]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-linux-nat.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
213516ef 3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
6ffbb7ab 23#include "gdbthread.h"
c877c8e6 24#include "gdbcore.h"
4e052eda 25#include "regcache.h"
1d75a658 26#include "regset.h"
10d6c8cd
DJ
27#include "target.h"
28#include "linux-nat.h"
c877c8e6 29#include <sys/types.h>
c877c8e6
KB
30#include <signal.h>
31#include <sys/user.h>
32#include <sys/ioctl.h>
7ca18ed6 33#include <sys/uio.h>
268a13a5 34#include "gdbsupport/gdb_wait.h"
c877c8e6
KB
35#include <fcntl.h>
36#include <sys/procfs.h>
5826e159 37#include "nat/gdb_ptrace.h"
64f57f3d 38#include "nat/linux-ptrace.h"
bcc0c096 39#include "inf-ptrace.h"
227c0bf4
PFC
40#include <algorithm>
41#include <unordered_map>
42#include <list>
c877c8e6 43
0df8b418 44/* Prototypes for supply_gregset etc. */
c60c0f5f 45#include "gregset.h"
16333c4f 46#include "ppc-tdep.h"
7284e1be
UW
47#include "ppc-linux-tdep.h"
48
b7622095
LM
49/* Required when using the AUXV. */
50#include "elf/common.h"
51#include "auxv.h"
52
bd64614e
PFC
53#include "arch/ppc-linux-common.h"
54#include "arch/ppc-linux-tdesc.h"
514c5338 55#include "nat/ppc-linux.h"
53c973f2 56#include "linux-tdep.h"
413403fc 57#include "expop.h"
01904826 58
6ffbb7ab 59/* Similarly for the hardware watchpoint support. These requests are used
926bf92d 60 when the PowerPC HWDEBUG ptrace interface is not available. */
e0d24f8d
WZ
61#ifndef PTRACE_GET_DEBUGREG
62#define PTRACE_GET_DEBUGREG 25
63#endif
64#ifndef PTRACE_SET_DEBUGREG
65#define PTRACE_SET_DEBUGREG 26
66#endif
67#ifndef PTRACE_GETSIGINFO
68#define PTRACE_GETSIGINFO 0x4202
69#endif
01904826 70
926bf92d
UW
71/* These requests are used when the PowerPC HWDEBUG ptrace interface is
72 available. It exposes the debug facilities of PowerPC processors, as well
73 as additional features of BookE processors, such as ranged breakpoints and
74 watchpoints and hardware-accelerated condition evaluation. */
6ffbb7ab
TJB
75#ifndef PPC_PTRACE_GETHWDBGINFO
76
926bf92d
UW
77/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
78 ptrace interface is not present in ptrace.h, so we'll have to pretty much
79 include it all here so that the code at least compiles on older systems. */
6ffbb7ab
TJB
80#define PPC_PTRACE_GETHWDBGINFO 0x89
81#define PPC_PTRACE_SETHWDEBUG 0x88
82#define PPC_PTRACE_DELHWDEBUG 0x87
83
84struct ppc_debug_info
85{
dda83cd7
SM
86 uint32_t version; /* Only version 1 exists to date. */
87 uint32_t num_instruction_bps;
88 uint32_t num_data_bps;
89 uint32_t num_condition_regs;
90 uint32_t data_bp_alignment;
91 uint32_t sizeof_condition; /* size of the DVC register. */
92 uint64_t features;
6ffbb7ab
TJB
93};
94
95/* Features will have bits indicating whether there is support for: */
96#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
97#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
98#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
99#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
100
101struct ppc_hw_breakpoint
102{
dda83cd7
SM
103 uint32_t version; /* currently, version must be 1 */
104 uint32_t trigger_type; /* only some combinations allowed */
105 uint32_t addr_mode; /* address match mode */
106 uint32_t condition_mode; /* break/watchpoint condition flags */
107 uint64_t addr; /* break/watchpoint address */
108 uint64_t addr2; /* range end or mask */
109 uint64_t condition_value; /* contents of the DVC register */
6ffbb7ab
TJB
110};
111
112/* Trigger type. */
113#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
114#define PPC_BREAKPOINT_TRIGGER_READ 0x2
115#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
116#define PPC_BREAKPOINT_TRIGGER_RW 0x6
117
118/* Address mode. */
119#define PPC_BREAKPOINT_MODE_EXACT 0x0
120#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
121#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
122#define PPC_BREAKPOINT_MODE_MASK 0x3
123
124/* Condition mode. */
125#define PPC_BREAKPOINT_CONDITION_NONE 0x0
126#define PPC_BREAKPOINT_CONDITION_AND 0x1
127#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
128#define PPC_BREAKPOINT_CONDITION_OR 0x2
129#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
130#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
131#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
132#define PPC_BREAKPOINT_CONDITION_BE(n) \
dda83cd7 133 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
6ffbb7ab
TJB
134#endif /* PPC_PTRACE_GETHWDBGINFO */
135
e23b9d6e
UW
136/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
137 watchpoint (up to 512 bytes). */
138#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
139#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
140#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
6ffbb7ab 141
539d71e8
RA
142/* Feature defined on Linux kernel v5.1: Second watchpoint support. */
143#ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31
144#define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20
145#endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */
146
227c0bf4
PFC
147/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
148 available. */
149#define PPC_DEBUG_CURRENT_VERSION 1
150
1dfe79e8
SDJ
151/* Similarly for the general-purpose (gp0 -- gp31)
152 and floating-point registers (fp0 -- fp31). */
153#ifndef PTRACE_GETREGS
154#define PTRACE_GETREGS 12
155#endif
156#ifndef PTRACE_SETREGS
157#define PTRACE_SETREGS 13
158#endif
159#ifndef PTRACE_GETFPREGS
160#define PTRACE_GETFPREGS 14
161#endif
162#ifndef PTRACE_SETFPREGS
163#define PTRACE_SETFPREGS 15
164#endif
165
9abe5450
EZ
166/* This oddity is because the Linux kernel defines elf_vrregset_t as
167 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
168 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
169 the vrsave as an extra 4 bytes at the end. I opted for creating a
170 flat array of chars, so that it is easier to manipulate for gdb.
171
172 There are 32 vector registers 16 bytes longs, plus a VSCR register
173 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 174 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
175 Appended to this there is space for the VRSAVE register: 4 bytes.
176 Even though this vrsave register is not included in the regset
177 typedef, it is handled by the ptrace requests.
178
9abe5450
EZ
179 The layout is like this (where x is the actual value of the vscr reg): */
180
181/* *INDENT-OFF* */
182/*
1d75a658 183Big-Endian:
9abe5450
EZ
184 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
185 <-------> <-------><-------><->
186 VR0 VR31 VSCR VRSAVE
1d75a658
PFC
187Little-Endian:
188 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
189 <-------> <-------><-------><->
190 VR0 VR31 VSCR VRSAVE
9abe5450
EZ
191*/
192/* *INDENT-ON* */
193
d078308a 194typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
9abe5450 195
604c2f83
LM
196/* This is the layout of the POWER7 VSX registers and the way they overlap
197 with the existing FPR and VMX registers.
198
dda83cd7
SM
199 VSR doubleword 0 VSR doubleword 1
200 ----------------------------------------------------------------
604c2f83 201 VSR[0] | FPR[0] | |
dda83cd7 202 ----------------------------------------------------------------
604c2f83 203 VSR[1] | FPR[1] | |
dda83cd7
SM
204 ----------------------------------------------------------------
205 | ... | |
206 | ... | |
207 ----------------------------------------------------------------
604c2f83 208 VSR[30] | FPR[30] | |
dda83cd7 209 ----------------------------------------------------------------
604c2f83 210 VSR[31] | FPR[31] | |
dda83cd7 211 ----------------------------------------------------------------
604c2f83 212 VSR[32] | VR[0] |
dda83cd7 213 ----------------------------------------------------------------
604c2f83 214 VSR[33] | VR[1] |
dda83cd7
SM
215 ----------------------------------------------------------------
216 | ... |
217 | ... |
218 ----------------------------------------------------------------
604c2f83 219 VSR[62] | VR[30] |
dda83cd7 220 ----------------------------------------------------------------
604c2f83 221 VSR[63] | VR[31] |
dda83cd7 222 ----------------------------------------------------------------
604c2f83
LM
223
224 VSX has 64 128bit registers. The first 32 registers overlap with
225 the FP registers (doubleword 0) and hence extend them with additional
226 64 bits (doubleword 1). The other 32 regs overlap with the VMX
227 registers. */
d078308a 228typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
01904826 229
b021a221 230/* On PPC processors that support the Signal Processing Extension
01904826 231 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
232 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
233 ptrace calls only access the lower half of each register, to allow
234 them to behave the same way they do on non-SPE systems. There's a
235 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
236 read and write the top halves of all the general-purpose registers
237 at once, along with some SPE-specific registers.
01904826
JB
238
239 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 240 bits long. It has unnamed raw registers that hold the upper halves
b021a221 241 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
242 'ev0' -- 'ev31', are pseudo-registers that splice the top and
243 bottom halves together.
01904826
JB
244
245 This is the structure filled in by PTRACE_GETEVRREGS and written to
246 the inferior's registers by PTRACE_SETEVRREGS. */
247struct gdb_evrregset_t
248{
249 unsigned long evr[32];
250 unsigned long long acc;
251 unsigned long spefscr;
252};
253
604c2f83
LM
254/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
255 PTRACE_SETVSXREGS requests, for reading and writing the VSX
256 POWER7 registers 0 through 31. Zero if we've tried one of them and
257 gotten an error. Note that VSX registers 32 through 63 overlap
258 with VR registers 0 through 31. */
259int have_ptrace_getsetvsxregs = 1;
01904826
JB
260
261/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
262 PTRACE_SETVRREGS requests, for reading and writing the Altivec
263 registers. Zero if we've tried one of them and gotten an
264 error. */
9abe5450
EZ
265int have_ptrace_getvrregs = 1;
266
01904826
JB
267/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
268 PTRACE_SETEVRREGS requests, for reading and writing the SPE
269 registers. Zero if we've tried one of them and gotten an
270 error. */
271int have_ptrace_getsetevrregs = 1;
272
1dfe79e8
SDJ
273/* Non-zero if our kernel may support the PTRACE_GETREGS and
274 PTRACE_SETREGS requests, for reading and writing the
275 general-purpose registers. Zero if we've tried one of
276 them and gotten an error. */
277int have_ptrace_getsetregs = 1;
278
279/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
280 PTRACE_SETFPREGS requests, for reading and writing the
281 floating-pointers registers. Zero if we've tried one of
282 them and gotten an error. */
283int have_ptrace_getsetfpregs = 1;
284
227c0bf4
PFC
285/* Private arch info associated with each thread lwp_info object, used
286 for debug register handling. */
287
288struct arch_lwp_info
289{
290 /* When true, indicates that the debug registers installed in the
291 thread no longer correspond to the watchpoints and breakpoints
292 requested by GDB. */
293 bool debug_regs_stale;
294
295 /* We need a back-reference to the PTID of the thread so that we can
296 cleanup the debug register state of the thread in
297 low_delete_thread. */
298 ptid_t lwp_ptid;
299};
300
301/* Class used to detect which set of ptrace requests that
302 ppc_linux_nat_target will use to install and remove hardware
303 breakpoints and watchpoints.
304
305 The interface is only detected once, testing the ptrace calls. The
306 result can indicate that no interface is available.
307
308 The Linux kernel provides two different sets of ptrace requests to
309 handle hardware watchpoints and breakpoints for Power:
310
311 - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and
312 PPC_PTRACE_DELHWDEBUG.
313
314 Or
315
316 - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG
317
318 The first set is the more flexible one and allows setting watchpoints
319 with a variable watched region length and, for BookE processors,
320 multiple types of debug registers (e.g. hardware breakpoints and
321 hardware-assisted conditions for watchpoints). The second one only
322 allows setting one debug register, a watchpoint, so we only use it if
323 the first one is not available. */
324
325class ppc_linux_dreg_interface
326{
327public:
328
329 ppc_linux_dreg_interface ()
330 : m_interface (), m_hwdebug_info ()
331 {
332 };
333
334 DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface);
335
336 /* One and only one of these three functions returns true, indicating
337 whether the corresponding interface is the one we detected. The
338 interface must already have been detected as a precontidion. */
339
340 bool hwdebug_p ()
341 {
342 gdb_assert (detected_p ());
343 return *m_interface == HWDEBUG;
344 }
345
346 bool debugreg_p ()
347 {
348 gdb_assert (detected_p ());
349 return *m_interface == DEBUGREG;
350 }
351
352 bool unavailable_p ()
353 {
354 gdb_assert (detected_p ());
355 return *m_interface == UNAVAILABLE;
356 }
357
358 /* Returns the debug register capabilities of the target. Should only
359 be called if the interface is HWDEBUG. */
360 const struct ppc_debug_info &hwdebug_info ()
361 {
362 gdb_assert (hwdebug_p ());
363
364 return m_hwdebug_info;
365 }
366
367 /* Returns true if the interface has already been detected. This is
368 useful for cases when we know there is no work to be done if the
369 interface hasn't been detected yet. */
370 bool detected_p ()
371 {
372 return m_interface.has_value ();
373 }
374
375 /* Detect the available interface, if any, if it hasn't been detected
376 before, using PTID for the necessary ptrace calls. */
377
378 void detect (const ptid_t &ptid)
379 {
380 if (m_interface.has_value ())
381 return;
382
383 gdb_assert (ptid.lwp_p ());
384
385 bool no_features = false;
386
387 if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info)
6e562fa3 388 >= 0)
227c0bf4
PFC
389 {
390 /* If there are no advertised features, we don't use the
391 HWDEBUG interface and try the DEBUGREG interface instead.
392 It shouldn't be necessary to do this, however, when the
393 kernel is configured without CONFIG_HW_BREAKPOINTS (selected
394 by CONFIG_PERF_EVENTS), there is a bug that causes
395 watchpoints installed with the HWDEBUG interface not to
396 trigger. When this is the case, features will be zero,
397 which we use as an indicator to fall back to the DEBUGREG
398 interface. */
399 if (m_hwdebug_info.features != 0)
400 {
401 m_interface.emplace (HWDEBUG);
402 return;
403 }
404 else
405 no_features = true;
406 }
407
408 /* EIO indicates that the request is invalid, so we try DEBUGREG
409 next. Technically, it can also indicate other failures, but we
410 can't differentiate those.
411
412 Other errors could happen for various reasons. We could get an
413 ESRCH if the traced thread was killed by a signal. Trying to
414 detect the interface with another thread in the future would be
415 complicated, as callers would have to handle an "unknown
416 interface" case. It's also unclear if raising an exception
417 here would be safe.
