]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-sysv-tdep.c
* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[thirdparty/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
CommitLineData
7b112f9c
JT
1/* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
0fb0cc75 4 Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007, 2008, 2009
65ada037 5 Free Software Foundation, Inc.
7b112f9c
JT
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
7b112f9c
JT
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
7b112f9c
JT
21
22#include "defs.h"
23#include "gdbcore.h"
24#include "inferior.h"
25#include "regcache.h"
26#include "value.h"
bdf64bac 27#include "gdb_string.h"
8be9034a 28#include "gdb_assert.h"
7b112f9c 29#include "ppc-tdep.h"
6066c3de 30#include "target.h"
0a90bcdd 31#include "objfiles.h"
7d9b040b 32#include "infcall.h"
7b112f9c 33
7b112f9c
JT
34/* Pass the arguments in either registers, or in the stack. Using the
35 ppc sysv ABI, the first eight words of the argument list (that might
36 be less than eight parameters if some parameters occupy more than one
37 word) are passed in r3..r10 registers. float and double parameters are
38 passed in fpr's, in addition to that. Rest of the parameters if any
39 are passed in user stack.
40
41 If the function is returning a structure, then the return address is passed
42 in r3, then the first 7 words of the parametes can be passed in registers,
43 starting from r4. */
44
45CORE_ADDR
7d9b040b 46ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
47 struct regcache *regcache, CORE_ADDR bp_addr,
48 int nargs, struct value **args, CORE_ADDR sp,
49 int struct_return, CORE_ADDR struct_addr)
7b112f9c 50{
40a6adc1 51 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fb4443d8 52 ULONGEST saved_sp;
68856ea3
AC
53 int argspace = 0; /* 0 is an initial wrong guess. */
54 int write_pass;
7b112f9c 55
b14d30e1
JM
56 gdb_assert (tdep->wordsize == 4);
57
40a6adc1 58 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 59 &saved_sp);
fb4443d8 60
68856ea3 61 /* Go through the argument list twice.
7b112f9c 62
68856ea3
AC
63 Pass 1: Figure out how much new stack space is required for
64 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
65 ABI doesn't reserve any extra space for parameters which are put
66 in registers, but does always push structures and then pass their
67 address.
7a41266b 68
68856ea3
AC
69 Pass 2: Replay the same computation but this time also write the
70 values out to the target. */
7b112f9c 71
68856ea3
AC
72 for (write_pass = 0; write_pass < 2; write_pass++)
73 {
74 int argno;
75 /* Next available floating point register for float and double
76 arguments. */
77 int freg = 1;
78 /* Next available general register for non-float, non-vector
79 arguments. */
80 int greg = 3;
81 /* Next available vector register for vector arguments. */
82 int vreg = 2;
83 /* Arguments start above the "LR save word" and "Back chain". */
84 int argoffset = 2 * tdep->wordsize;
85 /* Structures start after the arguments. */
86 int structoffset = argoffset + argspace;
87
88 /* If the function is returning a `struct', then the first word
944fcfab
AC
89 (which will be passed in r3) is used for struct return
90 address. In that case we should advance one word and start
91 from r4 register to copy parameters. */
68856ea3 92 if (struct_return)
7b112f9c 93 {
68856ea3
AC
94 if (write_pass)
95 regcache_cooked_write_signed (regcache,
96 tdep->ppc_gp0_regnum + greg,
97 struct_addr);
98 greg++;
7b112f9c 99 }
68856ea3
AC
100
101 for (argno = 0; argno < nargs; argno++)
7b112f9c 102 {
68856ea3 103 struct value *arg = args[argno];
df407dfe 104 struct type *type = check_typedef (value_type (arg));
68856ea3 105 int len = TYPE_LENGTH (type);
0fd88904 106 const bfd_byte *val = value_contents (arg);
68856ea3 107
55eddb0f
DJ
108 if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
109 && !tdep->soft_float)
7b112f9c 110 {
68856ea3 111 /* Floating point value converted to "double" then
944fcfab
AC
112 passed in an FP register, when the registers run out,
113 8 byte aligned stack is used. */
68856ea3
AC
114 if (freg <= 8)
115 {
116 if (write_pass)
117 {
118 /* Always store the floating point value using
944fcfab 119 the register's floating-point format. */
50fd1280 120 gdb_byte regval[MAX_REGISTER_SIZE];
68856ea3 121 struct type *regtype
366f009f 122 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
68856ea3 123 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
124 regcache_cooked_write (regcache,
125 tdep->ppc_fp0_regnum + freg,
68856ea3
AC
126 regval);
127 }
128 freg++;
129 }
7b112f9c
JT
130 else
131 {
f964a756
MK
132 /* The SysV ABI tells us to convert floats to
133 doubles before writing them to an 8 byte aligned
134 stack location. Unfortunately GCC does not do
135 that, and stores floats into 4 byte aligned
136 locations without converting them to doubles.
