]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/printcmd.c
gdb: remove TYPE_LENGTH
[thirdparty/binutils-gdb.git] / gdb / printcmd.c
CommitLineData
c906108c 1/* Print values for GNU debugger GDB.
e2ad119d 2
4a94e368 3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "frame.h"
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "language.h"
1f6f6e21 26#include "c-lang.h"
c906108c
SS
27#include "expression.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "breakpoint.h"
32#include "demangle.h"
50f182aa 33#include "gdb-demangle.h"
c906108c
SS
34#include "valprint.h"
35#include "annotate.h"
c5aa993b
JM
36#include "symfile.h" /* for overlay functions */
37#include "objfiles.h" /* ditto */
c94fdfd0 38#include "completer.h" /* for completion functions */
8b93c638 39#include "ui-out.h"
fe898f56 40#include "block.h"
92bf2b80 41#include "disasm.h"
f69fdf9b 42#include "target-float.h"
76727919 43#include "observable.h"
a3247a22 44#include "solist.h"
a3247a22 45#include "parser-defs.h"
6c7a06a3 46#include "charset.h"
704e9165 47#include "arch-utils.h"
e9cafbcc 48#include "cli/cli-utils.h"
7d8062de 49#include "cli/cli-option.h"
01770bbd 50#include "cli/cli-script.h"
80ae2043 51#include "cli/cli-style.h"
268a13a5 52#include "gdbsupport/format.h"
05cba821 53#include "source.h"
268a13a5
TT
54#include "gdbsupport/byte-vector.h"
55#include "gdbsupport/gdb_optional.h"
037d7135 56#include "safe-ctype.h"
48136e00
LM
57#include "gdbsupport/rsp-low.h"
58
59/* Chain containing all defined memory-tag subcommands. */
60
61static struct cmd_list_element *memory_tag_list;
c906108c 62
c906108c
SS
63/* Last specified output format. */
64
a6bac58e 65static char last_format = 0;
c906108c
SS
66
67/* Last specified examination size. 'b', 'h', 'w' or `q'. */
68
69static char last_size = 'w';
70
9be2ae8f
TT
71/* Last specified count for the 'x' command. */
72
73static int last_count;
74
bef382e6
LM
75/* Last specified tag-printing option. */
76
77static bool last_print_tags = false;
78
5d3729b5 79/* Default address to examine next, and associated architecture. */
c906108c 80
5d3729b5 81static struct gdbarch *next_gdbarch;
c906108c
SS
82static CORE_ADDR next_address;
83
a4642986
MR
84/* Number of delay instructions following current disassembled insn. */
85
86static int branch_delay_insns;
87
c906108c
SS
88/* Last address examined. */
89
90static CORE_ADDR last_examine_address;
91
92/* Contents of last address examined.
93 This is not valid past the end of the `x' command! */
94
9b558729 95static value_ref_ptr last_examine_value;
c906108c
SS
96
97/* Largest offset between a symbolic value and an address, that will be
98 printed as `0x1234 <symbol+offset>'. */
99
100static unsigned int max_symbolic_offset = UINT_MAX;
920d2a44
AC
101static void
102show_max_symbolic_offset (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c, const char *value)
104{
6cb06a8c
TT
105 gdb_printf (file,
106 _("The largest offset that will be "
107 "printed in <symbol+1234> form is %s.\n"),
108 value);
920d2a44 109}
c906108c
SS
110
111/* Append the source filename and linenumber of the symbol when
112 printing a symbolic value as `<symbol at filename:linenum>' if set. */
491144b5 113static bool print_symbol_filename = false;
920d2a44
AC
114static void
115show_print_symbol_filename (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
6cb06a8c
TT
118 gdb_printf (file, _("Printing of source filename and "
119 "line number with <symbol> is %s.\n"),
120 value);
920d2a44 121}
c906108c
SS
122
123/* Number of auto-display expression currently being displayed.
9d8fa392 124 So that we can disable it if we get a signal within it.
c906108c
SS
125 -1 when not doing one. */
126
5a18e302 127static int current_display_number;
c906108c 128
8be4b118
TT
129/* Last allocated display number. */
130
131static int display_number;
132
c906108c 133struct display
c5aa993b 134 {
8be4b118
TT
135 display (const char *exp_string_, expression_up &&exp_,
136 const struct format_data &format_, struct program_space *pspace_,
137 const struct block *block_)
138 : exp_string (exp_string_),
139 exp (std::move (exp_)),
140 number (++display_number),
141 format (format_),
142 pspace (pspace_),
143 block (block_),
144 enabled_p (true)
145 {
146 }
6c95b8df 147
fa8a61dc 148 /* The expression as the user typed it. */
8be4b118 149 std::string exp_string;
6c95b8df 150
c5aa993b 151 /* Expression to be evaluated and displayed. */
4d01a485 152 expression_up exp;
6c95b8df 153
c5aa993b
JM
154 /* Item number of this auto-display item. */
155 int number;
6c95b8df 156
c5aa993b
JM
157 /* Display format specified. */
158 struct format_data format;
6c95b8df
PA
159
160 /* Program space associated with `block'. */
161 struct program_space *pspace;
162
0df8b418 163 /* Innermost block required by this expression when evaluated. */
270140bd 164 const struct block *block;
6c95b8df 165
0df8b418 166 /* Status of this display (enabled or disabled). */
8be4b118 167 bool enabled_p;
c5aa993b 168 };
c906108c 169
8be4b118
TT
170/* Expressions whose values should be displayed automatically each
171 time the program stops. */
c906108c 172
8be4b118 173static std::vector<std::unique_ptr<struct display>> all_displays;
c9174737 174
0df8b418 175/* Prototypes for local functions. */
c906108c 176
a14ed312 177static void do_one_display (struct display *);
c906108c 178\f
c5aa993b 179
c906108c
SS
180/* Decode a format specification. *STRING_PTR should point to it.
181 OFORMAT and OSIZE are used as defaults for the format and size
182 if none are given in the format specification.
183 If OSIZE is zero, then the size field of the returned value
184 should be set only if a size is explicitly specified by the
185 user.
186 The structure returned describes all the data
187 found in the specification. In addition, *STRING_PTR is advanced
188 past the specification and past all whitespace following it. */
189
190static struct format_data
6f937416 191decode_format (const char **string_ptr, int oformat, int osize)
c906108c
SS
192{
193 struct format_data val;
6f937416 194 const char *p = *string_ptr;
c906108c
SS
195
196 val.format = '?';
197 val.size = '?';
198 val.count = 1;
a6bac58e 199 val.raw = 0;
bef382e6 200 val.print_tags = false;
c906108c 201
bb556f1f
TK
202 if (*p == '-')
203 {
204 val.count = -1;
205 p++;
206 }
c906108c 207 if (*p >= '0' && *p <= '9')
bb556f1f 208 val.count *= atoi (p);
c5aa993b
JM
209 while (*p >= '0' && *p <= '9')
210 p++;
c906108c
SS
211
212 /* Now process size or format letters that follow. */
213
214 while (1)
215 {
216 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
217 val.size = *p++;
a6bac58e
TT
218 else if (*p == 'r')
219 {
220 val.raw = 1;
221 p++;
222 }
bef382e6
LM
223 else if (*p == 'm')
224 {
225 val.print_tags = true;
226 p++;
227 }
c906108c
SS
228 else if (*p >= 'a' && *p <= 'z')
229 val.format = *p++;
230 else
231 break;
232 }
233
2f433492 234 *string_ptr = skip_spaces (p);
c906108c
SS
235
236 /* Set defaults for format and size if not specified. */
237 if (val.format == '?')
238 {
239 if (val.size == '?')
240 {
241 /* Neither has been specified. */
242 val.format = oformat;
243 val.size = osize;
244 }
245 else
246 /* If a size is specified, any format makes a reasonable
247 default except 'i'. */
248 val.format = oformat == 'i' ? 'x' : oformat;
249 }
250 else if (val.size == '?')
251 switch (val.format)
252 {
253 case 'a':
5d3729b5
UW
254 /* Pick the appropriate size for an address. This is deferred
255 until do_examine when we know the actual architecture to use.
256 A special size value of 'a' is used to indicate this case. */
257 val.size = osize ? 'a' : osize;
c906108c
SS
258 break;
259 case 'f':
260 /* Floating point has to be word or giantword. */
261 if (osize == 'w' || osize == 'g')
262 val.size = osize;
263 else
264 /* Default it to giantword if the last used size is not
265 appropriate. */
266 val.size = osize ? 'g' : osize;
267 break;
268 case 'c':
269 /* Characters default to one byte. */
270 val.size = osize ? 'b' : osize;
271 break;
9a22f0d0 272 case 's':
3e43a32a
MS
273 /* Display strings with byte size chars unless explicitly
274 specified. */
9a22f0d0
PM
275 val.size = '\0';
276 break;
277
c906108c
SS
278 default:
279 /* The default is the size most recently specified. */
280 val.size = osize;
281 }
282
283 return val;
284}
285\f
79a45b7d 286/* Print value VAL on stream according to OPTIONS.
c906108c 287 Do not end with a newline.
c906108c 288 SIZE is the letter for the size of datum being printed.
ea37ba09
DJ
289 This is used to pad hex numbers so they line up. SIZE is 0
290 for print / output and set for examine. */
c906108c
SS
291
292static void
79a45b7d
TT
293print_formatted (struct value *val, int size,
294 const struct value_print_options *options,
fba45db2 295 struct ui_file *stream)
c906108c 296{
df407dfe 297 struct type *type = check_typedef (value_type (val));
df86565b 298 int len = type->length ();
c906108c
SS
299
300 if (VALUE_LVAL (val) == lval_memory)
42ae5230 301 next_address = value_address (val) + len;
c906108c 302
ea37ba09 303 if (size)
c906108c 304 {
79a45b7d 305 switch (options->format)
ea37ba09
DJ
306 {
307 case 's':
6c7a06a3
TT
308 {
309 struct type *elttype = value_type (val);
ad3bbd48 310
42ae5230 311 next_address = (value_address (val)
09ca9e2e 312 + val_print_string (elttype, NULL,
42ae5230 313 value_address (val), -1,
9a22f0d0 314 stream, options) * len);
6c7a06a3 315 }
ea37ba09 316 return;
c906108c 317
ea37ba09
DJ
318 case 'i':
319 /* We often wrap here if there are long symbolic names. */
1285ce86 320 stream->wrap_here (4);
42ae5230 321 next_address = (value_address (val)
8ee511af 322 + gdb_print_insn (type->arch (),
13274fc3 323 value_address (val), stream,
ea37ba09
DJ
324 &branch_delay_insns));
325 return;
326 }
c906108c 327 }
ea37ba09 328
79a45b7d 329 if (options->format == 0 || options->format == 's'
3d87245c 330 || type->code () == TYPE_CODE_VOID
78134374
SM
331 || type->code () == TYPE_CODE_REF
332 || type->code () == TYPE_CODE_ARRAY
333 || type->code () == TYPE_CODE_STRING
334 || type->code () == TYPE_CODE_STRUCT
335 || type->code () == TYPE_CODE_UNION
336 || type->code () == TYPE_CODE_NAMESPACE)
79a45b7d 337 value_print (val, stream, options);
ea37ba09 338 else
b021a221
MS
339 /* User specified format, so don't look to the type to tell us
340 what to do. */
4dba70ee 341 value_print_scalar_formatted (val, options, size, stream);
c906108c
SS
342}
343
b806fb9a
UW
344/* Return builtin floating point type of same length as TYPE.