418
419 Other errors, such as ENODEV, could be more permanent and cause
420 a failure for any thread.
421
422 For simplicity, with all errors other than EIO, we set the
423 interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG
424 fails too, we'll also set the interface to UNAVAILABLE. It's
425 unlikely that trying the DEBUGREG interface with this same thread
426 would work, for errors other than EIO. This means that these
427 errors will cause hardware watchpoints and breakpoints to become
428 unavailable throughout a GDB session. */
429
430 if (no_features || errno == EIO)
431 {
432 unsigned long wp;
433
6e562fa3 434 if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0)
227c0bf4
PFC
435 {
436 m_interface.emplace (DEBUGREG);
437 return;
438 }
439 }
440
441 if (errno != EIO)
442 warning (_("Error when detecting the debug register interface. "
443 "Debug registers will be unavailable."));
444
445 m_interface.emplace (UNAVAILABLE);
446 return;
447 }
448
449private:
450
451 /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO,
452 PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG.
453
454 DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and
455 PTRACE_GET_DEBUGREG.
456
457 UNAVAILABLE can indicate that the kernel doesn't support any of the
458 two sets of requests or that there was an error when we tried to
459 detect wich interface is available. */
460
461 enum debug_reg_interface
462 {
463 UNAVAILABLE,
464 HWDEBUG,
465 DEBUGREG
466 };
467
468 /* The interface option. Initialized if has_value () returns true. */
469 gdb::optional<enum debug_reg_interface> m_interface;
470
471 /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only
472 valid if we determined that the interface is HWDEBUG. */
473 struct ppc_debug_info m_hwdebug_info;
474};
475
476/* Per-process information. This includes the hardware watchpoints and
477 breakpoints that GDB requested to this target. */
478
479struct ppc_linux_process_info
480{
481 /* The list of hardware watchpoints and breakpoints that GDB requested
482 for this process.
483
484 Only used when the interface is HWDEBUG. */
485 std::list<struct ppc_hw_breakpoint> requested_hw_bps;
486
487 /* The watchpoint value that GDB requested for this process.
488
489 Only used when the interface is DEBUGREG. */
490 gdb::optional<long> requested_wp_val;
491};
492
f6ac5f3d
PA
493struct ppc_linux_nat_target final : public linux_nat_target
494{
495 /* Add our register access methods. */
496 void fetch_registers (struct regcache *, int) override;
497 void store_registers (struct regcache *, int) override;
498
499 /* Add our breakpoint/watchpoint methods. */
500 int can_use_hw_breakpoint (enum bptype, int, int) override;
501
502 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
503 override;
504
505 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
506 override;
507
508 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
509
510 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
511 struct expression *) override;
512
513 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
514 struct expression *) override;
515
516 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
517 override;
518
519 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
520 override;
521
57810aa7 522 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
f6ac5f3d 523
57810aa7 524 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
f6ac5f3d
PA
525 override;
526
527 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
528
529 int ranged_break_num_registers () override;
530
531 const struct target_desc *read_description () override;
532
3fe639b8
SM
533 int auxv_parse (const gdb_byte **readptr,
534 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
f6ac5f3d 535 override;
135340af
PA
536
537 /* Override linux_nat_target low methods. */
227c0bf4
PFC
538 bool low_stopped_by_watchpoint () override;
539
540 bool low_stopped_data_address (CORE_ADDR *) override;
541
135340af 542 void low_new_thread (struct lwp_info *lp) override;
227c0bf4
PFC
543
544 void low_delete_thread (arch_lwp_info *) override;
545
546 void low_new_fork (struct lwp_info *, pid_t) override;
547
548 void low_new_clone (struct lwp_info *, pid_t) override;
549
550 void low_forget_process (pid_t pid) override;
551
552 void low_prepare_to_resume (struct lwp_info *) override;
553
554private:
555
556 void copy_thread_dreg_state (const ptid_t &parent_ptid,
557 const ptid_t &child_ptid);
558
559 void mark_thread_stale (struct lwp_info *lp);
560
561 void mark_debug_registers_changed (pid_t pid);
562
563 void register_hw_breakpoint (pid_t pid,
564 const struct ppc_hw_breakpoint &bp);
565
566 void clear_hw_breakpoint (pid_t pid,
567 const struct ppc_hw_breakpoint &a);
568
569 void register_wp (pid_t pid, long wp_value);
570
571 void clear_wp (pid_t pid);
572
573 bool can_use_watchpoint_cond_accel (void);
574
575 void calculate_dvc (CORE_ADDR addr, int len,
576 CORE_ADDR data_value,
577 uint32_t *condition_mode,
578 uint64_t *condition_value);
579
580 int check_condition (CORE_ADDR watch_addr,
581 struct expression *cond,
582 CORE_ADDR *data_value, int *len);
583
584 int num_memory_accesses (const std::vector<value_ref_ptr> &chain);
585
586 int get_trigger_type (enum target_hw_bp_type type);
587
588 void create_watchpoint_request (struct ppc_hw_breakpoint *p,
589 CORE_ADDR addr,
590 int len,
591 enum target_hw_bp_type type,
592 struct expression *cond,
593 int insert);
594
595 bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
596 const struct ppc_hw_breakpoint &b);
597
598 void init_arch_lwp_info (struct lwp_info *lp);
599
600 arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp);
601
602 /* The ptrace interface we'll use to install hardware watchpoints and
603 breakpoints (debug registers). */
604 ppc_linux_dreg_interface m_dreg_interface;
605
606 /* A map from pids to structs containing info specific to each
607 process. */
608 std::unordered_map<pid_t, ppc_linux_process_info> m_process_info;
609
610 /* Callable object to hash ptids by their lwp number. */
611 struct ptid_hash
612 {
613 std::size_t operator() (const ptid_t &ptid) const
614 {
615 return std::hash<long>{} (ptid.lwp ());
616 }
617 };
618
619 /* A map from ptid_t objects to a list of pairs of slots and hardware
620 breakpoint objects. This keeps track of which hardware breakpoints
621 and watchpoints were last installed in each slot of each thread.
622
623 Only used when the interface is HWDEBUG. */
624 std::unordered_map <ptid_t,
625 std::list<std::pair<long, ppc_hw_breakpoint>>,
626 ptid_hash> m_installed_hw_bps;
f6ac5f3d
PA
627};
628
629static ppc_linux_nat_target the_ppc_linux_nat_target;
630
16333c4f
EZ
631/* *INDENT-OFF* */
632/* registers layout, as presented by the ptrace interface:
633PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
634PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
635PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
636PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
637PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
638PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
639PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
640PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
641PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
642PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
643PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
644PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
645PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
646/* *INDENT_ON * */
c877c8e6 647
45229ea4 648static int
e101270f 649ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 650{
16333c4f 651 int u_addr = -1;
08106042 652 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
56d0d96a
AC
653 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
654 interface, and not the wordsize of the program's ABI. */
411cb3f9 655 int wordsize = sizeof (long);
16333c4f 656
0df8b418 657 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
658 if (regno >= tdep->ppc_gp0_regnum
659 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 660 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 661
49ff75ad
JB
662 /* Floating point regs: eight bytes each in both 32- and 64-bit
663 ptrace interfaces. Thus, two slots each in 32-bit interface, one
664 slot each in 64-bit interface. */
383f0f5b
JB
665 if (tdep->ppc_fp0_regnum >= 0
666 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
667 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
668 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 669
0df8b418 670 /* UISA special purpose registers: 1 slot each. */
e101270f 671 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 672 u_addr = PT_NIP * wordsize;
dc5cfeb6 673 if (regno == tdep->ppc_lr_regnum)
49ff75ad 674 u_addr = PT_LNK * wordsize;
dc5cfeb6 675 if (regno == tdep->ppc_cr_regnum)
49ff75ad 676 u_addr = PT_CCR * wordsize;
dc5cfeb6 677 if (regno == tdep->ppc_xer_regnum)
49ff75ad 678 u_addr = PT_XER * wordsize;
dc5cfeb6 679 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 680 u_addr = PT_CTR * wordsize;
f8c59253 681#ifdef PT_MQ
dc5cfeb6 682 if (regno == tdep->ppc_mq_regnum)
49ff75ad 683 u_addr = PT_MQ * wordsize;
f8c59253 684#endif
dc5cfeb6 685 if (regno == tdep->ppc_ps_regnum)
49ff75ad 686 u_addr = PT_MSR * wordsize;
7284e1be
UW
687 if (regno == PPC_ORIG_R3_REGNUM)
688 u_addr = PT_ORIG_R3 * wordsize;
689 if (regno == PPC_TRAP_REGNUM)
690 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
691 if (tdep->ppc_fpscr_regnum >= 0
692 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
693 {
694 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
695 kernel headers incorrectly contained the 32-bit definition of
696 PT_FPSCR. For the 32-bit definition, floating-point
697 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 698 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
699 the FPSCR instead occupies the full 64-bit 2-word-slot and
700 hence no adjustment is necessary. Hack around this. */
701 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
702 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
703 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
704 slot and not just its second word. The PT_FPSCR supplied when
705 GDB is compiled as a 32-bit app doesn't reflect this. */
706 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
707 && PT_FPSCR == (48 + 2*32 + 1))
708 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
709 else
710 u_addr = PT_FPSCR * wordsize;
711 }
16333c4f 712 return u_addr;
c877c8e6
KB
713}
714
604c2f83
LM
715/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
716 registers set mechanism, as opposed to the interface for all the
717 other registers, that stores/fetches each register individually. */
718static void
2c3305f6 719fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
604c2f83
LM
720{
721 int ret;
722 gdb_vsxregset_t regs;
2c3305f6 723 const struct regset *vsxregset = ppc_linux_vsxregset ();
604c2f83
LM
724
725 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
726 if (ret < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetvsxregs = 0;
731 return;
732 }
2c3305f6 733 perror_with_name (_("Unable to fetch VSX registers"));
604c2f83
LM
734 }
735
2c3305f6
PFC
736 vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
737 PPC_LINUX_SIZEOF_VSXREGSET);
604c2f83
LM
738}
739
9abe5450
EZ
740/* The Linux kernel ptrace interface for AltiVec registers uses the
741 registers set mechanism, as opposed to the interface for all the
742 other registers, that stores/fetches each register individually. */
743static void
1d75a658
PFC
744fetch_altivec_registers (struct regcache *regcache, int tid,
745 int regno)
9abe5450
EZ
746{
747 int ret;
9abe5450 748 gdb_vrregset_t regs;
ac7936df 749 struct gdbarch *gdbarch = regcache->arch ();
1d75a658 750 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
9abe5450
EZ
751
752 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
753 if (ret < 0)
754 {
755 if (errno == EIO)
dda83cd7
SM
756 {
757 have_ptrace_getvrregs = 0;
758 return;
759 }
1d75a658 760 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 761 }
1d75a658
PFC
762
763 vrregset->supply_regset (vrregset, regcache, regno, &regs,
764 PPC_LINUX_SIZEOF_VRREGSET);
9abe5450
EZ
765}
766
01904826
JB
767/* Fetch the top 32 bits of TID's general-purpose registers and the
768 SPE-specific registers, and place the results in EVRREGSET. If we
769 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
770 zeros.