137 Since there is no know compiler that actually
138 follows the ABI here, we implement the GCC
139 convention. */
140
141 /* Align to 4 bytes or 8 bytes depending on the type of
142 the argument (float or double). */
143 argoffset = align_up (argoffset, len);
68856ea3 144 if (write_pass)
68856ea3 145 write_memory (sp + argoffset, val, len);
f964a756 146 argoffset += len;
7b112f9c
JT
147 }
148 }
b14d30e1
JM
149 else if (TYPE_CODE (type) == TYPE_CODE_FLT
150 && len == 16
151 && !tdep->soft_float
40a6adc1 152 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
153 == floatformats_ibm_long_double))
154 {
155 /* IBM long double passed in two FP registers if
156 available, otherwise 8-byte aligned stack. */
157 if (freg <= 7)
158 {
159 if (write_pass)
160 {
161 regcache_cooked_write (regcache,
162 tdep->ppc_fp0_regnum + freg,
163 val);
164 regcache_cooked_write (regcache,
165 tdep->ppc_fp0_regnum + freg + 1,
166 val + 8);
167 }
168 freg += 2;
169 }
170 else
171 {
172 argoffset = align_up (argoffset, 8);
173 if (write_pass)
174 write_memory (sp + argoffset, val, len);
175 argoffset += 16;
176 }
177 }
55eddb0f
DJ
178 else if (len == 8
179 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
00fbcec4
JM
180 || TYPE_CODE (type) == TYPE_CODE_FLT /* double */
181 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
182 && tdep->soft_float)))
7b112f9c 183 {
00fbcec4
JM
184 /* "long long" or soft-float "double" or "_Decimal64"
185 passed in an odd/even register pair with the low
186 addressed word in the odd register and the high
187 addressed word in the even register, or when the
188 registers run out an 8 byte aligned stack
189 location. */
68856ea3
AC
190 if (greg > 9)
191 {
192 /* Just in case GREG was 10. */
193 greg = 11;
194 argoffset = align_up (argoffset, 8);
195 if (write_pass)
196 write_memory (sp + argoffset, val, len);
197 argoffset += 8;
198 }
68856ea3
AC
199 else
200 {
201 /* Must start on an odd register - r3/r4 etc. */
202 if ((greg & 1) == 0)
203 greg++;
204 if (write_pass)
205 {
206 regcache_cooked_write (regcache,
207 tdep->ppc_gp0_regnum + greg + 0,
208 val + 0);
209 regcache_cooked_write (regcache,
210 tdep->ppc_gp0_regnum + greg + 1,
211 val + 4);
212 }
213 greg += 2;
214 }
7b112f9c 215 }
00fbcec4
JM
216 else if (len == 16
217 && ((TYPE_CODE (type) == TYPE_CODE_FLT
218 && (gdbarch_long_double_format (gdbarch)
219 == floatformats_ibm_long_double))
220 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
221 && tdep->soft_float)))
b14d30e1 222 {
00fbcec4
JM
223 /* Soft-float IBM long double or _Decimal128 passed in
224 four consecutive registers, or on the stack. The
225 registers are not necessarily odd/even pairs. */
b14d30e1
JM
226 if (greg > 7)
227 {
228 greg = 11;
229 argoffset = align_up (argoffset, 8);
230 if (write_pass)
231 write_memory (sp + argoffset, val, len);
232 argoffset += 16;
233 }
234 else
235 {
236 if (write_pass)
237 {
238 regcache_cooked_write (regcache,
239 tdep->ppc_gp0_regnum + greg + 0,
240 val + 0);
241 regcache_cooked_write (regcache,
242 tdep->ppc_gp0_regnum + greg + 1,
243 val + 4);
244 regcache_cooked_write (regcache,
245 tdep->ppc_gp0_regnum + greg + 2,
246 val + 8);
247 regcache_cooked_write (regcache,
248 tdep->ppc_gp0_regnum + greg + 3,
249 val + 12);
250 }
251 greg += 4;
252 }
253 }
1300a2f4
TJB
254 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
255 && !tdep->soft_float)
256 {
257 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
258 end up in memory. */
259
260 if (freg <= 8)
261 {
262 if (write_pass)
263 {
264 gdb_byte regval[MAX_REGISTER_SIZE];
265 const gdb_byte *p;
266
267 /* 32-bit decimal floats are right aligned in the
268 doubleword. */
269 if (TYPE_LENGTH (type) == 4)
270 {
271 memcpy (regval + 4, val, 4);
272 p = regval;
273 }
274 else
275 p = val;
276
277 regcache_cooked_write (regcache,
278 tdep->ppc_fp0_regnum + freg, p);
279 }
280
281 freg++;
282 }
283 else
284 {
285 argoffset = align_up (argoffset, len);
286
287 if (write_pass)
288 /* Write value in the stack's parameter save area. */
289 write_memory (sp + argoffset, val, len);
290
291 argoffset += len;
292 }
293 }
294 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
295 && !tdep->soft_float)
296 {
297 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
298 pairs. They can end up in memory, using two doublewords. */
299
300 if (freg <= 6)
301 {
302 /* Make sure freg is even. */
303 freg += freg & 1;
304
305 if (write_pass)
306 {
307 regcache_cooked_write (regcache,
308 tdep->ppc_fp0_regnum + freg, val);
309 regcache_cooked_write (regcache,
310 tdep->ppc_fp0_regnum + freg + 1, val + 8);
311 }
312 }
313 else
314 {
315 argoffset = align_up (argoffset, 8);
316
317 if (write_pass)
318 write_memory (sp + argoffset, val, 16);
319
320 argoffset += 16;
321 }
322
323 /* If a 128-bit decimal float goes to the stack because only f7
324 and f8 are free (thus there's no even/odd register pair
325 available), these registers should be marked as occupied.
326 Hence we increase freg even when writing to memory. */
327 freg += 2;
328 }
68856ea3
AC
329 else if (len == 16
330 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
331 && TYPE_VECTOR (type)
332 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
7b112f9c 333 {
68856ea3 334 /* Vector parameter passed in an Altivec register, or
944fcfab 335 when that runs out, 16 byte aligned stack location. */
7b112f9c
JT
336 if (vreg <= 13)
337 {
68856ea3 338 if (write_pass)
9c9acae0 339 regcache_cooked_write (regcache,
944fcfab 340 tdep->ppc_vr0_regnum + vreg, val);
7b112f9c
JT
341 vreg++;
342 }
343 else
344 {
68856ea3
AC
345 argoffset = align_up (argoffset, 16);
346 if (write_pass)
347 write_memory (sp + argoffset, val, 16);
7b112f9c
JT
348 argoffset += 16;
349 }
350 }
944fcfab 351 else if (len == 8
0a613259 352 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
353 && TYPE_VECTOR (type)
354 && tdep->vector_abi == POWERPC_VEC_SPE)
944fcfab 355 {
68856ea3 356 /* Vector parameter passed in an e500 register, or when
944fcfab
AC
357 that runs out, 8 byte aligned stack location. Note
358 that since e500 vector and general purpose registers
359 both map onto the same underlying register set, a
360 "greg" and not a "vreg" is consumed here. A cooked
361 write stores the value in the correct locations
362 within the raw register cache. */
363 if (greg <= 10)
364 {
68856ea3 365 if (write_pass)
9c9acae0 366 regcache_cooked_write (regcache,
944fcfab
AC
367 tdep->ppc_ev0_regnum + greg, val);
368 greg++;
369 }
370 else
371 {
68856ea3
AC
372 argoffset = align_up (argoffset, 8);
373 if (write_pass)
374 write_memory (sp + argoffset, val, 8);
944fcfab
AC
375 argoffset += 8;
376 }
377 }
68856ea3
AC
378 else
379 {
380 /* Reduce the parameter down to something that fits in a
944fcfab 381 "word". */
50fd1280 382 gdb_byte word[MAX_REGISTER_SIZE];
68856ea3
AC
383 memset (word, 0, MAX_REGISTER_SIZE);
384 if (len > tdep->wordsize
385 || TYPE_CODE (type) == TYPE_CODE_STRUCT
386 || TYPE_CODE (type) == TYPE_CODE_UNION)
387 {
55eddb0f
DJ
388 /* Structs and large values are put in an
389 aligned stack slot ... */
390 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
391 && TYPE_VECTOR (type)
392 && len >= 16)
393 structoffset = align_up (structoffset, 16);
394 else
395 structoffset = align_up (structoffset, 8);
396
68856ea3
AC
397 if (write_pass)
398 write_memory (sp + structoffset, val, len);
399 /* ... and then a "word" pointing to that address is
944fcfab 400 passed as the parameter. */
68856ea3
AC
401 store_unsigned_integer (word, tdep->wordsize,
402 sp + structoffset);
403 structoffset += len;
404 }
405 else if (TYPE_CODE (type) == TYPE_CODE_INT)
406 /* Sign or zero extend the "int" into a "word". */
407 store_unsigned_integer (word, tdep->wordsize,
408 unpack_long (type, val));
409 else
410 /* Always goes in the low address. */
411 memcpy (word, val, len);
412 /* Store that "word" in a register, or on the stack.