345 If no such type is found, return TYPE itself. */
346static struct type *
50810684 347float_type_from_length (struct type *type)
b806fb9a 348{
8ee511af 349 struct gdbarch *gdbarch = type->arch ();
b806fb9a 350 const struct builtin_type *builtin = builtin_type (gdbarch);
b806fb9a 351
df86565b 352 if (type->length () == builtin->builtin_float->length ())
b806fb9a 353 type = builtin->builtin_float;
df86565b 354 else if (type->length () == builtin->builtin_double->length ())
b806fb9a 355 type = builtin->builtin_double;
df86565b 356 else if (type->length () == builtin->builtin_long_double->length ())
b806fb9a
UW
357 type = builtin->builtin_long_double;
358
359 return type;
360}
361
c906108c 362/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
ab2188aa
PA
363 according to OPTIONS and SIZE on STREAM. Formats s and i are not
364 supported at this level. */
c906108c
SS
365
366void
7c543f7b 367print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
79a45b7d
TT
368 const struct value_print_options *options,
369 int size, struct ui_file *stream)
c906108c 370{
8ee511af 371 struct gdbarch *gdbarch = type->arch ();
df86565b 372 unsigned int len = type->length ();
34877895 373 enum bfd_endian byte_order = type_byte_order (type);
c906108c 374
ab2188aa
PA
375 /* String printing should go through val_print_scalar_formatted. */
376 gdb_assert (options->format != 's');
ea37ba09 377
ef166cf4 378 /* If the value is a pointer, and pointers and addresses are not the
d0aee0c4 379 same, then at this point, the value's length (in target bytes) is
df86565b 380 gdbarch_addr_bit/TARGET_CHAR_BIT, not type->length (). */
78134374 381 if (type->code () == TYPE_CODE_PTR)
69feb676 382 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
ef166cf4 383
c906108c
SS
384 /* If we are printing it as unsigned, truncate it in case it is actually
385 a negative signed value (e.g. "print/u (short)-1" should print 65535
386 (if shorts are 16 bits) instead of 4294967295). */
d9109c80 387 if (options->format != 'c'
c6d940a9 388 && (options->format != 'd' || type->is_unsigned ()))
c906108c 389 {
df86565b
SM
390 if (len < type->length () && byte_order == BFD_ENDIAN_BIG)
391 valaddr += type->length () - len;
c906108c
SS
392 }
393
20a5fcbd
TT
394 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
395 valid. */
396 const gdb_byte zero = 0;
397 if (len == 0)
398 {
399 len = 1;
400 valaddr = &zero;
401 }
402
d9109c80 403 if (size != 0 && (options->format == 'x' || options->format == 't'))
c906108c 404 {
d9109c80
TT
405 /* Truncate to fit. */
406 unsigned newlen;
407 switch (size)
c906108c 408 {
d9109c80
TT
409 case 'b':
410 newlen = 1;
411 break;
412 case 'h':
413 newlen = 2;
414 break;
415 case 'w':
416 newlen = 4;
417 break;
418 case 'g':
419 newlen = 8;
420 break;
421 default:
422 error (_("Undefined output size \"%c\"."), size);
c906108c 423 }
d9109c80
TT
424 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
425 valaddr += len - newlen;
426 len = newlen;
427 }
c906108c 428
56262a93 429 /* Biased range types and sub-word scalar types must be handled
20a5fcbd 430 here; the value is correctly computed by unpack_long. */
4e962e74
TT
431 gdb::byte_vector converted_bytes;
432 /* Some cases below will unpack the value again. In the biased
433 range case, we want to avoid this, so we store the unpacked value
434 here for possible use later. */
435 gdb::optional<LONGEST> val_long;
56262a93 436 if ((is_fixed_point_type (type)
4e962e74
TT
437 && (options->format == 'o'
438 || options->format == 'x'
439 || options->format == 't'
440 || options->format == 'z'
441 || options->format == 'd'
442 || options->format == 'u'))
20a5fcbd
TT
443 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
444 || type->bit_size_differs_p ())
d9109c80 445 {
4e962e74 446 val_long.emplace (unpack_long (type, valaddr));
df86565b
SM
447 converted_bytes.resize (type->length ());
448 store_signed_integer (converted_bytes.data (), type->length (),
4e962e74
TT
449 byte_order, *val_long);
450 valaddr = converted_bytes.data ();
d9109c80 451 }
c906108c 452
fdf0cbc2
UW
453 /* Printing a non-float type as 'f' will interpret the data as if it were
454 of a floating-point type of the same length, if that exists. Otherwise,
455 the data is printed as integer. */
456 char format = options->format;
78134374 457 if (format == 'f' && type->code () != TYPE_CODE_FLT)
fdf0cbc2
UW
458 {
459 type = float_type_from_length (type);
78134374 460 if (type->code () != TYPE_CODE_FLT)
dda83cd7 461 format = 0;
fdf0cbc2
UW
462 }
463
464 switch (format)
d9109c80
TT
465 {
466 case 'o':
467 print_octal_chars (stream, valaddr, len, byte_order);
468 break;
d6382fff
TT
469 case 'd':
470 print_decimal_chars (stream, valaddr, len, true, byte_order);
471 break;
c906108c 472 case 'u':
d9109c80 473 print_decimal_chars (stream, valaddr, len, false, byte_order);
c906108c 474 break;
d9109c80 475 case 0:
78134374 476 if (type->code () != TYPE_CODE_FLT)
d9109c80 477 {
c6d940a9 478 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
d9109c80
TT
479 byte_order);
480 break;
481 }
482 /* FALLTHROUGH */
483 case 'f':
d9109c80 484 print_floating (valaddr, type, stream);
c906108c
SS
485 break;
486
d9109c80 487 case 't':
21a527df 488 print_binary_chars (stream, valaddr, len, byte_order, size > 0, options);
d9109c80
TT
489 break;
490 case 'x':
491 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
492 break;
493 case 'z':
494 print_hex_chars (stream, valaddr, len, byte_order, true);
c906108c 495 break;
c906108c 496 case 'c':
79a45b7d
TT
497 {
498 struct value_print_options opts = *options;
69feb676 499
4e962e74
TT
500 if (!val_long.has_value ())
501 val_long.emplace (unpack_long (type, valaddr));
d9109c80 502
ad3bbd48 503 opts.format = 0;
c6d940a9 504 if (type->is_unsigned ())
69feb676 505 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
24b21115 506 else
69feb676
UW
507 type = builtin_type (gdbarch)->builtin_true_char;
508
4e962e74 509 value_print (value_from_longest (type, *val_long), stream, &opts);
79a45b7d 510 }
c906108c
SS
511 break;
512
d9109c80 513 case 'a':
c906108c 514 {
4e962e74
TT
515 if (!val_long.has_value ())
516 val_long.emplace (unpack_long (type, valaddr));
517 print_address (gdbarch, *val_long, stream);
c906108c
SS
518 }
519 break;
520
521 default:
fdf0cbc2 522 error (_("Undefined output format \"%c\"."), format);
c906108c
SS
523 }
524}
525
526/* Specify default address for `x' command.
675dcf4f 527 The `info lines' command uses this. */
c906108c
SS
528
529void
8b9b9e1a 530set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
c906108c 531{
8b9b9e1a
UW
532 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
533
5d3729b5 534 next_gdbarch = gdbarch;
c906108c
SS
535 next_address = addr;
536
537 /* Make address available to the user as $_. */
538 set_internalvar (lookup_internalvar ("_"),
8b9b9e1a 539 value_from_pointer (ptr_type, addr));
c906108c
SS
540}
541
542/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
543 after LEADIN. Print nothing if no symbolic name is found nearby.
544 Optionally also print source file and line number, if available.
545 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
546 or to interpret it as a possible C++ name and convert it back to source
547 form. However note that DO_DEMANGLE can be overridden by the specific
9cb709b6
TT
548 settings of the demangle and asm_demangle variables. Returns
549 non-zero if anything was printed; zero otherwise. */
c906108c 550
9cb709b6 551int
22e722e1
DJ
552print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
553 struct ui_file *stream,
a121b7c1 554 int do_demangle, const char *leadin)
dfcd3bfb 555{
c7110220 556 std::string name, filename;
dfcd3bfb
JM
557 int unmapped = 0;
558 int offset = 0;
559 int line = 0;
560
2dc80cf8 561 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
dda83cd7 562 &offset, &filename, &line, &unmapped))
c7110220 563 return 0;
dfcd3bfb 564
0426ad51 565 gdb_puts (leadin, stream);
dfcd3bfb 566 if (unmapped)
0426ad51 567 gdb_puts ("<*", stream);
dfcd3bfb 568 else
0426ad51 569 gdb_puts ("<", stream);
af79b68d 570 fputs_styled (name.c_str (), function_name_style.style (), stream);
dfcd3bfb 571 if (offset != 0)
6cb06a8c 572 gdb_printf (stream, "%+d", offset);
dfcd3bfb
JM
573
574 /* Append source filename and line number if desired. Give specific
575 line # of this addr, if we have it; else line # of the nearest symbol. */
c7110220 576 if (print_symbol_filename && !filename.empty ())
dfcd3bfb 577 {
0426ad51 578 gdb_puts (line == -1 ? " in " : " at ", stream);
af79b68d 579 fputs_styled (filename.c_str (), file_name_style.style (), stream);
dfcd3bfb 580 if (line != -1)
6cb06a8c 581 gdb_printf (stream, ":%d", line);
dfcd3bfb
JM
582 }
583 if (unmapped)
0426ad51 584 gdb_puts ("*>", stream);
dfcd3bfb 585 else
0426ad51 586 gdb_puts (">", stream);
dfcd3bfb 587
9cb709b6 588 return 1;
dfcd3bfb
JM
589}
590
c7110220
TT
591/* See valprint.h. */
592
dfcd3bfb 593int
22e722e1
DJ
594build_address_symbolic (struct gdbarch *gdbarch,
595 CORE_ADDR addr, /* IN */
2dc80cf8
KB
596 bool do_demangle, /* IN */
597 bool prefer_sym_over_minsym, /* IN */
c7110220 598 std::string *name, /* OUT */
dfcd3bfb 599 int *offset, /* OUT */
c7110220 600 std::string *filename, /* OUT */
dfcd3bfb
JM
601 int *line, /* OUT */
602 int *unmapped) /* OUT */
c906108c 603{
77e371c0 604 struct bound_minimal_symbol msymbol;
c906108c 605 struct symbol *symbol;
c906108c 606 CORE_ADDR name_location = 0;
714835d5 607 struct obj_section *section = NULL;
0d5cff50 608 const char *name_temp = "";
dfcd3bfb 609
89c83b10 610 /* Let's say it is mapped (not unmapped). */
dfcd3bfb 611 *unmapped = 0;
c906108c 612
dfcd3bfb 613 /* Determine if the address is in an overlay, and whether it is
675dcf4f 614 mapped. */
c906108c
SS
615 if (overlay_debugging)
616 {
617 section = find_pc_overlay (addr);
618 if (pc_in_unmapped_range (addr, section))
619 {
dfcd3bfb 620 *unmapped = 1;
c906108c
SS
621 addr = overlay_mapped_address (addr, section);
622 }
623 }
624
2dc80cf8
KB
625 /* Try to find the address in both the symbol table and the minsyms.
626 In most cases, we'll prefer to use the symbol instead of the
627 minsym. However, there are cases (see below) where we'll choose
628 to use the minsym instead. */
c906108c
SS
629
630 /* This is defective in the sense that it only finds text symbols. So
631 really this is kind of pointless--we should make sure that the
632 minimal symbols have everything we need (by changing that we could
633 save some memory, but for many debug format--ELF/DWARF or
634 anything/stabs--it would be inconvenient to eliminate those minimal
635 symbols anyway). */
77e371c0 636 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
c906108c
SS
637 symbol = find_pc_sect_function (addr, section);
638
639 if (symbol)
640 {
22e722e1
DJ
641 /* If this is a function (i.e. a code address), strip out any
642 non-address bits. For instance, display a pointer to the
643 first instruction of a Thumb function as <function>; the
644 second instruction will be <function+2>, even though the
645 pointer is <function+3>. This matches the ISA behavior. */
646 addr = gdbarch_addr_bits_remove (gdbarch, addr);
647
6395b628 648 name_location = symbol->value_block ()->entry_pc ();
406fc7fb 649 if (do_demangle || asm_demangle)
987012b8 650 name_temp = symbol->print_name ();
c906108c 651 else
987012b8 652 name_temp = symbol->linkage_name ();
c906108c
SS
653 }
654
77e371c0 655 if (msymbol.minsym != NULL
5bbfd12d
SM
656 && msymbol.minsym->has_size ()
657 && msymbol.minsym->size () == 0
60f62e2b
SM
658 && msymbol.minsym->type () != mst_text
659 && msymbol.minsym->type () != mst_text_gnu_ifunc
660 && msymbol.minsym->type () != mst_file_text)
77e371c0 661 msymbol.minsym = NULL;
9cb709b6 662
77e371c0 663 if (msymbol.minsym != NULL)
c906108c 664 {
2dc80cf8
KB
665 /* Use the minsym if no symbol is found.