771
772 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
773 PTRACE_SETEVRREGS requests are supported is isolated here, and in
774 set_spe_registers. */
775static void
776get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
777{
778 if (have_ptrace_getsetevrregs)
779 {
780 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
dda83cd7 781 return;
01904826 782 else
dda83cd7
SM
783 {
784 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
785 we just return zeros. */
786 if (errno == EIO)
787 have_ptrace_getsetevrregs = 0;
788 else
789 /* Anything else needs to be reported. */
790 perror_with_name (_("Unable to fetch SPE registers"));
791 }
01904826
JB
792 }
793
794 memset (evrregset, 0, sizeof (*evrregset));
795}
796
6ced10dd
JB
797/* Supply values from TID for SPE-specific raw registers: the upper
798 halves of the GPRs, the accumulator, and the spefscr. REGNO must
799 be the number of an upper half register, acc, spefscr, or -1 to
800 supply the values of all registers. */
01904826 801static void
56be3814 802fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 803{
ac7936df 804 struct gdbarch *gdbarch = regcache->arch ();
08106042 805 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
01904826
JB
806 struct gdb_evrregset_t evrregs;
807
6ced10dd 808 gdb_assert (sizeof (evrregs.evr[0])
dda83cd7 809 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 810 gdb_assert (sizeof (evrregs.acc)
dda83cd7 811 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 812 gdb_assert (sizeof (evrregs.spefscr)
dda83cd7 813 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 814
01904826
JB
815 get_spe_registers (tid, &evrregs);
816
6ced10dd 817 if (regno == -1)
01904826 818 {
6ced10dd
JB
819 int i;
820
821 for (i = 0; i < ppc_num_gprs; i++)
dda83cd7 822 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
01904826 823 }
6ced10dd 824 else if (tdep->ppc_ev0_upper_regnum <= regno
dda83cd7 825 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
73e1c03f
SM
826 regcache->raw_supply (regno,
827 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
6ced10dd
JB
828
829 if (regno == -1
830 || regno == tdep->ppc_acc_regnum)
73e1c03f 831 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
832
833 if (regno == -1
834 || regno == tdep->ppc_spefscr_regnum)
73e1c03f 835 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
01904826
JB
836}
837
7ca18ed6
EBM
838/* Use ptrace to fetch all registers from the register set with note
839 type REGSET_ID, size REGSIZE, and layout described by REGSET, from
840 process/thread TID and supply their values to REGCACHE. If ptrace
841 returns ENODATA to indicate the regset is unavailable, mark the
842 registers as unavailable in REGCACHE. */
843
844static void
845fetch_regset (struct regcache *regcache, int tid,
846 int regset_id, int regsetsize, const struct regset *regset)
847{
848 void *buf = alloca (regsetsize);
849 struct iovec iov;
850
851 iov.iov_base = buf;
852 iov.iov_len = regsetsize;
853
854 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
855 {
856 if (errno == ENODATA)
857 regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
858 else
859 perror_with_name (_("Couldn't get register set"));
860 }
861 else
862 regset->supply_regset (regset, regcache, -1, buf, regsetsize);
863}
864
865/* Use ptrace to store register REGNUM of the regset with note type
866 REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
867 REGCACHE back to process/thread TID. If REGNUM is -1 all registers
868 in the set are collected and stored. */
869
870static void
871store_regset (const struct regcache *regcache, int tid, int regnum,
872 int regset_id, int regsetsize, const struct regset *regset)
873{
874 void *buf = alloca (regsetsize);
875 struct iovec iov;
876
877 iov.iov_base = buf;
878 iov.iov_len = regsetsize;
879
880 /* Make sure that the buffer that will be stored has up to date values
881 for the registers that won't be collected. */
882 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
883 perror_with_name (_("Couldn't get register set"));
884
885 regset->collect_regset (regset, regcache, regnum, buf, regsetsize);
886
887 if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
888 perror_with_name (_("Couldn't set register set"));
889}
890
891/* Check whether the kernel provides a register set with number
892 REGSET_ID of size REGSETSIZE for process/thread TID. */
893
894static bool
895check_regset (int tid, int regset_id, int regsetsize)
896{
897 void *buf = alloca (regsetsize);
898 struct iovec iov;
899
900 iov.iov_base = buf;
901 iov.iov_len = regsetsize;
902
903 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
904 || errno == ENODATA)
905 return true;
906 else
907 return false;
908}
909
45229ea4 910static void
56be3814 911fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 912{
ac7936df 913 struct gdbarch *gdbarch = regcache->arch ();
08106042 914 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
45229ea4 915 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 916 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 917 int bytes_transferred;
0f068fb5 918 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 919
be8626e0 920 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
921 {
922 /* If this is the first time through, or if it is not the first
dda83cd7
SM
923 time through, and we have confirmed that there is kernel
924 support for such a ptrace request, then go and fetch the
925 register. */
9abe5450
EZ
926 if (have_ptrace_getvrregs)
927 {
dda83cd7
SM
928 fetch_altivec_registers (regcache, tid, regno);
929 return;
9abe5450
EZ
930 }
931 /* If we have discovered that there is no ptrace support for
dda83cd7
SM
932 AltiVec registers, fall through and return zeroes, because
933 regaddr will be -1 in this case. */
9abe5450 934 }
3d907528 935 else if (vsx_register_p (gdbarch, regno))
604c2f83
LM
936 {
937 if (have_ptrace_getsetvsxregs)
938 {
2c3305f6 939 fetch_vsx_registers (regcache, tid, regno);
604c2f83
LM
940 return;
941 }
942 }
be8626e0 943 else if (spe_register_p (gdbarch, regno))
01904826 944 {
56be3814 945 fetch_spe_register (regcache, tid, regno);
01904826
JB
946 return;
947 }
7ca18ed6
EBM
948 else if (regno == PPC_DSCR_REGNUM)
949 {
950 gdb_assert (tdep->ppc_dscr_regnum != -1);
951
952 fetch_regset (regcache, tid, NT_PPC_DSCR,
953 PPC_LINUX_SIZEOF_DSCRREGSET,
954 &ppc32_linux_dscrregset);
955 return;
956 }
957 else if (regno == PPC_PPR_REGNUM)
958 {
959 gdb_assert (tdep->ppc_ppr_regnum != -1);
960
961 fetch_regset (regcache, tid, NT_PPC_PPR,
962 PPC_LINUX_SIZEOF_PPRREGSET,
963 &ppc32_linux_pprregset);
964 return;
965 }
f2cf6173
EBM
966 else if (regno == PPC_TAR_REGNUM)
967 {
968 gdb_assert (tdep->ppc_tar_regnum != -1);
969
970 fetch_regset (regcache, tid, NT_PPC_TAR,
971 PPC_LINUX_SIZEOF_TARREGSET,
972 &ppc32_linux_tarregset);
973 return;
974 }
232bfb86
EBM
975 else if (PPC_IS_EBB_REGNUM (regno))
976 {
977 gdb_assert (tdep->have_ebb);
978
979 fetch_regset (regcache, tid, NT_PPC_EBB,
980 PPC_LINUX_SIZEOF_EBBREGSET,
981 &ppc32_linux_ebbregset);
982 return;
983 }
984 else if (PPC_IS_PMU_REGNUM (regno))
985 {
986 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
987
988 fetch_regset (regcache, tid, NT_PPC_PMU,
989 PPC_LINUX_SIZEOF_PMUREGSET,
990 &ppc32_linux_pmuregset);
991 return;
992 }
8d619c01
EBM
993 else if (PPC_IS_TMSPR_REGNUM (regno))
994 {
995 gdb_assert (tdep->have_htm_spr);
996
997 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
998 PPC_LINUX_SIZEOF_TM_SPRREGSET,
999 &ppc32_linux_tm_sprregset);
1000 return;
1001 }
1002 else if (PPC_IS_CKPTGP_REGNUM (regno))
1003 {
1004 gdb_assert (tdep->have_htm_core);
1005
1006 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1007 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1008 (tdep->wordsize == 4?
1009 PPC32_LINUX_SIZEOF_CGPRREGSET
1010 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1011 cgprregset);
1012 return;
1013 }
1014 else if (PPC_IS_CKPTFP_REGNUM (regno))
1015 {
1016 gdb_assert (tdep->have_htm_fpu);
1017
1018 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1019 PPC_LINUX_SIZEOF_CFPRREGSET,
1020 &ppc32_linux_cfprregset);
1021 return;
1022 }
1023 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1024 {
1025 gdb_assert (tdep->have_htm_altivec);
1026
1027 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1028 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1029 PPC_LINUX_SIZEOF_CVMXREGSET,
1030 cvmxregset);
1031 return;
1032 }
1033 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1034 {
1035 gdb_assert (tdep->have_htm_vsx);
1036
1037 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1038 PPC_LINUX_SIZEOF_CVSXREGSET,
1039 &ppc32_linux_cvsxregset);
1040 return;
1041 }
1042 else if (regno == PPC_CPPR_REGNUM)
1043 {
1044 gdb_assert (tdep->ppc_cppr_regnum != -1);
1045
1046 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1047 PPC_LINUX_SIZEOF_CPPRREGSET,
1048 &ppc32_linux_cpprregset);
1049 return;
1050 }
1051 else if (regno == PPC_CDSCR_REGNUM)
1052 {
1053 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1054
1055 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1056 PPC_LINUX_SIZEOF_CDSCRREGSET,
1057 &ppc32_linux_cdscrregset);
1058 return;
1059 }
1060 else if (regno == PPC_CTAR_REGNUM)
1061 {
1062 gdb_assert (tdep->ppc_ctar_regnum != -1);
1063
1064 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1065 PPC_LINUX_SIZEOF_CTARREGSET,
1066 &ppc32_linux_ctarregset);
1067 return;
1068 }
9abe5450 1069
45229ea4
EZ
1070 if (regaddr == -1)
1071 {
40a6adc1 1072 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
73e1c03f 1073 regcache->raw_supply (regno, buf);
45229ea4
EZ
1074 return;
1075 }
1076
411cb3f9 1077 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
1078 32-bit platform, 64-bit floating-point registers will require two
1079 transfers. */
4a19ea35 1080 for (bytes_transferred = 0;
40a6adc1 1081 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 1082 bytes_transferred += sizeof (long))
45229ea4 1083 {
11fde611
JK
1084 long l;
1085
45229ea4 1086 errno = 0;
11fde611 1087 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 1088 regaddr += sizeof (long);
45229ea4
EZ
1089 if (errno != 0)
1090 {
dda83cd7 1091 char message[128];
8c042590
PM
1092 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
1093 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1094 perror_with_name (message);
45229ea4 1095 }
11fde611 1096 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 1097 }
56d0d96a 1098
4a19ea35
JB
1099 /* Now supply the register. Keep in mind that the regcache's idea
1100 of the register's size may not be a multiple of sizeof
411cb3f9 1101 (long). */
40a6adc1 1102 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1103 {
1104 /* Little-endian values are always found at the left end of the
dda83cd7 1105 bytes transferred. */
73e1c03f 1106 regcache->raw_supply (regno, buf);
4a19ea35 1107 }
40a6adc1 1108 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1109 {
1110 /* Big-endian values are found at the right end of the bytes
dda83cd7 1111 transferred. */
40a6adc1 1112 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
73e1c03f 1113 regcache->raw_supply (regno, buf + padding);
4a19ea35
JB
1114 }
1115 else
f34652de 1116 internal_error (_("fetch_register: unexpected byte order: %d"),
dda83cd7 1117 gdbarch_byte_order (gdbarch));
45229ea4
EZ
1118}
1119
1dfe79e8
SDJ
1120/* This function actually issues the request to ptrace, telling
1121 it to get all general-purpose registers and put them into the
1122 specified regset.
1123
1124 If the ptrace request does not exist, this function returns 0
1125 and properly sets the have_ptrace_* flag. If the request fails,
1126 this function calls perror_with_name. Otherwise, if the request
1127 succeeds, then the regcache gets filled and 1 is returned. */
1128static int
1129fetch_all_gp_regs (struct regcache *regcache, int tid)
1130{
1dfe79e8
SDJ
1131 gdb_gregset_t gregset;
1132
1133 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1134 {
1135 if (errno == EIO)
dda83cd7
SM
1136 {
1137 have_ptrace_getsetregs = 0;
1138 return 0;
1139 }
deb70aa0 1140 perror_with_name (_("Couldn't get general-purpose registers"));
1dfe79e8
SDJ
1141 }
1142
1143 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
1144
1145 return 1;
1146}
1147
1148/* This is a wrapper for the fetch_all_gp_regs function. It is
1149 responsible for verifying if this target has the ptrace request
1150 that can be used to fetch all general-purpose registers at one
1151 shot. If it doesn't, then we should fetch them using the
1152 old-fashioned way, which is to iterate over the registers and
1153 request them one by one. */
1154static void
1155fetch_gp_regs (struct regcache *regcache, int tid)
1156{
ac7936df 1157 struct gdbarch *gdbarch = regcache->arch ();
08106042 1158 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1dfe79e8
SDJ
1159 int i;
1160
1161 if (have_ptrace_getsetregs)
1162 if (fetch_all_gp_regs (regcache, tid))
1163 return;
1164
1165 /* If we've hit this point, it doesn't really matter which
1166 architecture we are using. We just need to read the
1167 registers in the "old-fashioned way". */
1168 for (i = 0; i < ppc_num_gprs; i++)
1169 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1170}
1171
1172/* This function actually issues the request to ptrace, telling
1173 it to get all floating-point registers and put them into the
1174 specified regset.
1175
1176 If the ptrace request does not exist, this function returns 0
1177 and properly sets the have_ptrace_* flag. If the request fails,
1178 this function calls perror_with_name. Otherwise, if the request
1179 succeeds, then the regcache gets filled and 1 is returned. */
1180static int
1181fetch_all_fp_regs (struct regcache *regcache, int tid)
1182{
1183 gdb_fpregset_t fpregs;
1184
1185 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1186 {
1187 if (errno == EIO)
dda83cd7
SM
1188 {
1189 have_ptrace_getsetfpregs = 0;
1190 return 0;
1191 }
deb70aa0 1192 perror_with_name (_("Couldn't get floating-point registers"));
1dfe79e8
SDJ
1193 }
1194
1195 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
1196
1197 return 1;
1198}
1199
1200/* This is a wrapper for the fetch_all_fp_regs function. It is
1201 responsible for verifying if this target has the ptrace request
1202 that can be used to fetch all floating-point registers at one
1203 shot. If it doesn't, then we should fetch them using the
1204 old-fashioned way, which is to iterate over the registers and
1205 request them one by one. */
1206static void
1207fetch_fp_regs (struct regcache *regcache, int tid)
1208{
ac7936df 1209 struct gdbarch *gdbarch = regcache->arch ();
08106042 1210 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1dfe79e8
SDJ
1211 int i;
1212
1213 if (have_ptrace_getsetfpregs)
1214 if (fetch_all_fp_regs (regcache, tid))
1215 return;
1216
1217 /* If we've hit this point, it doesn't really matter which
1218 architecture we are using. We just need to read the
1219 registers in the "old-fashioned way". */
1220 for (i = 0; i < ppc_num_fprs; i++)
1221 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1222}
1223
45229ea4 1224static void
56be3814 1225fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4 1226{
ac7936df 1227 struct gdbarch *gdbarch = regcache->arch ();
08106042 1228 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
9abe5450 1229
1dfe79e8 1230 fetch_gp_regs (regcache, tid);
32b99774 1231 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1232 fetch_fp_regs (regcache, tid);
40a6adc1 1233 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1234 if (tdep->ppc_ps_regnum != -1)
56be3814 1235 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1236 if (tdep->ppc_cr_regnum != -1)
56be3814 1237 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1238 if (tdep->ppc_lr_regnum != -1)
56be3814 1239 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1240 if (tdep->ppc_ctr_regnum != -1)
56be3814 1241 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1242 if (tdep->ppc_xer_regnum != -1)
56be3814 1243 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1244 if (tdep->ppc_mq_regnum != -1)
56be3814 1245 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
1246 if (ppc_linux_trap_reg_p (gdbarch))
1247 {
1248 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1249 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
1250 }
32b99774 1251 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1252 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
1253 if (have_ptrace_getvrregs)
1254 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1d75a658 1255 fetch_altivec_registers (regcache, tid, -1);
604c2f83
LM
1256 if (have_ptrace_getsetvsxregs)
1257 if (tdep->ppc_vsr0_upper_regnum != -1)
2c3305f6 1258 fetch_vsx_registers (regcache, tid, -1);
6ced10dd 1259 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1260 fetch_spe_register (regcache, tid, -1);
7ca18ed6
EBM
1261 if (tdep->ppc_ppr_regnum != -1)
1262 fetch_regset (regcache, tid, NT_PPC_PPR,
1263 PPC_LINUX_SIZEOF_PPRREGSET,
1264 &ppc32_linux_pprregset);
1265 if (tdep->ppc_dscr_regnum != -1)
1266 fetch_regset (regcache, tid, NT_PPC_DSCR,
1267 PPC_LINUX_SIZEOF_DSCRREGSET,
1268 &ppc32_linux_dscrregset);
f2cf6173
EBM
1269 if (tdep->ppc_tar_regnum != -1)
1270 fetch_regset (regcache, tid, NT_PPC_TAR,
1271 PPC_LINUX_SIZEOF_TARREGSET,
1272 &ppc32_linux_tarregset);
232bfb86
EBM
1273 if (tdep->have_ebb)
1274 fetch_regset (regcache, tid, NT_PPC_EBB,
1275 PPC_LINUX_SIZEOF_EBBREGSET,
1276 &ppc32_linux_ebbregset);
1277 if (tdep->ppc_mmcr0_regnum != -1)
1278 fetch_regset (regcache, tid, NT_PPC_PMU,
1279 PPC_LINUX_SIZEOF_PMUREGSET,
1280 &ppc32_linux_pmuregset);
8d619c01
EBM
1281 if (tdep->have_htm_spr)
1282 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
1283 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1284 &ppc32_linux_tm_sprregset);
1285 if (tdep->have_htm_core)
1286 {
1287 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1288 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1289 (tdep->wordsize == 4?
