]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-linux-nat.c
Remove ptid_get_pid
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
76727919 21#include "observable.h"
c877c8e6
KB
22#include "frame.h"
23#include "inferior.h"
6ffbb7ab 24#include "gdbthread.h"
c877c8e6 25#include "gdbcore.h"
4e052eda 26#include "regcache.h"
1d75a658 27#include "regset.h"
10d6c8cd
DJ
28#include "target.h"
29#include "linux-nat.h"
c877c8e6 30#include <sys/types.h>
c877c8e6
KB
31#include <signal.h>
32#include <sys/user.h>
33#include <sys/ioctl.h>
2555fe1a 34#include "gdb_wait.h"
c877c8e6
KB
35#include <fcntl.h>
36#include <sys/procfs.h>
5826e159 37#include "nat/gdb_ptrace.h"
bcc0c096 38#include "inf-ptrace.h"
c877c8e6 39
0df8b418 40/* Prototypes for supply_gregset etc. */
c60c0f5f 41#include "gregset.h"
16333c4f 42#include "ppc-tdep.h"
7284e1be
UW
43#include "ppc-linux-tdep.h"
44
b7622095
LM
45/* Required when using the AUXV. */
46#include "elf/common.h"
47#include "auxv.h"
48
bd64614e
PFC
49#include "arch/ppc-linux-common.h"
50#include "arch/ppc-linux-tdesc.h"
514c5338 51#include "nat/ppc-linux.h"
01904826 52
6ffbb7ab 53/* Similarly for the hardware watchpoint support. These requests are used
926bf92d 54 when the PowerPC HWDEBUG ptrace interface is not available. */
e0d24f8d
WZ
55#ifndef PTRACE_GET_DEBUGREG
56#define PTRACE_GET_DEBUGREG 25
57#endif
58#ifndef PTRACE_SET_DEBUGREG
59#define PTRACE_SET_DEBUGREG 26
60#endif
61#ifndef PTRACE_GETSIGINFO
62#define PTRACE_GETSIGINFO 0x4202
63#endif
01904826 64
926bf92d
UW
65/* These requests are used when the PowerPC HWDEBUG ptrace interface is
66 available. It exposes the debug facilities of PowerPC processors, as well
67 as additional features of BookE processors, such as ranged breakpoints and
68 watchpoints and hardware-accelerated condition evaluation. */
6ffbb7ab
TJB
69#ifndef PPC_PTRACE_GETHWDBGINFO
70
926bf92d
UW
71/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
72 ptrace interface is not present in ptrace.h, so we'll have to pretty much
73 include it all here so that the code at least compiles on older systems. */
6ffbb7ab
TJB
74#define PPC_PTRACE_GETHWDBGINFO 0x89
75#define PPC_PTRACE_SETHWDEBUG 0x88
76#define PPC_PTRACE_DELHWDEBUG 0x87
77
78struct ppc_debug_info
79{
0df8b418 80 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
81 uint32_t num_instruction_bps;
82 uint32_t num_data_bps;
83 uint32_t num_condition_regs;
84 uint32_t data_bp_alignment;
0df8b418 85 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
86 uint64_t features;
87};
88
89/* Features will have bits indicating whether there is support for: */
90#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
91#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
92#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
93#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
94
95struct ppc_hw_breakpoint
96{
97 uint32_t version; /* currently, version must be 1 */
98 uint32_t trigger_type; /* only some combinations allowed */
99 uint32_t addr_mode; /* address match mode */
100 uint32_t condition_mode; /* break/watchpoint condition flags */
101 uint64_t addr; /* break/watchpoint address */
102 uint64_t addr2; /* range end or mask */
103 uint64_t condition_value; /* contents of the DVC register */
104};
105
106/* Trigger type. */
107#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
108#define PPC_BREAKPOINT_TRIGGER_READ 0x2
109#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
110#define PPC_BREAKPOINT_TRIGGER_RW 0x6
111
112/* Address mode. */
113#define PPC_BREAKPOINT_MODE_EXACT 0x0
114#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
115#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
116#define PPC_BREAKPOINT_MODE_MASK 0x3
117
118/* Condition mode. */
119#define PPC_BREAKPOINT_CONDITION_NONE 0x0
120#define PPC_BREAKPOINT_CONDITION_AND 0x1
121#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
122#define PPC_BREAKPOINT_CONDITION_OR 0x2
123#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
124#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
125#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
126#define PPC_BREAKPOINT_CONDITION_BE(n) \
127 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
128#endif /* PPC_PTRACE_GETHWDBGINFO */
129
e23b9d6e
UW
130/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
131 watchpoint (up to 512 bytes). */
132#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
133#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
134#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
6ffbb7ab 135
1dfe79e8
SDJ
136/* Similarly for the general-purpose (gp0 -- gp31)
137 and floating-point registers (fp0 -- fp31). */
138#ifndef PTRACE_GETREGS
139#define PTRACE_GETREGS 12
140#endif
141#ifndef PTRACE_SETREGS
142#define PTRACE_SETREGS 13
143#endif
144#ifndef PTRACE_GETFPREGS
145#define PTRACE_GETFPREGS 14
146#endif
147#ifndef PTRACE_SETFPREGS
148#define PTRACE_SETFPREGS 15
149#endif
150
9abe5450
EZ
151/* This oddity is because the Linux kernel defines elf_vrregset_t as
152 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
153 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
154 the vrsave as an extra 4 bytes at the end. I opted for creating a
155 flat array of chars, so that it is easier to manipulate for gdb.
156
157 There are 32 vector registers 16 bytes longs, plus a VSCR register
158 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 159 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
160 Appended to this there is space for the VRSAVE register: 4 bytes.
161 Even though this vrsave register is not included in the regset
162 typedef, it is handled by the ptrace requests.
163
9abe5450
EZ
164 The layout is like this (where x is the actual value of the vscr reg): */
165
166/* *INDENT-OFF* */
167/*
1d75a658 168Big-Endian:
9abe5450
EZ
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
171 VR0 VR31 VSCR VRSAVE
1d75a658
PFC
172Little-Endian:
173 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
174 <-------> <-------><-------><->
175 VR0 VR31 VSCR VRSAVE
9abe5450
EZ
176*/
177/* *INDENT-ON* */
178
d078308a 179typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
9abe5450 180
604c2f83
LM
181/* This is the layout of the POWER7 VSX registers and the way they overlap
182 with the existing FPR and VMX registers.
183
184 VSR doubleword 0 VSR doubleword 1
185 ----------------------------------------------------------------
186 VSR[0] | FPR[0] | |
187 ----------------------------------------------------------------
188 VSR[1] | FPR[1] | |
189 ----------------------------------------------------------------
190 | ... | |
191 | ... | |
192 ----------------------------------------------------------------
193 VSR[30] | FPR[30] | |
194 ----------------------------------------------------------------
195 VSR[31] | FPR[31] | |
196 ----------------------------------------------------------------
197 VSR[32] | VR[0] |
198 ----------------------------------------------------------------
199 VSR[33] | VR[1] |
200 ----------------------------------------------------------------
201 | ... |
202 | ... |
203 ----------------------------------------------------------------
204 VSR[62] | VR[30] |
205 ----------------------------------------------------------------
206 VSR[63] | VR[31] |
207 ----------------------------------------------------------------
208
209 VSX has 64 128bit registers. The first 32 registers overlap with
210 the FP registers (doubleword 0) and hence extend them with additional
211 64 bits (doubleword 1). The other 32 regs overlap with the VMX
212 registers. */
d078308a 213typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
01904826 214
b021a221 215/* On PPC processors that support the Signal Processing Extension
01904826 216 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
01904826
JB
223
224 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 225 bits long. It has unnamed raw registers that hold the upper halves
b021a221 226 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
01904826
JB
229
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232struct gdb_evrregset_t
233{
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
237};
238
604c2f83
LM
239/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244int have_ptrace_getsetvsxregs = 1;
01904826
JB
245
246/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
249 error. */
9abe5450
EZ
250int have_ptrace_getvrregs = 1;
251
01904826
JB
252/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
255 error. */
256int have_ptrace_getsetevrregs = 1;
257
1dfe79e8
SDJ
258/* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262int have_ptrace_getsetregs = 1;
263
264/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268int have_ptrace_getsetfpregs = 1;
269
f6ac5f3d
PA
270struct ppc_linux_nat_target final : public linux_nat_target
271{
272 /* Add our register access methods. */
273 void fetch_registers (struct regcache *, int) override;
274 void store_registers (struct regcache *, int) override;
275
276 /* Add our breakpoint/watchpoint methods. */
277 int can_use_hw_breakpoint (enum bptype, int, int) override;
278
279 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
280 override;
281
282 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
283 override;
284
285 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
286
287 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
288 struct expression *) override;
289
290 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
291 struct expression *) override;
292
293 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
294 override;
295
296 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
297 override;
298
57810aa7 299 bool stopped_by_watchpoint () override;
f6ac5f3d 300
57810aa7 301 bool stopped_data_address (CORE_ADDR *) override;
f6ac5f3d 302
57810aa7 303 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
f6ac5f3d 304
57810aa7 305 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
f6ac5f3d
PA
306 override;
307
308 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
309
310 int ranged_break_num_registers () override;
311
312 const struct target_desc *read_description () override;
313
314 int auxv_parse (gdb_byte **readptr,
315 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
316 override;
135340af
PA
317
318 /* Override linux_nat_target low methods. */
319 void low_new_thread (struct lwp_info *lp) override;
f6ac5f3d
PA
320};
321
322static ppc_linux_nat_target the_ppc_linux_nat_target;
323
16333c4f
EZ
324/* *INDENT-OFF* */
325/* registers layout, as presented by the ptrace interface:
326PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
327PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
328PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
329PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
330PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
331PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
332PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
333PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
334PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
335PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
336PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
337PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
338PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
339/* *INDENT_ON * */
c877c8e6 340
45229ea4 341static int
e101270f 342ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 343{
16333c4f 344 int u_addr = -1;
e101270f 345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
346 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
347 interface, and not the wordsize of the program's ABI. */
411cb3f9 348 int wordsize = sizeof (long);
16333c4f 349
0df8b418 350 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
351 if (regno >= tdep->ppc_gp0_regnum
352 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 353 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 354
49ff75ad
JB
355 /* Floating point regs: eight bytes each in both 32- and 64-bit
356 ptrace interfaces. Thus, two slots each in 32-bit interface, one
357 slot each in 64-bit interface. */
383f0f5b
JB
358 if (tdep->ppc_fp0_regnum >= 0
359 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
360 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
361 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 362
0df8b418 363 /* UISA special purpose registers: 1 slot each. */
e101270f 364 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 365 u_addr = PT_NIP * wordsize;
dc5cfeb6 366 if (regno == tdep->ppc_lr_regnum)
49ff75ad 367 u_addr = PT_LNK * wordsize;
dc5cfeb6 368 if (regno == tdep->ppc_cr_regnum)
49ff75ad 369 u_addr = PT_CCR * wordsize;
dc5cfeb6 370 if (regno == tdep->ppc_xer_regnum)
49ff75ad 371 u_addr = PT_XER * wordsize;
dc5cfeb6 372 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 373 u_addr = PT_CTR * wordsize;
f8c59253 374#ifdef PT_MQ
dc5cfeb6 375 if (regno == tdep->ppc_mq_regnum)
49ff75ad 376 u_addr = PT_MQ * wordsize;
f8c59253 377#endif
dc5cfeb6 378 if (regno == tdep->ppc_ps_regnum)
49ff75ad 379 u_addr = PT_MSR * wordsize;
7284e1be
UW
380 if (regno == PPC_ORIG_R3_REGNUM)
381 u_addr = PT_ORIG_R3 * wordsize;
382 if (regno == PPC_TRAP_REGNUM)
383 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
384 if (tdep->ppc_fpscr_regnum >= 0
385 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
386 {
387 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
388 kernel headers incorrectly contained the 32-bit definition of
389 PT_FPSCR. For the 32-bit definition, floating-point
390 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 391 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
392 the FPSCR instead occupies the full 64-bit 2-word-slot and
393 hence no adjustment is necessary. Hack around this. */
394 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
395 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
396 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
397 slot and not just its second word. The PT_FPSCR supplied when
398 GDB is compiled as a 32-bit app doesn't reflect this. */
399 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
400 && PT_FPSCR == (48 + 2*32 + 1))
401 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
402 else
403 u_addr = PT_FPSCR * wordsize;
404 }
16333c4f 405 return u_addr;
c877c8e6
KB
406}
407
604c2f83
LM
408/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
409 registers set mechanism, as opposed to the interface for all the
410 other registers, that stores/fetches each register individually. */
411static void
2c3305f6 412fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
604c2f83
LM
413{
414 int ret;
415 gdb_vsxregset_t regs;
2c3305f6 416 const struct regset *vsxregset = ppc_linux_vsxregset ();
604c2f83
LM
417
418 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
419 if (ret < 0)
420 {
421 if (errno == EIO)
422 {
423 have_ptrace_getsetvsxregs = 0;
424 return;
425 }
2c3305f6 426 perror_with_name (_("Unable to fetch VSX registers"));
604c2f83
LM
427 }
428
2c3305f6
PFC
429 vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
430 PPC_LINUX_SIZEOF_VSXREGSET);
604c2f83
LM
431}
432
9abe5450
EZ
433/* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436static void
1d75a658
PFC
437fetch_altivec_registers (struct regcache *regcache, int tid,
438 int regno)
9abe5450
EZ
439{
440 int ret;
9abe5450 441 gdb_vrregset_t regs;
ac7936df 442 struct gdbarch *gdbarch = regcache->arch ();
1d75a658 443 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
9abe5450
EZ
444
445 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
446 if (ret < 0)
447 {
448 if (errno == EIO)
449 {
450 have_ptrace_getvrregs = 0;
451 return;
452 }
1d75a658 453 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 454 }
1d75a658
PFC
455
456 vrregset->supply_regset (vrregset, regcache, regno, &regs,
457 PPC_LINUX_SIZEOF_VRREGSET);
9abe5450
EZ
458}
459
01904826
JB
460/* Fetch the top 32 bits of TID's general-purpose registers and the
461 SPE-specific registers, and place the results in EVRREGSET. If we
462 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
463 zeros.
464
465 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
466 PTRACE_SETEVRREGS requests are supported is isolated here, and in
467 set_spe_registers. */
468static void
469get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
470{
471 if (have_ptrace_getsetevrregs)
472 {
473 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
474 return;
475 else
476 {
477 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
478 we just return zeros. */
479 if (errno == EIO)
480 have_ptrace_getsetevrregs = 0;
481 else
482 /* Anything else needs to be reported. */
e2e0b3e5 483 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
484 }
485 }
486
487 memset (evrregset, 0, sizeof (*evrregset));
488}
489
6ced10dd
JB
490/* Supply values from TID for SPE-specific raw registers: the upper
491 halves of the GPRs, the accumulator, and the spefscr. REGNO must
492 be the number of an upper half register, acc, spefscr, or -1 to
493 supply the values of all registers. */
01904826 494static void
56be3814 495fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 496{
ac7936df 497 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
499 struct gdb_evrregset_t evrregs;
500
6ced10dd 501 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 502 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 503 gdb_assert (sizeof (evrregs.acc)
40a6adc1 504 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 505 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 506 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 507
01904826
JB
508 get_spe_registers (tid, &evrregs);
509
6ced10dd 510 if (regno == -1)
01904826 511 {
6ced10dd
JB
512 int i;
513
514 for (i = 0; i < ppc_num_gprs; i++)
73e1c03f 515 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
01904826 516 }
6ced10dd
JB
517 else if (tdep->ppc_ev0_upper_regnum <= regno
518 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
73e1c03f
SM
519 regcache->raw_supply (regno,
520 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
6ced10dd
JB
521
522 if (regno == -1
523 || regno == tdep->ppc_acc_regnum)
73e1c03f 524 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
525
526 if (regno == -1
527 || regno == tdep->ppc_spefscr_regnum)
73e1c03f 528 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
01904826
JB
529}
530
45229ea4 531static void
56be3814 532fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 533{
ac7936df 534 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 536 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 537 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 538 int bytes_transferred;
0df8b418 539 unsigned int offset; /* Offset of registers within the u area. */
0f068fb5 540 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 541
be8626e0 542 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
543 {
544 /* If this is the first time through, or if it is not the first
545 time through, and we have comfirmed that there is kernel
546 support for such a ptrace request, then go and fetch the
547 register. */
548 if (have_ptrace_getvrregs)
549 {
1d75a658 550 fetch_altivec_registers (regcache, tid, regno);
9abe5450
EZ
551 return;
552 }
553 /* If we have discovered that there is no ptrace support for
554 AltiVec registers, fall through and return zeroes, because
555 regaddr will be -1 in this case. */
556 }
604c2f83
LM
557 if (vsx_register_p (gdbarch, regno))
558 {
559 if (have_ptrace_getsetvsxregs)
560 {
2c3305f6 561 fetch_vsx_registers (regcache, tid, regno);
604c2f83
LM
562 return;
563 }
564 }
be8626e0 565 else if (spe_register_p (gdbarch, regno))
01904826 566 {
56be3814 567 fetch_spe_register (regcache, tid, regno);
01904826
JB
568 return;
569 }
9abe5450 570
45229ea4
EZ
571 if (regaddr == -1)
572 {
40a6adc1 573 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
73e1c03f 574 regcache->raw_supply (regno, buf);
45229ea4
EZ
575 return;
576 }
577
411cb3f9 578 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
579 32-bit platform, 64-bit floating-point registers will require two
580 transfers. */
4a19ea35 581 for (bytes_transferred = 0;
40a6adc1 582 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 583 bytes_transferred += sizeof (long))
45229ea4 584 {
11fde611
JK
585 long l;
586
45229ea4 587 errno = 0;
11fde611 588 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 589 regaddr += sizeof (long);
45229ea4
EZ
590 if (errno != 0)
591 {
bc97b3ba 592 char message[128];
8c042590
PM
593 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
594 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 595 perror_with_name (message);
45229ea4 596 }
11fde611 597 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 598 }
56d0d96a 599
4a19ea35
JB
600 /* Now supply the register. Keep in mind that the regcache's idea
601 of the register's size may not be a multiple of sizeof
411cb3f9 602 (long). */
40a6adc1 603 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
604 {
605 /* Little-endian values are always found at the left end of the
606 bytes transferred. */
73e1c03f 607 regcache->raw_supply (regno, buf);
4a19ea35 608 }
40a6adc1 609 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
610 {
611 /* Big-endian values are found at the right end of the bytes
612 transferred. */
40a6adc1 613 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
73e1c03f 614 regcache->raw_supply (regno, buf + padding);
4a19ea35
JB
615 }
616 else
a44bddec 617 internal_error (__FILE__, __LINE__,
e2e0b3e5 618 _("fetch_register: unexpected byte order: %d"),
40a6adc1 619 gdbarch_byte_order (gdbarch));
45229ea4
EZ
620}
621
1dfe79e8
SDJ
622/* This function actually issues the request to ptrace, telling
623 it to get all general-purpose registers and put them into the
624 specified regset.