944fcfab 413 The words have "4" byte alignment. */
68856ea3
AC
414 if (greg <= 10)
415 {
416 if (write_pass)
417 regcache_cooked_write (regcache,
944fcfab 418 tdep->ppc_gp0_regnum + greg, word);
68856ea3
AC
419 greg++;
420 }
421 else
422 {
423 argoffset = align_up (argoffset, tdep->wordsize);
424 if (write_pass)
425 write_memory (sp + argoffset, word, tdep->wordsize);
426 argoffset += tdep->wordsize;
427 }
428 }
429 }
430
431 /* Compute the actual stack space requirements. */
432 if (!write_pass)
433 {
434 /* Remember the amount of space needed by the arguments. */
435 argspace = argoffset;
436 /* Allocate space for both the arguments and the structures. */
437 sp -= (argoffset + structoffset);
438 /* Ensure that the stack is still 16 byte aligned. */
439 sp = align_down (sp, 16);
440 }
65ada037
MK
441
442 /* The psABI says that "A caller of a function that takes a
443 variable argument list shall set condition register bit 6 to
444 1 if it passes one or more arguments in the floating-point
445 registers. It is strongly recommended that the caller set the
446 bit to 0 otherwise..." Doing this for normal functions too
447 shouldn't hurt. */
448 if (write_pass)
449 {
450 ULONGEST cr;
451
452 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
453 if (freg > 1)
454 cr |= 0x02000000;
455 else
456 cr &= ~0x02000000;
457 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
458 }
7b112f9c
JT
459 }
460
68856ea3 461 /* Update %sp. */
40a6adc1 462 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
68856ea3
AC
463
464 /* Write the backchain (it occupies WORDSIZED bytes). */
465 write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
466
e56a0ecc
AC
467 /* Point the inferior function call's return address at the dummy's
468 breakpoint. */
68856ea3 469 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
e56a0ecc 470
7b112f9c
JT
471 return sp;
472}
473
1300a2f4
TJB
474/* Handle the return-value conventions for Decimal Floating Point values
475 in both ppc32 and ppc64, which are the same. */
476static int
477get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
478 struct regcache *regcache, gdb_byte *readbuf,
479 const gdb_byte *writebuf)
480{
481 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
482
483 gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
484
485 /* 32-bit and 64-bit decimal floats in f1. */
486 if (TYPE_LENGTH (valtype) <= 8)
487 {
488 if (writebuf != NULL)
489 {
490 gdb_byte regval[MAX_REGISTER_SIZE];
491 const gdb_byte *p;
492
493 /* 32-bit decimal float is right aligned in the doubleword. */
494 if (TYPE_LENGTH (valtype) == 4)
495 {
496 memcpy (regval + 4, writebuf, 4);
497 p = regval;
498 }
499 else
500 p = writebuf;
501
502 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
503 }
504 if (readbuf != NULL)
505 {
506 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
507
508 /* Left align 32-bit decimal float. */
509 if (TYPE_LENGTH (valtype) == 4)
510 memcpy (readbuf, readbuf + 4, 4);
511 }
512 }
513 /* 128-bit decimal floats in f2,f3. */
514 else if (TYPE_LENGTH (valtype) == 16)
515 {
516 if (writebuf != NULL || readbuf != NULL)
517 {
518 int i;
519
520 for (i = 0; i < 2; i++)
521 {
522 if (writebuf != NULL)
523 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
524 writebuf + i * 8);
525 if (readbuf != NULL)
526 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
527 readbuf + i * 8);
528 }
529 }
530 }
531 else
532 /* Can't happen. */
533 internal_error (__FILE__, __LINE__, "Unknown decimal float size.");
534
535 return RETURN_VALUE_REGISTER_CONVENTION;
536}
537
e754ae69
AC
538/* Handle the return-value conventions specified by the SysV 32-bit
539 PowerPC ABI (including all the supplements):
540
541 no floating-point: floating-point values returned using 32-bit
542 general-purpose registers.
543
544 Altivec: 128-bit vectors returned using vector registers.
545
546 e500: 64-bit vectors returned using the full full 64 bit EV
547 register, floating-point values returned using 32-bit
548 general-purpose registers.