666
667 Additionally, use the minsym instead of a (found) symbol if
668 the following conditions all hold:
669 1) The prefer_sym_over_minsym flag is false.
670 2) The minsym address is identical to that of the address under
671 consideration.
672 3) The symbol address is not identical to that of the address
673 under consideration. */
674 if (symbol == NULL ||
dda83cd7 675 (!prefer_sym_over_minsym
4aeddc50 676 && msymbol.value_address () == addr
2dc80cf8 677 && name_location != addr))
c906108c 678 {
fe8400b4
WN
679 /* If this is a function (i.e. a code address), strip out any
680 non-address bits. For instance, display a pointer to the
681 first instruction of a Thumb function as <function>; the
682 second instruction will be <function+2>, even though the
683 pointer is <function+3>. This matches the ISA behavior. */
60f62e2b
SM
684 if (msymbol.minsym->type () == mst_text
685 || msymbol.minsym->type () == mst_text_gnu_ifunc
686 || msymbol.minsym->type () == mst_file_text
687 || msymbol.minsym->type () == mst_solib_trampoline)
fe8400b4
WN
688 addr = gdbarch_addr_bits_remove (gdbarch, addr);
689
c906108c 690 symbol = 0;
4aeddc50 691 name_location = msymbol.value_address ();
406fc7fb 692 if (do_demangle || asm_demangle)
c9d95fa3 693 name_temp = msymbol.minsym->print_name ();
c906108c 694 else
c9d95fa3 695 name_temp = msymbol.minsym->linkage_name ();
c906108c
SS
696 }
697 }
77e371c0 698 if (symbol == NULL && msymbol.minsym == NULL)
dfcd3bfb 699 return 1;
c906108c 700
c906108c
SS
701 /* If the nearest symbol is too far away, don't print anything symbolic. */
702
703 /* For when CORE_ADDR is larger than unsigned int, we do math in
704 CORE_ADDR. But when we detect unsigned wraparound in the
705 CORE_ADDR math, we ignore this test and print the offset,
706 because addr+max_symbolic_offset has wrapped through the end
707 of the address space back to the beginning, giving bogus comparison. */
708 if (addr > name_location + max_symbolic_offset
709 && name_location + max_symbolic_offset > name_location)
dfcd3bfb 710 return 1;
c906108c 711
a1530dc7 712 *offset = (LONGEST) addr - name_location;
dfcd3bfb 713
c7110220 714 *name = name_temp;
c906108c 715
c906108c
SS
716 if (print_symbol_filename)
717 {
718 struct symtab_and_line sal;
719
720 sal = find_pc_sect_line (addr, section, 0);
721
722 if (sal.symtab)
dfcd3bfb 723 {
c7110220 724 *filename = symtab_to_filename_for_display (sal.symtab);
dfcd3bfb
JM
725 *line = sal.line;
726 }
c906108c 727 }
dfcd3bfb 728 return 0;
c906108c
SS
729}
730
c906108c
SS
731
732/* Print address ADDR symbolically on STREAM.
733 First print it as a number. Then perhaps print
734 <SYMBOL + OFFSET> after the number. */
735
736void
5af949e3
UW
737print_address (struct gdbarch *gdbarch,
738 CORE_ADDR addr, struct ui_file *stream)
c906108c 739{
35fb8261 740 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
22e722e1 741 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
c906108c
SS
742}
743
2b28d209
PP
744/* Return a prefix for instruction address:
745 "=> " for current instruction, else " ". */
746
747const char *
748pc_prefix (CORE_ADDR addr)
749{
750 if (has_stack_frames ())
751 {
752 struct frame_info *frame;
753 CORE_ADDR pc;
754
755 frame = get_selected_frame (NULL);
ce406537 756 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
2b28d209
PP
757 return "=> ";
758 }
759 return " ";
760}
761
c906108c
SS
762/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
763 controls whether to print the symbolic name "raw" or demangled.
9cb709b6 764 Return non-zero if anything was printed; zero otherwise. */
c906108c 765
9cb709b6 766int
edf0c1b7
TT
767print_address_demangle (const struct value_print_options *opts,
768 struct gdbarch *gdbarch, CORE_ADDR addr,
5af949e3 769 struct ui_file *stream, int do_demangle)
c906108c 770{
1d51a733 771 if (opts->addressprint)
c906108c 772 {
35fb8261 773 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
22e722e1 774 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
c906108c
SS
775 }
776 else
777 {
9cb709b6 778 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
c906108c 779 }
9cb709b6 780 return 1;
c906108c
SS
781}
782\f
783
bb556f1f
TK
784/* Find the address of the instruction that is INST_COUNT instructions before
785 the instruction at ADDR.
786 Since some architectures have variable-length instructions, we can't just
787 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
788 number information to locate the nearest known instruction boundary,
789 and disassemble forward from there. If we go out of the symbol range
790 during disassembling, we return the lowest address we've got so far and
791 set the number of instructions read to INST_READ. */
792
793static CORE_ADDR
794find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
dda83cd7 795 int inst_count, int *inst_read)
bb556f1f
TK
796{
797 /* The vector PCS is used to store instruction addresses within
798 a pc range. */
799 CORE_ADDR loop_start, loop_end, p;
52d214d3 800 std::vector<CORE_ADDR> pcs;
bb556f1f 801 struct symtab_and_line sal;
bb556f1f
TK
802
803 *inst_read = 0;
804 loop_start = loop_end = addr;
805
806 /* In each iteration of the outer loop, we get a pc range that ends before
807 LOOP_START, then we count and store every instruction address of the range
808 iterated in the loop.
809 If the number of instructions counted reaches INST_COUNT, return the
810 stored address that is located INST_COUNT instructions back from ADDR.
811 If INST_COUNT is not reached, we subtract the number of counted
812 instructions from INST_COUNT, and go to the next iteration. */
813 do
814 {
52d214d3 815 pcs.clear ();
bb556f1f
TK
816 sal = find_pc_sect_line (loop_start, NULL, 1);
817 if (sal.line <= 0)
dda83cd7
SM
818 {
819 /* We reach here when line info is not available. In this case,
820 we print a message and just exit the loop. The return value
821 is calculated after the loop. */
6cb06a8c
TT
822 gdb_printf (_("No line number information available "
823 "for address "));
1285ce86 824 gdb_stdout->wrap_here (2);
dda83cd7 825 print_address (gdbarch, loop_start - 1, gdb_stdout);
6cb06a8c 826 gdb_printf ("\n");
dda83cd7
SM
827 break;
828 }
bb556f1f
TK
829
830 loop_end = loop_start;
831 loop_start = sal.pc;
832
833 /* This loop pushes instruction addresses in the range from
dda83cd7 834 LOOP_START to LOOP_END. */
bb556f1f 835 for (p = loop_start; p < loop_end;)
dda83cd7 836 {
52d214d3 837 pcs.push_back (p);
dda83cd7
SM
838 p += gdb_insn_length (gdbarch, p);
839 }
bb556f1f 840
52d214d3
TT
841 inst_count -= pcs.size ();
842 *inst_read += pcs.size ();
bb556f1f
TK
843 }
844 while (inst_count > 0);
845
846 /* After the loop, the vector PCS has instruction addresses of the last
847 source line we processed, and INST_COUNT has a negative value.
848 We return the address at the index of -INST_COUNT in the vector for
849 the reason below.
850 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
851 Line X of File
dda83cd7
SM
852 0x4000
853 0x4001
854 0x4005
bb556f1f 855 Line Y of File
dda83cd7
SM
856 0x4009
857 0x400c
bb556f1f 858 => 0x400e
dda83cd7 859 0x4011
bb556f1f
TK
860 find_instruction_backward is called with INST_COUNT = 4 and expected to
861 return 0x4001. When we reach here, INST_COUNT is set to -1 because
862 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
863 4001 is located at the index 1 of the last iterated line (= Line X),
864 which is simply calculated by -INST_COUNT.
865 The case when the length of PCS is 0 means that we reached an area for
866 which line info is not available. In such case, we return LOOP_START,
867 which was the lowest instruction address that had line info. */
52d214d3 868 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
bb556f1f
TK
869
870 /* INST_READ includes all instruction addresses in a pc range. Need to
871 exclude the beginning part up to the address we're returning. That
872 is, exclude {0x4000} in the example above. */
873 if (inst_count < 0)
874 *inst_read += inst_count;
875
bb556f1f
TK
876 return p;
877}
878
879/* Backward read LEN bytes of target memory from address MEMADDR + LEN,
880 placing the results in GDB's memory from MYADDR + LEN. Returns
881 a count of the bytes actually read. */
882
883static int
884read_memory_backward (struct gdbarch *gdbarch,
dda83cd7 885 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
bb556f1f
TK
886{
887 int errcode;
888 int nread; /* Number of bytes actually read. */
889
890 /* First try a complete read. */
891 errcode = target_read_memory (memaddr, myaddr, len);
892 if (errcode == 0)
893 {
894 /* Got it all. */
895 nread = len;
896 }
897 else
898 {
899 /* Loop, reading one byte at a time until we get as much as we can. */
900 memaddr += len;
901 myaddr += len;
902 for (nread = 0; nread < len; ++nread)
dda83cd7
SM
903 {
904 errcode = target_read_memory (--memaddr, --myaddr, 1);
905 if (errcode != 0)
906 {
907 /* The read was unsuccessful, so exit the loop. */
6cb06a8c
TT
908 gdb_printf (_("Cannot access memory at address %s\n"),
909 paddress (gdbarch, memaddr));
dda83cd7
SM
910 break;
911 }
912 }
bb556f1f
TK
913 }
914 return nread;
915}
916
917/* Returns true if X (which is LEN bytes wide) is the number zero. */
918
919static int
920integer_is_zero (const gdb_byte *x, int len)
921{
922 int i = 0;
923
924 while (i < len && x[i] == 0)
925 ++i;
926 return (i == len);
927}
928
929/* Find the start address of a string in which ADDR is included.
930 Basically we search for '\0' and return the next address,
931 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
932 we stop searching and return the address to print characters as many as
933 PRINT_MAX from the string. */
934
935static CORE_ADDR
936find_string_backward (struct gdbarch *gdbarch,
dda83cd7
SM
937 CORE_ADDR addr, int count, int char_size,
938 const struct value_print_options *options,
939 int *strings_counted)
bb556f1f
TK
940{
941 const int chunk_size = 0x20;
bb556f1f
TK
942 int read_error = 0;
943 int chars_read = 0;
944 int chars_to_read = chunk_size;
945 int chars_counted = 0;
946 int count_original = count;
947 CORE_ADDR string_start_addr = addr;
948
949 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
26fcd5d7 950 gdb::byte_vector buffer (chars_to_read * char_size);
bb556f1f
TK
951 while (count > 0 && read_error == 0)
952 {
953 int i;
954
955 addr -= chars_to_read * char_size;
26fcd5d7 956 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
dda83cd7 957 chars_to_read * char_size);
bb556f1f
TK
958 chars_read /= char_size;
959 read_error = (chars_read == chars_to_read) ? 0 : 1;
960 /* Searching for '\0' from the end of buffer in backward direction. */
961 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
dda83cd7
SM
962 {
963 int offset = (chars_to_read - i - 1) * char_size;
964
965 if (integer_is_zero (&buffer[offset], char_size)
966 || chars_counted == options->print_max)
967 {
968 /* Found '\0' or reached print_max. As OFFSET is the offset to
969 '\0', we add CHAR_SIZE to return the start address of
970 a string. */
971 --count;
972 string_start_addr = addr + offset + char_size;
973 chars_counted = 0;
974 }
975 }
bb556f1f
TK
976 }
977
978 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
979 *strings_counted = count_original - count;
980
981 if (read_error != 0)
982 {
983 /* In error case, STRING_START_ADDR is pointing to the string that
dda83cd7 984 was last successfully loaded. Rewind the partially loaded string. */
bb556f1f
TK
985 string_start_addr -= chars_counted * char_size;
986 }
987
bb556f1f
TK
988 return string_start_addr;
989}
990
c906108c
SS
991/* Examine data at address ADDR in format FMT.