1290 PPC32_LINUX_SIZEOF_CGPRREGSET
1291 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1292 cgprregset);
1293 }
1294 if (tdep->have_htm_fpu)
1295 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1296 PPC_LINUX_SIZEOF_CFPRREGSET,
1297 &ppc32_linux_cfprregset);
1298 if (tdep->have_htm_altivec)
1299 {
1300 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1301 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1302 PPC_LINUX_SIZEOF_CVMXREGSET,
1303 cvmxregset);
1304 }
1305 if (tdep->have_htm_vsx)
1306 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1307 PPC_LINUX_SIZEOF_CVSXREGSET,
1308 &ppc32_linux_cvsxregset);
1309 if (tdep->ppc_cppr_regnum != -1)
1310 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1311 PPC_LINUX_SIZEOF_CPPRREGSET,
1312 &ppc32_linux_cpprregset);
1313 if (tdep->ppc_cdscr_regnum != -1)
1314 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1315 PPC_LINUX_SIZEOF_CDSCRREGSET,
1316 &ppc32_linux_cdscrregset);
1317 if (tdep->ppc_ctar_regnum != -1)
1318 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1319 PPC_LINUX_SIZEOF_CTARREGSET,
1320 &ppc32_linux_ctarregset);
45229ea4
EZ
1321}
1322
1323/* Fetch registers from the child process. Fetch all registers if
1324 regno == -1, otherwise fetch all general registers or all floating
1325 point registers depending upon the value of regno. */
f6ac5f3d
PA
1326void
1327ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
45229ea4 1328{
222312d3 1329 pid_t tid = get_ptrace_pid (regcache->ptid ());
05f13b9c 1330
9abe5450 1331 if (regno == -1)
56be3814 1332 fetch_ppc_registers (regcache, tid);
45229ea4 1333 else
56be3814 1334 fetch_register (regcache, tid, regno);
45229ea4
EZ
1335}
1336
604c2f83 1337static void
2c3305f6 1338store_vsx_registers (const struct regcache *regcache, int tid, int regno)
604c2f83
LM
1339{
1340 int ret;
1341 gdb_vsxregset_t regs;
2c3305f6 1342 const struct regset *vsxregset = ppc_linux_vsxregset ();
604c2f83 1343
9fe70b4f 1344 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
1345 if (ret < 0)
1346 {
1347 if (errno == EIO)
1348 {
1349 have_ptrace_getsetvsxregs = 0;
1350 return;
1351 }
2c3305f6 1352 perror_with_name (_("Unable to fetch VSX registers"));
604c2f83
LM
1353 }
1354
2c3305f6
PFC
1355 vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
1356 PPC_LINUX_SIZEOF_VSXREGSET);
604c2f83
LM
1357
1358 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
1359 if (ret < 0)
2c3305f6 1360 perror_with_name (_("Unable to store VSX registers"));
604c2f83
LM
1361}
1362
9abe5450 1363static void
1d75a658
PFC
1364store_altivec_registers (const struct regcache *regcache, int tid,
1365 int regno)
9abe5450
EZ
1366{
1367 int ret;
9abe5450 1368 gdb_vrregset_t regs;
ac7936df 1369 struct gdbarch *gdbarch = regcache->arch ();
1d75a658 1370 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
9abe5450
EZ
1371
1372 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1373 if (ret < 0)
1374 {
1375 if (errno == EIO)
dda83cd7
SM
1376 {
1377 have_ptrace_getvrregs = 0;
1378 return;
1379 }
1d75a658 1380 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450
EZ
1381 }
1382
1d75a658
PFC
1383 vrregset->collect_regset (vrregset, regcache, regno, &regs,
1384 PPC_LINUX_SIZEOF_VRREGSET);
9abe5450
EZ
1385
1386 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
1387 if (ret < 0)
1d75a658 1388 perror_with_name (_("Unable to store AltiVec registers"));
9abe5450
EZ
1389}
1390
85102364 1391/* Assuming TID refers to an SPE process, set the top halves of TID's
01904826
JB
1392 general-purpose registers and its SPE-specific registers to the
1393 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
1394 nothing.
1395
1396 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
1397 PTRACE_SETEVRREGS requests are supported is isolated here, and in
1398 get_spe_registers. */
1399static void
1400set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
1401{
1402 if (have_ptrace_getsetevrregs)
1403 {
1404 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
dda83cd7 1405 return;
01904826 1406 else
dda83cd7
SM
1407 {
1408 /* EIO means that the PTRACE_SETEVRREGS request isn't
1409 supported; we fail silently, and don't try the call
1410 again. */
1411 if (errno == EIO)
1412 have_ptrace_getsetevrregs = 0;
1413 else
1414 /* Anything else needs to be reported. */
1415 perror_with_name (_("Unable to set SPE registers"));
1416 }
01904826
JB
1417 }
1418}
1419
6ced10dd
JB
1420/* Write GDB's value for the SPE-specific raw register REGNO to TID.
1421 If REGNO is -1, write the values of all the SPE-specific
1422 registers. */
01904826 1423static void
56be3814 1424store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 1425{
ac7936df 1426 struct gdbarch *gdbarch = regcache->arch ();
08106042 1427 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
01904826
JB
1428 struct gdb_evrregset_t evrregs;
1429
6ced10dd 1430 gdb_assert (sizeof (evrregs.evr[0])
dda83cd7 1431 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 1432 gdb_assert (sizeof (evrregs.acc)
dda83cd7 1433 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 1434 gdb_assert (sizeof (evrregs.spefscr)
dda83cd7 1435 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 1436
6ced10dd
JB
1437 if (regno == -1)
1438 /* Since we're going to write out every register, the code below
1439 should store to every field of evrregs; if that doesn't happen,
1440 make it obvious by initializing it with suspicious values. */
1441 memset (&evrregs, 42, sizeof (evrregs));
1442 else
1443 /* We can only read and write the entire EVR register set at a
1444 time, so to write just a single register, we do a
1445 read-modify-write maneuver. */
1446 get_spe_registers (tid, &evrregs);
1447
1448 if (regno == -1)
01904826 1449 {
6ced10dd
JB
1450 int i;
1451
1452 for (i = 0; i < ppc_num_gprs; i++)
34a79281
SM
1453 regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
1454 &evrregs.evr[i]);
01904826 1455 }
6ced10dd 1456 else if (tdep->ppc_ev0_upper_regnum <= regno
dda83cd7 1457 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
34a79281
SM
1458 regcache->raw_collect (regno,
1459 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
6ced10dd
JB
1460
1461 if (regno == -1
1462 || regno == tdep->ppc_acc_regnum)
34a79281
SM
1463 regcache->raw_collect (tdep->ppc_acc_regnum,
1464 &evrregs.acc);
6ced10dd
JB
1465
1466 if (regno == -1
1467 || regno == tdep->ppc_spefscr_regnum)
34a79281
SM
1468 regcache->raw_collect (tdep->ppc_spefscr_regnum,
1469 &evrregs.spefscr);
01904826
JB
1470
1471 /* Write back the modified register set. */
1472 set_spe_registers (tid, &evrregs);
1473}
1474
45229ea4 1475static void
56be3814 1476store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1477{
ac7936df 1478 struct gdbarch *gdbarch = regcache->arch ();
08106042 1479 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
45229ea4 1480 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1481 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1482 int i;
4a19ea35 1483 size_t bytes_to_transfer;
0f068fb5 1484 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 1485
be8626e0 1486 if (altivec_register_p (gdbarch, regno))
45229ea4 1487 {
1d75a658 1488 store_altivec_registers (regcache, tid, regno);
45229ea4
EZ
1489 return;
1490 }
3d907528 1491 else if (vsx_register_p (gdbarch, regno))
604c2f83 1492 {
2c3305f6 1493 store_vsx_registers (regcache, tid, regno);
604c2f83
LM
1494 return;
1495 }
be8626e0 1496 else if (spe_register_p (gdbarch, regno))
01904826 1497 {
56be3814 1498 store_spe_register (regcache, tid, regno);
01904826
JB
1499 return;
1500 }
7ca18ed6
EBM
1501 else if (regno == PPC_DSCR_REGNUM)
1502 {
1503 gdb_assert (tdep->ppc_dscr_regnum != -1);
1504
1505 store_regset (regcache, tid, regno, NT_PPC_DSCR,
1506 PPC_LINUX_SIZEOF_DSCRREGSET,
1507 &ppc32_linux_dscrregset);
1508 return;
1509 }
1510 else if (regno == PPC_PPR_REGNUM)
1511 {
1512 gdb_assert (tdep->ppc_ppr_regnum != -1);
1513
1514 store_regset (regcache, tid, regno, NT_PPC_PPR,
1515 PPC_LINUX_SIZEOF_PPRREGSET,
1516 &ppc32_linux_pprregset);
1517 return;
1518 }
f2cf6173
EBM
1519 else if (regno == PPC_TAR_REGNUM)
1520 {
1521 gdb_assert (tdep->ppc_tar_regnum != -1);
1522
1523 store_regset (regcache, tid, regno, NT_PPC_TAR,
1524 PPC_LINUX_SIZEOF_TARREGSET,
1525 &ppc32_linux_tarregset);
1526 return;
1527 }
232bfb86
EBM
1528 else if (PPC_IS_EBB_REGNUM (regno))
1529 {
1530 gdb_assert (tdep->have_ebb);
1531
1532 store_regset (regcache, tid, regno, NT_PPC_EBB,
1533 PPC_LINUX_SIZEOF_EBBREGSET,
1534 &ppc32_linux_ebbregset);
1535 return;
1536 }
1537 else if (PPC_IS_PMU_REGNUM (regno))
1538 {
1539 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
1540
1541 store_regset (regcache, tid, regno, NT_PPC_PMU,
1542 PPC_LINUX_SIZEOF_PMUREGSET,
1543 &ppc32_linux_pmuregset);
1544 return;
1545 }
8d619c01
EBM
1546 else if (PPC_IS_TMSPR_REGNUM (regno))
1547 {
1548 gdb_assert (tdep->have_htm_spr);
1549
1550 store_regset (regcache, tid, regno, NT_PPC_TM_SPR,
1551 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1552 &ppc32_linux_tm_sprregset);
1553 return;
1554 }
1555 else if (PPC_IS_CKPTGP_REGNUM (regno))
1556 {
1557 gdb_assert (tdep->have_htm_core);
1558
1559 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1560 store_regset (regcache, tid, regno, NT_PPC_TM_CGPR,
1561 (tdep->wordsize == 4?
1562 PPC32_LINUX_SIZEOF_CGPRREGSET
1563 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1564 cgprregset);
1565 return;
1566 }
1567 else if (PPC_IS_CKPTFP_REGNUM (regno))
1568 {
1569 gdb_assert (tdep->have_htm_fpu);
1570
1571 store_regset (regcache, tid, regno, NT_PPC_TM_CFPR,
1572 PPC_LINUX_SIZEOF_CFPRREGSET,
1573 &ppc32_linux_cfprregset);
1574 return;
1575 }
1576 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1577 {
1578 gdb_assert (tdep->have_htm_altivec);
1579
1580 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1581 store_regset (regcache, tid, regno, NT_PPC_TM_CVMX,
1582 PPC_LINUX_SIZEOF_CVMXREGSET,
1583 cvmxregset);
1584 return;
1585 }
1586 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1587 {
1588 gdb_assert (tdep->have_htm_vsx);
1589
1590 store_regset (regcache, tid, regno, NT_PPC_TM_CVSX,
1591 PPC_LINUX_SIZEOF_CVSXREGSET,
1592 &ppc32_linux_cvsxregset);
1593 return;
1594 }
1595 else if (regno == PPC_CPPR_REGNUM)
1596 {
1597 gdb_assert (tdep->ppc_cppr_regnum != -1);
1598
1599 store_regset (regcache, tid, regno, NT_PPC_TM_CPPR,
1600 PPC_LINUX_SIZEOF_CPPRREGSET,
1601 &ppc32_linux_cpprregset);
1602 return;
1603 }
1604 else if (regno == PPC_CDSCR_REGNUM)
1605 {
1606 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1607
1608 store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR,
1609 PPC_LINUX_SIZEOF_CDSCRREGSET,
1610 &ppc32_linux_cdscrregset);
1611 return;
1612 }
1613 else if (regno == PPC_CTAR_REGNUM)
1614 {
1615 gdb_assert (tdep->ppc_ctar_regnum != -1);
1616
1617 store_regset (regcache, tid, regno, NT_PPC_TM_CTAR,
1618 PPC_LINUX_SIZEOF_CTARREGSET,
1619 &ppc32_linux_ctarregset);
1620 return;
1621 }
45229ea4 1622
9abe5450
EZ
1623 if (regaddr == -1)
1624 return;
1625
4a19ea35
JB
1626 /* First collect the register. Keep in mind that the regcache's
1627 idea of the register's size may not be a multiple of sizeof
411cb3f9 1628 (long). */
56d0d96a 1629 memset (buf, 0, sizeof buf);
40a6adc1
MD
1630 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1631 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1632 {
1633 /* Little-endian values always sit at the left end of the buffer. */
34a79281 1634 regcache->raw_collect (regno, buf);
4a19ea35 1635 }
40a6adc1 1636 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1637 {
1638 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1639 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
34a79281 1640 regcache->raw_collect (regno, buf + padding);
4a19ea35
JB
1641 }
1642
411cb3f9 1643 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1644 {
11fde611
JK
1645 long l;
1646
1647 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1648 errno = 0;
11fde611 1649 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1650 regaddr += sizeof (long);
e3f36dbd
KB
1651
1652 if (errno == EIO
dda83cd7 1653 && (regno == tdep->ppc_fpscr_regnum
7284e1be
UW
1654 || regno == PPC_ORIG_R3_REGNUM
1655 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1656 {
7284e1be
UW
1657 /* Some older kernel versions don't allow fpscr, orig_r3
1658 or trap to be written. */
e3f36dbd
KB
1659 continue;
1660 }
1661
45229ea4
EZ
1662 if (errno != 0)
1663 {
dda83cd7 1664 char message[128];
8c042590
PM
1665 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1666 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1667 perror_with_name (message);
45229ea4
EZ
1668 }
1669 }
1670}
1671
1dfe79e8
SDJ
1672/* This function actually issues the request to ptrace, telling
1673 it to store all general-purpose registers present in the specified
1674 regset.