549
550 GCC (broken): Small struct values right (instead of left) aligned
551 when returned in general-purpose registers. */
552
553static enum return_value_convention
05580c65 554do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
55eddb0f
DJ
555 struct regcache *regcache, gdb_byte *readbuf,
556 const gdb_byte *writebuf, int broken_gcc)
e754ae69 557{
05580c65 558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e754ae69
AC
559 gdb_assert (tdep->wordsize == 4);
560 if (TYPE_CODE (type) == TYPE_CODE_FLT
561 && TYPE_LENGTH (type) <= 8
55eddb0f 562 && !tdep->soft_float)
e754ae69 563 {
963e2bb7 564 if (readbuf)
e754ae69
AC
565 {
566 /* Floats and doubles stored in "f1". Convert the value to
567 the required type. */
50fd1280 568 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f
JB
569 struct type *regtype = register_type (gdbarch,
570 tdep->ppc_fp0_regnum + 1);
571 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 572 convert_typed_floating (regval, regtype, readbuf, type);
e754ae69 573 }
963e2bb7 574 if (writebuf)
e754ae69
AC
575 {
576 /* Floats and doubles stored in "f1". Convert the value to
577 the register's "double" type. */
50fd1280 578 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 579 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 580 convert_typed_floating (writebuf, type, regval, regtype);
366f009f 581 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
e754ae69
AC
582 }
583 return RETURN_VALUE_REGISTER_CONVENTION;
584 }
b14d30e1
JM
585 if (TYPE_CODE (type) == TYPE_CODE_FLT
586 && TYPE_LENGTH (type) == 16
587 && !tdep->soft_float
40a6adc1 588 && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
b14d30e1
JM
589 {
590 /* IBM long double stored in f1 and f2. */
591 if (readbuf)
592 {
593 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
594 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
595 readbuf + 8);
596 }
597 if (writebuf)
598 {
599 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
600 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
601 writebuf + 8);
602 }
603 return RETURN_VALUE_REGISTER_CONVENTION;
604 }
00fbcec4
JM
605 if (TYPE_LENGTH (type) == 16
606 && ((TYPE_CODE (type) == TYPE_CODE_FLT
607 && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
608 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
b14d30e1 609 {
00fbcec4
JM
610 /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
611 r5, r6. */
b14d30e1
JM
612 if (readbuf)
613 {
614 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
615 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
616 readbuf + 4);
617 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
618 readbuf + 8);
619 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
620 readbuf + 12);
621 }
622 if (writebuf)
623 {
624 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
625 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
626 writebuf + 4);
627 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
628 writebuf + 8);
629 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
630 writebuf + 12);
631 }
632 return RETURN_VALUE_REGISTER_CONVENTION;
633 }
e754ae69 634 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
00fbcec4
JM
635 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
636 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
637 && tdep->soft_float))
e754ae69 638 {
963e2bb7 639 if (readbuf)
e754ae69 640 {
00fbcec4
JM
641 /* A long long, double or _Decimal64 stored in the 32 bit
642 r3/r4. */
e754ae69 643 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 644 readbuf + 0);
e754ae69 645 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 646 readbuf + 4);
e754ae69 647 }
963e2bb7 648 if (writebuf)
e754ae69 649 {
00fbcec4
JM
650 /* A long long, double or _Decimal64 stored in the 32 bit
651 r3/r4. */
e754ae69 652 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 653 writebuf + 0);
e754ae69 654 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 655 writebuf + 4);
e754ae69
AC
656 }
657 return RETURN_VALUE_REGISTER_CONVENTION;
658 }
1300a2f4
TJB
659 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
660 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
661 writebuf);
f0027ce2
DJ
662 else if ((TYPE_CODE (type) == TYPE_CODE_INT
663 || TYPE_CODE (type) == TYPE_CODE_CHAR
664 || TYPE_CODE (type) == TYPE_CODE_BOOL
665 || TYPE_CODE (type) == TYPE_CODE_PTR
666 || TYPE_CODE (type) == TYPE_CODE_REF
667 || TYPE_CODE (type) == TYPE_CODE_ENUM)
668 && TYPE_LENGTH (type) <= tdep->wordsize)
e754ae69 669 {
963e2bb7 670 if (readbuf)
e754ae69
AC
671 {
672 /* Some sort of integer stored in r3. Since TYPE isn't
673 bigger than the register, sign extension isn't a problem
674 - just do everything unsigned. */
675 ULONGEST regval;
676 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
677 &regval);
963e2bb7 678 store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
e754ae69 679 }
963e2bb7 680 if (writebuf)
e754ae69
AC
681 {
682 /* Some sort of integer stored in r3. Use unpack_long since
683 that should handle any required sign extension. */
684 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 685 unpack_long (type, writebuf));
e754ae69
AC
686 }
687 return RETURN_VALUE_REGISTER_CONVENTION;
688 }
689 if (TYPE_LENGTH (type) == 16
690 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
691 && TYPE_VECTOR (type)
692 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
e754ae69 693 {
963e2bb7 694 if (readbuf)
e754ae69
AC
695 {
696 /* Altivec places the return value in "v2". */
963e2bb7 697 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
e754ae69 698 }
963e2bb7 699 if (writebuf)
e754ae69
AC
700 {
701 /* Altivec places the return value in "v2". */
963e2bb7 702 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
e754ae69
AC
703 }
704 return RETURN_VALUE_REGISTER_CONVENTION;
705 }
55eddb0f
DJ
706 if (TYPE_LENGTH (type) == 16
707 && TYPE_CODE (type) == TYPE_CODE_ARRAY
708 && TYPE_VECTOR (type)
709 && tdep->vector_abi == POWERPC_VEC_GENERIC)
710 {
711 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
712 GCC without AltiVec returns them in memory, but it warns about
713 ABI risks in that case; we don't try to support it. */
714 if (readbuf)
715 {
716 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
717 readbuf + 0);
718 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
719 readbuf + 4);
720 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
721 readbuf + 8);
722 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
723 readbuf + 12);
724 }
725 if (writebuf)
726 {
727 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
728 writebuf + 0);
729 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
730 writebuf + 4);
731 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
732 writebuf + 8);
733 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
734 writebuf + 12);
735 }
736 return RETURN_VALUE_REGISTER_CONVENTION;
737 }
e754ae69
AC
738 if (TYPE_LENGTH (type) == 8
739 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
740 && TYPE_VECTOR (type)
741 && tdep->vector_abi == POWERPC_VEC_SPE)
e754ae69
AC
742 {
743 /* The e500 ABI places return values for the 64-bit DSP types
744 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
745 corresponds to the entire r3 value for e500, whereas GDB's r3
746 only corresponds to the least significant 32-bits. So place
747 the 64-bit DSP type's value in ev3. */
963e2bb7
AC
748 if (readbuf)
749 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
750 if (writebuf)
751 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
e754ae69
AC
752 return RETURN_VALUE_REGISTER_CONVENTION;
753 }
754 if (broken_gcc && TYPE_LENGTH (type) <= 8)
755 {
61bf9ae0
MK
756 /* GCC screwed up for structures or unions whose size is less
757 than or equal to 8 bytes.. Instead of left-aligning, it
758 right-aligns the data into the buffer formed by r3, r4. */
759 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
760 int len = TYPE_LENGTH (type);
761 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
762
963e2bb7 763 if (readbuf)
e754ae69 764 {
61bf9ae0
MK
765 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
766 regvals + 0 * tdep->wordsize);
767 if (len > tdep->wordsize)
768 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
769 regvals + 1 * tdep->wordsize);
770 memcpy (readbuf, regvals + offset, len);
e754ae69 771 }
963e2bb7 772 if (writebuf)
e754ae69 773 {
61bf9ae0
MK
774 memset (regvals, 0, sizeof regvals);
775 memcpy (regvals + offset, writebuf, len);
776 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
777 regvals + 0 * tdep->wordsize);
778 if (len > tdep->wordsize)
779 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
780 regvals + 1 * tdep->wordsize);
e754ae69 781 }
61bf9ae0 782
e754ae69
AC
783 return RETURN_VALUE_REGISTER_CONVENTION;
784 }
785 if (TYPE_LENGTH (type) <= 8)
786 {
963e2bb7 787 if (readbuf)
e754ae69
AC
788 {
789 /* This matches SVr4 PPC, it does not match GCC. */
790 /* The value is right-padded to 8 bytes and then loaded, as
791 two "words", into r3/r4. */
50fd1280 792 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69
AC
793 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
794 regvals + 0 * tdep->wordsize);
795 if (TYPE_LENGTH (type) > tdep->wordsize)
796 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
797 regvals + 1 * tdep->wordsize);
963e2bb7 798 memcpy (readbuf, regvals, TYPE_LENGTH (type));
e754ae69 799 }
963e2bb7 800 if (writebuf)
e754ae69
AC
801 {
802 /* This matches SVr4 PPC, it does not match GCC. */
803 /* The value is padded out to 8 bytes and then loaded, as
804 two "words" into r3/r4. */
50fd1280 805 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69 806 memset (regvals, 0, sizeof regvals);
963e2bb7 807 memcpy (regvals, writebuf, TYPE_LENGTH (type));
e754ae69
AC
808 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
809 regvals + 0 * tdep->wordsize);
810 if (TYPE_LENGTH (type) > tdep->wordsize)
811 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
812 regvals + 1 * tdep->wordsize);
813 }
814 return RETURN_VALUE_REGISTER_CONVENTION;
815 }
816 return RETURN_VALUE_STRUCT_CONVENTION;
817}
818
05580c65 819enum return_value_convention
c055b101
CV
820ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
821 struct type *valtype, struct regcache *regcache,
822 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 823{
963e2bb7
AC
824 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
825 writebuf, 0);
e754ae69
AC
826}
827
05580c65 828enum return_value_convention
963e2bb7 829ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
c055b101 830 struct type *func_type,
963e2bb7
AC
831 struct type *valtype,
832 struct regcache *regcache,
50fd1280 833 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 834{
963e2bb7
AC
835 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
836 writebuf, 1);
944fcfab 837}
afd48b75 838
b6e1c027
AC
839/* The helper function for 64-bit SYSV push_dummy_call. Converts the
840 function's code address back into the function's descriptor
841 address.