992 Fetch it from memory and print on gdb_stdout. */
993
994static void
5d3729b5 995do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
c906108c 996{
52f0bd74
AC
997 char format = 0;
998 char size;
999 int count = 1;
c906108c 1000 struct type *val_type = NULL;
52f0bd74
AC
1001 int i;
1002 int maxelts;
79a45b7d 1003 struct value_print_options opts;
bb556f1f
TK
1004 int need_to_update_next_address = 0;
1005 CORE_ADDR addr_rewound = 0;
c906108c
SS
1006
1007 format = fmt.format;
1008 size = fmt.size;
1009 count = fmt.count;
5d3729b5 1010 next_gdbarch = gdbarch;
c906108c 1011 next_address = addr;
c906108c 1012
9a22f0d0
PM
1013 /* Instruction format implies fetch single bytes
1014 regardless of the specified size.
1015 The case of strings is handled in decode_format, only explicit
1016 size operator are not changed to 'b'. */
1017 if (format == 'i')
c906108c
SS
1018 size = 'b';
1019
5d3729b5
UW
1020 if (size == 'a')
1021 {
1022 /* Pick the appropriate size for an address. */
1023 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1024 size = 'g';
1025 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1026 size = 'w';
1027 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1028 size = 'h';
1029 else
1030 /* Bad value for gdbarch_ptr_bit. */
1031 internal_error (__FILE__, __LINE__,
1032 _("failed internal consistency check"));
1033 }
1034
1035 if (size == 'b')
df4df182 1036 val_type = builtin_type (next_gdbarch)->builtin_int8;
c906108c 1037 else if (size == 'h')
df4df182 1038 val_type = builtin_type (next_gdbarch)->builtin_int16;
c906108c 1039 else if (size == 'w')
df4df182 1040 val_type = builtin_type (next_gdbarch)->builtin_int32;
c906108c 1041 else if (size == 'g')
df4df182 1042 val_type = builtin_type (next_gdbarch)->builtin_int64;
c906108c 1043
9a22f0d0
PM
1044 if (format == 's')
1045 {
1046 struct type *char_type = NULL;
ad3bbd48 1047
9a22f0d0
PM
1048 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1049 if type is not found. */
1050 if (size == 'h')
1051 char_type = builtin_type (next_gdbarch)->builtin_char16;
1052 else if (size == 'w')
1053 char_type = builtin_type (next_gdbarch)->builtin_char32;
1054 if (char_type)
dda83cd7 1055 val_type = char_type;
9a22f0d0 1056 else
dda83cd7 1057 {
9a22f0d0 1058 if (size != '\0' && size != 'b')
0df8b418
MS
1059 warning (_("Unable to display strings with "
1060 "size '%c', using 'b' instead."), size);
9a22f0d0
PM
1061 size = 'b';
1062 val_type = builtin_type (next_gdbarch)->builtin_int8;
dda83cd7 1063 }
9a22f0d0
PM
1064 }
1065
c906108c
SS
1066 maxelts = 8;
1067 if (size == 'w')
1068 maxelts = 4;
1069 if (size == 'g')
1070 maxelts = 2;
1071 if (format == 's' || format == 'i')
1072 maxelts = 1;
1073
79a45b7d
TT
1074 get_formatted_print_options (&opts, format);
1075
bb556f1f
TK
1076 if (count < 0)
1077 {
1078 /* This is the negative repeat count case.
dda83cd7
SM
1079 We rewind the address based on the given repeat count and format,
1080 then examine memory from there in forward direction. */
bb556f1f
TK
1081
1082 count = -count;
1083 if (format == 'i')
dda83cd7
SM
1084 {
1085 next_address = find_instruction_backward (gdbarch, addr, count,
1086 &count);
1087 }
bb556f1f 1088 else if (format == 's')
dda83cd7
SM
1089 {
1090 next_address = find_string_backward (gdbarch, addr, count,
df86565b 1091 val_type->length (),
dda83cd7
SM
1092 &opts, &count);
1093 }
bb556f1f 1094 else
dda83cd7 1095 {
df86565b 1096 next_address = addr - count * val_type->length ();
dda83cd7 1097 }
bb556f1f
TK
1098
1099 /* The following call to print_formatted updates next_address in every
dda83cd7
SM
1100 iteration. In backward case, we store the start address here
1101 and update next_address with it before exiting the function. */
bb556f1f 1102 addr_rewound = (format == 's'
df86565b 1103 ? next_address - val_type->length ()
dda83cd7 1104 : next_address);
bb556f1f
TK
1105 need_to_update_next_address = 1;
1106 }
1107
bef382e6
LM
1108 /* Whether we need to print the memory tag information for the current
1109 address range. */
1110 bool print_range_tag = true;
1111 uint32_t gsize = gdbarch_memtag_granule_size (gdbarch);
1112
c906108c
SS
1113 /* Print as many objects as specified in COUNT, at most maxelts per line,
1114 with the address of the next one at the start of each line. */
1115
1116 while (count > 0)
1117 {
1118 QUIT;
bef382e6
LM
1119
1120 CORE_ADDR tag_laddr = 0, tag_haddr = 0;
1121
1122 /* Print the memory tag information if requested. */
1123 if (fmt.print_tags && print_range_tag
1124 && target_supports_memory_tagging ())
1125 {
1126 tag_laddr = align_down (next_address, gsize);
1127 tag_haddr = align_down (next_address + gsize, gsize);
1128
1129 struct value *v_addr
1130 = value_from_ulongest (builtin_type (gdbarch)->builtin_data_ptr,
1131 tag_laddr);
1132
1133 if (gdbarch_tagged_address_p (target_gdbarch (), v_addr))
1134 {
1135 /* Fetch the allocation tag. */
1136 struct value *tag
1137 = gdbarch_get_memtag (gdbarch, v_addr, memtag_type::allocation);
1138 std::string atag
1139 = gdbarch_memtag_to_string (gdbarch, tag);
1140
1141 if (!atag.empty ())
1142 {
6cb06a8c
TT
1143 gdb_printf (_("<Allocation Tag %s for range [%s,%s)>\n"),
1144 atag.c_str (),
1145 paddress (gdbarch, tag_laddr),
1146 paddress (gdbarch, tag_haddr));
bef382e6
LM
1147 }
1148 }
1149 print_range_tag = false;
1150 }
1151
2b28d209 1152 if (format == 'i')
0426ad51 1153 gdb_puts (pc_prefix (next_address));
5af949e3 1154 print_address (next_gdbarch, next_address, gdb_stdout);
6cb06a8c 1155 gdb_printf (":");
c906108c
SS
1156 for (i = maxelts;
1157 i > 0 && count > 0;
1158 i--, count--)
1159 {
6cb06a8c 1160 gdb_printf ("\t");
c906108c
SS
1161 /* Note that print_formatted sets next_address for the next
1162 object. */
1163 last_examine_address = next_address;
1164
c906108c 1165 /* The value to be displayed is not fetched greedily.
5d51a2db
MR
1166 Instead, to avoid the possibility of a fetched value not
1167 being used, its retrieval is delayed until the print code
c5aa993b
JM
1168 uses it. When examining an instruction stream, the
1169 disassembler will perform its own memory fetch using just
1170 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1171 the disassembler be modified so that LAST_EXAMINE_VALUE
1172 is left with the byte sequence from the last complete
0df8b418 1173 instruction fetched from memory? */
9b558729
TT
1174 last_examine_value
1175 = release_value (value_at_lazy (val_type, next_address));
c906108c 1176
9b558729 1177 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
a4642986
MR
1178
1179 /* Display any branch delay slots following the final insn. */
1180 if (format == 'i' && count == 1)
1181 count += branch_delay_insns;
bef382e6
LM
1182
1183 /* Update the tag range based on the current address being
1184 processed. */
1185 if (tag_haddr <= next_address)
1186 print_range_tag = true;
c906108c 1187 }
6cb06a8c 1188 gdb_printf ("\n");
c906108c 1189 }
bb556f1f
TK
1190
1191 if (need_to_update_next_address)
1192 next_address = addr_rewound;
c906108c
SS
1193}
1194\f
1195static void
8d89f51a 1196validate_format (struct format_data fmt, const char *cmdname)
c906108c
SS
1197{
1198 if (fmt.size != 0)
8a3fe4f8 1199 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
c906108c 1200 if (fmt.count != 1)
8a3fe4f8 1201 error (_("Item count other than 1 is meaningless in \"%s\" command."),
c906108c 1202 cmdname);
ea37ba09 1203 if (fmt.format == 'i')
8a3fe4f8 1204 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
c906108c
SS
1205 fmt.format, cmdname);
1206}
1207
7d8062de 1208/* Parse print command format string into *OPTS and update *EXPP.
1c88ceb1
JK
1209 CMDNAME should name the current command. */
1210
1211void
1212print_command_parse_format (const char **expp, const char *cmdname,
7d8062de 1213 value_print_options *opts)
1c88ceb1
JK
1214{
1215 const char *exp = *expp;
1216
d8edc8b7
PW
1217 /* opts->raw value might already have been set by 'set print raw-values'
1218 or by using 'print -raw-values'.