625
626 If the ptrace request does not exist, this function returns 0
627 and properly sets the have_ptrace_* flag. If the request fails,
628 this function calls perror_with_name. Otherwise, if the request
629 succeeds, then the regcache gets filled and 1 is returned. */
630static int
631fetch_all_gp_regs (struct regcache *regcache, int tid)
632{
ac7936df 633 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
635 gdb_gregset_t gregset;
636
637 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
638 {
639 if (errno == EIO)
640 {
641 have_ptrace_getsetregs = 0;
642 return 0;
643 }
644 perror_with_name (_("Couldn't get general-purpose registers."));
645 }
646
647 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
648
649 return 1;
650}
651
652/* This is a wrapper for the fetch_all_gp_regs function. It is
653 responsible for verifying if this target has the ptrace request
654 that can be used to fetch all general-purpose registers at one
655 shot. If it doesn't, then we should fetch them using the
656 old-fashioned way, which is to iterate over the registers and
657 request them one by one. */
658static void
659fetch_gp_regs (struct regcache *regcache, int tid)
660{
ac7936df 661 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
663 int i;
664
665 if (have_ptrace_getsetregs)
666 if (fetch_all_gp_regs (regcache, tid))
667 return;
668
669 /* If we've hit this point, it doesn't really matter which
670 architecture we are using. We just need to read the
671 registers in the "old-fashioned way". */
672 for (i = 0; i < ppc_num_gprs; i++)
673 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
674}
675
676/* This function actually issues the request to ptrace, telling
677 it to get all floating-point registers and put them into the
678 specified regset.
679
680 If the ptrace request does not exist, this function returns 0
681 and properly sets the have_ptrace_* flag. If the request fails,
682 this function calls perror_with_name. Otherwise, if the request
683 succeeds, then the regcache gets filled and 1 is returned. */
684static int
685fetch_all_fp_regs (struct regcache *regcache, int tid)
686{
687 gdb_fpregset_t fpregs;
688
689 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
690 {
691 if (errno == EIO)
692 {
693 have_ptrace_getsetfpregs = 0;
694 return 0;
695 }
696 perror_with_name (_("Couldn't get floating-point registers."));
697 }
698
699 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
700
701 return 1;
702}
703
704/* This is a wrapper for the fetch_all_fp_regs function. It is
705 responsible for verifying if this target has the ptrace request
706 that can be used to fetch all floating-point registers at one
707 shot. If it doesn't, then we should fetch them using the
708 old-fashioned way, which is to iterate over the registers and
709 request them one by one. */
710static void
711fetch_fp_regs (struct regcache *regcache, int tid)
712{
ac7936df 713 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715 int i;
716
717 if (have_ptrace_getsetfpregs)
718 if (fetch_all_fp_regs (regcache, tid))
719 return;
720
721 /* If we've hit this point, it doesn't really matter which
722 architecture we are using. We just need to read the
723 registers in the "old-fashioned way". */
724 for (i = 0; i < ppc_num_fprs; i++)
725 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
726}
727
45229ea4 728static void
56be3814 729fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
730{
731 int i;
ac7936df 732 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 734
1dfe79e8 735 fetch_gp_regs (regcache, tid);
32b99774 736 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 737 fetch_fp_regs (regcache, tid);
40a6adc1 738 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 739 if (tdep->ppc_ps_regnum != -1)
56be3814 740 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 741 if (tdep->ppc_cr_regnum != -1)
56be3814 742 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 743 if (tdep->ppc_lr_regnum != -1)
56be3814 744 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 745 if (tdep->ppc_ctr_regnum != -1)
56be3814 746 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 747 if (tdep->ppc_xer_regnum != -1)
56be3814 748 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 749 if (tdep->ppc_mq_regnum != -1)
56be3814 750 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
751 if (ppc_linux_trap_reg_p (gdbarch))
752 {
753 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
754 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
755 }
32b99774 756 if (tdep->ppc_fpscr_regnum != -1)
56be3814 757 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
758 if (have_ptrace_getvrregs)
759 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1d75a658 760 fetch_altivec_registers (regcache, tid, -1);
604c2f83
LM
761 if (have_ptrace_getsetvsxregs)
762 if (tdep->ppc_vsr0_upper_regnum != -1)
2c3305f6 763 fetch_vsx_registers (regcache, tid, -1);
6ced10dd 764 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 765 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
766}
767
768/* Fetch registers from the child process. Fetch all registers if
769 regno == -1, otherwise fetch all general registers or all floating
770 point registers depending upon the value of regno. */
f6ac5f3d
PA
771void
772ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
45229ea4 773{
222312d3 774 pid_t tid = get_ptrace_pid (regcache->ptid ());
05f13b9c 775
9abe5450 776 if (regno == -1)
56be3814 777 fetch_ppc_registers (regcache, tid);
45229ea4 778 else
56be3814 779 fetch_register (regcache, tid, regno);
45229ea4
EZ
780}
781
604c2f83 782static void
2c3305f6 783store_vsx_registers (const struct regcache *regcache, int tid, int regno)
604c2f83
LM
784{
785 int ret;
786 gdb_vsxregset_t regs;
2c3305f6 787 const struct regset *vsxregset = ppc_linux_vsxregset ();
604c2f83 788
9fe70b4f 789 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
790 if (ret < 0)
791 {
792 if (errno == EIO)
793 {
794 have_ptrace_getsetvsxregs = 0;
795 return;
796 }
2c3305f6 797 perror_with_name (_("Unable to fetch VSX registers"));
604c2f83
LM
798 }
799
2c3305f6
PFC
800 vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
801 PPC_LINUX_SIZEOF_VSXREGSET);
604c2f83
LM
802
803 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
804 if (ret < 0)
2c3305f6 805 perror_with_name (_("Unable to store VSX registers"));
604c2f83
LM
806}
807
9abe5450 808static void
1d75a658
PFC
809store_altivec_registers (const struct regcache *regcache, int tid,
810 int regno)
9abe5450
EZ
811{
812 int ret;
9abe5450 813 gdb_vrregset_t regs;
ac7936df 814 struct gdbarch *gdbarch = regcache->arch ();
1d75a658 815 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
9abe5450
EZ
816
817 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
818 if (ret < 0)
819 {
820 if (errno == EIO)
821 {
822 have_ptrace_getvrregs = 0;
823 return;
824 }
1d75a658 825 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450
EZ
826 }
827
1d75a658
PFC
828 vrregset->collect_regset (vrregset, regcache, regno, &regs,
829 PPC_LINUX_SIZEOF_VRREGSET);
9abe5450
EZ
830
831 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
832 if (ret < 0)
1d75a658 833 perror_with_name (_("Unable to store AltiVec registers"));
9abe5450
EZ
834}
835
01904826
JB
836/* Assuming TID referrs to an SPE process, set the top halves of TID's
837 general-purpose registers and its SPE-specific registers to the
838 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
839 nothing.
840
841 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
842 PTRACE_SETEVRREGS requests are supported is isolated here, and in
843 get_spe_registers. */
844static void
845set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
846{
847 if (have_ptrace_getsetevrregs)
848 {
849 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
850 return;
851 else
852 {
853 /* EIO means that the PTRACE_SETEVRREGS request isn't
854 supported; we fail silently, and don't try the call
855 again. */
856 if (errno == EIO)
857 have_ptrace_getsetevrregs = 0;
858 else
859 /* Anything else needs to be reported. */
e2e0b3e5 860 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
861 }
862 }
863}
864
6ced10dd
JB
865/* Write GDB's value for the SPE-specific raw register REGNO to TID.