842
843 Find a value for the TOC register. Every symbol should have both
844 ".FN" and "FN" in the minimal symbol table. "FN" points at the
845 FN's descriptor, while ".FN" points at the entry point (which
846 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
847 FN's descriptor address (while at the same time being careful to
848 find "FN" in the same object file as ".FN"). */
849
850static int
851convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
852{
853 struct obj_section *dot_fn_section;
854 struct minimal_symbol *dot_fn;
855 struct minimal_symbol *fn;
856 CORE_ADDR toc;
857 /* Find the minimal symbol that corresponds to CODE_ADDR (should
858 have a name of the form ".FN"). */
859 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
860 if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
861 return 0;
862 /* Get the section that contains CODE_ADDR. Need this for the
863 "objfile" that it contains. */
864 dot_fn_section = find_pc_section (code_addr);
865 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
866 return 0;
867 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
868 address. Only look for the minimal symbol in ".FN"'s object file
869 - avoids problems when two object files (i.e., shared libraries)
870 contain a minimal symbol with the same name. */
871 fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
872 dot_fn_section->objfile);
873 if (fn == NULL)
874 return 0;
875 /* Found a descriptor. */
876 (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
877 return 1;
878}
879
8be9034a
AC
880/* Pass the arguments in either registers, or in the stack. Using the
881 ppc 64 bit SysV ABI.
882
883 This implements a dumbed down version of the ABI. It always writes
884 values to memory, GPR and FPR, even when not necessary. Doing this
885 greatly simplifies the logic. */
886
887CORE_ADDR
7d9b040b 888ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8be9034a
AC
889 struct regcache *regcache, CORE_ADDR bp_addr,
890 int nargs, struct value **args, CORE_ADDR sp,
891 int struct_return, CORE_ADDR struct_addr)
892{
7d9b040b 893 CORE_ADDR func_addr = find_function_addr (function, NULL);
40a6adc1 894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fb4443d8 895 ULONGEST back_chain;
8be9034a
AC
896 /* See for-loop comment below. */
897 int write_pass;
898 /* Size of the Altivec's vector parameter region, the final value is
899 computed in the for-loop below. */
900 LONGEST vparam_size = 0;
901 /* Size of the general parameter region, the final value is computed
902 in the for-loop below. */
903 LONGEST gparam_size = 0;
904 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
905 calls to align_up(), align_down(), etc. because this makes it
906 easier to reuse this code (in a copy/paste sense) in the future,
907 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
908 at some point makes it easier to verify that this function is
909 correct without having to do a non-local analysis to figure out
910 the possible values of tdep->wordsize. */
911 gdb_assert (tdep->wordsize == 8);
912
55eddb0f
DJ
913 /* This function exists to support a calling convention that
914 requires floating-point registers. It shouldn't be used on
915 processors that lack them. */
916 gdb_assert (ppc_floating_point_unit_p (gdbarch));
917
fb4443d8
UW
918 /* By this stage in the proceedings, SP has been decremented by "red
919 zone size" + "struct return size". Fetch the stack-pointer from
920 before this and use that as the BACK_CHAIN. */
40a6adc1 921 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 922 &back_chain);
fb4443d8 923
8be9034a
AC
924 /* Go through the argument list twice.
925
926 Pass 1: Compute the function call's stack space and register
927 requirements.
928
929 Pass 2: Replay the same computation but this time also write the
930 values out to the target. */
931
932 for (write_pass = 0; write_pass < 2; write_pass++)
933 {
934 int argno;
935 /* Next available floating point register for float and double
936 arguments. */
937 int freg = 1;
938 /* Next available general register for non-vector (but possibly
939 float) arguments. */
940 int greg = 3;
941 /* Next available vector register for vector arguments. */
942 int vreg = 2;
943 /* The address, at which the next general purpose parameter
944 (integer, struct, float, ...) should be saved. */
945 CORE_ADDR gparam;
946 /* Address, at which the next Altivec vector parameter should be
947 saved. */
948 CORE_ADDR vparam;
949
950 if (!write_pass)
951 {
952 /* During the first pass, GPARAM and VPARAM are more like
953 offsets (start address zero) than addresses. That way
938f5214 954 they accumulate the total stack space each region
8be9034a
AC
955 requires. */
956 gparam = 0;
957 vparam = 0;
958 }
959 else
960 {
961 /* Decrement the stack pointer making space for the Altivec
962 and general on-stack parameters. Set vparam and gparam
963 to their corresponding regions. */
964 vparam = align_down (sp - vparam_size, 16);
965 gparam = align_down (vparam - gparam_size, 16);
966 /* Add in space for the TOC, link editor double word,
967 compiler double word, LR save area, CR save area. */
968 sp = align_down (gparam - 48, 16);
969 }
970
971 /* If the function is returning a `struct', then there is an
972 extra hidden parameter (which will be passed in r3)
973 containing the address of that struct.. In that case we
974 should advance one word and start from r4 register to copy
975 parameters. This also consumes one on-stack parameter slot. */
976 if (struct_return)
977 {
978 if (write_pass)
979 regcache_cooked_write_signed (regcache,
980 tdep->ppc_gp0_regnum + greg,
981 struct_addr);
982 greg++;
983 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
984 }
985
986 for (argno = 0; argno < nargs; argno++)
987 {
988 struct value *arg = args[argno];
df407dfe 989 struct type *type = check_typedef (value_type (arg));
0fd88904 990 const bfd_byte *val = value_contents (arg);
ce0451ad 991
8be9034a
AC
992 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
993 {
994 /* Floats and Doubles go in f1 .. f13. They also
995 consume a left aligned GREG,, and can end up in
996 memory. */
997 if (write_pass)
998 {
ce0451ad
TJB
999 gdb_byte regval[MAX_REGISTER_SIZE];
1000 const gdb_byte *p;
1001
1002 /* Version 1.7 of the 64-bit PowerPC ELF ABI says:
1003
1004 "Single precision floating point values are mapped to
1005 the first word in a single doubleword."