1219 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1c88ceb1
JK
1220 if (exp && *exp == '/')
1221 {
7d8062de
PA
1222 format_data fmt;
1223
1c88ceb1 1224 exp++;
7d8062de
PA
1225 fmt = decode_format (&exp, last_format, 0);
1226 validate_format (fmt, cmdname);
1227 last_format = fmt.format;
1228
1229 opts->format = fmt.format;
d8edc8b7 1230 opts->raw = opts->raw || fmt.raw;
1c88ceb1
JK
1231 }
1232 else
1233 {
7d8062de 1234 opts->format = 0;
1c88ceb1
JK
1235 }
1236
1237 *expp = exp;
1238}
1239
7d8062de 1240/* See valprint.h. */
1c88ceb1
JK
1241
1242void
7d8062de 1243print_value (value *val, const value_print_options &opts)
1c88ceb1 1244{
1c88ceb1
JK
1245 int histindex = record_latest_value (val);
1246
1247 annotate_value_history_begin (histindex, value_type (val));
1248
6cb06a8c 1249 gdb_printf ("$%d = ", histindex);
1c88ceb1
JK
1250
1251 annotate_value_history_value ();
1252
7d8062de 1253 print_formatted (val, 0, &opts, gdb_stdout);
6cb06a8c 1254 gdb_printf ("\n");
1c88ceb1
JK
1255
1256 annotate_value_history_end ();
1257}
1258
bef382e6
LM
1259/* Returns true if memory tags should be validated. False otherwise. */
1260
1261static bool
1262should_validate_memtags (struct value *value)
1263{
05558223 1264 gdb_assert (value != nullptr && value_type (value) != nullptr);
bef382e6 1265
05558223
LM
1266 if (!target_supports_memory_tagging ())
1267 return false;
bef382e6 1268
05558223
LM
1269 enum type_code code = value_type (value)->code ();
1270
1271 /* Skip non-address values. */
1272 if (code != TYPE_CODE_PTR
1273 && !TYPE_IS_REFERENCE (value_type (value)))
1274 return false;
1275
1276 /* OK, we have an address value. Check we have a complete value we
1277 can extract. */
1278 if (value_optimized_out (value)
1279 || !value_entirely_available (value))
1280 return false;
1281
1282 /* We do. Check whether it includes any tags. */
1283 return gdbarch_tagged_address_p (target_gdbarch (), value);
bef382e6
LM
1284}
1285
48136e00 1286/* Helper for parsing arguments for print_command_1. */
c906108c 1287
48136e00
LM
1288static struct value *
1289process_print_command_args (const char *args, value_print_options *print_opts,
1290 bool voidprint)
c906108c 1291{
48136e00 1292 get_user_print_options (print_opts);
7d8062de 1293 /* Override global settings with explicit options, if any. */
48136e00 1294 auto group = make_value_print_options_def_group (print_opts);
7d8062de
PA
1295 gdb::option::process_options
1296 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1297
48136e00 1298 print_command_parse_format (&args, "print", print_opts);
c906108c 1299
7d8062de 1300 const char *exp = args;
c906108c 1301
7d8062de 1302 if (exp != nullptr && *exp)
c906108c 1303 {
8fc48b79
TT
1304 /* VOIDPRINT is true to indicate that we do want to print a void
1305 value, so invert it for parse_expression. */
1306 expression_up expr = parse_expression (exp, nullptr, !voidprint);
48136e00 1307 return evaluate_expression (expr.get ());
c906108c 1308 }
48136e00
LM
1309
1310 return access_value_history (0);
1311}
1312
1313/* Implementation of the "print" and "call" commands. */
1314
1315static void
1316print_command_1 (const char *args, int voidprint)
1317{
1318 value_print_options print_opts;
1319
1320 struct value *val = process_print_command_args (args, &print_opts, voidprint);
c906108c 1321
df407dfe 1322 if (voidprint || (val && value_type (val) &&
78134374 1323 value_type (val)->code () != TYPE_CODE_VOID))
bef382e6
LM
1324 {
1325 /* If memory tagging validation is on, check if the tag is valid. */
05558223 1326 if (print_opts.memory_tag_violations)
bef382e6 1327 {
05558223
LM
1328 try
1329 {
1330 if (should_validate_memtags (val)
1331 && !gdbarch_memtag_matches_p (target_gdbarch (), val))
1332 {
1333 /* Fetch the logical tag. */
1334 struct value *tag
1335 = gdbarch_get_memtag (target_gdbarch (), val,
1336 memtag_type::logical);
1337 std::string ltag
1338 = gdbarch_memtag_to_string (target_gdbarch (), tag);
1339
1340 /* Fetch the allocation tag. */
1341 tag = gdbarch_get_memtag (target_gdbarch (), val,
1342 memtag_type::allocation);
1343 std::string atag
1344 = gdbarch_memtag_to_string (target_gdbarch (), tag);
1345
6cb06a8c
TT
1346 gdb_printf (_("Logical tag (%s) does not match the "
1347 "allocation tag (%s).\n"),
1348 ltag.c_str (), atag.c_str ());
05558223
LM
1349 }
1350 }
1351 catch (gdb_exception_error &ex)
1352 {
1353 if (ex.error == TARGET_CLOSE_ERROR)
1354 throw;
1355
6cb06a8c
TT
1356 gdb_printf (gdb_stderr,
1357 _("Could not validate memory tag: %s\n"),
1358 ex.message->c_str ());
05558223 1359 }
bef382e6 1360 }
05558223 1361
bef382e6
LM
1362 print_value (val, print_opts);
1363 }
7d8062de
PA
1364}
1365
037d7135
AB
1366/* Called from command completion function to skip over /FMT
1367 specifications, allowing the rest of the line to be completed. Returns
1368 true if the /FMT is at the end of the current line and there is nothing
1369 left to complete, otherwise false is returned.
1370
1371 In either case *ARGS can be updated to point after any part of /FMT that
1372 is present.
1373
1374 This function is designed so that trying to complete '/' will offer no
1375 completions, the user needs to insert the format specification
1376 themselves. Trying to complete '/FMT' (where FMT is any non-empty set
1377 of alpha-numeric characters) will cause readline to insert a single
1378 space, setting the user up to enter the expression. */
1379
1380static bool
1381skip_over_slash_fmt (completion_tracker &tracker, const char **args)
1382{
1383 const char *text = *args;
1384
1385 if (text[0] == '/')
1386 {
1387 bool in_fmt;
1388 tracker.set_use_custom_word_point (true);
1389
3df8c6af 1390 if (text[1] == '\0')
037d7135 1391 {
3df8c6af
AB
1392 /* The user tried to complete after typing just the '/' character
1393 of the /FMT string. Step the completer past the '/', but we
1394 don't offer any completions. */
1395 in_fmt = true;
1396 ++text;
1397 }
1398 else
1399 {
1400 /* The user has typed some characters after the '/', we assume
1401 this is a complete /FMT string, first skip over it. */
b3ff61f8 1402 text = skip_to_space (text);
037d7135
AB
1403
1404 if (*text == '\0')
1405 {
3df8c6af
AB
1406 /* We're at the end of the input string. The user has typed
1407 '/FMT' and asked for a completion. Push an empty
1408 completion string, this will cause readline to insert a
1409 space so the user now has '/FMT '. */
037d7135
AB
1410 in_fmt = true;
1411 tracker.add_completion (make_unique_xstrdup (text));
1412 }
1413 else
1414 {
3df8c6af
AB
1415 /* The user has already typed things after the /FMT, skip the
1416 whitespace and return false. Whoever called this function
1417 should then try to complete what comes next. */
037d7135 1418 in_fmt = false;
b3ff61f8 1419 text = skip_spaces (text);
037d7135
AB
1420 }
1421 }
037d7135
AB
1422
1423 tracker.advance_custom_word_point_by (text - *args);
1424 *args = text;
1425 return in_fmt;
1426 }
1427
1428 return false;
1429}
1430
7d8062de
PA
1431/* See valprint.h. */
1432
1433void
1434print_command_completer (struct cmd_list_element *ignore,
1435 completion_tracker &tracker,
1436 const char *text, const char * /*word*/)
1437{
1438 const auto group = make_value_print_options_def_group (nullptr);
1439 if (gdb::option::complete_options
1440 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1441 return;
1442
037d7135
AB
1443 if (skip_over_slash_fmt (tracker, &text))
1444 return;
1445
7d8062de
PA
1446 const char *word = advance_to_expression_complete_word_point (tracker, text);
1447 expression_completer (ignore, tracker, text, word);
c906108c
SS
1448}
1449
c906108c 1450static void
0b39b52e 1451print_command (const char *exp, int from_tty)
c906108c 1452{
8fc48b79 1453 print_command_1 (exp, true);
c906108c
SS
1454}
1455
675dcf4f 1456/* Same as print, except it doesn't print void results. */
c906108c 1457static void
0b39b52e 1458call_command (const char *exp, int from_tty)
c906108c 1459{
8fc48b79 1460 print_command_1 (exp, false);
c906108c
SS
1461}
1462
6f937416
PA
1463/* Implementation of the "output" command. */
1464
6f937416 1465void
122b53ea 1466output_command (const char *exp, int from_tty)
c906108c 1467{
52f0bd74 1468 char format = 0;
3d6d86c6 1469 struct value *val;
c906108c 1470 struct format_data fmt;
79a45b7d 1471 struct value_print_options opts;
c906108c 1472
777ea8f1 1473 fmt.size = 0;
a6bac58e 1474 fmt.raw = 0;
777ea8f1 1475
c906108c
SS
1476 if (exp && *exp == '/')
1477 {
1478 exp++;
1479 fmt = decode_format (&exp, 0, 0);
1480 validate_format (fmt, "output");
1481 format = fmt.format;
1482 }
1483
4d01a485 1484 expression_up expr = parse_expression (exp);
c906108c 1485
4d01a485 1486 val = evaluate_expression (expr.get ());
c906108c 1487
df407dfe 1488 annotate_value_begin (value_type (val));
c906108c 1489
79a45b7d 1490 get_formatted_print_options (&opts, format);
a6bac58e 1491 opts.raw = fmt.raw;
79a45b7d 1492 print_formatted (val, fmt.size, &opts, gdb_stdout);
c906108c
SS
1493
1494 annotate_value_end ();
1495
2acceee2 1496 gdb_flush (gdb_stdout);
c906108c
SS
1497}
1498
c906108c 1499static void
981a3fb3 1500set_command (const char *exp, int from_tty)
c906108c 1501{
4d01a485 1502 expression_up expr = parse_expression (exp);
ad3bbd48 1503
3dd93bf8
TT
1504 switch (expr->op->opcode ())
1505 {
1506 case UNOP_PREINCREMENT:
1507 case UNOP_POSTINCREMENT:
1508 case UNOP_PREDECREMENT:
1509 case UNOP_POSTDECREMENT:
1510 case BINOP_ASSIGN:
1511 case BINOP_ASSIGN_MODIFY:
1512 case BINOP_COMMA:
1513 break;
1514 default:
1515 warning
1516 (_("Expression is not an assignment (and might have no effect)"));
1517 }
52b3699b 1518
4d01a485 1519 evaluate_expression (expr.get ());
c906108c
SS
1520}
1521
c906108c 1522static void
1d12d88f 1523info_symbol_command (const char *arg, int from_tty)
c906108c
SS
1524{
1525 struct minimal_symbol *msymbol;
c5aa993b 1526 struct obj_section *osect;
c5aa993b
JM
1527 CORE_ADDR addr, sect_addr;
1528 int matches = 0;
1529 unsigned int offset;
c906108c
SS
1530
1531 if (!arg)
e2e0b3e5 1532 error_no_arg (_("address"));
c906108c
SS
1533
1534 addr = parse_and_eval_address (arg);
2030c079 1535 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2 1536 ALL_OBJFILE_OSECTIONS (objfile, osect)
c5aa993b 1537 {
3b9d3ac2
TT
1538 /* Only process each object file once, even if there's a separate
1539 debug file. */
1540 if (objfile->separate_debug_objfile_backlink)
1541 continue;
1542
1543 sect_addr = overlay_mapped_address (addr, osect);
1544
0c1bcd23 1545 if (osect->addr () <= sect_addr && sect_addr < osect->endaddr ()
3b9d3ac2
TT
1546 && (msymbol
1547 = lookup_minimal_symbol_by_pc_section (sect_addr,
1548 osect).minsym))
5178ed48 1549 {
3b9d3ac2
TT
1550 const char *obj_name, *mapped, *sec_name, *msym_name;
1551 const char *loc_string;
1552
1553 matches = 1;
4aeddc50 1554 offset = sect_addr - msymbol->value_address (objfile);
3b9d3ac2
TT
1555 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1556 sec_name = osect->the_bfd_section->name;
c9d95fa3 1557 msym_name = msymbol->print_name ();
3b9d3ac2
TT
1558
1559 /* Don't print the offset if it is zero.