1675
1676 If the ptrace request does not exist, this function returns 0
1677 and properly sets the have_ptrace_* flag. If the request fails,
1678 this function calls perror_with_name. Otherwise, if the request
1679 succeeds, then the regcache is stored and 1 is returned. */
1680static int
1681store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1682{
1dfe79e8
SDJ
1683 gdb_gregset_t gregset;
1684
1685 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1686 {
1687 if (errno == EIO)
dda83cd7
SM
1688 {
1689 have_ptrace_getsetregs = 0;
1690 return 0;
1691 }
deb70aa0 1692 perror_with_name (_("Couldn't get general-purpose registers"));
1dfe79e8
SDJ
1693 }
1694
1695 fill_gregset (regcache, &gregset, regno);
1696
1697 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1698 {
1699 if (errno == EIO)
dda83cd7
SM
1700 {
1701 have_ptrace_getsetregs = 0;
1702 return 0;
1703 }
deb70aa0 1704 perror_with_name (_("Couldn't set general-purpose registers"));
1dfe79e8
SDJ
1705 }
1706
1707 return 1;
1708}
1709
1710/* This is a wrapper for the store_all_gp_regs function. It is
1711 responsible for verifying if this target has the ptrace request
1712 that can be used to store all general-purpose registers at one
1713 shot. If it doesn't, then we should store them using the
1714 old-fashioned way, which is to iterate over the registers and
1715 store them one by one. */
45229ea4 1716static void
1dfe79e8 1717store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1718{
ac7936df 1719 struct gdbarch *gdbarch = regcache->arch ();
08106042 1720 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1dfe79e8
SDJ
1721 int i;
1722
1723 if (have_ptrace_getsetregs)
1724 if (store_all_gp_regs (regcache, tid, regno))
1725 return;
1726
1727 /* If we hit this point, it doesn't really matter which
1728 architecture we are using. We just need to store the
1729 registers in the "old-fashioned way". */
6ced10dd 1730 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1731 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1732}
1733
1734/* This function actually issues the request to ptrace, telling
1735 it to store all floating-point registers present in the specified
1736 regset.
1737
1738 If the ptrace request does not exist, this function returns 0
1739 and properly sets the have_ptrace_* flag. If the request fails,
1740 this function calls perror_with_name. Otherwise, if the request
1741 succeeds, then the regcache is stored and 1 is returned. */
1742static int
1743store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1744{
1745 gdb_fpregset_t fpregs;
1746
1747 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1748 {
1749 if (errno == EIO)
dda83cd7
SM
1750 {
1751 have_ptrace_getsetfpregs = 0;
1752 return 0;
1753 }
deb70aa0 1754 perror_with_name (_("Couldn't get floating-point registers"));
1dfe79e8
SDJ
1755 }
1756
1757 fill_fpregset (regcache, &fpregs, regno);
1758
1759 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1760 {
1761 if (errno == EIO)
dda83cd7
SM
1762 {
1763 have_ptrace_getsetfpregs = 0;
1764 return 0;
1765 }
deb70aa0 1766 perror_with_name (_("Couldn't set floating-point registers"));
1dfe79e8
SDJ
1767 }
1768
1769 return 1;
1770}
1771
1772/* This is a wrapper for the store_all_fp_regs function. It is
1773 responsible for verifying if this target has the ptrace request
1774 that can be used to store all floating-point registers at one
1775 shot. If it doesn't, then we should store them using the
1776 old-fashioned way, which is to iterate over the registers and
1777 store them one by one. */
1778static void
1779store_fp_regs (const struct regcache *regcache, int tid, int regno)
1780{
ac7936df 1781 struct gdbarch *gdbarch = regcache->arch ();
08106042 1782 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1dfe79e8
SDJ
1783 int i;
1784
1785 if (have_ptrace_getsetfpregs)
1786 if (store_all_fp_regs (regcache, tid, regno))
1787 return;
1788
1789 /* If we hit this point, it doesn't really matter which
1790 architecture we are using. We just need to store the
1791 registers in the "old-fashioned way". */
1792 for (i = 0; i < ppc_num_fprs; i++)
1793 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1794}
1795
1796static void
1797store_ppc_registers (const struct regcache *regcache, int tid)
1798{
ac7936df 1799 struct gdbarch *gdbarch = regcache->arch ();
08106042 1800 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1dfe79e8
SDJ
1801
1802 store_gp_regs (regcache, tid, -1);
32b99774 1803 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1804 store_fp_regs (regcache, tid, -1);
40a6adc1 1805 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1806 if (tdep->ppc_ps_regnum != -1)
56be3814 1807 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1808 if (tdep->ppc_cr_regnum != -1)
56be3814 1809 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1810 if (tdep->ppc_lr_regnum != -1)
56be3814 1811 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1812 if (tdep->ppc_ctr_regnum != -1)
56be3814 1813 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1814 if (tdep->ppc_xer_regnum != -1)
56be3814 1815 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1816 if (tdep->ppc_mq_regnum != -1)
56be3814 1817 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1818 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1819 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1820 if (ppc_linux_trap_reg_p (gdbarch))
1821 {
1822 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1823 store_register (regcache, tid, PPC_TRAP_REGNUM);
1824 }
9abe5450
EZ
1825 if (have_ptrace_getvrregs)
1826 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1d75a658 1827 store_altivec_registers (regcache, tid, -1);
604c2f83
LM
1828 if (have_ptrace_getsetvsxregs)
1829 if (tdep->ppc_vsr0_upper_regnum != -1)
2c3305f6 1830 store_vsx_registers (regcache, tid, -1);
6ced10dd 1831 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1832 store_spe_register (regcache, tid, -1);
7ca18ed6
EBM
1833 if (tdep->ppc_ppr_regnum != -1)
1834 store_regset (regcache, tid, -1, NT_PPC_PPR,
1835 PPC_LINUX_SIZEOF_PPRREGSET,
1836 &ppc32_linux_pprregset);
1837 if (tdep->ppc_dscr_regnum != -1)
1838 store_regset (regcache, tid, -1, NT_PPC_DSCR,
1839 PPC_LINUX_SIZEOF_DSCRREGSET,
1840 &ppc32_linux_dscrregset);
f2cf6173
EBM
1841 if (tdep->ppc_tar_regnum != -1)
1842 store_regset (regcache, tid, -1, NT_PPC_TAR,
1843 PPC_LINUX_SIZEOF_TARREGSET,
1844 &ppc32_linux_tarregset);
232bfb86
EBM
1845
1846 if (tdep->ppc_mmcr0_regnum != -1)
1847 store_regset (regcache, tid, -1, NT_PPC_PMU,
1848 PPC_LINUX_SIZEOF_PMUREGSET,
1849 &ppc32_linux_pmuregset);
1850
8d619c01
EBM
1851 if (tdep->have_htm_spr)
1852 store_regset (regcache, tid, -1, NT_PPC_TM_SPR,
1853 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1854 &ppc32_linux_tm_sprregset);
1855
1856 /* Because the EBB and checkpointed HTM registers can be
1857 unavailable, attempts to store them here would cause this
1858 function to fail most of the time, so we ignore them. */
45229ea4
EZ
1859}
1860
4db10d8f
PFC
1861void
1862ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
1863{
1864 pid_t tid = get_ptrace_pid (regcache->ptid ());
1865
1866 if (regno >= 0)
1867 store_register (regcache, tid, regno);
1868 else
1869 store_ppc_registers (regcache, tid);
1870}
1871
1872/* Functions for transferring registers between a gregset_t or fpregset_t
1873 (see sys/ucontext.h) and gdb's regcache. The word size is that used
1874 by the ptrace interface, not the current program's ABI. Eg. if a
1875 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
1876 read or write 64-bit gregsets. This is to suit the host libthread_db. */
1877
1878void
1879supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
1880{
1881 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1882
1883 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
1884}
1885
1886void
1887fill_gregset (const struct regcache *regcache,
1888 gdb_gregset_t *gregsetp, int regno)
1889{
1890 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1891
1892 if (regno == -1)
1893 memset (gregsetp, 0, sizeof (*gregsetp));
1894 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
1895}
1896
1897void
1898supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
1899{
1900 const struct regset *regset = ppc_linux_fpregset ();
1901
1902 ppc_supply_fpregset (regset, regcache, -1,
1903 fpregsetp, sizeof (*fpregsetp));
1904}
1905
1906void
1907fill_fpregset (const struct regcache *regcache,
1908 gdb_fpregset_t *fpregsetp, int regno)
1909{
1910 const struct regset *regset = ppc_linux_fpregset ();
1911
1912 ppc_collect_fpregset (regset, regcache, regno,
1913 fpregsetp, sizeof (*fpregsetp));
1914}
1915
1916int
3fe639b8
SM
1917ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr,
1918 const gdb_byte *endptr, CORE_ADDR *typep,
4db10d8f
PFC
1919 CORE_ADDR *valp)
1920{
1921 int tid = inferior_ptid.lwp ();
1922 if (tid == 0)
1923 tid = inferior_ptid.pid ();
1924
1925 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
1926
1927 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3fe639b8 1928 const gdb_byte *ptr = *readptr;
4db10d8f
PFC
1929
1930 if (endptr == ptr)
1931 return 0;
1932
1933 if (endptr - ptr < sizeof_auxv_field * 2)
1934 return -1;
1935
1936 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1937 ptr += sizeof_auxv_field;
1938 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1939 ptr += sizeof_auxv_field;
1940
1941 *readptr = ptr;
1942 return 1;
1943}
1944
1945const struct target_desc *
1946ppc_linux_nat_target::read_description ()
1947{
fbf3c4b9 1948 int tid = inferior_ptid.pid ();
4db10d8f
PFC
1949
1950 if (have_ptrace_getsetevrregs)
1951 {
1952 struct gdb_evrregset_t evrregset;
1953
1954 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
dda83cd7 1955 return tdesc_powerpc_e500l;
4db10d8f
PFC
1956
1957 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
1958 Anything else needs to be reported. */
1959 else if (errno != EIO)
1960 perror_with_name (_("Unable to fetch SPE registers"));
1961 }
1962
1963 struct ppc_linux_features features = ppc_linux_no_features;
1964
1965 features.wordsize = ppc_linux_target_wordsize (tid);
1966
82d23ca8
SM
1967 CORE_ADDR hwcap = linux_get_hwcap ();
1968 CORE_ADDR hwcap2 = linux_get_hwcap2 ();
4db10d8f
PFC
1969
1970 if (have_ptrace_getsetvsxregs
1971 && (hwcap & PPC_FEATURE_HAS_VSX))
1972 {
1973 gdb_vsxregset_t vsxregset;
1974
1975 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
1976 features.vsx = true;
1977
1978 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
1979 Anything else needs to be reported. */
1980 else if (errno != EIO)
1981 perror_with_name (_("Unable to fetch VSX registers"));
1982 }
1983
1984 if (have_ptrace_getvrregs
1985 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
1986 {
1987 gdb_vrregset_t vrregset;
1988
1989 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
dda83cd7 1990 features.altivec = true;
4db10d8f
PFC
1991
1992 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
1993 Anything else needs to be reported. */
1994 else if (errno != EIO)
1995 perror_with_name (_("Unable to fetch AltiVec registers"));
1996 }
1997
1998 features.isa205 = ppc_linux_has_isa205 (hwcap);
1999
2000 if ((hwcap2 & PPC_FEATURE2_DSCR)
2001 && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
2002 && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
2003 {
2004 features.ppr_dscr = true;
2005 if ((hwcap2 & PPC_FEATURE2_ARCH_2_07)
2006 && (hwcap2 & PPC_FEATURE2_TAR)
2007 && (hwcap2 & PPC_FEATURE2_EBB)
2008 && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET)
2009 && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET)
2010 && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET))
2011 {
2012 features.isa207 = true;
2013 if ((hwcap2 & PPC_FEATURE2_HTM)
2014 && check_regset (tid, NT_PPC_TM_SPR,
2015 PPC_LINUX_SIZEOF_TM_SPRREGSET))
2016 features.htm = true;
2017 }
2018 }
2019
2020 return ppc_linux_match_description (features);
2021}
2022
227c0bf4
PFC
2023/* Routines for installing hardware watchpoints and breakpoints. When
2024 GDB requests a hardware watchpoint or breakpoint to be installed, we
2025 register the request for the pid of inferior_ptid in a map with one
2026 entry per process. We then issue a stop request to all the threads of
2027 this process, and mark a per-thread flag indicating that their debug
2028 registers should be updated. Right before they are next resumed, we
2029 remove all previously installed debug registers and install all the
2030 ones GDB requested. We then update a map with one entry per thread
2031 that keeps track of what debug registers were last installed in each
2032 thread.