1006
1007 And version 1.9 says:
1008
1009 "Single precision floating point values are mapped to
1010 the second word in a single doubleword."
1011
1012 GDB then writes single precision floating point values
1013 at both words in a doubleword, to support both ABIs. */
1014 if (TYPE_LENGTH (type) == 4)
1015 {
1016 memcpy (regval, val, 4);
1017 memcpy (regval + 4, val, 4);
1018 p = regval;
1019 }
1020 else
1021 p = val;
1022
1023 /* Write value in the stack's parameter save area. */
1024 write_memory (gparam, p, 8);
1025
55eddb0f 1026 if (freg <= 13)
8be9034a 1027 {
366f009f
JB
1028 struct type *regtype
1029 = register_type (gdbarch, tdep->ppc_fp0_regnum);
ce0451ad 1030
8be9034a 1031 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
1032 regcache_cooked_write (regcache,
1033 tdep->ppc_fp0_regnum + freg,
8be9034a
AC
1034 regval);
1035 }
1036 if (greg <= 10)
ce0451ad
TJB
1037 regcache_cooked_write (regcache,
1038 tdep->ppc_gp0_regnum + greg,
1039 regval);
8be9034a 1040 }
ce0451ad 1041
8be9034a
AC
1042 freg++;
1043 greg++;
ce0451ad
TJB
1044 /* Always consume parameter stack space. */
1045 gparam = align_up (gparam + 8, tdep->wordsize);
8be9034a 1046 }
b14d30e1
JM
1047 else if (TYPE_CODE (type) == TYPE_CODE_FLT
1048 && TYPE_LENGTH (type) == 16
40a6adc1 1049 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
1050 == floatformats_ibm_long_double))
1051 {
1052 /* IBM long double stored in two doublewords of the
1053 parameter save area and corresponding registers. */
1054 if (write_pass)
1055 {
1056 if (!tdep->soft_float && freg <= 13)
1057 {
1058 regcache_cooked_write (regcache,
1059 tdep->ppc_fp0_regnum + freg,
1060 val);
1061 if (freg <= 12)
1062 regcache_cooked_write (regcache,
1063 tdep->ppc_fp0_regnum + freg + 1,
1064 val + 8);
1065 }
1066 if (greg <= 10)
1067 {
1068 regcache_cooked_write (regcache,
1069 tdep->ppc_gp0_regnum + greg,
1070 val);
1071 if (greg <= 9)
1072 regcache_cooked_write (regcache,
1073 tdep->ppc_gp0_regnum + greg + 1,
1074 val + 8);
1075 }
1076 write_memory (gparam, val, TYPE_LENGTH (type));
1077 }
1078 freg += 2;
1079 greg += 2;
1080 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1081 }
1300a2f4
TJB
1082 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1083 && TYPE_LENGTH (type) <= 8)
1084 {
1085 /* 32-bit and 64-bit decimal floats go in f1 .. f13. They can
1086 end up in memory. */
1087 if (write_pass)
1088 {
1089 gdb_byte regval[MAX_REGISTER_SIZE];
1090 const gdb_byte *p;
1091
1092 /* 32-bit decimal floats are right aligned in the
1093 doubleword. */
1094 if (TYPE_LENGTH (type) == 4)
1095 {
1096 memcpy (regval + 4, val, 4);
1097 p = regval;
1098 }
1099 else
1100 p = val;
1101
1102 /* Write value in the stack's parameter save area. */
1103 write_memory (gparam, p, 8);
1104
1105 if (freg <= 13)
1106 regcache_cooked_write (regcache,
1107 tdep->ppc_fp0_regnum + freg, p);
1108 }
1109
1110 freg++;
1111 greg++;
1112 /* Always consume parameter stack space. */
1113 gparam = align_up (gparam + 8, tdep->wordsize);
1114 }
1115 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
1116 TYPE_LENGTH (type) == 16)
1117 {
1118 /* 128-bit decimal floats go in f2 .. f12, always in even/odd
1119 pairs. They can end up in memory, using two doublewords. */
1120 if (write_pass)
1121 {
1122 if (freg <= 12)
1123 {
1124 /* Make sure freg is even. */
1125 freg += freg & 1;
1126 regcache_cooked_write (regcache,
1127 tdep->ppc_fp0_regnum + freg, val);
1128 regcache_cooked_write (regcache,
1129 tdep->ppc_fp0_regnum + freg + 1, val + 8);
1130 }
1131
1132 write_memory (gparam, val, TYPE_LENGTH (type));
1133 }
1134
1135 freg += 2;
1136 greg += 2;
1137 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1138 }
8be9034a
AC
1139 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
1140 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1141 && tdep->ppc_vr0_regnum >= 0)
1142 {
1143 /* In the Altivec ABI, vectors go in the vector
1144 registers v2 .. v13, or when that runs out, a vector
1145 annex which goes above all the normal parameters.