1560 We assume there's no need to handle i18n of "sym + offset". */
1561 std::string string_holder;
1562 if (offset)
1563 {
1564 string_holder = string_printf ("%s + %u", msym_name, offset);
1565 loc_string = string_holder.c_str ();
1566 }
c14c28ba 1567 else
3b9d3ac2
TT
1568 loc_string = msym_name;
1569
1570 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1571 obj_name = objfile_name (osect->objfile);
1572
deeafabb 1573 if (current_program_space->multi_objfile_p ())
3b9d3ac2
TT
1574 if (pc_in_unmapped_range (addr, osect))
1575 if (section_is_overlay (osect))
6cb06a8c
TT
1576 gdb_printf (_("%s in load address range of "
1577 "%s overlay section %s of %s\n"),
1578 loc_string, mapped, sec_name, obj_name);
3b9d3ac2 1579 else
6cb06a8c
TT
1580 gdb_printf (_("%s in load address range of "
1581 "section %s of %s\n"),
1582 loc_string, sec_name, obj_name);
3b9d3ac2
TT
1583 else
1584 if (section_is_overlay (osect))
6cb06a8c
TT
1585 gdb_printf (_("%s in %s overlay section %s of %s\n"),
1586 loc_string, mapped, sec_name, obj_name);
3b9d3ac2 1587 else
6cb06a8c
TT
1588 gdb_printf (_("%s in section %s of %s\n"),
1589 loc_string, sec_name, obj_name);
c14c28ba 1590 else
3b9d3ac2
TT
1591 if (pc_in_unmapped_range (addr, osect))
1592 if (section_is_overlay (osect))
6cb06a8c
TT
1593 gdb_printf (_("%s in load address range of %s overlay "
1594 "section %s\n"),
1595 loc_string, mapped, sec_name);
3b9d3ac2 1596 else
6cb06a8c 1597 gdb_printf
3b9d3ac2
TT
1598 (_("%s in load address range of section %s\n"),
1599 loc_string, sec_name);
1600 else
1601 if (section_is_overlay (osect))
6cb06a8c
TT
1602 gdb_printf (_("%s in %s overlay section %s\n"),
1603 loc_string, mapped, sec_name);
3b9d3ac2 1604 else
6cb06a8c
TT
1605 gdb_printf (_("%s in section %s\n"),
1606 loc_string, sec_name);
3b9d3ac2 1607 }
c5aa993b 1608 }
c906108c 1609 if (matches == 0)
6cb06a8c 1610 gdb_printf (_("No symbol matches %s.\n"), arg);
c906108c
SS
1611}
1612
c906108c 1613static void
1d12d88f 1614info_address_command (const char *exp, int from_tty)
c906108c 1615{
768a979c
UW
1616 struct gdbarch *gdbarch;
1617 int regno;
52f0bd74 1618 struct symbol *sym;
7c7b6655 1619 struct bound_minimal_symbol msymbol;
52f0bd74 1620 long val;
714835d5 1621 struct obj_section *section;
08922a10 1622 CORE_ADDR load_addr, context_pc = 0;
1993b719 1623 struct field_of_this_result is_a_field_of_this;
c906108c
SS
1624
1625 if (exp == 0)
8a3fe4f8 1626 error (_("Argument required."));
c906108c 1627
08922a10 1628 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
d12307c1 1629 &is_a_field_of_this).symbol;
c906108c
SS
1630 if (sym == NULL)
1631 {
1993b719 1632 if (is_a_field_of_this.type != NULL)
c906108c 1633 {
6cb06a8c 1634 gdb_printf ("Symbol \"");
bed009b9
TT
1635 fprintf_symbol (gdb_stdout, exp,
1636 current_language->la_language, DMGL_ANSI);
6cb06a8c 1637 gdb_printf ("\" is a field of the local class variable ");
e2b23ee9 1638 if (current_language->la_language == language_objc)
6cb06a8c 1639 gdb_printf ("`self'\n"); /* ObjC equivalent of "this" */
e2b23ee9 1640 else
6cb06a8c 1641 gdb_printf ("`this'\n");
c906108c
SS
1642 return;
1643 }
1644
7c7b6655 1645 msymbol = lookup_bound_minimal_symbol (exp);
c906108c 1646
7c7b6655 1647 if (msymbol.minsym != NULL)
c906108c 1648 {
7c7b6655 1649 struct objfile *objfile = msymbol.objfile;
e27d198c 1650
08feed99 1651 gdbarch = objfile->arch ();
4aeddc50 1652 load_addr = msymbol.value_address ();
c906108c 1653
6cb06a8c 1654 gdb_printf ("Symbol \"");
bed009b9
TT
1655 fprintf_symbol (gdb_stdout, exp,
1656 current_language->la_language, DMGL_ANSI);
6cb06a8c 1657 gdb_printf ("\" is at ");
35fb8261
TT
1658 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1659 gdb_stdout);
6cb06a8c 1660 gdb_printf (" in a file compiled without debugging");
ebbc3a7d 1661 section = msymbol.minsym->obj_section (objfile);
c906108c
SS
1662 if (section_is_overlay (section))
1663 {
1664 load_addr = overlay_unmapped_address (load_addr, section);
6cb06a8c 1665 gdb_printf (",\n -- loaded at ");
35fb8261
TT
1666 fputs_styled (paddress (gdbarch, load_addr),
1667 address_style.style (),
1668 gdb_stdout);
6cb06a8c
TT
1669 gdb_printf (" in overlay section %s",
1670 section->the_bfd_section->name);
c906108c 1671 }
6cb06a8c 1672 gdb_printf (".\n");
c906108c
SS
1673 }
1674 else
8a3fe4f8 1675 error (_("No symbol \"%s\" in current context."), exp);
c906108c
SS
1676 return;
1677 }
1678
6cb06a8c 1679 gdb_printf ("Symbol \"");
0426ad51 1680 gdb_puts (sym->print_name ());
6cb06a8c 1681 gdb_printf ("\" is ");
4aeddc50 1682 val = sym->value_longest ();
7b3ecc75 1683 if (sym->is_objfile_owned ())
e19b2d94 1684 section = sym->obj_section (sym->objfile ());
1994afbf
DE
1685 else
1686 section = NULL;
bcd6845e 1687 gdbarch = sym->arch ();
c906108c 1688
24d6c2a0
TT
1689 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1690 {
1691 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1692 gdb_stdout);
6cb06a8c 1693 gdb_printf (".\n");
24d6c2a0
TT
1694 return;
1695 }
1696
66d7f48f 1697 switch (sym->aclass ())
c906108c
SS
1698 {
1699 case LOC_CONST:
1700 case LOC_CONST_BYTES:
6cb06a8c 1701 gdb_printf ("constant");
c906108c
SS
1702 break;
1703
1704 case LOC_LABEL:
6cb06a8c 1705 gdb_printf ("a label at address ");
4aeddc50 1706 load_addr = sym->value_address ();
35fb8261
TT
1707 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1708 gdb_stdout);
c906108c
SS
1709 if (section_is_overlay (section))
1710 {
1711 load_addr = overlay_unmapped_address (load_addr, section);
6cb06a8c 1712 gdb_printf (",\n -- loaded at ");
35fb8261
TT
1713 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1714 gdb_stdout);
6cb06a8c
TT
1715 gdb_printf (" in overlay section %s",
1716 section->the_bfd_section->name);
c906108c
SS
1717 }
1718 break;
1719
4c2df51b 1720 case LOC_COMPUTED:
557b4d76 1721 gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");
4c2df51b 1722
c906108c 1723 case LOC_REGISTER:
768a979c
UW
1724 /* GDBARCH is the architecture associated with the objfile the symbol
1725 is defined in; the target architecture may be different, and may
1726 provide additional registers. However, we do not know the target
1727 architecture at this point. We assume the objfile architecture
1728 will contain all the standard registers that occur in debug info
1729 in that objfile. */
1730 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1731
d9743061 1732 if (sym->is_argument ())
6cb06a8c
TT
1733 gdb_printf (_("an argument in register %s"),
1734 gdbarch_register_name (gdbarch, regno));
2a2d4dc3 1735 else
6cb06a8c
TT
1736 gdb_printf (_("a variable in register %s"),
1737 gdbarch_register_name (gdbarch, regno));
c906108c
SS
1738 break;
1739
1740 case LOC_STATIC:
6cb06a8c 1741 gdb_printf (_("static storage at address "));
4aeddc50 1742 load_addr = sym->value_address ();
35fb8261
TT
1743 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1744 gdb_stdout);
c906108c
SS
1745 if (section_is_overlay (section))
1746 {
1747 load_addr = overlay_unmapped_address (load_addr, section);
6cb06a8c 1748 gdb_printf (_(",\n -- loaded at "));
35fb8261
TT
1749 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1750 gdb_stdout);
6cb06a8c
TT
1751 gdb_printf (_(" in overlay section %s"),
1752 section->the_bfd_section->name);
c906108c
SS
1753 }
1754 break;
1755
c906108c 1756 case LOC_REGPARM_ADDR:
768a979c
UW
1757 /* Note comment at LOC_REGISTER. */
1758 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
6cb06a8c
TT
1759 gdb_printf (_("address of an argument in register %s"),
1760 gdbarch_register_name (gdbarch, regno));
c906108c
SS
1761 break;
1762
1763 case LOC_ARG:
6cb06a8c 1764 gdb_printf (_("an argument at offset %ld"), val);
c906108c
SS
1765 break;
1766
c906108c 1767 case LOC_LOCAL:
6cb06a8c 1768 gdb_printf (_("a local variable at frame offset %ld"), val);
c906108c
SS
1769 break;
1770
1771 case LOC_REF_ARG:
6cb06a8c 1772 gdb_printf (_("a reference argument at offset %ld"), val);
c906108c
SS
1773 break;
1774
c906108c 1775 case LOC_TYPEDEF:
6cb06a8c 1776 gdb_printf (_("a typedef"));
c906108c
SS
1777 break;
1778
1779 case LOC_BLOCK:
6cb06a8c 1780 gdb_printf (_("a function at address "));
6395b628 1781 load_addr = sym->value_block ()->entry_pc ();
35fb8261
TT
1782 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1783 gdb_stdout);
c906108c
SS
1784 if (section_is_overlay (section))
1785 {
1786 load_addr = overlay_unmapped_address (load_addr, section);
6cb06a8c 1787 gdb_printf (_(",\n -- loaded at "));
35fb8261
TT
1788 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1789 gdb_stdout);
6cb06a8c
TT
1790 gdb_printf (_(" in overlay section %s"),
1791 section->the_bfd_section->name);
c906108c
SS
1792 }
1793 break;
1794
1795 case LOC_UNRESOLVED:
1796 {
e27d198c 1797 struct bound_minimal_symbol msym;
c906108c 1798
987012b8 1799 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
e27d198c 1800 if (msym.minsym == NULL)
6cb06a8c 1801 gdb_printf ("unresolved");
c906108c
SS
1802 else
1803 {
1db66e34 1804 section = msym.obj_section ();
e0740f77
JK
1805
1806 if (section
1807 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
5382cfab 1808 {
4aeddc50 1809 load_addr = msym.minsym->value_raw_address ();
6cb06a8c
TT
1810 gdb_printf (_("a thread-local variable at offset %s "
1811 "in the thread-local storage for `%s'"),
1812 paddress (gdbarch, load_addr),
1813 objfile_name (section->objfile));
5382cfab 1814 }
e0740f77 1815 else
c906108c 1816 {
4aeddc50 1817 load_addr = msym.value_address ();
6cb06a8c 1818 gdb_printf (_("static storage at address "));
35fb8261
TT
1819 fputs_styled (paddress (gdbarch, load_addr),
1820 address_style.style (), gdb_stdout);
e0740f77
JK
1821 if (section_is_overlay (section))
1822 {
1823 load_addr = overlay_unmapped_address (load_addr, section);
6cb06a8c 1824 gdb_printf (_(",\n -- loaded at "));
35fb8261
TT
1825 fputs_styled (paddress (gdbarch, load_addr),
1826 address_style.style (),
1827 gdb_stdout);
6cb06a8c
TT
1828 gdb_printf (_(" in overlay section %s"),
1829 section->the_bfd_section->name);
e0740f77 1830 }
c906108c
SS
1831 }
1832 }
1833 }
1834 break;
1835
c906108c 1836 case LOC_OPTIMIZED_OUT:
6cb06a8c 1837 gdb_printf (_("optimized out"));
c906108c 1838 break;
c5aa993b 1839
c906108c 1840 default:
6cb06a8c 1841 gdb_printf (_("of unknown (botched) type"));
c906108c
SS
1842 break;
1843 }
6cb06a8c 1844 gdb_printf (".\n");
c906108c
SS
1845}
1846\f
675dcf4f
MK
1847
1848static void
0b39b52e 1849x_command (const char *exp, int from_tty)
c906108c 1850{
c906108c 1851 struct format_data fmt;
c906108c
SS
1852 struct value *val;
1853
a6bac58e 1854 fmt.format = last_format ? last_format : 'x';
bef382e6 1855 fmt.print_tags = last_print_tags;
c906108c
SS
1856 fmt.size = last_size;
1857 fmt.count = 1;
a6bac58e 1858 fmt.raw = 0;
c906108c 1859
9be2ae8f
TT
1860 /* If there is no expression and no format, use the most recent
1861 count. */
1862 if (exp == nullptr && last_count > 0)
1863 fmt.count = last_count;
1864
c906108c
SS
1865 if (exp && *exp == '/')
1866 {
6f937416
PA
1867 const char *tmp = exp + 1;
1868
1869 fmt = decode_format (&tmp, last_format, last_size);
1870 exp = (char *) tmp;
c906108c
SS
1871 }
1872
9be2ae8f
TT
1873 last_count = fmt.count;
1874
c906108c
SS
1875 /* If we have an expression, evaluate it and use it as the address. */
1876
1877 if (exp != 0 && *exp != 0)
1878 {
4d01a485 1879 expression_up expr = parse_expression (exp);
675dcf4f 1880 /* Cause expression not to be there any more if this command is
dda83cd7
SM
1881 repeated with Newline. But don't clobber a user-defined
1882 command's definition. */
c906108c 1883 if (from_tty)
85c4be7c 1884 set_repeat_arguments ("");
4d01a485 1885 val = evaluate_expression (expr.get ());
aa006118 1886 if (TYPE_IS_REFERENCE (value_type (val)))
e1c34c5d 1887 val = coerce_ref (val);
c906108c 1888 /* In rvalue contexts, such as this, functions are coerced into
dda83cd7 1889 pointers to functions. This makes "x/i main" work. */
78134374 1890 if (value_type (val)->code () == TYPE_CODE_FUNC
c5aa993b 1891 && VALUE_LVAL (val) == lval_memory)
42ae5230 1892 next_address = value_address (val);
c906108c 1893 else
1aa20aa8 1894 next_address = value_as_address (val);
5d3729b5
UW
1895
1896 next_gdbarch = expr->gdbarch;
c906108c
SS
1897 }
1898
5d3729b5
UW
1899 if (!next_gdbarch)
1900 error_no_arg (_("starting display address"));
1901
1902 do_examine (fmt, next_gdbarch, next_address);
c906108c 1903
675dcf4f 1904 /* If the examine succeeds, we remember its size and format for next
9a22f0d0
PM
1905 time. Set last_size to 'b' for strings. */
1906 if (fmt.format == 's')
1907 last_size = 'b';
1908 else
1909 last_size = fmt.size;
c906108c
SS
1910 last_format = fmt.format;
1911
bef382e6
LM
1912 /* Remember tag-printing setting. */
1913 last_print_tags = fmt.print_tags;
1914
0df8b418 1915 /* Set a couple of internal variables if appropriate. */
9b558729 1916 if (last_examine_value != nullptr)
c906108c
SS
1917 {
1918 /* Make last address examined available to the user as $_. Use
dda83cd7 1919 the correct pointer type. */
4478b372 1920 struct type *pointer_type
9b558729 1921 = lookup_pointer_type (value_type (last_examine_value.get ()));
c906108c 1922 set_internalvar (lookup_internalvar ("_"),
4478b372
JB
1923 value_from_pointer (pointer_type,
1924 last_examine_address));
c5aa993b 1925
675dcf4f
MK
1926 /* Make contents of last address examined available to the user
1927 as $__. If the last value has not been fetched from memory
1928 then don't fetch it now; instead mark it by voiding the $__
1929 variable. */
9b558729 1930 if (value_lazy (last_examine_value.get ()))
4fa62494 1931 clear_internalvar (lookup_internalvar ("__"));
c906108c 1932 else
9b558729 1933 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
c906108c
SS
1934 }
1935}
037d7135
AB
1936
1937/* Command completion for the 'display' and 'x' commands. */
1938
1939static void
1940display_and_x_command_completer (struct cmd_list_element *ignore,
1941 completion_tracker &tracker,
1942 const char *text, const char * /*word*/)
1943{
1944 if (skip_over_slash_fmt (tracker, &text))
1945 return;
1946
1947 const char *word = advance_to_expression_complete_word_point (tracker, text);
1948 expression_completer (ignore, tracker, text, word);
1949}
1950
c906108c 1951\f
c5aa993b 1952
c906108c
SS
1953/* Add an expression to the auto-display chain.