866 If REGNO is -1, write the values of all the SPE-specific
867 registers. */
01904826 868static void
56be3814 869store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 870{
ac7936df 871 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
873 struct gdb_evrregset_t evrregs;
874
6ced10dd 875 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 876 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 877 gdb_assert (sizeof (evrregs.acc)
40a6adc1 878 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 879 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 880 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 881
6ced10dd
JB
882 if (regno == -1)
883 /* Since we're going to write out every register, the code below
884 should store to every field of evrregs; if that doesn't happen,
885 make it obvious by initializing it with suspicious values. */
886 memset (&evrregs, 42, sizeof (evrregs));
887 else
888 /* We can only read and write the entire EVR register set at a
889 time, so to write just a single register, we do a
890 read-modify-write maneuver. */
891 get_spe_registers (tid, &evrregs);
892
893 if (regno == -1)
01904826 894 {
6ced10dd
JB
895 int i;
896
897 for (i = 0; i < ppc_num_gprs; i++)
34a79281
SM
898 regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
899 &evrregs.evr[i]);
01904826 900 }
6ced10dd
JB
901 else if (tdep->ppc_ev0_upper_regnum <= regno
902 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
34a79281
SM
903 regcache->raw_collect (regno,
904 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
6ced10dd
JB
905
906 if (regno == -1
907 || regno == tdep->ppc_acc_regnum)
34a79281
SM
908 regcache->raw_collect (tdep->ppc_acc_regnum,
909 &evrregs.acc);
6ced10dd
JB
910
911 if (regno == -1
912 || regno == tdep->ppc_spefscr_regnum)
34a79281
SM
913 regcache->raw_collect (tdep->ppc_spefscr_regnum,
914 &evrregs.spefscr);
01904826
JB
915
916 /* Write back the modified register set. */
917 set_spe_registers (tid, &evrregs);
918}
919
45229ea4 920static void
56be3814 921store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 922{
ac7936df 923 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 925 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 926 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 927 int i;
4a19ea35 928 size_t bytes_to_transfer;
0f068fb5 929 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 930
be8626e0 931 if (altivec_register_p (gdbarch, regno))
45229ea4 932 {
1d75a658 933 store_altivec_registers (regcache, tid, regno);
45229ea4
EZ
934 return;
935 }
604c2f83
LM
936 if (vsx_register_p (gdbarch, regno))
937 {
2c3305f6 938 store_vsx_registers (regcache, tid, regno);
604c2f83
LM
939 return;
940 }
be8626e0 941 else if (spe_register_p (gdbarch, regno))
01904826 942 {
56be3814 943 store_spe_register (regcache, tid, regno);
01904826
JB
944 return;
945 }
45229ea4 946
9abe5450
EZ
947 if (regaddr == -1)
948 return;
949
4a19ea35
JB
950 /* First collect the register. Keep in mind that the regcache's
951 idea of the register's size may not be a multiple of sizeof
411cb3f9 952 (long). */
56d0d96a 953 memset (buf, 0, sizeof buf);
40a6adc1
MD
954 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
955 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
956 {
957 /* Little-endian values always sit at the left end of the buffer. */
34a79281 958 regcache->raw_collect (regno, buf);
4a19ea35 959 }
40a6adc1 960 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
961 {
962 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 963 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
34a79281 964 regcache->raw_collect (regno, buf + padding);
4a19ea35
JB
965 }
966
411cb3f9 967 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 968 {
11fde611
JK
969 long l;
970
971 memcpy (&l, &buf[i], sizeof (l));
45229ea4 972 errno = 0;
11fde611 973 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 974 regaddr += sizeof (long);
e3f36dbd
KB
975
976 if (errno == EIO
7284e1be
UW
977 && (regno == tdep->ppc_fpscr_regnum
978 || regno == PPC_ORIG_R3_REGNUM
979 || regno == PPC_TRAP_REGNUM))
e3f36dbd 980 {
7284e1be
UW
981 /* Some older kernel versions don't allow fpscr, orig_r3
982 or trap to be written. */
e3f36dbd
KB
983 continue;
984 }
985
45229ea4
EZ
986 if (errno != 0)
987 {
bc97b3ba 988 char message[128];
8c042590
PM
989 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
990 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 991 perror_with_name (message);
45229ea4
EZ
992 }
993 }
994}
995
1dfe79e8
SDJ
996/* This function actually issues the request to ptrace, telling
997 it to store all general-purpose registers present in the specified
998 regset.
999
1000 If the ptrace request does not exist, this function returns 0
1001 and properly sets the have_ptrace_* flag. If the request fails,
1002 this function calls perror_with_name. Otherwise, if the request
1003 succeeds, then the regcache is stored and 1 is returned. */
1004static int
1005store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1006{
ac7936df 1007 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
1008 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1009 gdb_gregset_t gregset;
1010
1011 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1012 {
1013 if (errno == EIO)
1014 {
1015 have_ptrace_getsetregs = 0;
1016 return 0;
1017 }
1018 perror_with_name (_("Couldn't get general-purpose registers."));
1019 }
1020
1021 fill_gregset (regcache, &gregset, regno);
1022
1023 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1024 {
1025 if (errno == EIO)
1026 {
1027 have_ptrace_getsetregs = 0;
1028 return 0;
1029 }
1030 perror_with_name (_("Couldn't set general-purpose registers."));
1031 }
1032
1033 return 1;
1034}
1035
1036/* This is a wrapper for the store_all_gp_regs function. It is
1037 responsible for verifying if this target has the ptrace request
1038 that can be used to store all general-purpose registers at one
1039 shot. If it doesn't, then we should store them using the
1040 old-fashioned way, which is to iterate over the registers and
1041 store them one by one. */
45229ea4 1042static void
1dfe79e8 1043store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1044{
ac7936df 1045 struct gdbarch *gdbarch = regcache->arch ();
40a6adc1 1046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1047 int i;
1048
1049 if (have_ptrace_getsetregs)
1050 if (store_all_gp_regs (regcache, tid, regno))
1051 return;
1052
1053 /* If we hit this point, it doesn't really matter which
1054 architecture we are using. We just need to store the
1055 registers in the "old-fashioned way". */
6ced10dd 1056 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1057 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1058}
1059
1060/* This function actually issues the request to ptrace, telling
1061 it to store all floating-point registers present in the specified
1062 regset.
1063
1064 If the ptrace request does not exist, this function returns 0
1065 and properly sets the have_ptrace_* flag. If the request fails,
1066 this function calls perror_with_name. Otherwise, if the request
1067 succeeds, then the regcache is stored and 1 is returned. */
1068static int
1069store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1070{
1071 gdb_fpregset_t fpregs;
1072
1073 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1074 {
1075 if (errno == EIO)
1076 {
1077 have_ptrace_getsetfpregs = 0;
1078 return 0;
1079 }
1080 perror_with_name (_("Couldn't get floating-point registers."));
1081 }
1082
1083 fill_fpregset (regcache, &fpregs, regno);
1084
1085 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1086 {
1087 if (errno == EIO)
1088 {
1089 have_ptrace_getsetfpregs = 0;
1090 return 0;
1091 }
1092 perror_with_name (_("Couldn't set floating-point registers."));
1093 }
1094
1095 return 1;
1096}
1097
1098/* This is a wrapper for the store_all_fp_regs function. It is
1099 responsible for verifying if this target has the ptrace request
1100 that can be used to store all floating-point registers at one
1101 shot. If it doesn't, then we should store them using the
1102 old-fashioned way, which is to iterate over the registers and
1103 store them one by one. */
1104static void
1105store_fp_regs (const struct regcache *regcache, int tid, int regno)
1106{
ac7936df 1107 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1109 int i;
1110
1111 if (have_ptrace_getsetfpregs)
1112 if (store_all_fp_regs (regcache, tid, regno))
1113 return;
1114
1115 /* If we hit this point, it doesn't really matter which
1116 architecture we are using. We just need to store the
1117 registers in the "old-fashioned way". */
1118 for (i = 0; i < ppc_num_fprs; i++)
1119 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1120}
1121
1122static void
1123store_ppc_registers (const struct regcache *regcache, int tid)
1124{
1125 int i;
ac7936df 1126 struct gdbarch *gdbarch = regcache->arch ();
1dfe79e8
SDJ
1127 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1128
1129 store_gp_regs (regcache, tid, -1);
32b99774 1130 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1131 store_fp_regs (regcache, tid, -1);
40a6adc1 1132 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1133 if (tdep->ppc_ps_regnum != -1)
56be3814 1134 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1135 if (tdep->ppc_cr_regnum != -1)
56be3814 1136 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1137 if (tdep->ppc_lr_regnum != -1)
56be3814 1138 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1139 if (tdep->ppc_ctr_regnum != -1)
56be3814 1140 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1141 if (tdep->ppc_xer_regnum != -1)
56be3814 1142 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1143 if (tdep->ppc_mq_regnum != -1)
56be3814 1144 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1145 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1146 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1147 if (ppc_linux_trap_reg_p (gdbarch))
1148 {
1149 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1150 store_register (regcache, tid, PPC_TRAP_REGNUM);
1151 }
9abe5450
EZ
1152 if (have_ptrace_getvrregs)
1153 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1d75a658 1154 store_altivec_registers (regcache, tid, -1);
604c2f83
LM
1155 if (have_ptrace_getsetvsxregs)
1156 if (tdep->ppc_vsr0_upper_regnum != -1)
2c3305f6 1157 store_vsx_registers (regcache, tid, -1);
6ced10dd 1158 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1159 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1160}
1161
6ffbb7ab 1162/* Fetch the AT_HWCAP entry from the aux vector. */
0ec848ad 1163static CORE_ADDR
b261e0c5 1164ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1165{
1166 CORE_ADDR field;
1167
8b88a78e 1168 if (target_auxv_search (current_top_target (), AT_HWCAP, &field) != 1)
0ec848ad 1169 return 0;
6ffbb7ab 1170
0ec848ad 1171 return field;
6ffbb7ab
TJB
1172}
1173
1174/* The cached DABR value, to install in new threads.
