0;
1801}
1802
0cf6dd15
TJB
1803/* Check whether we have at least one free DVC register. */
1804static int
1805can_use_watchpoint_cond_accel (void)
1806{
1807 struct thread_points *p;
1808 int tid = TIDGET (inferior_ptid);
1809 int cnt = booke_debug_info.num_condition_regs, i;
1810 CORE_ADDR tmp_value;
1811
1812 if (!have_ptrace_booke_interface () || cnt == 0)
1813 return 0;
1814
1815 p = booke_find_thread_points_by_tid (tid, 0);
1816
1817 if (p)
1818 {
1819 for (i = 0; i < max_slots_number; i++)
1820 if (p->hw_breaks[i].hw_break != NULL
1821 && (p->hw_breaks[i].hw_break->condition_mode
1822 != PPC_BREAKPOINT_CONDITION_NONE))
1823 cnt--;
1824
1825 /* There are no available slots now. */
1826 if (cnt <= 0)
1827 return 0;
1828 }
1829
1830 return 1;
1831}
1832
1833/* Calculate the enable bits and the contents of the Data Value Compare
1834 debug register present in BookE processors.
1835
1836 ADDR is the address to be watched, LEN is the length of watched data
1837 and DATA_VALUE is the value which will trigger the watchpoint.
1838 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1839 CONDITION_VALUE will hold the value which should be put in the
1840 DVC register. */
1841static void
1842calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1843 uint32_t *condition_mode, uint64_t *condition_value)
1844{
1845 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1846 rightmost_enabled_byte;
1847 CORE_ADDR addr_end_data, addr_end_dvc;
1848
1849 /* The DVC register compares bytes within fixed-length windows which
1850 are word-aligned, with length equal to that of the DVC register.
1851 We need to calculate where our watch region is relative to that
1852 window and enable comparison of the bytes which fall within it. */
1853
1854 align_offset = addr % booke_debug_info.sizeof_condition;
1855 addr_end_data = addr + len;
1856 addr_end_dvc = (addr - align_offset
1857 + booke_debug_info.sizeof_condition);
1858 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1859 addr_end_data - addr_end_dvc : 0;
1860 num_byte_enable = len - num_bytes_off_dvc;
1861 /* Here, bytes are numbered from right to left. */
1862 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1863 addr_end_dvc - addr_end_data : 0;
1864
1865 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1866 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1867 *condition_mode
1868 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1869
1870 /* Now we need to match the position within the DVC of the comparison
1871 value with where the watch region is relative to the window
1872 (i.e., the ALIGN_OFFSET). */
1873
1874 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1875 << rightmost_enabled_byte * 8);
1876}
1877
1878/* Return the number of memory locations that need to be accessed to
1879 evaluate the expression which generated the given value chain.
1880 Returns -1 if there's any register access involved, or if there are
1881 other kinds of values which are not acceptable in a condition
1882 expression (e.g., lval_computed or lval_internalvar). */
1883static int
1884num_memory_accesses (struct value *v)
1885{
1886 int found_memory_cnt = 0;
1887 struct value *head = v;
1888
1889 /* The idea here is that evaluating an expression generates a series
1890 of values, one holding the value of every subexpression. (The
1891 expression a*b+c has five subexpressions: a, b, a*b, c, and
1892 a*b+c.) GDB's values hold almost enough information to establish
1893 the criteria given above --- they identify memory lvalues,
1894 register lvalues, computed values, etcetera. So we can evaluate
1895 the expression, and then scan the chain of values that leaves
1896 behind to determine the memory locations involved in the evaluation
1897 of an expression.
1898
1899 However, I don't think that the values returned by inferior
1900 function calls are special in any way. So this function may not
1901 notice that an expression contains an inferior function call.