1954 Specify the expression. */
1955
1956static void
0b39b52e 1957display_command (const char *arg, int from_tty)
c906108c
SS
1958{
1959 struct format_data fmt;
fe978cb0 1960 struct display *newobj;
6f937416 1961 const char *exp = arg;
c906108c 1962
7bd0be3a 1963 if (exp == 0)
c906108c 1964 {
7bd0be3a
AB
1965 do_displays ();
1966 return;
1967 }
c906108c 1968
7bd0be3a
AB
1969 if (*exp == '/')
1970 {
1971 exp++;
1972 fmt = decode_format (&exp, 0, 0);
1973 if (fmt.size && fmt.format == 0)
1974 fmt.format = 'x';
1975 if (fmt.format == 'i' || fmt.format == 's')
1976 fmt.size = 'b';
1977 }
1978 else
1979 {
1980 fmt.format = 0;
1981 fmt.size = 0;
1982 fmt.count = 0;
1983 fmt.raw = 0;
1984 }
c906108c 1985
699bd4cf
TT
1986 innermost_block_tracker tracker;
1987 expression_up expr = parse_expression (exp, &tracker);
c906108c 1988
8be4b118
TT
1989 newobj = new display (exp, std::move (expr), fmt,
1990 current_program_space, tracker.block ());
1991 all_displays.emplace_back (newobj);
c906108c 1992
7bd0be3a
AB
1993 if (from_tty)
1994 do_one_display (newobj);
c906108c 1995
7bd0be3a 1996 dont_repeat ();
c906108c
SS
1997}
1998
675dcf4f
MK
1999/* Clear out the display_chain. Done when new symtabs are loaded,
2000 since this invalidates the types stored in many expressions. */
c906108c
SS
2001
2002void
8be4b118 2003clear_displays ()
c906108c 2004{
8be4b118 2005 all_displays.clear ();
c906108c
SS
2006}
2007
3c3fe74c 2008/* Delete the auto-display DISPLAY. */
c906108c
SS
2009
2010static void
3c3fe74c 2011delete_display (struct display *display)
c906108c 2012{
3c3fe74c 2013 gdb_assert (display != NULL);
c906108c 2014
8be4b118
TT
2015 auto iter = std::find_if (all_displays.begin (),
2016 all_displays.end (),
2017 [=] (const std::unique_ptr<struct display> &item)
2018 {
2019 return item.get () == display;
2020 });
2021 gdb_assert (iter != all_displays.end ());
2022 all_displays.erase (iter);
c906108c
SS
2023}
2024
c9174737
PA
2025/* Call FUNCTION on each of the displays whose numbers are given in
2026 ARGS. DATA is passed unmodified to FUNCTION. */
c906108c
SS
2027
2028static void
77763700 2029map_display_numbers (const char *args,
8be4b118 2030 gdb::function_view<void (struct display *)> function)
c906108c 2031{
c9174737 2032 int num;
c906108c 2033
c9174737
PA
2034 if (args == NULL)
2035 error_no_arg (_("one or more display numbers"));
c906108c 2036
bfd28288 2037 number_or_range_parser parser (args);
c9174737 2038
bfd28288 2039 while (!parser.finished ())
c906108c 2040 {
bfd28288 2041 const char *p = parser.cur_tok ();
c906108c 2042
bfd28288 2043 num = parser.get_number ();
3c3fe74c
PA
2044 if (num == 0)
2045 warning (_("bad display number at or near '%s'"), p);
2046 else
2047 {
8be4b118
TT
2048 auto iter = std::find_if (all_displays.begin (),
2049 all_displays.end (),
2050 [=] (const std::unique_ptr<display> &item)
2051 {
2052 return item->number == num;
2053 });
2054 if (iter == all_displays.end ())
6cb06a8c 2055 gdb_printf (_("No display number %d.\n"), num);
3c3fe74c 2056 else
8be4b118 2057 function (iter->get ());
3c3fe74c 2058 }
c906108c 2059 }
c9174737
PA
2060}
2061
c9174737
PA
2062/* "undisplay" command. */
2063
2064static void
77763700 2065undisplay_command (const char *args, int from_tty)
c9174737 2066{
c9174737
PA
2067 if (args == NULL)
2068 {
2069 if (query (_("Delete all auto-display expressions? ")))
2070 clear_displays ();
2071 dont_repeat ();
2072 return;
2073 }
2074
8be4b118 2075 map_display_numbers (args, delete_display);
c906108c
SS
2076 dont_repeat ();
2077}
2078
2079/* Display a single auto-display.
2080 Do nothing if the display cannot be printed in the current context,
0df8b418 2081 or if the display is disabled. */
c906108c
SS
2082
2083static void
fba45db2 2084do_one_display (struct display *d)
c906108c
SS
2085{
2086 int within_current_scope;
2087
8be4b118 2088 if (!d->enabled_p)
c906108c
SS
2089 return;
2090
704e9165
UW
2091 /* The expression carries the architecture that was used at parse time.
2092 This is a problem if the expression depends on architecture features
2093 (e.g. register numbers), and the current architecture is now different.
2094 For example, a display statement like "display/i $pc" is expected to
2095 display the PC register of the current architecture, not the arch at
2096 the time the display command was given. Therefore, we re-parse the
2097 expression if the current architecture has changed. */
2098 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
2099 {
4d01a485 2100 d->exp.reset ();
704e9165
UW
2101 d->block = NULL;
2102 }
2103
a3247a22
PP
2104 if (d->exp == NULL)
2105 {
ad3bbd48 2106
a70b8144 2107 try
a3247a22 2108 {
699bd4cf 2109 innermost_block_tracker tracker;
8be4b118 2110 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
699bd4cf 2111 d->block = tracker.block ();
a3247a22 2112 }
230d2906 2113 catch (const gdb_exception &ex)
a3247a22
PP
2114 {
2115 /* Can't re-parse the expression. Disable this display item. */
8be4b118 2116 d->enabled_p = false;
a3247a22 2117 warning (_("Unable to display \"%s\": %s"),
8be4b118 2118 d->exp_string.c_str (), ex.what ());
a3247a22
PP
2119 return;
2120 }
2121 }
2122
c906108c 2123 if (d->block)
6c95b8df
PA
2124 {
2125 if (d->pspace == current_program_space)
f21c2bd7
TT
2126 within_current_scope = contained_in (get_selected_block (0), d->block,
2127 true);
6c95b8df
PA
2128 else
2129 within_current_scope = 0;
2130 }
c906108c
SS
2131 else
2132 within_current_scope = 1;
2133 if (!within_current_scope)
2134 return;
2135
b7b633e9
TT
2136 scoped_restore save_display_number
2137 = make_scoped_restore (&current_display_number, d->number);
c906108c
SS
2138
2139 annotate_display_begin ();
6cb06a8c 2140 gdb_printf ("%d", d->number);
c906108c 2141 annotate_display_number_end ();
6cb06a8c 2142 gdb_printf (": ");
c906108c
SS
2143 if (d->format.size)
2144 {
c906108c
SS
2145
2146 annotate_display_format ();
2147
6cb06a8c 2148 gdb_printf ("x/");
c906108c 2149 if (d->format.count != 1)
6cb06a8c
TT
2150 gdb_printf ("%d", d->format.count);
2151 gdb_printf ("%c", d->format.format);
c906108c 2152 if (d->format.format != 'i' && d->format.format != 's')
6cb06a8c
TT
2153 gdb_printf ("%c", d->format.size);
2154 gdb_printf (" ");
c906108c
SS
2155
2156 annotate_display_expression ();
2157
0426ad51 2158 gdb_puts (d->exp_string.c_str ());
c906108c
SS
2159 annotate_display_expression_end ();
2160
6a2eb474 2161 if (d->format.count != 1 || d->format.format == 'i')
6cb06a8c 2162 gdb_printf ("\n");
c906108c 2163 else
6cb06a8c 2164 gdb_printf (" ");
c5aa993b 2165
c906108c
SS
2166 annotate_display_value ();
2167
a70b8144 2168 try
dda83cd7 2169 {
9d8fa392
PA
2170 struct value *val;
2171 CORE_ADDR addr;
2172
4d01a485 2173 val = evaluate_expression (d->exp.get ());
9d8fa392
PA
2174 addr = value_as_address (val);
2175 if (d->format.format == 'i')
2176 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2177 do_examine (d->format, d->exp->gdbarch, addr);
2178 }
230d2906 2179 catch (const gdb_exception_error &ex)
492d29ea 2180 {
6cb06a8c
TT
2181 gdb_printf (_("%p[<error: %s>%p]\n"),
2182 metadata_style.style ().ptr (), ex.what (),
2183 nullptr);
492d29ea 2184 }
c906108c
SS
2185 }
2186 else
2187 {
79a45b7d
TT
2188 struct value_print_options opts;
2189
c906108c
SS
2190 annotate_display_format ();
2191
2192 if (d->format.format)
6cb06a8c 2193 gdb_printf ("/%c ", d->format.format);
c906108c
SS
2194
2195 annotate_display_expression ();
2196
0426ad51 2197 gdb_puts (d->exp_string.c_str ());
c906108c
SS
2198 annotate_display_expression_end ();
2199
6cb06a8c 2200 gdb_printf (" = ");
c906108c
SS
2201
2202 annotate_display_expression ();
2203
79a45b7d 2204 get_formatted_print_options (&opts, d->format.format);
a6bac58e 2205 opts.raw = d->format.raw;
9d8fa392 2206
a70b8144 2207 try
dda83cd7 2208 {
9d8fa392
PA
2209 struct value *val;
2210
4d01a485 2211 val = evaluate_expression (d->exp.get ());
9d8fa392
PA
2212 print_formatted (val, d->format.size, &opts, gdb_stdout);
2213 }
230d2906 2214 catch (const gdb_exception_error &ex)
492d29ea 2215 {
7f6aba03
TT
2216 fprintf_styled (gdb_stdout, metadata_style.style (),
2217 _("<error: %s>"), ex.what ());
492d29ea 2218 }
492d29ea 2219
6cb06a8c 2220 gdb_printf ("\n");
c906108c
SS
2221 }
2222
2223 annotate_display_end ();
2224
2225 gdb_flush (gdb_stdout);
c906108c
SS
2226}
2227
2228/* Display all of the values on the auto-display chain which can be
2229 evaluated in the current scope. */
2230
2231void
fba45db2 2232do_displays (void)
c906108c 2233{
8be4b118
TT
2234 for (auto &d : all_displays)
2235 do_one_display (d.get ());
c906108c
SS
2236}
2237
2238/* Delete the auto-display which we were in the process of displaying.