1146 NOTE: cagney/2003-09-21: This is a guess based on the
1147 PowerOpen Altivec ABI. */
1148 if (vreg <= 13)
1149 {
1150 if (write_pass)
1151 regcache_cooked_write (regcache,
1152 tdep->ppc_vr0_regnum + vreg, val);
1153 vreg++;
1154 }
1155 else
1156 {
1157 if (write_pass)
1158 write_memory (vparam, val, TYPE_LENGTH (type));
1159 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
1160 }
1161 }
1162 else if ((TYPE_CODE (type) == TYPE_CODE_INT
b6e1c027 1163 || TYPE_CODE (type) == TYPE_CODE_ENUM
93d4208d
UW
1164 || TYPE_CODE (type) == TYPE_CODE_BOOL
1165 || TYPE_CODE (type) == TYPE_CODE_CHAR
1166 || TYPE_CODE (type) == TYPE_CODE_PTR
1167 || TYPE_CODE (type) == TYPE_CODE_REF)
8be9034a
AC
1168 && TYPE_LENGTH (type) <= 8)
1169 {
b6e1c027
AC
1170 /* Scalars and Pointers get sign[un]extended and go in
1171 gpr3 .. gpr10. They can also end up in memory. */
8be9034a
AC
1172 if (write_pass)
1173 {
1174 /* Sign extend the value, then store it unsigned. */
1175 ULONGEST word = unpack_long (type, val);
b6e1c027
AC
1176 /* Convert any function code addresses into
1177 descriptors. */
1178 if (TYPE_CODE (type) == TYPE_CODE_PTR
93d4208d 1179 || TYPE_CODE (type) == TYPE_CODE_REF)
b6e1c027 1180 {
93d4208d
UW
1181 struct type *target_type;
1182 target_type = check_typedef (TYPE_TARGET_TYPE (type));
1183
1184 if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
1185 || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
1186 {
1187 CORE_ADDR desc = word;
1188 convert_code_addr_to_desc_addr (word, &desc);
1189 word = desc;
1190 }
b6e1c027 1191 }
8be9034a
AC
1192 if (greg <= 10)
1193 regcache_cooked_write_unsigned (regcache,
1194 tdep->ppc_gp0_regnum +
1195 greg, word);
1196 write_memory_unsigned_integer (gparam, tdep->wordsize,
1197 word);
1198 }
1199 greg++;
1200 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1201 }
1202 else
1203 {
1204 int byte;
1205 for (byte = 0; byte < TYPE_LENGTH (type);
1206 byte += tdep->wordsize)
1207 {
1208 if (write_pass && greg <= 10)
1209 {
50fd1280 1210 gdb_byte regval[MAX_REGISTER_SIZE];
8be9034a
AC
1211 int len = TYPE_LENGTH (type) - byte;
1212 if (len > tdep->wordsize)
1213 len = tdep->wordsize;
1214 memset (regval, 0, sizeof regval);
36815e57
JM
1215 /* The ABI (version 1.9) specifies that values
1216 smaller than one doubleword are right-aligned
1217 and those larger are left-aligned. GCC
1218 versions before 3.4 implemented this
1219 incorrectly; see
1220 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1221 if (byte == 0)
8be9034a
AC
1222 memcpy (regval + tdep->wordsize - len,
1223 val + byte, len);
36815e57
JM
1224 else
1225 memcpy (regval, val + byte, len);
8be9034a
AC
1226 regcache_cooked_write (regcache, greg, regval);
1227 }
1228 greg++;
1229 }
1230 if (write_pass)
93d4208d
UW
1231 {
1232 /* WARNING: cagney/2003-09-21: Strictly speaking, this
1233 isn't necessary, unfortunately, GCC appears to get
1234 "struct convention" parameter passing wrong putting
1235 odd sized structures in memory instead of in a
1236 register. Work around this by always writing the
1237 value to memory. Fortunately, doing this
1238 simplifies the code. */
1239 int len = TYPE_LENGTH (type);
1240 if (len < tdep->wordsize)
1241 write_memory (gparam + tdep->wordsize - len, val, len);
1242 else
1243 write_memory (gparam, val, len);
1244 }
36815e57
JM
1245 if (freg <= 13
1246 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1247 && TYPE_NFIELDS (type) == 1
1248 && TYPE_LENGTH (type) <= 16)
1249 {
1250 /* The ABI (version 1.9) specifies that structs
1251 containing a single floating-point value, at any
1252 level of nesting of single-member structs, are
1253 passed in floating-point registers. */
1254 while (TYPE_CODE (type) == TYPE_CODE_STRUCT
1255 && TYPE_NFIELDS (type) == 1)
1256 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1257 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1258 {
1259 if (TYPE_LENGTH (type) <= 8)
1260 {
1261 if (write_pass)
1262 {
1263 gdb_byte regval[MAX_REGISTER_SIZE];
1264 struct type *regtype
1265 = register_type (gdbarch,
1266 tdep->ppc_fp0_regnum);
1267 convert_typed_floating (val, type, regval,
1268 regtype);
1269 regcache_cooked_write (regcache,
1270 (tdep->ppc_fp0_regnum
1271 + freg),
1272 regval);
1273 }
1274 freg++;
1275 }
1276 else if (TYPE_LENGTH (type) == 16
40a6adc1 1277 && (gdbarch_long_double_format (gdbarch)
36815e57
JM
1278 == floatformats_ibm_long_double))
1279 {
1280 if (write_pass)
1281 {
1282 regcache_cooked_write (regcache,
1283 (tdep->ppc_fp0_regnum
1284 + freg),
1285 val);
1286 if (freg <= 12)
1287 regcache_cooked_write (regcache,
1288 (tdep->ppc_fp0_regnum
1289 + freg + 1),
1290 val + 8);
1291 }
1292 freg += 2;
1293 }
1294 }
1295 }
8be9034a
AC
1296 /* Always consume parameter stack space. */
1297 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1298 }
1299 }
1300
1301 if (!write_pass)
1302 {
1303 /* Save the true region sizes ready for the second pass. */
1304 vparam_size = vparam;
1305 /* Make certain that the general parameter save area is at
1306 least the minimum 8 registers (or doublewords) in size. */
1307 if (greg < 8)
1308 gparam_size = 8 * tdep->wordsize;
1309 else
1310 gparam_size = gparam;
1311 }
1312 }
1313
1314 /* Update %sp. */
40a6adc1 1315 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
8be9034a
AC
1316
1317 /* Write the backchain (it occupies WORDSIZED bytes). */
1318 write_memory_signed_integer (sp, tdep->wordsize, back_chain);
1319
1320 /* Point the inferior function call's return address at the dummy's
1321 breakpoint. */
1322 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1323
b6e1c027
AC
1324 /* Use the func_addr to find the descriptor, and use that to find
1325 the TOC. */
8be9034a 1326 {
b6e1c027
AC
1327 CORE_ADDR desc_addr;
1328 if (convert_code_addr_to_desc_addr (func_addr, &desc_addr))
8be9034a 1329 {
b6e1c027
AC
1330 /* The TOC is the second double word in the descriptor. */
1331 CORE_ADDR toc =
1332 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
1333 tdep->wordsize);
1334 regcache_cooked_write_unsigned (regcache,
1335 tdep->ppc_gp0_regnum + 2, toc);
8be9034a
AC
1336 }
1337 }
1338
1339 return sp;
1340}
1341
afd48b75 1342
55eddb0f 1343/* The 64 bit ABI return value convention.
afd48b75
AC
1344
1345 Return non-zero if the return-value is stored in a register, return
1346 0 if the return-value is instead stored on the stack (a.k.a.,
1347 struct return convention).