2033
2034 We use this second map to remove installed registers before installing
2035 the ones requested by GDB, and to copy the debug register state after
2036 a thread clones or forks, since depending on the kernel configuration,
2037 debug registers can be inherited. */
2038
2039/* Check if we support and have enough resources to install a hardware
2040 watchpoint or breakpoint. See the description in target.h. */
e0d24f8d 2041
f6ac5f3d 2042int
227c0bf4
PFC
2043ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt,
2044 int ot)
b7622095 2045{
6ffbb7ab 2046 int total_hw_wp, total_hw_bp;
b7622095 2047
227c0bf4
PFC
2048 m_dreg_interface.detect (inferior_ptid);
2049
2050 if (m_dreg_interface.unavailable_p ())
2051 return 0;
2052
2053 if (m_dreg_interface.hwdebug_p ())
6ffbb7ab 2054 {
926bf92d
UW
2055 /* When PowerPC HWDEBUG ptrace interface is available, the number of
2056 available hardware watchpoints and breakpoints is stored at the
2057 hwdebug_info struct. */
227c0bf4
PFC
2058 total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps;
2059 total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps;
6ffbb7ab
TJB
2060 }
2061 else
2062 {
227c0bf4
PFC
2063 gdb_assert (m_dreg_interface.debugreg_p ());
2064
2065 /* With the DEBUGREG ptrace interface, we should consider having 1
2066 hardware watchpoint and no hardware breakpoints. */
6ffbb7ab
TJB
2067 total_hw_bp = 0;
2068 total_hw_wp = 1;
2069 }
b7622095 2070
6ffbb7ab
TJB
2071 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
2072 || type == bp_access_watchpoint || type == bp_watchpoint)
2073 {
227c0bf4
PFC
2074 if (total_hw_wp == 0)
2075 return 0;
2076 else if (cnt + ot > total_hw_wp)
6ffbb7ab 2077 return -1;
227c0bf4
PFC
2078 else
2079 return 1;
6ffbb7ab
TJB
2080 }
2081 else if (type == bp_hardware_breakpoint)
2082 {
572f6555 2083 if (total_hw_bp == 0)
6ffbb7ab 2084 return 0;
227c0bf4
PFC
2085 else if (cnt > total_hw_bp)
2086 return -1;
2087 else
2088 return 1;
6ffbb7ab
TJB
2089 }
2090
227c0bf4 2091 return 0;
b7622095
LM
2092}
2093
227c0bf4
PFC
2094/* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */
2095
f6ac5f3d
PA
2096int
2097ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
e0d24f8d
WZ
2098{
2099 /* Handle sub-8-byte quantities. */
2100 if (len <= 0)
2101 return 0;
2102
227c0bf4
PFC
2103 m_dreg_interface.detect (inferior_ptid);
2104
2105 if (m_dreg_interface.unavailable_p ())
2106 return 0;
2107
926bf92d
UW
2108 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
2109 restrictions for watchpoints in the processors. In that case, we use that
2110 information to determine the hardcoded watchable region for
2111 watchpoints. */
227c0bf4 2112 if (m_dreg_interface.hwdebug_p ())
6ffbb7ab 2113 {
227c0bf4
PFC
2114 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2115 .hwdebug_info ());
539d71e8
RA
2116 int region_size = hwdebug_info.data_bp_alignment;
2117 int region_align = region_size;
227c0bf4 2118
4feebbdd
EBM
2119 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
2120 watchpoints and can watch any access within an arbitrary memory
2121 region. This is useful to watch arrays and structs, for instance. It
dda83cd7 2122 takes two hardware watchpoints though. */
e09342b5 2123 if (len > 1
926bf92d 2124 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
82d23ca8 2125 && (linux_get_hwcap () & PPC_FEATURE_BOOKE))
e09342b5 2126 return 2;
e23b9d6e
UW
2127 /* Check if the processor provides DAWR interface. */
2128 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
539d71e8
RA
2129 {
2130 /* DAWR interface allows to watch up to 512 byte wide ranges. */
2131 region_size = 512;
2132 /* DAWR interface allows to watch up to 512 byte wide ranges which
2133 can't cross a 512 byte bondary on machines that doesn't have a
2134 second DAWR (P9 or less). */
2135 if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31))
2136 region_align = 512;
2137 }
4feebbdd 2138 /* Server processors provide one hardware watchpoint and addr+len should
dda83cd7 2139 fall in the watchable region provided by the ptrace interface. */
539d71e8
RA
2140 if (region_align
2141 && (addr + len > (addr & ~(region_align - 1)) + region_size))
0cf6dd15 2142 return 0;
6ffbb7ab 2143 }
b7622095 2144 /* addr+len must fall in the 8 byte watchable region for DABR-based
926bf92d
UW
2145 processors (i.e., server processors). Without the new PowerPC HWDEBUG
2146 ptrace interface, DAC-based processors (i.e., embedded processors) will
2147 use addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab 2148 passed in the old ptrace interface. */
227c0bf4 2149 else
6ffbb7ab 2150 {
227c0bf4 2151 gdb_assert (m_dreg_interface.debugreg_p ());
6ffbb7ab 2152
82d23ca8 2153 if (((linux_get_hwcap () & PPC_FEATURE_BOOKE)
227c0bf4
PFC
2154 && (addr + len) > (addr & ~3) + 4)
2155 || (addr + len) > (addr & ~7) + 8)
2156 return 0;
5da01df5 2157 }
6ffbb7ab 2158
227c0bf4 2159 return 1;
6ffbb7ab
TJB
2160}
2161
227c0bf4
PFC
2162/* This function compares two ppc_hw_breakpoint structs
2163 field-by-field. */
6ffbb7ab 2164
227c0bf4
PFC
2165bool
2166ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
2167 const struct ppc_hw_breakpoint &b)
2168{
2169 return (a.trigger_type == b.trigger_type
2170 && a.addr_mode == b.addr_mode
2171 && a.condition_mode == b.condition_mode
2172 && a.addr == b.addr
2173 && a.addr2 == b.addr2
2174 && a.condition_value == b.condition_value);
6ffbb7ab 2175}
9f0bdab8 2176
f1310107
TJB
2177/* Return the number of registers needed for a ranged breakpoint. */
2178
f6ac5f3d
PA
2179int
2180ppc_linux_nat_target::ranged_break_num_registers ()
f1310107 2181{
227c0bf4
PFC
2182 m_dreg_interface.detect (inferior_ptid);
2183
2184 return ((m_dreg_interface.hwdebug_p ()
2185 && (m_dreg_interface.hwdebug_info ().features
2186 & PPC_DEBUG_FEATURE_INSN_BP_RANGE))?
f1310107
TJB
2187 2 : -1);
2188}
2189
227c0bf4
PFC
2190/* Register the hardware breakpoint described by BP_TGT, to be inserted
2191 when the threads of inferior_ptid are resumed. Returns 0 for success,
2192 or -1 if the HWDEBUG interface that we need for hardware breakpoints
2193 is not available. */
f1310107 2194
f6ac5f3d
PA
2195int
2196ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
2197 struct bp_target_info *bp_tgt)
e0d24f8d 2198{
6ffbb7ab
TJB
2199 struct ppc_hw_breakpoint p;
2200
227c0bf4
PFC
2201 m_dreg_interface.detect (inferior_ptid);
2202
2203 if (!m_dreg_interface.hwdebug_p ())
6ffbb7ab
TJB
2204 return -1;
2205
ad422571
TJB
2206 p.version = PPC_DEBUG_CURRENT_VERSION;
2207 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571 2208 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
0d5ed153 2209 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
6ffbb7ab
TJB
2210 p.condition_value = 0;
2211
f1310107
TJB
2212 if (bp_tgt->length)
2213 {
2214 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2215
2216 /* The breakpoint will trigger if the address of the instruction is
2217 within the defined range, as follows: p.addr <= address < p.addr2. */
2218 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2219 }
2220 else
2221 {
2222 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2223 p.addr2 = 0;
2224 }
2225
227c0bf4 2226 register_hw_breakpoint (inferior_ptid.pid (), p);
6ffbb7ab
TJB
2227
2228 return 0;
2229}
2230
227c0bf4
PFC
2231/* Clear a registration for the hardware breakpoint given by type BP_TGT.
2232 It will be removed from the threads of inferior_ptid when they are
2233 next resumed. Returns 0 for success, or -1 if the HWDEBUG interface
2234 that we need for hardware breakpoints is not available. */
2235
f6ac5f3d
PA
2236int
2237ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
2238 struct bp_target_info *bp_tgt)
6ffbb7ab 2239{
6ffbb7ab 2240 struct ppc_hw_breakpoint p;
b7622095 2241
227c0bf4
PFC
2242 m_dreg_interface.detect (inferior_ptid);
2243
2244 if (!m_dreg_interface.hwdebug_p ())
6ffbb7ab
TJB
2245 return -1;
2246
ad422571
TJB
2247 p.version = PPC_DEBUG_CURRENT_VERSION;
2248 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
2249 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2250 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
2251 p.condition_value = 0;
2252
f1310107
TJB
2253 if (bp_tgt->length)
2254 {
2255 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2256
2257 /* The breakpoint will trigger if the address of the instruction is within
2258 the defined range, as follows: p.addr <= address < p.addr2. */
2259 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2260 }
2261 else
2262 {
2263 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2264 p.addr2 = 0;
2265 }
2266
227c0bf4 2267 clear_hw_breakpoint (inferior_ptid.pid (), p);
6ffbb7ab
TJB
2268
2269 return 0;
2270}
2271
227c0bf4
PFC
2272/* Return the trigger value to set in a ppc_hw_breakpoint object for a
2273 given hardware watchpoint TYPE. We assume type is not hw_execute. */
2274
2275int
2276ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type)
6ffbb7ab
TJB
2277{
2278 int t;
2279
e76460db 2280 if (type == hw_read)
6ffbb7ab 2281 t = PPC_BREAKPOINT_TRIGGER_READ;
e76460db 2282 else if (type == hw_write)
6ffbb7ab 2283 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 2284 else
6ffbb7ab
TJB
2285 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
2286
2287 return t;
2288}
2289
227c0bf4
PFC
2290/* Register a new masked watchpoint at ADDR using the mask MASK, to be
2291 inserted when the threads of inferior_ptid are resumed. RW may be
2292 hw_read for a read watchpoint, hw_write for a write watchpoint or
2293 hw_access for an access watchpoint. */
9c06b0b4 2294
f6ac5f3d
PA
2295int
2296ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2297 target_hw_bp_type rw)
9c06b0b4 2298{
9c06b0b4
TJB
2299 struct ppc_hw_breakpoint p;
2300
227c0bf4 2301 gdb_assert (m_dreg_interface.hwdebug_p ());
9c06b0b4
TJB
2302
2303 p.version = PPC_DEBUG_CURRENT_VERSION;
2304 p.trigger_type = get_trigger_type (rw);
2305 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2306 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2307 p.addr = addr;
2308 p.addr2 = mask;
2309 p.condition_value = 0;
2310
227c0bf4 2311 register_hw_breakpoint (inferior_ptid.pid (), p);
9c06b0b4
TJB
2312
2313 return 0;
2314}
2315
227c0bf4
PFC
2316/* Clear a registration for a masked watchpoint at ADDR with the mask
2317 MASK. It will be removed from the threads of inferior_ptid when they
2318 are next resumed. RW may be hw_read for a read watchpoint, hw_write
2319 for a write watchpoint or hw_access for an access watchpoint. */
9c06b0b4 2320
f6ac5f3d
PA
2321int
2322ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2323 target_hw_bp_type rw)
9c06b0b4 2324{
9c06b0b4
TJB
2325 struct ppc_hw_breakpoint p;
2326
227c0bf4 2327 gdb_assert (m_dreg_interface.hwdebug_p ());
9c06b0b4
TJB
2328
2329 p.version = PPC_DEBUG_CURRENT_VERSION;
2330 p.trigger_type = get_trigger_type (rw);
2331 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2332 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2333 p.addr = addr;
2334 p.addr2 = mask;
2335 p.condition_value = 0;
2336
227c0bf4 2337 clear_hw_breakpoint (inferior_ptid.pid (), p);
9c06b0b4
TJB
2338
2339 return 0;
2340}
2341
227c0bf4
PFC
2342/* Check whether we have at least one free DVC register for the threads
2343 of the pid of inferior_ptid. */
2344
2345bool
2346ppc_linux_nat_target::can_use_watchpoint_cond_accel (void)
0cf6dd15 2347{
227c0bf4 2348 m_dreg_interface.detect (inferior_ptid);
0cf6dd15 2349
227c0bf4
PFC
2350 if (!m_dreg_interface.hwdebug_p ())
2351 return false;
0cf6dd15 2352
227c0bf4 2353 int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs;
0cf6dd15 2354
227c0bf4
PFC
2355 if (cnt == 0)
2356 return false;
0cf6dd15 2357
227c0bf4 2358 auto process_it = m_process_info.find (inferior_ptid.pid ());
0cf6dd15 2359
227c0bf4
PFC
2360 /* No breakpoints or watchpoints have been requested for this process,
2361 we have at least one free DVC register. */
2362 if (process_it == m_process_info.end ())
2363 return true;
2364
2365 for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps)
2366 if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2367 cnt--;
2368
2369 if (cnt <= 0)
2370 return false;
2371
2372 return true;
0cf6dd15
TJB
2373}
2374
2375/* Calculate the enable bits and the contents of the Data Value Compare
2376 debug register present in BookE processors.
2377
2378 ADDR is the address to be watched, LEN is the length of watched data
2379 and DATA_VALUE is the value which will trigger the watchpoint.
2380 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
2381 CONDITION_VALUE will hold the value which should be put in the
2382 DVC register. */
227c0bf4
PFC
2383
2384void
2385ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len,
2386 CORE_ADDR data_value,
2387 uint32_t *condition_mode,
2388 uint64_t *condition_value)
0cf6dd15 2389{
227c0bf4
PFC
2390 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface.
2391 hwdebug_info ());
2392
0cf6dd15
TJB
2393 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
2394 rightmost_enabled_byte;
2395 CORE_ADDR addr_end_data, addr_end_dvc;
2396
2397 /* The DVC register compares bytes within fixed-length windows which
2398 are word-aligned, with length equal to that of the DVC register.
2399 We need to calculate where our watch region is relative to that
2400 window and enable comparison of the bytes which fall within it. */
2401
926bf92d 2402 align_offset = addr % hwdebug_info.sizeof_condition;
0cf6dd15
TJB
2403 addr_end_data = addr + len;
2404 addr_end_dvc = (addr - align_offset
926bf92d 2405 + hwdebug_info.sizeof_condition);
0cf6dd15
TJB
2406 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
2407 addr_end_data - addr_end_dvc : 0;
2408 num_byte_enable = len - num_bytes_off_dvc;
2409 /* Here, bytes are numbered from right to left. */
2410 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
2411 addr_end_dvc - addr_end_data : 0;
2412
2413 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
2414 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
2415 *condition_mode
2416 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
2417
2418 /* Now we need to match the position within the DVC of the comparison
2419 value with where the watch region is relative to the window
2420 (i.e., the ALIGN_OFFSET). */
2421
2422 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
2423 << rightmost_enabled_byte * 8);
2424}
2425
2426/* Return the number of memory locations that need to be accessed to
2427 evaluate the expression which generated the given value chain.
2428 Returns -1 if there's any register access involved, or if there are
2429 other kinds of values which are not acceptable in a condition
2430 expression (e.g., lval_computed or lval_internalvar). */
227c0bf4
PFC
2431
2432int
2433ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr>
2434 &chain)
0cf6dd15
TJB
2435{
2436 int found_memory_cnt = 0;
0cf6dd15
TJB
2437
2438 /* The idea here is that evaluating an expression generates a series
2439 of values, one holding the value of every subexpression. (The
2440 expression a*b+c has five subexpressions: a, b, a*b, c, and
2441 a*b+c.) GDB's values hold almost enough information to establish
2442 the criteria given above --- they identify memory lvalues,
2443 register lvalues, computed values, etcetera. So we can evaluate
2444 the expression, and then scan the chain of values that leaves
2445 behind to determine the memory locations involved in the evaluation
2446 of an expression.
2447
2448 However, I don't think that the values returned by inferior
2449 function calls are special in any way. So this function may not
2450 notice that an expression contains an inferior function call.