926bf92d
UW
1175 This variable is used when the PowerPC HWDEBUG ptrace
1176 interface is not available. */
6ffbb7ab
TJB
1177static long saved_dabr_value;
1178
1179/* Global structure that will store information about the available
926bf92d
UW
1180 features provided by the PowerPC HWDEBUG ptrace interface. */
1181static struct ppc_debug_info hwdebug_info;
6ffbb7ab
TJB
1182
1183/* Global variable that holds the maximum number of slots that the
926bf92d
UW
1184 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1185 is available. */
6ffbb7ab
TJB
1186static size_t max_slots_number = 0;
1187
1188struct hw_break_tuple
1189{
1190 long slot;
1191 struct ppc_hw_breakpoint *hw_break;
1192};
1193
1194/* This is an internal VEC created to store information about *points inserted
926bf92d
UW
1195 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1196 available. */
6ffbb7ab
TJB
1197typedef struct thread_points
1198 {
1199 /* The TID to which this *point relates. */
1200 int tid;
1201 /* Information about the *point, such as its address, type, etc.
1202
1203 Each element inside this vector corresponds to a hardware
1204 breakpoint or watchpoint in the thread represented by TID. The maximum
1205 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1206 the tuple is NULL, then the position in the vector is free. */
1207 struct hw_break_tuple *hw_breaks;
1208 } *thread_points_p;
1209DEF_VEC_P (thread_points_p);
1210
1211VEC(thread_points_p) *ppc_threads = NULL;
1212
926bf92d
UW
1213/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1214 available. */
6ffbb7ab
TJB
1215#define PPC_DEBUG_CURRENT_VERSION 1
1216
926bf92d 1217/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
e0d24f8d 1218static int
926bf92d 1219have_ptrace_hwdebug_interface (void)
e0d24f8d 1220{
926bf92d 1221 static int have_ptrace_hwdebug_interface = -1;
e0d24f8d 1222
926bf92d 1223 if (have_ptrace_hwdebug_interface == -1)
6ffbb7ab
TJB
1224 {
1225 int tid;
e0d24f8d 1226
dfd4cc63 1227 tid = ptid_get_lwp (inferior_ptid);
6ffbb7ab 1228 if (tid == 0)
e99b03dc 1229 tid = inferior_ptid.pid ();
e0d24f8d 1230
926bf92d
UW
1231 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1232 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
6ffbb7ab 1233 {
926bf92d 1234 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
0c56f59b 1235 provides any supported feature. */
926bf92d 1236 if (hwdebug_info.features != 0)
0c56f59b 1237 {
926bf92d
UW
1238 have_ptrace_hwdebug_interface = 1;
1239 max_slots_number = hwdebug_info.num_instruction_bps
1240 + hwdebug_info.num_data_bps
1241 + hwdebug_info.num_condition_regs;
1242 return have_ptrace_hwdebug_interface;
0c56f59b 1243 }
6ffbb7ab 1244 }
926bf92d
UW
1245 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1246 have_ptrace_hwdebug_interface = 0;
1247 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1248 }
1249
926bf92d 1250 return have_ptrace_hwdebug_interface;
e0d24f8d
WZ
1251}
1252
f6ac5f3d
PA
1253int
1254ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
b7622095 1255{
6ffbb7ab 1256 int total_hw_wp, total_hw_bp;
b7622095 1257
926bf92d 1258 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1259 {
926bf92d
UW
1260 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1261 available hardware watchpoints and breakpoints is stored at the
1262 hwdebug_info struct. */
1263 total_hw_bp = hwdebug_info.num_instruction_bps;
1264 total_hw_wp = hwdebug_info.num_data_bps;
6ffbb7ab
TJB
1265 }
1266 else
1267 {
926bf92d
UW
1268 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1269 consider having 1 hardware watchpoint and no hardware breakpoints. */
6ffbb7ab
TJB
1270 total_hw_bp = 0;
1271 total_hw_wp = 1;
1272 }
b7622095 1273
6ffbb7ab
TJB
1274 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1275 || type == bp_access_watchpoint || type == bp_watchpoint)
1276 {
bb08bdbd 1277 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1278 return -1;
1279 }
1280 else if (type == bp_hardware_breakpoint)
1281 {
572f6555
EBM
1282 if (total_hw_bp == 0)
1283 {
1284 /* No hardware breakpoint support. */
1285 return 0;
1286 }
6ffbb7ab
TJB
1287 if (cnt > total_hw_bp)
1288 return -1;
1289 }
1290
926bf92d 1291 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1292 {
1293 int tid;
1294 ptid_t ptid = inferior_ptid;
1295
0df8b418
MS
1296 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1297 and whether the target has DABR. If either answer is no, the
1298 ptrace call will return -1. Fail in that case. */
dfd4cc63 1299 tid = ptid_get_lwp (ptid);
6ffbb7ab 1300 if (tid == 0)
e99b03dc 1301 tid = ptid.pid ();
6ffbb7ab
TJB
1302
1303 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1304 return 0;
1305 }
1306
1307 return 1;
b7622095
LM
1308}
1309
f6ac5f3d
PA
1310int
1311ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
e0d24f8d
WZ
1312{
1313 /* Handle sub-8-byte quantities. */
1314 if (len <= 0)
1315 return 0;
1316
926bf92d
UW
1317 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1318 restrictions for watchpoints in the processors. In that case, we use that
1319 information to determine the hardcoded watchable region for
1320 watchpoints. */
1321 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1322 {
e23b9d6e 1323 int region_size;
4feebbdd
EBM
1324 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1325 watchpoints and can watch any access within an arbitrary memory
1326 region. This is useful to watch arrays and structs, for instance. It
1327 takes two hardware watchpoints though. */
e09342b5 1328 if (len > 1
926bf92d 1329 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
4feebbdd 1330 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
e09342b5 1331 return 2;
e23b9d6e
UW
1332 /* Check if the processor provides DAWR interface. */
1333 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1334 /* DAWR interface allows to watch up to 512 byte wide ranges which
1335 can't cross a 512 byte boundary. */
1336 region_size = 512;
1337 else
1338 region_size = hwdebug_info.data_bp_alignment;
4feebbdd
EBM
1339 /* Server processors provide one hardware watchpoint and addr+len should
1340 fall in the watchable region provided by the ptrace interface. */
e23b9d6e
UW
1341 if (region_size
1342 && (addr + len > (addr & ~(region_size - 1)) + region_size))
0cf6dd15 1343 return 0;
6ffbb7ab 1344 }
b7622095 1345 /* addr+len must fall in the 8 byte watchable region for DABR-based
926bf92d
UW
1346 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1347 ptrace interface, DAC-based processors (i.e., embedded processors) will
1348 use addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1349 passed in the old ptrace interface. */
1350 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1351 && (addr + len) > (addr & ~3) + 4)
1352 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1353 return 0;
1354
1355 return 1;
1356}
1357
6ffbb7ab 1358/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1359static int
926bf92d 1360hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
6ffbb7ab 1361{
ad422571
TJB
1362 return (a->trigger_type == b->trigger_type
1363 && a->addr_mode == b->addr_mode
1364 && a->condition_mode == b->condition_mode
1365 && a->addr == b->addr
1366 && a->addr2 == b->addr2
6ffbb7ab
TJB
1367 && a->condition_value == b->condition_value);
1368}
1369
1370/* This function can be used to retrieve a thread_points by the TID of the
1371 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1372 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1373 provided TID will be created and returned. */
1374static struct thread_points *
926bf92d 1375hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
6ffbb7ab
TJB
1376{
1377 int i;
1378 struct thread_points *t;
1379
1380 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1381 if (t->tid == tid)
1382 return t;
1383
1384 t = NULL;
1385
1386 /* Do we need to allocate a new point_item
1387 if the wanted one does not exist? */
1388 if (alloc_new)
1389 {
8d749320
SM
1390 t = XNEW (struct thread_points);
1391 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
6ffbb7ab
TJB
1392 t->tid = tid;
1393 VEC_safe_push (thread_points_p, ppc_threads, t);
1394 }
1395
1396 return t;
1397}
1398
1399/* This function is a generic wrapper that is responsible for inserting a
1400 *point (i.e., calling `ptrace' in order to issue the request to the
1401 kernel) and registering it internally in GDB. */
1402static void
926bf92d 1403hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1404{
1405 int i;
1406 long slot;
a90ecff8 1407 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
6ffbb7ab 1408 struct hw_break_tuple *hw_breaks;
6ffbb7ab
TJB
1409 struct thread_points *t;
1410 struct hw_break_tuple *tuple;
1411
6ffbb7ab 1412 errno = 0;
a90ecff8 1413 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
6ffbb7ab
TJB
1414 if (slot < 0)
1415 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1416
1417 /* Everything went fine, so we have to register this *point. */
926bf92d 1418 t = hwdebug_find_thread_points_by_tid (tid, 1);
6ffbb7ab
TJB
1419 gdb_assert (t != NULL);
1420 hw_breaks = t->hw_breaks;
1421
1422 /* Find a free element in the hw_breaks vector. */
1423 for (i = 0; i < max_slots_number; i++)
1424 if (hw_breaks[i].hw_break == NULL)
1425 {
1426 hw_breaks[i].slot = slot;
a90ecff8 1427 hw_breaks[i].hw_break = p.release ();
6ffbb7ab
TJB
1428 break;
1429 }
1430
1431 gdb_assert (i != max_slots_number);
6ffbb7ab
TJB
1432}
1433
1434/* This function is a generic wrapper that is responsible for removing a
1435 *point (i.e., calling `ptrace' in order to issue the request to the
1436 kernel), and unregistering it internally at GDB. */
1437static void
926bf92d 1438hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1439{
1440 int i;
1441 struct hw_break_tuple *hw_breaks;