1902 FIXME. */
1903
1904 for (; v; v = value_next (v))
1905 {
1906 /* Constants and values from the history are fine. */
1907 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1908 continue;
1909 else if (VALUE_LVAL (v) == lval_memory)
1910 {
1911 /* A lazy memory lvalue is one that GDB never needed to fetch;
1912 we either just used its address (e.g., `a' in `a.b') or
1913 we never needed it at all (e.g., `a' in `a,b'). */
1914 if (!value_lazy (v))
1915 found_memory_cnt++;
1916 }
0df8b418 1917 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1918 else
1919 return -1;
1920 }
1921
1922 return found_memory_cnt;
1923}
1924
1925/* Verifies whether the expression COND can be implemented using the
1926 DVC (Data Value Compare) register in BookE processors. The expression
1927 must test the watch value for equality with a constant expression.
1928 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1929 which the watch value should be compared and LEN will contain the size
1930 of the constant. */
0cf6dd15
TJB
1931static int
1932check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1933 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1934{
1935 int pc = 1, num_accesses_left, num_accesses_right;
1936 struct value *left_val, *right_val, *left_chain, *right_chain;
1937
1938 if (cond->elts[0].opcode != BINOP_EQUAL)
1939 return 0;
1940
1941 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1942 num_accesses_left = num_memory_accesses (left_chain);
1943
1944 if (left_val == NULL || num_accesses_left < 0)
1945 {
1946 free_value_chain (left_chain);
1947
1948 return 0;
1949 }
1950
1951 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1952 num_accesses_right = num_memory_accesses (right_chain);
1953
1954 if (right_val == NULL || num_accesses_right < 0)
1955 {
1956 free_value_chain (left_chain);
1957 free_value_chain (right_chain);
1958
1959 return 0;
1960 }
1961
1962 if (num_accesses_left == 1 && num_accesses_right == 0
1963 && VALUE_LVAL (left_val) == lval_memory
1964 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1965 {
1966 *data_value = value_as_long (right_val);
1967
1968 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1969 the same type as the memory region referenced by LEFT_VAL. */
1970 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1971 }
0cf6dd15
TJB
1972 else if (num_accesses_left == 0 && num_accesses_right == 1
1973 && VALUE_LVAL (right_val) == lval_memory
1974 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1975 {
1976 *data_value = value_as_long (left_val);
1977
1978 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1979 the same type as the memory region referenced by RIGHT_VAL. */
1980 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1981 }
0cf6dd15
TJB
1982 else
1983 {
1984 free_value_chain (left_chain);
1985 free_value_chain (right_chain);
1986
1987 return 0;
1988 }
1989
1990 free_value_chain (left_chain);
1991 free_value_chain (right_chain);
1992
1993 return 1;
1994}
1995
1996/* Return non-zero if the target is capable of using hardware to evaluate
1997 the condition expression, thus only triggering the watchpoint when it is
1998 true. */
1999static int
2000ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2001 struct expression *cond)
2002{
2003 CORE_ADDR data_value;
2004
2005 return (have_ptrace_booke_interface ()
2006 && booke_debug_info.num_condition_regs > 0
e7db58ea 2007 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2008}
2009
e09342b5
TJB
2010/* Set up P with the parameters necessary to request a watchpoint covering
2011 LEN bytes starting at ADDR and if possible with condition expression COND
2012 evaluated by hardware. INSERT tells if we are creating a request for
2013 inserting or removing the watchpoint. */
2014
2015static void
2016create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2017 int len, int rw, struct expression *cond,
2018 int insert)
2019{
f16c4e8b
AS
2020 if (len == 1
2021 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2022 {
2023 int use_condition;
2024 CORE_ADDR data_value;
2025
2026 use_condition = (insert? can_use_watchpoint_cond_accel ()
2027 : booke_debug_info.num_condition_regs > 0);
e7db58ea
TJB
2028 if (cond && use_condition && check_condition (addr, cond,
2029 &data_value, &len))
e09342b5
TJB
2030 calculate_dvc (addr, len, data_value, &p->condition_mode,
2031 &p->condition_value);
2032 else
2033 {
2034 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2035 p->condition_value = 0;
2036 }
2037
2038 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2039 p->addr2 = 0;
2040 }
2041 else
2042 {
2043 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2044 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2045 p->condition_value = 0;
2046
2047 /* The watchpoint will trigger if the address of the memory access is
2048 within the defined range, as follows: p->addr <= address < p->addr2.