2451 FIXME. */
2452
a6535de1 2453 for (const value_ref_ptr &iter : chain)
0cf6dd15 2454 {
a6535de1
TT
2455 struct value *v = iter.get ();
2456
0cf6dd15
TJB
2457 /* Constants and values from the history are fine. */
2458 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
2459 continue;
2460 else if (VALUE_LVAL (v) == lval_memory)
2461 {
2462 /* A lazy memory lvalue is one that GDB never needed to fetch;
2463 we either just used its address (e.g., `a' in `a.b') or
2464 we never needed it at all (e.g., `a' in `a,b'). */
2465 if (!value_lazy (v))
2466 found_memory_cnt++;
2467 }
0df8b418 2468 /* Other kinds of values are not fine. */
0cf6dd15
TJB
2469 else
2470 return -1;
2471 }
2472
2473 return found_memory_cnt;
2474}
2475
2476/* Verifies whether the expression COND can be implemented using the
2477 DVC (Data Value Compare) register in BookE processors. The expression
2478 must test the watch value for equality with a constant expression.
2479 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
2480 which the watch value should be compared and LEN will contain the size
2481 of the constant. */
227c0bf4
PFC
2482
2483int
2484ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr,
2485 struct expression *cond,
2486 CORE_ADDR *data_value, int *len)
0cf6dd15 2487{
1eaebe02 2488 int num_accesses_left, num_accesses_right;
a6535de1
TT
2489 struct value *left_val, *right_val;
2490 std::vector<value_ref_ptr> left_chain, right_chain;
0cf6dd15 2491
1eaebe02
TT
2492 expr::equal_operation *eqop
2493 = dynamic_cast<expr::equal_operation *> (cond->op.get ());
2494 if (eqop == nullptr)
0cf6dd15 2495 return 0;
1eaebe02
TT
2496 expr::operation *lhs = eqop->get_lhs ();
2497 expr::operation *rhs = eqop->get_rhs ();
0cf6dd15 2498
1eaebe02 2499 fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false);
0cf6dd15
TJB
2500 num_accesses_left = num_memory_accesses (left_chain);
2501
2502 if (left_val == NULL || num_accesses_left < 0)
a6535de1 2503 return 0;
0cf6dd15 2504
1eaebe02 2505 fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false);
0cf6dd15
TJB
2506 num_accesses_right = num_memory_accesses (right_chain);
2507
2508 if (right_val == NULL || num_accesses_right < 0)
a6535de1 2509 return 0;
0cf6dd15
TJB
2510
2511 if (num_accesses_left == 1 && num_accesses_right == 0
2512 && VALUE_LVAL (left_val) == lval_memory
2513 && value_address (left_val) == watch_addr)
e7db58ea
TJB
2514 {
2515 *data_value = value_as_long (right_val);
2516
2517 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
2518 the same type as the memory region referenced by LEFT_VAL. */
df86565b 2519 *len = check_typedef (value_type (left_val))->length ();
e7db58ea 2520 }
0cf6dd15
TJB
2521 else if (num_accesses_left == 0 && num_accesses_right == 1
2522 && VALUE_LVAL (right_val) == lval_memory
2523 && value_address (right_val) == watch_addr)
e7db58ea
TJB
2524 {
2525 *data_value = value_as_long (left_val);
2526
2527 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2528 the same type as the memory region referenced by RIGHT_VAL. */
df86565b 2529 *len = check_typedef (value_type (right_val))->length ();
e7db58ea 2530 }
0cf6dd15 2531 else
a6535de1 2532 return 0;
0cf6dd15
TJB
2533
2534 return 1;
2535}
2536
227c0bf4
PFC
2537/* Return true if the target is capable of using hardware to evaluate the
2538 condition expression, thus only triggering the watchpoint when it is
0cf6dd15 2539 true. */
227c0bf4 2540
57810aa7 2541bool
227c0bf4
PFC
2542ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr,
2543 int len, int rw,
f6ac5f3d 2544 struct expression *cond)
0cf6dd15
TJB
2545{
2546 CORE_ADDR data_value;
2547
227c0bf4
PFC
2548 m_dreg_interface.detect (inferior_ptid);
2549
2550 return (m_dreg_interface.hwdebug_p ()
2551 && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0)
e7db58ea 2552 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2553}
2554
e09342b5
TJB
2555/* Set up P with the parameters necessary to request a watchpoint covering
2556 LEN bytes starting at ADDR and if possible with condition expression COND
2557 evaluated by hardware. INSERT tells if we are creating a request for
2558 inserting or removing the watchpoint. */
2559
227c0bf4
PFC
2560void
2561ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p,
2562 CORE_ADDR addr, int len,
2563 enum target_hw_bp_type type,
2564 struct expression *cond,
2565 int insert)
e09342b5 2566{
227c0bf4
PFC
2567 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2568 .hwdebug_info ());
2569
f16c4e8b 2570 if (len == 1
926bf92d 2571 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2572 {
2573 int use_condition;
2574 CORE_ADDR data_value;
2575
2576 use_condition = (insert? can_use_watchpoint_cond_accel ()
926bf92d 2577 : hwdebug_info.num_condition_regs > 0);
e7db58ea
TJB
2578 if (cond && use_condition && check_condition (addr, cond,
2579 &data_value, &len))
e09342b5
TJB
2580 calculate_dvc (addr, len, data_value, &p->condition_mode,
2581 &p->condition_value);
2582 else
2583 {
2584 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2585 p->condition_value = 0;
2586 }
2587
2588 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2589 p->addr2 = 0;
2590 }
2591 else
2592 {
2593 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2594 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2595 p->condition_value = 0;
2596
2597 /* The watchpoint will trigger if the address of the memory access is
2598 within the defined range, as follows: p->addr <= address < p->addr2.
2599
2600 Note that the above sentence just documents how ptrace interprets
2601 its arguments; the watchpoint is set to watch the range defined by
2602 the user _inclusively_, as specified by the user interface. */
2603 p->addr2 = (uint64_t) addr + len;
2604 }
2605
2606 p->version = PPC_DEBUG_CURRENT_VERSION;
e76460db 2607 p->trigger_type = get_trigger_type (type);
e09342b5
TJB
2608 p->addr = (uint64_t) addr;
2609}
2610
227c0bf4
PFC
2611/* Register a watchpoint, to be inserted when the threads of the group of
2612 inferior_ptid are next resumed. Returns 0 on success, and -1 if there
2613 is no ptrace interface available to install the watchpoint. */
2614
f6ac5f3d
PA
2615int
2616ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2617 enum target_hw_bp_type type,
2618 struct expression *cond)
6ffbb7ab 2619{
227c0bf4
PFC
2620 m_dreg_interface.detect (inferior_ptid);
2621
2622 if (m_dreg_interface.unavailable_p ())
2623 return -1;
6ffbb7ab 2624
227c0bf4 2625 if (m_dreg_interface.hwdebug_p ())
e0d24f8d 2626 {
6ffbb7ab
TJB
2627 struct ppc_hw_breakpoint p;
2628
e76460db 2629 create_watchpoint_request (&p, addr, len, type, cond, 1);
6ffbb7ab 2630
227c0bf4 2631 register_hw_breakpoint (inferior_ptid.pid (), p);
e0d24f8d 2632 }
6ffbb7ab
TJB
2633 else
2634 {
227c0bf4
PFC
2635 gdb_assert (m_dreg_interface.debugreg_p ());
2636
2637 long wp_value;
6ffbb7ab 2638 long read_mode, write_mode;
e0d24f8d 2639
82d23ca8 2640 if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
6ffbb7ab
TJB
2641 {
2642 /* PowerPC 440 requires only the read/write flags to be passed
2643 to the kernel. */
ad422571 2644 read_mode = 1;
6ffbb7ab
TJB
2645 write_mode = 2;
2646 }
2647 else
2648 {
2649 /* PowerPC 970 and other DABR-based processors are required to pass
2650 the Breakpoint Translation bit together with the flags. */
ad422571 2651 read_mode = 5;
6ffbb7ab
TJB
2652 write_mode = 6;
2653 }
1c86e440 2654
227c0bf4 2655 wp_value = addr & ~(read_mode | write_mode);
e76460db 2656 switch (type)
6ffbb7ab
TJB
2657 {
2658 case hw_read:
2659 /* Set read and translate bits. */
227c0bf4 2660 wp_value |= read_mode;
6ffbb7ab
TJB
2661 break;
2662 case hw_write:
2663 /* Set write and translate bits. */
227c0bf4 2664 wp_value |= write_mode;
6ffbb7ab
TJB
2665 break;
2666 case hw_access:
2667 /* Set read, write and translate bits. */
227c0bf4 2668 wp_value |= read_mode | write_mode;
6ffbb7ab
TJB
2669 break;
2670 }
1c86e440 2671
227c0bf4 2672 register_wp (inferior_ptid.pid (), wp_value);
6ffbb7ab
TJB
2673 }
2674
227c0bf4 2675 return 0;
e0d24f8d
WZ
2676}
2677
227c0bf4
PFC
2678/* Clear a registration for a hardware watchpoint. It will be removed
2679 from the threads of the group of inferior_ptid when they are next
2680 resumed. */
2681
f6ac5f3d
PA
2682int
2683ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2684 enum target_hw_bp_type type,
2685 struct expression *cond)
e0d24f8d 2686{
227c0bf4 2687 gdb_assert (!m_dreg_interface.unavailable_p ());
9f0bdab8 2688
227c0bf4 2689 if (m_dreg_interface.hwdebug_p ())
6ffbb7ab
TJB
2690 {
2691 struct ppc_hw_breakpoint p;
2692
e76460db 2693 create_watchpoint_request (&p, addr, len, type, cond, 0);
6ffbb7ab 2694
227c0bf4 2695 clear_hw_breakpoint (inferior_ptid.pid (), p);
6ffbb7ab
TJB
2696 }
2697 else
2698 {
227c0bf4 2699 gdb_assert (m_dreg_interface.debugreg_p ());
6ffbb7ab 2700
227c0bf4 2701 clear_wp (inferior_ptid.pid ());
6ffbb7ab
TJB
2702 }
2703
227c0bf4 2704 return 0;
e0d24f8d
WZ
2705}
2706
227c0bf4
PFC
2707/* Clean up the per-process info associated with PID. When using the
2708 HWDEBUG interface, we also erase the per-thread state of installed
2709 debug registers for all the threads that belong to the group of PID.
2710
2711 Usually the thread state is cleaned up by low_delete_thread. We also
2712 do it here because low_new_thread is not called for the initial LWP,
2713 so low_delete_thread won't be able to clean up this state. */
2714
135340af 2715void
227c0bf4 2716ppc_linux_nat_target::low_forget_process (pid_t pid)
e0d24f8d 2717{
227c0bf4
PFC
2718 if ((!m_dreg_interface.detected_p ())
2719 || (m_dreg_interface.unavailable_p ()))
2720 return;
6ffbb7ab 2721
227c0bf4
PFC
2722 ptid_t pid_ptid (pid, 0, 0);
2723
2724 m_process_info.erase (pid);
2725
2726 if (m_dreg_interface.hwdebug_p ())
6ffbb7ab 2727 {
227c0bf4
PFC
2728 for (auto it = m_installed_hw_bps.begin ();
2729 it != m_installed_hw_bps.end ();)
2730 {
2731 if (it->first.matches (pid_ptid))
2732 it = m_installed_hw_bps.erase (it);
2733 else
2734 it++;
2735 }
2736 }
2737}
6ffbb7ab 2738
227c0bf4
PFC
2739/* Copy the per-process state associated with the pid of PARENT to the
2740 sate of CHILD_PID. GDB expects that a forked process will have the
2741 same hardware breakpoints and watchpoints as the parent.
6ffbb7ab 2742
227c0bf4
PFC
2743 If we're using the HWDEBUG interface, also copy the thread debug
2744 register state for the ptid of PARENT to the state for CHILD_PID.
6ffbb7ab 2745
227c0bf4
PFC
2746 Like for clone events, we assume the kernel will copy the debug
2747 registers from the parent thread to the child. The
2748 low_prepare_to_resume function is made to work even if it doesn't.
aacbb8a5 2749
227c0bf4
PFC
2750 We copy the thread state here and not in low_new_thread since we don't
2751 have the pid of the parent in low_new_thread. Even if we did,
2752 low_new_thread might not be called immediately after the fork event is
2753 detected. For instance, with the checkpointing system (see
2754 linux-fork.c), the thread won't be added until GDB decides to switch
2755 to a new checkpointed process. At that point, the debug register
2756 state of the parent thread is unlikely to correspond to the state it
2757 had at the point when it forked. */
aacbb8a5 2758
227c0bf4
PFC
2759void
2760ppc_linux_nat_target::low_new_fork (struct lwp_info *parent,
2761 pid_t child_pid)
2762{
2763 if ((!m_dreg_interface.detected_p ())
2764 || (m_dreg_interface.unavailable_p ()))
2765 return;
2766
2767 auto process_it = m_process_info.find (parent->ptid.pid ());
2768
2769 if (process_it != m_process_info.end ())
2770 m_process_info[child_pid] = m_process_info[parent->ptid.pid ()];
2771
2772 if (m_dreg_interface.hwdebug_p ())
2773 {
2774 ptid_t child_ptid (child_pid, child_pid, 0);
2775
2776 copy_thread_dreg_state (parent->ptid, child_ptid);
6ffbb7ab 2777 }
6ffbb7ab
TJB
2778}
2779
227c0bf4
PFC
2780/* Copy the thread debug register state from the PARENT thread to the the
2781 state for CHILD_LWP, if we're using the HWDEBUG interface. We assume
2782 the kernel copies the debug registers from one thread to another after
2783 a clone event. The low_prepare_to_resume function is made to work
2784 even if it doesn't. */
2785
2786void
2787ppc_linux_nat_target::low_new_clone (struct lwp_info *parent,
2788 pid_t child_lwp)
6ffbb7ab 2789{
227c0bf4
PFC
2790 if ((!m_dreg_interface.detected_p ())
2791 || (m_dreg_interface.unavailable_p ()))
2792 return;
2793
2794 if (m_dreg_interface.hwdebug_p ())
2795 {
2796 ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0);
2797
2798 copy_thread_dreg_state (parent->ptid, child_ptid);
2799 }
2800}
2801
2802/* Initialize the arch-specific thread state for LP so that it contains
2803 the ptid for lp, so that we can use it in low_delete_thread. Mark the
2804 new thread LP as stale so that we update its debug registers before
2805 resuming it. This is not called for the initial thread. */
2806
2807void
2808ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2809{
2810 init_arch_lwp_info (lp);
2811
2812 mark_thread_stale (lp);
2813}
2814
2815/* Delete the per-thread debug register stale flag. */
2816
2817void
2818ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info
2819 *lp_arch_info)
2820{
2821 if (lp_arch_info != NULL)
2822 {
2823 if (m_dreg_interface.detected_p ()
2824 && m_dreg_interface.hwdebug_p ())
2825 m_installed_hw_bps.erase (lp_arch_info->lwp_ptid);
2826
2827 xfree (lp_arch_info);
2828 }
2829}
2830
2831/* Install or delete debug registers in thread LP so that it matches what
2832 GDB requested before it is resumed. */
2833
2834void
2835ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
2836{
2837 if ((!m_dreg_interface.detected_p ())
2838 || (m_dreg_interface.unavailable_p ()))
2839 return;
2840
2841 /* We have to re-install or clear the debug registers if we set the
2842 stale flag.