1442 struct thread_points *t;
1443
926bf92d 1444 t = hwdebug_find_thread_points_by_tid (tid, 0);
6ffbb7ab
TJB
1445 gdb_assert (t != NULL);
1446 hw_breaks = t->hw_breaks;
1447
1448 for (i = 0; i < max_slots_number; i++)
926bf92d 1449 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
6ffbb7ab
TJB
1450 break;
1451
1452 gdb_assert (i != max_slots_number);
1453
1454 /* We have to ignore ENOENT errors because the kernel implements hardware
1455 breakpoints/watchpoints as "one-shot", that is, they are automatically
1456 deleted when hit. */
1457 errno = 0;
1458 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1459 if (errno != ENOENT)
0df8b418
MS
1460 perror_with_name (_("Unexpected error deleting "
1461 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1462
1463 xfree (hw_breaks[i].hw_break);
1464 hw_breaks[i].hw_break = NULL;
1465}
9f0bdab8 1466
f1310107
TJB
1467/* Return the number of registers needed for a ranged breakpoint. */
1468
f6ac5f3d
PA
1469int
1470ppc_linux_nat_target::ranged_break_num_registers ()
f1310107 1471{
926bf92d
UW
1472 return ((have_ptrace_hwdebug_interface ()
1473 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
f1310107
TJB
1474 2 : -1);
1475}
1476
1477/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1478 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1479
f6ac5f3d
PA
1480int
1481ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1482 struct bp_target_info *bp_tgt)
e0d24f8d 1483{
9f0bdab8 1484 struct lwp_info *lp;
6ffbb7ab
TJB
1485 struct ppc_hw_breakpoint p;
1486
926bf92d 1487 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1488 return -1;
1489
ad422571
TJB
1490 p.version = PPC_DEBUG_CURRENT_VERSION;
1491 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571 1492 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
0d5ed153 1493 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
6ffbb7ab
TJB
1494 p.condition_value = 0;
1495
f1310107
TJB
1496 if (bp_tgt->length)
1497 {
1498 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1499
1500 /* The breakpoint will trigger if the address of the instruction is
1501 within the defined range, as follows: p.addr <= address < p.addr2. */
1502 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1503 }
1504 else
1505 {
1506 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1507 p.addr2 = 0;
1508 }
1509
4c38200f 1510 ALL_LWPS (lp)
dfd4cc63 1511 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1512
1513 return 0;
1514}
1515
f6ac5f3d
PA
1516int
1517ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1518 struct bp_target_info *bp_tgt)
6ffbb7ab 1519{
6ffbb7ab
TJB
1520 struct lwp_info *lp;
1521 struct ppc_hw_breakpoint p;
b7622095 1522
926bf92d 1523 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1524 return -1;
1525
ad422571
TJB
1526 p.version = PPC_DEBUG_CURRENT_VERSION;
1527 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1528 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1529 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1530 p.condition_value = 0;
1531
f1310107
TJB
1532 if (bp_tgt->length)
1533 {
1534 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1535
1536 /* The breakpoint will trigger if the address of the instruction is within
1537 the defined range, as follows: p.addr <= address < p.addr2. */
1538 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1539 }
1540 else
1541 {
1542 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1543 p.addr2 = 0;
1544 }
1545
4c38200f 1546 ALL_LWPS (lp)
dfd4cc63 1547 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1548
1549 return 0;
1550}
1551
1552static int
e76460db 1553get_trigger_type (enum target_hw_bp_type type)
6ffbb7ab
TJB
1554{
1555 int t;
1556
e76460db 1557 if (type == hw_read)
6ffbb7ab 1558 t = PPC_BREAKPOINT_TRIGGER_READ;
e76460db 1559 else if (type == hw_write)
6ffbb7ab 1560 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1561 else
6ffbb7ab
TJB
1562 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1563
1564 return t;
1565}
1566
9c06b0b4
TJB
1567/* Insert a new masked watchpoint at ADDR using the mask MASK.
1568 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1569 or hw_access for an access watchpoint. Returns 0 on success and throws
1570 an error on failure. */
1571
f6ac5f3d
PA
1572int
1573ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1574 target_hw_bp_type rw)
9c06b0b4 1575{
9c06b0b4
TJB
1576 struct lwp_info *lp;
1577 struct ppc_hw_breakpoint p;
1578
926bf92d 1579 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1580
1581 p.version = PPC_DEBUG_CURRENT_VERSION;
1582 p.trigger_type = get_trigger_type (rw);
1583 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1584 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1585 p.addr = addr;
1586 p.addr2 = mask;
1587 p.condition_value = 0;
1588
4c38200f 1589 ALL_LWPS (lp)
dfd4cc63 1590 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1591
1592 return 0;
1593}
1594
1595/* Remove a masked watchpoint at ADDR with the mask MASK.
1596 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1597 or hw_access for an access watchpoint. Returns 0 on success and throws
1598 an error on failure. */
1599
f6ac5f3d
PA
1600int
1601ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1602 target_hw_bp_type rw)
9c06b0b4 1603{
9c06b0b4
TJB
1604 struct lwp_info *lp;
1605 struct ppc_hw_breakpoint p;
1606
926bf92d 1607 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1608
1609 p.version = PPC_DEBUG_CURRENT_VERSION;
1610 p.trigger_type = get_trigger_type (rw);
1611 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1612 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1613 p.addr = addr;
1614 p.addr2 = mask;
1615 p.condition_value = 0;
1616
4c38200f 1617 ALL_LWPS (lp)
dfd4cc63 1618 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1619
1620 return 0;
1621}
1622
0cf6dd15
TJB
1623/* Check whether we have at least one free DVC register. */
1624static int
1625can_use_watchpoint_cond_accel (void)
1626{
1627 struct thread_points *p;
dfd4cc63 1628 int tid = ptid_get_lwp (inferior_ptid);
926bf92d 1629 int cnt = hwdebug_info.num_condition_regs, i;
0cf6dd15
TJB
1630 CORE_ADDR tmp_value;
1631
926bf92d 1632 if (!have_ptrace_hwdebug_interface () || cnt == 0)
0cf6dd15
TJB
1633 return 0;
1634
926bf92d 1635 p = hwdebug_find_thread_points_by_tid (tid, 0);
0cf6dd15
TJB
1636
1637 if (p)
1638 {
1639 for (i = 0; i < max_slots_number; i++)
1640 if (p->hw_breaks[i].hw_break != NULL
1641 && (p->hw_breaks[i].hw_break->condition_mode
1642 != PPC_BREAKPOINT_CONDITION_NONE))
1643 cnt--;
1644
1645 /* There are no available slots now. */
1646 if (cnt <= 0)
1647 return 0;
1648 }
1649
1650 return 1;
1651}
1652
1653/* Calculate the enable bits and the contents of the Data Value Compare
1654 debug register present in BookE processors.
1655
1656 ADDR is the address to be watched, LEN is the length of watched data
1657 and DATA_VALUE is the value which will trigger the watchpoint.
1658 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1659 CONDITION_VALUE will hold the value which should be put in the
1660 DVC register. */
1661static void
1662calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1663 uint32_t *condition_mode, uint64_t *condition_value)
1664{
1665 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1666 rightmost_enabled_byte;
1667 CORE_ADDR addr_end_data, addr_end_dvc;
1668
1669 /* The DVC register compares bytes within fixed-length windows which
1670 are word-aligned, with length equal to that of the DVC register.
1671 We need to calculate where our watch region is relative to that
1672 window and enable comparison of the bytes which fall within it. */
1673
926bf92d 1674 align_offset = addr % hwdebug_info.sizeof_condition;
0cf6dd15
TJB
1675 addr_end_data = addr + len;
1676 addr_end_dvc = (addr - align_offset
926bf92d 1677 + hwdebug_info.sizeof_condition);
0cf6dd15
TJB
1678 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1679 addr_end_data - addr_end_dvc : 0;
1680 num_byte_enable = len - num_bytes_off_dvc;
1681 /* Here, bytes are numbered from right to left. */
1682 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1683 addr_end_dvc - addr_end_data : 0;
1684
1685 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1686 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1687 *condition_mode
1688 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1689
1690 /* Now we need to match the position within the DVC of the comparison
1691 value with where the watch region is relative to the window
1692 (i.e., the ALIGN_OFFSET). */
1693
1694 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1695 << rightmost_enabled_byte * 8);
1696}
1697
1698/* Return the number of memory locations that need to be accessed to
1699 evaluate the expression which generated the given value chain.
1700 Returns -1 if there's any register access involved, or if there are
1701 other kinds of values which are not acceptable in a condition
1702 expression (e.g., lval_computed or lval_internalvar). */
1703static int
a6535de1 1704num_memory_accesses (const std::vector<value_ref_ptr> &chain)
0cf6dd15
TJB
1705{
1706 int found_memory_cnt = 0;
0cf6dd15
TJB
1707
1708 /* The idea here is that evaluating an expression generates a series
1709 of values, one holding the value of every subexpression. (The
1710 expression a*b+c has five subexpressions: a, b, a*b, c, and
1711 a*b+c.) GDB's values hold almost enough information to establish
1712 the criteria given above --- they identify memory lvalues,
1713 register lvalues, computed values, etcetera. So we can evaluate
1714 the expression, and then scan the chain of values that leaves
1715 behind to determine the memory locations involved in the evaluation
1716 of an expression.