2049
2050 Note that the above sentence just documents how ptrace interprets
2051 its arguments; the watchpoint is set to watch the range defined by
2052 the user _inclusively_, as specified by the user interface. */
2053 p->addr2 = (uint64_t) addr + len;
2054 }
2055
2056 p->version = PPC_DEBUG_CURRENT_VERSION;
2057 p->trigger_type = get_trigger_type (rw);
2058 p->addr = (uint64_t) addr;
2059}
2060
6ffbb7ab 2061static int
0cf6dd15
TJB
2062ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2063 struct expression *cond)
6ffbb7ab
TJB
2064{
2065 struct lwp_info *lp;
6ffbb7ab
TJB
2066 int ret = -1;
2067
2068 if (have_ptrace_booke_interface ())
e0d24f8d 2069 {
6ffbb7ab
TJB
2070 struct ppc_hw_breakpoint p;
2071
e09342b5 2072 create_watchpoint_request (&p, addr, len, rw, cond, 1);
6ffbb7ab 2073
4c38200f
PA
2074 ALL_LWPS (lp)
2075 booke_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2076
2077 ret = 0;
e0d24f8d 2078 }
6ffbb7ab
TJB
2079 else
2080 {
2081 long dabr_value;
2082 long read_mode, write_mode;
e0d24f8d 2083
6ffbb7ab
TJB
2084 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2085 {
2086 /* PowerPC 440 requires only the read/write flags to be passed
2087 to the kernel. */
ad422571 2088 read_mode = 1;
6ffbb7ab
TJB
2089 write_mode = 2;
2090 }
2091 else
2092 {
2093 /* PowerPC 970 and other DABR-based processors are required to pass
2094 the Breakpoint Translation bit together with the flags. */
ad422571 2095 read_mode = 5;
6ffbb7ab
TJB
2096 write_mode = 6;
2097 }
1c86e440 2098
6ffbb7ab
TJB
2099 dabr_value = addr & ~(read_mode | write_mode);
2100 switch (rw)
2101 {
2102 case hw_read:
2103 /* Set read and translate bits. */
2104 dabr_value |= read_mode;
2105 break;
2106 case hw_write:
2107 /* Set write and translate bits. */
2108 dabr_value |= write_mode;
2109 break;
2110 case hw_access:
2111 /* Set read, write and translate bits. */
2112 dabr_value |= read_mode | write_mode;
2113 break;
2114 }
1c86e440 2115
6ffbb7ab
TJB
2116 saved_dabr_value = dabr_value;
2117
4c38200f
PA
2118 ALL_LWPS (lp)
2119 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2120 saved_dabr_value) < 0)
6ffbb7ab
TJB
2121 return -1;
2122
2123 ret = 0;
2124 }
2125
2126 return ret;
e0d24f8d
WZ
2127}
2128
2c387241 2129static int
0cf6dd15
TJB
2130ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2131 struct expression *cond)
e0d24f8d 2132{
9f0bdab8 2133 struct lwp_info *lp;
6ffbb7ab 2134 int ret = -1;
9f0bdab8 2135
6ffbb7ab
TJB
2136 if (have_ptrace_booke_interface ())
2137 {
2138 struct ppc_hw_breakpoint p;
2139
e09342b5 2140 create_watchpoint_request (&p, addr, len, rw, cond, 0);
6ffbb7ab 2141
4c38200f