2843
2844 In addition, some kernels configurations can disable a hardware
2845 watchpoint after it is hit. Usually, GDB will remove and re-install
2846 a hardware watchpoint when the thread stops if "breakpoint
2847 always-inserted" is off, or to single-step a watchpoint. But so
2848 that we don't rely on this behavior, if we stop due to a hardware
2849 breakpoint or watchpoint, we also refresh our debug registers. */
2850
2851 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
6ffbb7ab 2852
227c0bf4
PFC
2853 bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
2854 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
2855 || lp_arch_info->debug_regs_stale);
2856
2857 if (!stale_dregs)
6ffbb7ab
TJB
2858 return;
2859
227c0bf4
PFC
2860 gdb_assert (lp->ptid.lwp_p ());
2861
2862 auto process_it = m_process_info.find (lp->ptid.pid ());
2863
2864 if (m_dreg_interface.hwdebug_p ())
5da01df5 2865 {
227c0bf4
PFC
2866 /* First, delete any hardware watchpoint or breakpoint installed in
2867 the inferior and update the thread state. */
2868 auto installed_it = m_installed_hw_bps.find (lp->ptid);
2869
2870 if (installed_it != m_installed_hw_bps.end ())
5da01df5 2871 {
227c0bf4
PFC
2872 auto &bp_list = installed_it->second;
2873
2874 for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();)
2875 {
2876 /* We ignore ENOENT to account for various possible kernel
2877 behaviors, e.g. the kernel might or might not copy debug
2878 registers across forks and clones, and we always copy
2879 the debug register state when fork and clone events are
2880 detected. */
2881 if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0,
6e562fa3 2882 bp_it->first) < 0)
227c0bf4
PFC
2883 if (errno != ENOENT)
2884 perror_with_name (_("Error deleting hardware "
2885 "breakpoint or watchpoint"));
2886
2887 /* We erase the entries one at a time after successfuly
2888 removing the corresponding slot form the thread so that
2889 if we throw an exception above in a future iteration the
2890 map remains consistent. */
2891 bp_it = bp_list.erase (bp_it);
2892 }
2893
2894 gdb_assert (bp_list.empty ());
2895 }
2896
2897 /* Now we install all the requested hardware breakpoints and
2898 watchpoints and update the thread state. */
2899
2900 if (process_it != m_process_info.end ())
2901 {
2902 auto &bp_list = m_installed_hw_bps[lp->ptid];
2903
2904 for (ppc_hw_breakpoint bp
2905 : process_it->second.requested_hw_bps)
2906 {
2907 long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (),
2908 0, &bp);
2909
2910 if (slot < 0)
2911 perror_with_name (_("Error setting hardware "
2912 "breakpoint or watchpoint"));
2913
2914 /* Keep track of which slots we installed in this
2915 thread. */
2916 bp_list.emplace (bp_list.begin (), slot, bp);
2917 }
5da01df5
TT
2918 }
2919 }
227c0bf4
PFC
2920 else
2921 {
2922 gdb_assert (m_dreg_interface.debugreg_p ());
6ffbb7ab 2923
6ea815e7
PFC
2924 /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We
2925 always clear the watchpoint instead of just overwriting it, in
2926 case there is a request for a new watchpoint, because on some
2927 older kernel versions and configurations simply overwriting the
2928 watchpoint after it was hit would not re-enable it. */
2929 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0)
2930 perror_with_name (_("Error clearing hardware watchpoint"));
6ffbb7ab 2931
227c0bf4
PFC
2932 /* GDB requested a watchpoint to be installed. */
2933 if (process_it != m_process_info.end ()
2934 && process_it->second.requested_wp_val.has_value ())
6ea815e7
PFC
2935 {
2936 long wp = *(process_it->second.requested_wp_val);
6ffbb7ab 2937
6ea815e7
PFC
2938 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0)
2939 perror_with_name (_("Error setting hardware watchpoint"));
2940 }
227c0bf4 2941 }
6ffbb7ab 2942
227c0bf4 2943 lp_arch_info->debug_regs_stale = false;
e0d24f8d
WZ
2944}
2945
227c0bf4
PFC
2946/* Return true if INFERIOR_PTID is known to have been stopped by a
2947 hardware watchpoint, false otherwise. If true is returned, write the
2948 address that the kernel reported as causing the SIGTRAP in ADDR_P. */
2949
57810aa7 2950bool
227c0bf4 2951ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p)
e0d24f8d 2952{
f865ee35 2953 siginfo_t siginfo;
e0d24f8d 2954
f865ee35 2955 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
57810aa7 2956 return false;
e0d24f8d 2957
f865ee35
JK
2958 if (siginfo.si_signo != SIGTRAP
2959 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
57810aa7 2960 return false;
e0d24f8d 2961
227c0bf4
PFC
2962 gdb_assert (!m_dreg_interface.unavailable_p ());
2963
2964 /* Check if this signal corresponds to a hardware breakpoint. We only
2965 need to check this if we're using the HWDEBUG interface, since the
2966 DEBUGREG interface only allows setting one hardware watchpoint. */
2967 if (m_dreg_interface.hwdebug_p ())
6ffbb7ab 2968 {
227c0bf4
PFC
2969 /* The index (or slot) of the *point is passed in the si_errno
2970 field. Currently, this is only the case if the kernel was
2971 configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume
2972 the kernel will set si_errno to a value that doesn't correspond
2973 to any real slot. */
f865ee35 2974 int slot = siginfo.si_errno;
6ffbb7ab 2975
227c0bf4 2976 auto installed_it = m_installed_hw_bps.find (inferior_ptid);
6ffbb7ab 2977
227c0bf4
PFC
2978 /* We must have installed slots for the thread if it got a
2979 TRAP_HWBKPT signal. */
2980 gdb_assert (installed_it != m_installed_hw_bps.end ());
2981
2982 for (const auto & slot_bp_pair : installed_it->second)
2983 if (slot_bp_pair.first == slot
2984 && (slot_bp_pair.second.trigger_type
2985 == PPC_BREAKPOINT_TRIGGER_EXECUTE))
2986 return false;
6ffbb7ab
TJB
2987 }
2988
f865ee35 2989 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
57810aa7 2990 return true;
e0d24f8d
WZ
2991}
2992
227c0bf4
PFC
2993/* Return true if INFERIOR_PTID is known to have been stopped by a
2994 hardware watchpoint, false otherwise. */
2995
57810aa7 2996bool
227c0bf4 2997ppc_linux_nat_target::low_stopped_by_watchpoint ()
9f0bdab8
DJ
2998{
2999 CORE_ADDR addr;
227c0bf4 3000 return low_stopped_data_address (&addr);
9f0bdab8
DJ
3001}
3002
57810aa7 3003bool
f6ac5f3d
PA
3004ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
3005 CORE_ADDR start,
3006 int length)
5009afc5 3007{
227c0bf4
PFC
3008 gdb_assert (!m_dreg_interface.unavailable_p ());
3009
b7622095
LM
3010 int mask;
3011
227c0bf4 3012 if (m_dreg_interface.hwdebug_p ()
82d23ca8 3013 && (linux_get_hwcap () & PPC_FEATURE_BOOKE))
6ffbb7ab 3014 return start <= addr && start + length >= addr;
82d23ca8 3015 else if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
3016 mask = 3;
3017 else
3018 mask = 7;
3019
3020 addr &= ~mask;
3021
0df8b418 3022 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 3023 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
3024}
3025
9c06b0b4
TJB
3026/* Return the number of registers needed for a masked hardware watchpoint. */
3027
f6ac5f3d 3028int
227c0bf4
PFC
3029ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr,
3030 CORE_ADDR mask)
9c06b0b4 3031{
227c0bf4
PFC
3032 m_dreg_interface.detect (inferior_ptid);
3033
3034 if (!m_dreg_interface.hwdebug_p ()
3035 || (m_dreg_interface.hwdebug_info ().features
3036 & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
9c06b0b4
TJB
3037 return -1;
3038 else if ((mask & 0xC0000000) != 0xC0000000)
3039 {
3040 warning (_("The given mask covers kernel address space "
3041 "and cannot be used.\n"));
3042
3043 return -2;
3044 }
3045 else
3046 return 2;
3047}
3048
227c0bf4
PFC
3049/* Copy the per-thread debug register state, if any, from thread
3050 PARENT_PTID to thread CHILD_PTID, if the debug register being used is
3051 HWDEBUG. */
3052
3053void
3054ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid,
3055 const ptid_t &child_ptid)
3056{
3057 gdb_assert (m_dreg_interface.hwdebug_p ());
3058
3059 auto installed_it = m_installed_hw_bps.find (parent_ptid);
3060
3061 if (installed_it != m_installed_hw_bps.end ())
3062 m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid];
3063}
3064
3065/* Mark the debug register stale flag for the new thread, if we have
3066 already detected which debug register interface we use. */
3067
3068void
3069ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp)
3070{
3071 if ((!m_dreg_interface.detected_p ())
3072 || (m_dreg_interface.unavailable_p ()))
3073 return;
3074
3075 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
3076
3077 lp_arch_info->debug_regs_stale = true;
3078}
3079
3080/* Mark all the threads of the group of PID as stale with respect to
3081 debug registers and issue a stop request to each such thread that
3082 isn't already stopped. */
3083
3084void
3085ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid)
3086{
3087 /* We do this in two passes to make sure all threads are marked even if
3088 we get an exception when stopping one of them. */
3089
3090 iterate_over_lwps (ptid_t (pid),
3091 [this] (struct lwp_info *lp) -> int {
3092 this->mark_thread_stale (lp);
3093 return 0;
3094 });
3095
3096 iterate_over_lwps (ptid_t (pid),
3097 [] (struct lwp_info *lp) -> int {
3098 if (!lwp_is_stopped (lp))
3099 linux_stop_lwp (lp);
3100 return 0;
3101 });
3102}
3103
3104/* Register a hardware breakpoint or watchpoint BP for the pid PID, then
3105 mark the stale flag for all threads of the group of PID, and issue a
3106 stop request for them. The breakpoint or watchpoint will be installed
3107 the next time each thread is resumed. Should only be used if the
3108 debug register interface is HWDEBUG. */
3109
3110void
3111ppc_linux_nat_target::register_hw_breakpoint (pid_t pid,
3112 const struct
3113 ppc_hw_breakpoint &bp)
3114{
3115 gdb_assert (m_dreg_interface.hwdebug_p ());
3116
3117 m_process_info[pid].requested_hw_bps.push_back (bp);
3118
3119 mark_debug_registers_changed (pid);
3120}
3121
3122/* Clear a registration for a hardware breakpoint or watchpoint BP for
3123 the pid PID, then mark the stale flag for all threads of the group of
3124 PID, and issue a stop request for them. The breakpoint or watchpoint
3125 will be removed the next time each thread is resumed. Should only be
3126 used if the debug register interface is HWDEBUG. */
3127
3128void
3129ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid,
3130 const struct ppc_hw_breakpoint &bp)
3131{
3132 gdb_assert (m_dreg_interface.hwdebug_p ());
3133
3134 auto process_it = m_process_info.find (pid);
3135
3136 gdb_assert (process_it != m_process_info.end ());
3137
3138 auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (),
3139 process_it->second.requested_hw_bps.end (),
3140 [&bp, this]
3141 (const struct ppc_hw_breakpoint &curr)
3142 { return hwdebug_point_cmp (bp, curr); }
3143 );
3144
3145 /* If GDB is removing a watchpoint, it must have been inserted. */
3146 gdb_assert (bp_it != process_it->second.requested_hw_bps.end ());
3147
3148 process_it->second.requested_hw_bps.erase (bp_it);
3149
3150 mark_debug_registers_changed (pid);
3151}
3152
3153/* Register the hardware watchpoint value WP_VALUE for the pid PID,
3154 then mark the stale flag for all threads of the group of PID, and
3155 issue a stop request for them. The breakpoint or watchpoint will be
3156 installed the next time each thread is resumed. Should only be used
3157 if the debug register interface is DEBUGREG. */
3158
3159void
3160ppc_linux_nat_target::register_wp (pid_t pid, long wp_value)
3161{
3162 gdb_assert (m_dreg_interface.debugreg_p ());
3163
3164 /* Our other functions should have told GDB that we only have one
3165 hardware watchpoint with this interface. */
3166 gdb_assert (!m_process_info[pid].requested_wp_val.has_value ());
3167
3168 m_process_info[pid].requested_wp_val.emplace (wp_value);
3169
3170 mark_debug_registers_changed (pid);
3171}
3172
3173/* Clear the hardware watchpoint registration for the pid PID, then mark
3174 the stale flag for all threads of the group of PID, and issue a stop
3175 request for them. The breakpoint or watchpoint will be installed the
3176 next time each thread is resumed. Should only be used if the debug
3177 register interface is DEBUGREG. */
3178
3179void
3180ppc_linux_nat_target::clear_wp (pid_t pid)
3181{
3182 gdb_assert (m_dreg_interface.debugreg_p ());
3183
3184 auto process_it = m_process_info.find (pid);
3185
3186 gdb_assert (process_it != m_process_info.end ());
3187 gdb_assert (process_it->second.requested_wp_val.has_value ());
3188
3189 process_it->second.requested_wp_val.reset ();
3190
3191 mark_debug_registers_changed (pid);
3192}
3193
3194/* Initialize the arch-specific thread state for LWP, if it not already
3195 created. */
3196
3197void
3198ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp)
3199{
3200 if (lwp_arch_private_info (lp) == NULL)
3201 {
3202 lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
3203 lwp_arch_private_info (lp)->debug_regs_stale = false;
3204 lwp_arch_private_info (lp)->lwp_ptid = lp->ptid;
3205 }
3206}
3207
3208/* Get the arch-specific thread state for LWP, creating it if
3209 necessary. */
3210
3211arch_lwp_info *
3212ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp)
3213{
3214 init_arch_lwp_info (lp);
3215
3216 return lwp_arch_private_info (lp);
3217}
3218
6c265988 3219void _initialize_ppc_linux_nat ();
10d6c8cd 3220void
6c265988 3221_initialize_ppc_linux_nat ()
10d6c8cd 3222{
f6ac5f3d 3223 linux_target = &the_ppc_linux_nat_target;
310a98e1 3224
10d6c8cd 3225 /* Register the target. */
d9f719f1 3226 add_inf_child_target (linux_target);
10d6c8cd 3227}