1717
1718 However, I don't think that the values returned by inferior
1719 function calls are special in any way. So this function may not
1720 notice that an expression contains an inferior function call.
1721 FIXME. */
1722
a6535de1 1723 for (const value_ref_ptr &iter : chain)
0cf6dd15 1724 {
a6535de1
TT
1725 struct value *v = iter.get ();
1726
0cf6dd15
TJB
1727 /* Constants and values from the history are fine. */
1728 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1729 continue;
1730 else if (VALUE_LVAL (v) == lval_memory)
1731 {
1732 /* A lazy memory lvalue is one that GDB never needed to fetch;
1733 we either just used its address (e.g., `a' in `a.b') or
1734 we never needed it at all (e.g., `a' in `a,b'). */
1735 if (!value_lazy (v))
1736 found_memory_cnt++;
1737 }
0df8b418 1738 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1739 else
1740 return -1;
1741 }
1742
1743 return found_memory_cnt;
1744}
1745
1746/* Verifies whether the expression COND can be implemented using the
1747 DVC (Data Value Compare) register in BookE processors. The expression
1748 must test the watch value for equality with a constant expression.
1749 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1750 which the watch value should be compared and LEN will contain the size
1751 of the constant. */
0cf6dd15
TJB
1752static int
1753check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1754 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1755{
1756 int pc = 1, num_accesses_left, num_accesses_right;
a6535de1
TT
1757 struct value *left_val, *right_val;
1758 std::vector<value_ref_ptr> left_chain, right_chain;
0cf6dd15
TJB
1759
1760 if (cond->elts[0].opcode != BINOP_EQUAL)
1761 return 0;
1762
3a1115a0 1763 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
0cf6dd15
TJB
1764 num_accesses_left = num_memory_accesses (left_chain);
1765
1766 if (left_val == NULL || num_accesses_left < 0)
a6535de1 1767 return 0;
0cf6dd15 1768
3a1115a0 1769 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
0cf6dd15
TJB
1770 num_accesses_right = num_memory_accesses (right_chain);
1771
1772 if (right_val == NULL || num_accesses_right < 0)
a6535de1 1773 return 0;
0cf6dd15
TJB
1774
1775 if (num_accesses_left == 1 && num_accesses_right == 0
1776 && VALUE_LVAL (left_val) == lval_memory
1777 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1778 {
1779 *data_value = value_as_long (right_val);
1780
1781 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1782 the same type as the memory region referenced by LEFT_VAL. */
1783 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1784 }
0cf6dd15
TJB
1785 else if (num_accesses_left == 0 && num_accesses_right == 1
1786 && VALUE_LVAL (right_val) == lval_memory
1787 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1788 {
1789 *data_value = value_as_long (left_val);
1790
1791 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1792 the same type as the memory region referenced by RIGHT_VAL. */
1793 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1794 }
0cf6dd15 1795 else
a6535de1 1796 return 0;
0cf6dd15
TJB
1797
1798 return 1;
1799}
1800
1801/* Return non-zero if the target is capable of using hardware to evaluate
1802 the condition expression, thus only triggering the watchpoint when it is
1803 true. */
57810aa7 1804bool
f6ac5f3d
PA
1805ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1806 int rw,
1807 struct expression *cond)
0cf6dd15
TJB
1808{
1809 CORE_ADDR data_value;
1810
926bf92d
UW
1811 return (have_ptrace_hwdebug_interface ()
1812 && hwdebug_info.num_condition_regs > 0
e7db58ea 1813 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
1814}
1815
e09342b5
TJB
1816/* Set up P with the parameters necessary to request a watchpoint covering
1817 LEN bytes starting at ADDR and if possible with condition expression COND
1818 evaluated by hardware. INSERT tells if we are creating a request for
1819 inserting or removing the watchpoint. */
1820
1821static void
1822create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
e76460db
PA
1823 int len, enum target_hw_bp_type type,
1824 struct expression *cond, int insert)
e09342b5 1825{
f16c4e8b 1826 if (len == 1
926bf92d 1827 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
1828 {
1829 int use_condition;
1830 CORE_ADDR data_value;
1831
1832 use_condition = (insert? can_use_watchpoint_cond_accel ()
926bf92d 1833 : hwdebug_info.num_condition_regs > 0);
e7db58ea
TJB
1834 if (cond && use_condition && check_condition (addr, cond,
1835 &data_value, &len))
e09342b5
TJB
1836 calculate_dvc (addr, len, data_value, &p->condition_mode,
1837 &p->condition_value);
1838 else
1839 {
1840 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1841 p->condition_value = 0;
1842 }
1843
1844 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1845 p->addr2 = 0;
1846 }
1847 else
1848 {
1849 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1850 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1851 p->condition_value = 0;
1852
1853 /* The watchpoint will trigger if the address of the memory access is
1854 within the defined range, as follows: p->addr <= address < p->addr2.
1855
1856 Note that the above sentence just documents how ptrace interprets
1857 its arguments; the watchpoint is set to watch the range defined by
1858 the user _inclusively_, as specified by the user interface. */
1859 p->addr2 = (uint64_t) addr + len;
1860 }
1861
1862 p->version = PPC_DEBUG_CURRENT_VERSION;
e76460db 1863 p->trigger_type = get_trigger_type (type);
e09342b5
TJB
1864 p->addr = (uint64_t) addr;
1865}
1866
f6ac5f3d
PA
1867int
1868ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1869 enum target_hw_bp_type type,
1870 struct expression *cond)
6ffbb7ab
TJB
1871{
1872 struct lwp_info *lp;
6ffbb7ab
TJB
1873 int ret = -1;
1874
926bf92d 1875 if (have_ptrace_hwdebug_interface ())
e0d24f8d 1876 {
6ffbb7ab
TJB
1877 struct ppc_hw_breakpoint p;
1878
e76460db 1879 create_watchpoint_request (&p, addr, len, type, cond, 1);
6ffbb7ab 1880
4c38200f 1881 ALL_LWPS (lp)
dfd4cc63 1882 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1883
1884 ret = 0;
e0d24f8d 1885 }
6ffbb7ab
TJB
1886 else
1887 {
1888 long dabr_value;
1889 long read_mode, write_mode;
e0d24f8d 1890
6ffbb7ab
TJB
1891 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1892 {
1893 /* PowerPC 440 requires only the read/write flags to be passed
1894 to the kernel. */
ad422571 1895 read_mode = 1;
6ffbb7ab
TJB
1896 write_mode = 2;
1897 }
1898 else
1899 {
1900 /* PowerPC 970 and other DABR-based processors are required to pass
1901 the Breakpoint Translation bit together with the flags. */
ad422571 1902 read_mode = 5;
6ffbb7ab
TJB
1903 write_mode = 6;
1904 }
1c86e440 1905
6ffbb7ab 1906 dabr_value = addr & ~(read_mode | write_mode);
e76460db 1907 switch (type)
6ffbb7ab
TJB
1908 {
1909 case hw_read:
1910 /* Set read and translate bits. */
1911 dabr_value |= read_mode;
1912 break;
1913 case hw_write:
1914 /* Set write and translate bits. */
1915 dabr_value |= write_mode;
1916 break;
1917 case hw_access:
1918 /* Set read, write and translate bits. */
1919 dabr_value |= read_mode | write_mode;
1920 break;
1921 }
1c86e440 1922
6ffbb7ab
TJB
1923 saved_dabr_value = dabr_value;
1924
4c38200f 1925 ALL_LWPS (lp)
dfd4cc63 1926 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 1927 saved_dabr_value) < 0)
6ffbb7ab
TJB
1928 return -1;
1929
1930 ret = 0;
1931 }
1932
1933 return ret;
e0d24f8d
WZ
1934}
1935
f6ac5f3d
PA
1936int
1937ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
1938 enum target_hw_bp_type type,
1939 struct expression *cond)
e0d24f8d 1940{
9f0bdab8 1941 struct lwp_info *lp;
6ffbb7ab 1942 int ret = -1;
9f0bdab8 1943
926bf92d 1944 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1945 {
1946 struct ppc_hw_breakpoint p;
1947
e76460db 1948 create_watchpoint_request (&p, addr, len, type, cond, 0);
6ffbb7ab 1949
4c38200f 1950 ALL_LWPS (lp)
dfd4cc63 1951 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1952
1953 ret = 0;
1954 }
1955 else
1956 {
1957 saved_dabr_value = 0;
4c38200f 1958 ALL_LWPS (lp)
dfd4cc63 1959 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 1960 saved_dabr_value) < 0)
6ffbb7ab
TJB
1961 return -1;
1962
1963 ret = 0;
1964 }
1965
1966 return ret;
e0d24f8d
WZ
1967}
1968
135340af
PA
1969void
1970ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
e0d24f8d 1971{
dfd4cc63 1972 int tid = ptid_get_lwp (lp->ptid);
6ffbb7ab 1973
926bf92d 1974 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1975 {
1976 int i;
1977 struct thread_points *p;
1978 struct hw_break_tuple *hw_breaks;
1979
1980 if (VEC_empty (thread_points_p, ppc_threads))
1981 return;
1982
0df8b418 1983 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
1984 p = VEC_last (thread_points_p, ppc_threads);
1985 hw_breaks = p->hw_breaks;
1986
0df8b418 1987 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
1988 for (i = 0; i < max_slots_number; i++)
1989 if (hw_breaks[i].hw_break)
aacbb8a5
LM
1990 {
1991 /* Older kernels did not make new threads inherit their parent
1992 thread's debug state, so we always clear the slot and replicate
1993 the debug state ourselves, ensuring compatibility with all
1994 kernels. */
1995
1996 /* The ppc debug resource accounting is done through "slots".