PA
2142 ALL_LWPS (lp)
2143 booke_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2144
2145 ret = 0;
2146 }
2147 else
2148 {
2149 saved_dabr_value = 0;
4c38200f
PA
2150 ALL_LWPS (lp)
2151 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2152 saved_dabr_value) < 0)
6ffbb7ab
TJB
2153 return -1;
2154
2155 ret = 0;
2156 }
2157
2158 return ret;
e0d24f8d
WZ
2159}
2160
9f0bdab8 2161static void
7b50312a 2162ppc_linux_new_thread (struct lwp_info *lp)
e0d24f8d 2163{
7b50312a 2164 int tid = TIDGET (lp->ptid);
6ffbb7ab
TJB
2165
2166 if (have_ptrace_booke_interface ())
2167 {
2168 int i;
2169 struct thread_points *p;
2170 struct hw_break_tuple *hw_breaks;
2171
2172 if (VEC_empty (thread_points_p, ppc_threads))
2173 return;
2174
0df8b418 2175 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2176 p = VEC_last (thread_points_p, ppc_threads);
2177 hw_breaks = p->hw_breaks;
2178
0df8b418 2179 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2180 for (i = 0; i < max_slots_number; i++)
2181 if (hw_breaks[i].hw_break)
2182 booke_insert_point (hw_breaks[i].hw_break, tid);
2183 }
2184 else
2185 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2186}
2187
2188static void
2189ppc_linux_thread_exit (struct thread_info *tp, int silent)
2190{
2191 int i;
2192 int tid = TIDGET (tp->ptid);
2193 struct hw_break_tuple *hw_breaks;
2194 struct thread_points *t = NULL, *p;
2195
2196 if (!have_ptrace_booke_interface ())
2197 return;
2198
2199 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2200 if (p->tid == tid)
2201 {
2202 t = p;
2203 break;
2204 }
2205
2206 if (t == NULL)
2207 return;
2208
2209 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2210
2211 hw_breaks = t->hw_breaks;
2212
2213 for (i = 0; i < max_slots_number; i++)
2214 if (hw_breaks[i].hw_break)
2215 xfree (hw_breaks[i].hw_break);
2216
2217 xfree (t->hw_breaks);
2218 xfree (t);
e0d24f8d
WZ
2219}
2220
2221static int
9f0bdab8 2222ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 2223{
f865ee35 2224 siginfo_t siginfo;
e0d24f8d 2225
f865ee35
JK
2226 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2227 return 0;
e0d24f8d 2228
f865ee35
JK
2229 if (siginfo.si_signo != SIGTRAP
2230 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
2231 return 0;
2232
6ffbb7ab
TJB
2233 if (have_ptrace_booke_interface ())
2234 {
2235 int i;
2236 struct thread_points *t;
2237 struct hw_break_tuple *hw_breaks;
2238 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2239 int slot = siginfo.si_errno;
6ffbb7ab
TJB
2240
2241 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2242
2243 /* Find out if this *point is a hardware breakpoint.