1348
963e2bb7 1349 For a return-value stored in a register: when WRITEBUF is non-NULL,
afd48b75 1350 copy the buffer to the corresponding register return-value location
963e2bb7 1351 location; when READBUF is non-NULL, fill the buffer from the
afd48b75 1352 corresponding register return-value location. */
05580c65 1353enum return_value_convention
c055b101
CV
1354ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
1355 struct type *valtype, struct regcache *regcache,
1356 gdb_byte *readbuf, const gdb_byte *writebuf)
afd48b75 1357{
05580c65 1358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
16796152
JB
1359
1360 /* This function exists to support a calling convention that
1361 requires floating-point registers. It shouldn't be used on
1362 processors that lack them. */
1363 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1364
afd48b75 1365 /* Floats and doubles in F1. */
944fcfab 1366 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
afd48b75 1367 {
50fd1280 1368 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 1369 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1370 if (writebuf != NULL)
afd48b75 1371 {
963e2bb7 1372 convert_typed_floating (writebuf, valtype, regval, regtype);
366f009f 1373 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
afd48b75 1374 }
963e2bb7 1375 if (readbuf != NULL)
afd48b75 1376 {
366f009f 1377 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 1378 convert_typed_floating (regval, regtype, readbuf, valtype);
afd48b75
AC
1379 }
1380 return RETURN_VALUE_REGISTER_CONVENTION;
1381 }
1300a2f4
TJB
1382 if (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
1383 return get_decimal_float_return_value (gdbarch, valtype, regcache, readbuf,
1384 writebuf);
3d8476bc 1385 /* Integers in r3. */
b6e1c027 1386 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
93d4208d
UW
1387 || TYPE_CODE (valtype) == TYPE_CODE_ENUM
1388 || TYPE_CODE (valtype) == TYPE_CODE_CHAR
1389 || TYPE_CODE (valtype) == TYPE_CODE_BOOL)
b6e1c027 1390 && TYPE_LENGTH (valtype) <= 8)
afd48b75 1391 {
963e2bb7 1392 if (writebuf != NULL)
afd48b75
AC
1393 {
1394 /* Be careful to sign extend the value. */
1395 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 1396 unpack_long (valtype, writebuf));
afd48b75 1397 }
963e2bb7 1398 if (readbuf != NULL)
afd48b75
AC
1399 {
1400 /* Extract the integer from r3. Since this is truncating the
1401 value, there isn't a sign extension problem. */
1402 ULONGEST regval;
1403 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1404 &regval);
963e2bb7 1405 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
afd48b75
AC
1406 }
1407 return RETURN_VALUE_REGISTER_CONVENTION;
1408 }
1409 /* All pointers live in r3. */
93d4208d
UW
1410 if (TYPE_CODE (valtype) == TYPE_CODE_PTR
1411 || TYPE_CODE (valtype) == TYPE_CODE_REF)
afd48b75
AC
1412 {
1413 /* All pointers live in r3. */
963e2bb7
AC
1414 if (writebuf != NULL)
1415 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1416 if (readbuf != NULL)
1417 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
afd48b75
AC
1418 return RETURN_VALUE_REGISTER_CONVENTION;
1419 }
3d8476bc
PG
1420 /* Array type has more than one use. */
1421 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
afd48b75
AC
1422 {
1423 /* Small character arrays are returned, right justified, in r3. */
3d8476bc
PG
1424 if (TYPE_LENGTH (valtype) <= 8
1425 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
1426 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
1427 {
1428 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
1429 - TYPE_LENGTH (valtype));
1430 if (writebuf != NULL)
1431 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
1432 offset, TYPE_LENGTH (valtype), writebuf);
1433 if (readbuf != NULL)
1434 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
1435 offset, TYPE_LENGTH (valtype), readbuf);
1436 return RETURN_VALUE_REGISTER_CONVENTION;
1437 }
1438 /* A VMX vector is returned in v2. */
1439 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1440 && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
1441 {
1442 if (readbuf)
1443 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1444 if (writebuf)
1445 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1446 return RETURN_VALUE_REGISTER_CONVENTION;
1447 }
afd48b75
AC
1448 }
1449 /* Big floating point values get stored in adjacent floating
3d8476bc 1450 point registers, starting with F1. */
afd48b75 1451 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
944fcfab 1452 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
afd48b75 1453 {
963e2bb7 1454 if (writebuf || readbuf != NULL)
afd48b75
AC
1455 {
1456 int i;
1457 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
1458 {
963e2bb7 1459 if (writebuf != NULL)
366f009f 1460 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1461 (const bfd_byte *) writebuf + i * 8);
1462 if (readbuf != NULL)
366f009f 1463 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1464 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1465 }
1466 }
1467 return RETURN_VALUE_REGISTER_CONVENTION;
1468 }
1469 /* Complex values get returned in f1:f2, need to convert. */
1470 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
1471 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
1472 {
1473 if (regcache != NULL)
1474 {
1475 int i;
1476 for (i = 0; i < 2; i++)
1477 {
50fd1280 1478 gdb_byte regval[MAX_REGISTER_SIZE];
944fcfab 1479 struct type *regtype =
40a6adc1 1480 register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1481 if (writebuf != NULL)
afd48b75 1482 {
963e2bb7 1483 convert_typed_floating ((const bfd_byte *) writebuf +
944fcfab 1484 i * (TYPE_LENGTH (valtype) / 2),
afd48b75 1485 valtype, regval, regtype);
366f009f
JB
1486 regcache_cooked_write (regcache,
1487 tdep->ppc_fp0_regnum + 1 + i,
944fcfab 1488 regval);
afd48b75 1489 }
963e2bb7 1490 if (readbuf != NULL)
afd48b75 1491 {
366f009f
JB
1492 regcache_cooked_read (regcache,
1493 tdep->ppc_fp0_regnum + 1 + i,
1494 regval);
afd48b75 1495 convert_typed_floating (regval, regtype,
963e2bb7 1496 (bfd_byte *) readbuf +
944fcfab 1497 i * (TYPE_LENGTH (valtype) / 2),
afd48b75
AC
1498 valtype);
1499 }
1500 }
1501 }
1502 return RETURN_VALUE_REGISTER_CONVENTION;
1503 }
1504 /* Big complex values get stored in f1:f4. */
944fcfab 1505 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
afd48b75
AC
1506 {
1507 if (regcache != NULL)
1508 {
1509 int i;
1510 for (i = 0; i < 4; i++)
1511 {
963e2bb7 1512 if (writebuf != NULL)
366f009f 1513 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1514 (const bfd_byte *) writebuf + i * 8);
1515 if (readbuf != NULL)
366f009f 1516 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1517 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1518 }
1519 }
1520 return RETURN_VALUE_REGISTER_CONVENTION;
1521 }
1522 return RETURN_VALUE_STRUCT_CONVENTION;
1523}
1524