1997 Ask the kernel the deallocate this specific *point's slot. */
1998 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
1999
926bf92d 2000 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
aacbb8a5 2001 }
6ffbb7ab
TJB
2002 }
2003 else
2004 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2005}
2006
2007static void
2008ppc_linux_thread_exit (struct thread_info *tp, int silent)
2009{
2010 int i;
dfd4cc63 2011 int tid = ptid_get_lwp (tp->ptid);
6ffbb7ab
TJB
2012 struct hw_break_tuple *hw_breaks;
2013 struct thread_points *t = NULL, *p;
2014
926bf92d 2015 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2016 return;
2017
2018 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2019 if (p->tid == tid)
2020 {
2021 t = p;
2022 break;
2023 }
2024
2025 if (t == NULL)
2026 return;
2027
2028 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2029
2030 hw_breaks = t->hw_breaks;
2031
2032 for (i = 0; i < max_slots_number; i++)
2033 if (hw_breaks[i].hw_break)
2034 xfree (hw_breaks[i].hw_break);
2035
2036 xfree (t->hw_breaks);
2037 xfree (t);
e0d24f8d
WZ
2038}
2039
57810aa7 2040bool
f6ac5f3d 2041ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
e0d24f8d 2042{
f865ee35 2043 siginfo_t siginfo;
e0d24f8d 2044
f865ee35 2045 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
57810aa7 2046 return false;
e0d24f8d 2047
f865ee35
JK
2048 if (siginfo.si_signo != SIGTRAP
2049 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
57810aa7 2050 return false;
e0d24f8d 2051
926bf92d 2052 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2053 {
2054 int i;
2055 struct thread_points *t;
2056 struct hw_break_tuple *hw_breaks;
2057 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2058 int slot = siginfo.si_errno;
6ffbb7ab 2059
dfd4cc63 2060 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
6ffbb7ab
TJB
2061
2062 /* Find out if this *point is a hardware breakpoint.
2063 If so, we should return 0. */
2064 if (t)
2065 {
2066 hw_breaks = t->hw_breaks;
2067 for (i = 0; i < max_slots_number; i++)
2068 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2069 && hw_breaks[i].hw_break->trigger_type
2070 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
57810aa7 2071 return false;
6ffbb7ab
TJB
2072 }
2073 }
2074
f865ee35 2075 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
57810aa7 2076 return true;
e0d24f8d
WZ
2077}
2078
57810aa7 2079bool
f6ac5f3d 2080ppc_linux_nat_target::stopped_by_watchpoint ()
9f0bdab8
DJ
2081{
2082 CORE_ADDR addr;
f6ac5f3d 2083 return stopped_data_address (&addr);
9f0bdab8
DJ
2084}
2085
57810aa7 2086bool
f6ac5f3d
PA
2087ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2088 CORE_ADDR start,
2089 int length)
5009afc5 2090{
b7622095
LM
2091 int mask;
2092
926bf92d 2093 if (have_ptrace_hwdebug_interface ()
6ffbb7ab
TJB
2094 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2095 return start <= addr && start + length >= addr;
2096 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2097 mask = 3;
2098 else
2099 mask = 7;
2100
2101 addr &= ~mask;
2102
0df8b418 2103 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2104 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2105}
2106
9c06b0b4
TJB
2107/* Return the number of registers needed for a masked hardware watchpoint. */
2108
f6ac5f3d
PA
2109int
2110ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
9c06b0b4 2111{
926bf92d
UW
2112 if (!have_ptrace_hwdebug_interface ()
2113 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
9c06b0b4
TJB
2114 return -1;
2115 else if ((mask & 0xC0000000) != 0xC0000000)
2116 {
2117 warning (_("The given mask covers kernel address space "
2118 "and cannot be used.\n"));
2119
2120 return -2;
2121 }
2122 else
2123 return 2;
2124}
2125
f6ac5f3d
PA
2126void
2127ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
45229ea4 2128{
222312d3 2129 pid_t tid = get_ptrace_pid (regcache->ptid ());
05f13b9c 2130
45229ea4 2131 if (regno >= 0)
56be3814 2132 store_register (regcache, tid, regno);
45229ea4 2133 else
56be3814 2134 store_ppc_registers (regcache, tid);
45229ea4
EZ
2135}
2136
f2db237a
AM
2137/* Functions for transferring registers between a gregset_t or fpregset_t
2138 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2139 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2140 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2141 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2142
50c9bd31 2143void
7f7fe91e 2144supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2145{
f2db237a 2146 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2147
f2db237a 2148 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2149}
2150
fdb28ac4 2151void
7f7fe91e
UW
2152fill_gregset (const struct regcache *regcache,
2153 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2154{
f2db237a 2155 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2156
f2db237a
AM
2157 if (regno == -1)
2158 memset (gregsetp, 0, sizeof (*gregsetp));
2159 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2160}
2161
50c9bd31 2162void
7f7fe91e 2163supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2164{
f2db237a
AM
2165 const struct regset *regset = ppc_linux_fpregset ();
2166
2167 ppc_supply_fpregset (regset, regcache, -1,
2168 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2169}
fdb28ac4 2170
fdb28ac4 2171void
7f7fe91e
UW
2172fill_fpregset (const struct regcache *regcache,
2173 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2174{
f2db237a
AM
2175 const struct regset *regset = ppc_linux_fpregset ();
2176
2177 ppc_collect_fpregset (regset, regcache, regno,
2178 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2179}
10d6c8cd 2180
2e077f5e
PFC
2181int
2182ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2183 gdb_byte *endptr, CORE_ADDR *typep,
2184 CORE_ADDR *valp)
409c383c 2185{
dfd4cc63 2186 int tid = ptid_get_lwp (inferior_ptid);
409c383c 2187 if (tid == 0)
e99b03dc 2188 tid = inferior_ptid.pid ();
409c383c 2189
2e077f5e 2190 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
409c383c 2191
f5656ead 2192 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2193 gdb_byte *ptr = *readptr;
2194
2195 if (endptr == ptr)
2196 return 0;
2197
2198 if (endptr - ptr < sizeof_auxv_field * 2)
2199 return -1;
2200
e17a4113 2201 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2202 ptr += sizeof_auxv_field;
e17a4113 2203 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2204 ptr += sizeof_auxv_field;
2205
2206 *readptr = ptr;
2207 return 1;
2208}
2209
f6ac5f3d
PA
2210const struct target_desc *
2211ppc_linux_nat_target::read_description ()
310a98e1 2212{
dfd4cc63 2213 int tid = ptid_get_lwp (inferior_ptid);
7284e1be 2214 if (tid == 0)
e99b03dc 2215 tid = inferior_ptid.pid ();
7284e1be 2216
310a98e1
DJ
2217 if (have_ptrace_getsetevrregs)
2218 {
2219 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2220
2221 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2222 return tdesc_powerpc_e500l;
2223
2224 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2225 Anything else needs to be reported. */
2226 else if (errno != EIO)
2227 perror_with_name (_("Unable to fetch SPE registers"));
2228 }
2229
bd64614e
PFC
2230 struct ppc_linux_features features = ppc_linux_no_features;
2231
2e077f5e 2232 features.wordsize = ppc_linux_target_wordsize (tid);
bd64614e 2233
0ec848ad 2234 CORE_ADDR hwcap = ppc_linux_get_hwcap ();
bd64614e 2235
0154d990 2236 if (have_ptrace_getsetvsxregs
bd64614e 2237 && (hwcap & PPC_FEATURE_HAS_VSX))
604c2f83
LM
2238 {
2239 gdb_vsxregset_t vsxregset;
2240
2241 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
bd64614e 2242 features.vsx = true;
604c2f83
LM
2243
2244 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2245 Anything else needs to be reported. */
2246 else if (errno != EIO)
2247 perror_with_name (_("Unable to fetch VSX registers"));
2248 }
2249
0154d990 2250 if (have_ptrace_getvrregs
bd64614e 2251 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
7284e1be
UW
2252 {
2253 gdb_vrregset_t vrregset;
2254
2255 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
bd64614e 2256 features.altivec = true;
7284e1be
UW
2257
2258 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2259 Anything else needs to be reported. */
2260 else if (errno != EIO)
2261 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2262 }
2263
bd64614e
PFC
2264 if (hwcap & PPC_FEATURE_CELL)
2265 features.cell = true;
7284e1be 2266
bd64614e 2267 features.isa205 = ppc_linux_has_isa205 (hwcap);
604c2f83 2268
bd64614e 2269 return ppc_linux_match_description (features);
310a98e1
DJ
2270}
2271
10d6c8cd
DJ
2272void
2273_initialize_ppc_linux_nat (void)
2274{
f6ac5f3d 2275 linux_target = &the_ppc_linux_nat_target;
310a98e1 2276
76727919 2277 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
6ffbb7ab 2278
10d6c8cd 2279 /* Register the target. */
d9f719f1 2280 add_inf_child_target (linux_target);
10d6c8cd 2281}