2244 If so, we should return 0. */
2245 if (t)
2246 {
2247 hw_breaks = t->hw_breaks;
2248 for (i = 0; i < max_slots_number; i++)
2249 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2250 && hw_breaks[i].hw_break->trigger_type
2251 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2252 return 0;
2253 }
2254 }
2255
f865ee35 2256 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
e0d24f8d
WZ
2257 return 1;
2258}
2259
9f0bdab8
DJ
2260static int
2261ppc_linux_stopped_by_watchpoint (void)
2262{
2263 CORE_ADDR addr;
2264 return ppc_linux_stopped_data_address (&current_target, &addr);
2265}
2266
5009afc5
AS
2267static int
2268ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2269 CORE_ADDR addr,
2270 CORE_ADDR start, int length)
2271{
b7622095
LM
2272 int mask;
2273
6ffbb7ab
TJB
2274 if (have_ptrace_booke_interface ()
2275 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2276 return start <= addr && start + length >= addr;
2277 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2278 mask = 3;
2279 else
2280 mask = 7;
2281
2282 addr &= ~mask;
2283
0df8b418 2284 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2285 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2286}
2287
9c06b0b4
TJB
2288/* Return the number of registers needed for a masked hardware watchpoint. */
2289
2290static int
2291ppc_linux_masked_watch_num_registers (struct target_ops *target,
2292 CORE_ADDR addr, CORE_ADDR mask)
2293{
2294 if (!have_ptrace_booke_interface ()
2295 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2296 return -1;
2297 else if ((mask & 0xC0000000) != 0xC0000000)
2298 {
2299 warning (_("The given mask covers kernel address space "
2300 "and cannot be used.\n"));
2301
2302 return -2;
2303 }
2304 else
2305 return 2;
2306}
2307
10d6c8cd 2308static void
28439f5e
PA
2309ppc_linux_store_inferior_registers (struct target_ops *ops,
2310 struct regcache *regcache, int regno)
45229ea4 2311{
0df8b418 2312 /* Overload thread id onto process id. */
05f13b9c
EZ
2313 int tid = TIDGET (inferior_ptid);
2314
0df8b418 2315 /* No thread id, just use process id. */
05f13b9c
EZ
2316 if (tid == 0)
2317 tid = PIDGET (inferior_ptid);
2318
45229ea4 2319 if (regno >= 0)
56be3814 2320 store_register (regcache, tid, regno);
45229ea4 2321 else
56be3814 2322 store_ppc_registers (regcache, tid);
45229ea4
EZ
2323}
2324
f2db237a
AM
2325/* Functions for transferring registers between a gregset_t or fpregset_t
2326 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2327 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2328 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2329 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2330
50c9bd31 2331void
7f7fe91e 2332supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2333{
f2db237a 2334 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2335
f2db237a 2336 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2337}
2338
fdb28ac4 2339void
7f7fe91e
UW
2340fill_gregset (const struct regcache *regcache,
2341 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2342{
f2db237a 2343 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2344
f2db237a
AM
2345 if (regno == -1)
2346 memset (gregsetp, 0, sizeof (*gregsetp));
2347 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2348}
2349
50c9bd31 2350void
7f7fe91e 2351supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2352{
f2db237a
AM
2353 const struct regset *regset = ppc_linux_fpregset ();
2354
2355 ppc_supply_fpregset (regset, regcache, -1,
2356 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2357}
fdb28ac4 2358
fdb28ac4 2359void
7f7fe91e
UW
2360fill_fpregset (const struct regcache *regcache,
2361 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2362{
f2db237a
AM
2363 const struct regset *regset = ppc_linux_fpregset ();
2364
2365 ppc_collect_fpregset (regset, regcache, regno,
2366 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2367}
10d6c8cd 2368
409c383c
UW
2369static int
2370ppc_linux_target_wordsize (void)
2371{
2372 int wordsize = 4;
2373
2374 /* Check for 64-bit inferior process. This is the case when the host is
2375 64-bit, and in addition the top bit of the MSR register is set. */
2376#ifdef __powerpc64__
2377 long msr;
2378
2379 int tid = TIDGET (inferior_ptid);
2380 if (tid == 0)
2381 tid = PIDGET (inferior_ptid);
2382
2383 errno = 0;
2384 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2385 if (errno == 0 && msr < 0)
2386 wordsize = 8;
2387#endif
2388
2389 return wordsize;
2390}
2391
2392static int
2393ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2394 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2395{
2396 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2397 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2398 gdb_byte *ptr = *readptr;
2399
2400 if (endptr == ptr)
2401 return 0;
2402
2403 if (endptr - ptr < sizeof_auxv_field * 2)
2404 return -1;
2405
e17a4113 2406 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2407 ptr += sizeof_auxv_field;
e17a4113 2408 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2409 ptr += sizeof_auxv_field;
2410
2411 *readptr = ptr;
2412 return 1;
2413}
2414
310a98e1
DJ
2415static const struct target_desc *
2416ppc_linux_read_description (struct target_ops *ops)
2417{
7284e1be 2418 int altivec = 0;
604c2f83 2419 int vsx = 0;
69abc51c 2420 int isa205 = 0;
f4d9bade 2421 int cell = 0;
7284e1be
UW
2422
2423 int tid = TIDGET (inferior_ptid);
2424 if (tid == 0)
2425 tid = PIDGET (inferior_ptid);
2426
310a98e1
DJ
2427 if (have_ptrace_getsetevrregs)
2428 {
2429 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2430
2431 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2432 return tdesc_powerpc_e500l;
2433
2434 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2435 Anything else needs to be reported. */
2436 else if (errno != EIO)
2437 perror_with_name (_("Unable to fetch SPE registers"));
2438 }
2439
604c2f83
LM
2440 if (have_ptrace_getsetvsxregs)
2441 {
2442 gdb_vsxregset_t vsxregset;
2443
2444 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2445 vsx = 1;
2446
2447 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2448 Anything else needs to be reported. */
2449 else if (errno != EIO)
2450 perror_with_name (_("Unable to fetch VSX registers"));
2451 }
2452
7284e1be
UW
2453 if (have_ptrace_getvrregs)
2454 {
2455 gdb_vrregset_t vrregset;
2456
2457 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2458 altivec = 1;
2459
2460 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2461 Anything else needs to be reported. */
2462 else if (errno != EIO)
2463 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2464 }
2465
f04c6d38 2466 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2467 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2468 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2469 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2470 half of the register are for Decimal Floating Point, we check if that
2471 feature is available to decide the size of the FPSCR. */
2472 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2473 isa205 = 1;
2474
f4d9bade
UW
2475 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2476 cell = 1;
2477
409c383c
UW
2478 if (ppc_linux_target_wordsize () == 8)
2479 {
f4d9bade
UW
2480 if (cell)
2481 return tdesc_powerpc_cell64l;
2482 else if (vsx)
409c383c
UW
2483 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2484 else if (altivec)
0df8b418
MS
2485 return isa205
2486 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2487
2488 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2489 }
7284e1be 2490
f4d9bade
UW
2491 if (cell)
2492 return tdesc_powerpc_cell32l;
2493 else if (vsx)
69abc51c 2494 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2495 else if (altivec)
69abc51c 2496 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2497
69abc51c 2498 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2499}
2500
10d6c8cd
DJ
2501void _initialize_ppc_linux_nat (void);
2502
2503void
2504_initialize_ppc_linux_nat (void)
2505{
2506 struct target_ops *t;
2507
2508 /* Fill in the generic GNU/Linux methods. */
2509 t = linux_target ();
2510
2511 /* Add our register access methods. */
2512 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2513 t->to_store_registers = ppc_linux_store_inferior_registers;
2514
6ffbb7ab
TJB
2515 /* Add our breakpoint/watchpoint methods. */
2516 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2517 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2518 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
e0d24f8d
WZ
2519 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2520 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2521 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
9c06b0b4
TJB
2522 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2523 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
e0d24f8d
WZ
2524 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2525 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 2526 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
0df8b418
MS
2527 t->to_can_accel_watchpoint_condition
2528 = ppc_linux_can_accel_watchpoint_condition;
9c06b0b4 2529 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
f1310107 2530 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
e0d24f8d 2531
310a98e1 2532 t->to_read_description = ppc_linux_read_description;
409c383c 2533 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 2534
6ffbb7ab
TJB
2535 observer_attach_thread_exit (ppc_linux_thread_exit);
2536
10d6c8cd 2537 /* Register the target. */
f973ed9c 2538 linux_nat_add_target (t);
9f0bdab8 2539 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 2540}