2239 This is done when there is an error or a signal. */
2240
2241void
fba45db2 2242disable_display (int num)
c906108c 2243{
8be4b118 2244 for (auto &d : all_displays)
c906108c
SS
2245 if (d->number == num)
2246 {
8be4b118 2247 d->enabled_p = false;
c906108c
SS
2248 return;
2249 }
6cb06a8c 2250 gdb_printf (_("No display number %d.\n"), num);
c906108c 2251}
c5aa993b 2252
c906108c 2253void
fba45db2 2254disable_current_display (void)
c906108c
SS
2255{
2256 if (current_display_number >= 0)
2257 {
2258 disable_display (current_display_number);
6cb06a8c
TT
2259 gdb_printf (gdb_stderr,
2260 _("Disabling display %d to "
2261 "avoid infinite recursion.\n"),
2262 current_display_number);
c906108c
SS
2263 }
2264 current_display_number = -1;
2265}
2266
2267static void
1d12d88f 2268info_display_command (const char *ignore, int from_tty)
c906108c 2269{
8be4b118 2270 if (all_displays.empty ())
6cb06a8c 2271 gdb_printf (_("There are no auto-display expressions now.\n"));
c906108c 2272 else
6cb06a8c 2273 gdb_printf (_("Auto-display expressions now in effect:\n\
a3f17187 2274Num Enb Expression\n"));
c906108c 2275
8be4b118 2276 for (auto &d : all_displays)
c906108c 2277 {
6cb06a8c 2278 gdb_printf ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
c906108c 2279 if (d->format.size)
6cb06a8c
TT
2280 gdb_printf ("/%d%c%c ", d->format.count, d->format.size,
2281 d->format.format);
c906108c 2282 else if (d->format.format)
6cb06a8c 2283 gdb_printf ("/%c ", d->format.format);
0426ad51 2284 gdb_puts (d->exp_string.c_str ());
f21c2bd7 2285 if (d->block && !contained_in (get_selected_block (0), d->block, true))
6cb06a8c
TT
2286 gdb_printf (_(" (cannot be evaluated in the current context)"));
2287 gdb_printf ("\n");
c906108c
SS
2288 }
2289}
2290
85102364 2291/* Implementation of both the "disable display" and "enable display"
c9174737
PA
2292 commands. ENABLE decides what to do. */
2293
2294static void
8be4b118 2295enable_disable_display_command (const char *args, int from_tty, bool enable)
c9174737
PA
2296{
2297 if (args == NULL)
c906108c 2298 {
8be4b118 2299 for (auto &d : all_displays)
c9174737
PA
2300 d->enabled_p = enable;
2301 return;
2302 }
c5aa993b 2303
8be4b118
TT
2304 map_display_numbers (args,
2305 [=] (struct display *d)
2306 {
2307 d->enabled_p = enable;
2308 });
c906108c
SS
2309}
2310
c9174737
PA
2311/* The "enable display" command. */
2312
c906108c 2313static void
77763700 2314enable_display_command (const char *args, int from_tty)
c906108c 2315{
8be4b118 2316 enable_disable_display_command (args, from_tty, true);
c9174737 2317}
c5aa993b 2318
c9174737 2319/* The "disable display" command. */
c906108c 2320
c9174737 2321static void
77763700 2322disable_display_command (const char *args, int from_tty)
c9174737 2323{
8be4b118 2324 enable_disable_display_command (args, from_tty, false);
c906108c 2325}
a3247a22 2326
a3247a22
PP
2327/* display_chain items point to blocks and expressions. Some expressions in
2328 turn may point to symbols.
2329 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2330 obstack_free'd when a shared library is unloaded.
2331 Clear pointers that are about to become dangling.
2332 Both .exp and .block fields will be restored next time we need to display
2333 an item by re-parsing .exp_string field in the new execution context. */
2334
2335static void
63644780 2336clear_dangling_display_expressions (struct objfile *objfile)
a3247a22 2337{
63644780 2338 struct program_space *pspace;
a3247a22 2339
c0201579
JK
2340 /* With no symbol file we cannot have a block or expression from it. */
2341 if (objfile == NULL)
2342 return;
63644780 2343 pspace = objfile->pspace;
c0201579 2344 if (objfile->separate_debug_objfile_backlink)
63644780
NB
2345 {
2346 objfile = objfile->separate_debug_objfile_backlink;
2347 gdb_assert (objfile->pspace == pspace);
2348 }
c0201579 2349
8be4b118 2350 for (auto &d : all_displays)
a3247a22 2351 {
63644780 2352 if (d->pspace != pspace)
c0201579
JK
2353 continue;
2354
d6bc0792
TT
2355 struct objfile *bl_objf = nullptr;
2356 if (d->block != nullptr)
2357 {
2358 bl_objf = block_objfile (d->block);
2359 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2360 bl_objf = bl_objf->separate_debug_objfile_backlink;
2361 }
2362
2363 if (bl_objf == objfile
4d01a485 2364 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
d6bc0792
TT
2365 {
2366 d->exp.reset ();
2367 d->block = NULL;
2368 }
a3247a22
PP
2369 }
2370}
c906108c 2371\f
c5aa993b 2372
675dcf4f 2373/* Print the value in stack frame FRAME of a variable specified by a
aad95b57
TT
2374 struct symbol. NAME is the name to print; if NULL then VAR's print
2375 name will be used. STREAM is the ui_file on which to print the
2376 value. INDENT specifies the number of indent levels to print
8f043999
JK
2377 before printing the variable name.
2378
2379 This function invalidates FRAME. */
c906108c
SS
2380
2381void
aad95b57
TT
2382print_variable_and_value (const char *name, struct symbol *var,
2383 struct frame_info *frame,
2384 struct ui_file *stream, int indent)
c906108c 2385{
c906108c 2386
aad95b57 2387 if (!name)
987012b8 2388 name = var->print_name ();
aad95b57 2389
6cb06a8c
TT
2390 gdb_printf (stream, "%*s%ps = ", 2 * indent, "",
2391 styled_string (variable_name_style.style (), name));
80ae2043 2392
a70b8144 2393 try
0f6a939d
PM
2394 {
2395 struct value *val;
2396 struct value_print_options opts;
aad95b57 2397
63e43d3a
PMR
2398 /* READ_VAR_VALUE needs a block in order to deal with non-local
2399 references (i.e. to handle nested functions). In this context, we
2400 print variables that are local to this frame, so we can avoid passing
2401 a block to it. */
2402 val = read_var_value (var, NULL, frame);
0f6a939d 2403 get_user_print_options (&opts);
3343315b 2404 opts.deref_ref = 1;
644a2e75 2405 common_val_print_checked (val, stream, indent, &opts, current_language);
8f043999
JK
2406
2407 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2408 function. */
2409 frame = NULL;
0f6a939d 2410 }
230d2906 2411 catch (const gdb_exception_error &except)
492d29ea 2412 {
7f6aba03
TT
2413 fprintf_styled (stream, metadata_style.style (),
2414 "<error reading variable %s (%s)>", name,
2415 except.what ());
492d29ea 2416 }
492d29ea 2417
6cb06a8c 2418 gdb_printf (stream, "\n");
c906108c
SS
2419}
2420
c2792f5a
DE
2421/* Subroutine of ui_printf to simplify it.
2422 Print VALUE to STREAM using FORMAT.
1f6f6e21
PW
2423 VALUE is a C-style string either on the target or
2424 in a GDB internal variable. */
c2792f5a
DE
2425
2426static void
2427printf_c_string (struct ui_file *stream, const char *format,
2428 struct value *value)
2429{
1f6f6e21 2430 const gdb_byte *str;
c2792f5a 2431
78134374 2432 if (value_type (value)->code () != TYPE_CODE_PTR
7b973adc 2433 && VALUE_LVAL (value) == lval_internalvar
1f6f6e21 2434 && c_is_string_type_p (value_type (value)))
3ae9ce5d 2435 {
df86565b 2436 size_t len = value_type (value)->length ();
c2792f5a 2437
1f6f6e21
PW
2438 /* Copy the internal var value to TEM_STR and append a terminating null
2439 character. This protects against corrupted C-style strings that lack
2440 the terminating null char. It also allows Ada-style strings (not
2441 null terminated) to be printed without problems. */
2442 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
c2792f5a 2443
50888e42 2444 memcpy (tem_str, value_contents (value).data (), len);
1f6f6e21
PW
2445 tem_str [len] = 0;
2446 str = tem_str;
c2792f5a 2447 }
1f6f6e21
PW
2448 else
2449 {
2450 CORE_ADDR tem = value_as_address (value);;
2451
2452 if (tem == 0)
2453 {
2454 DIAGNOSTIC_PUSH
2455 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2456 gdb_printf (stream, format, "(null)");
1f6f6e21
PW
2457 DIAGNOSTIC_POP
2458 return;
2459 }
2460
2461 /* This is a %s argument. Find the length of the string. */
2462 size_t len;
2463
2464 for (len = 0;; len++)
2465 {
2466 gdb_byte c;
c2792f5a 2467
1f6f6e21
PW
2468 QUIT;
2469 read_memory (tem + len, &c, 1);
2470 if (c == 0)
2471 break;
2472 }
2473
2474 /* Copy the string contents into a string inside GDB. */
2475 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2476
2477 if (len != 0)
2478 read_memory (tem, tem_str, len);
2479 tem_str[len] = 0;
2480 str = tem_str;
2481 }
c2792f5a 2482
af39b1c2
SM
2483 DIAGNOSTIC_PUSH
2484 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2485 gdb_printf (stream, format, (char *) str);
af39b1c2 2486 DIAGNOSTIC_POP
c2792f5a
DE
2487}
2488
2489/* Subroutine of ui_printf to simplify it.
2490 Print VALUE to STREAM using FORMAT.
1f6f6e21
PW
2491 VALUE is a wide C-style string on the target or
2492 in a GDB internal variable. */
c2792f5a
DE
2493
2494static void
2495printf_wide_c_string (struct ui_file *stream, const char *format,
2496 struct value *value)
2497{
1f6f6e21
PW
2498 const gdb_byte *str;
2499 size_t len;
8ee511af 2500 struct gdbarch *gdbarch = value_type (value)->arch ();
b858499d 2501 struct type *wctype = lookup_typename (current_language,
c2792f5a 2502 "wchar_t", NULL, 0);
df86565b 2503 int wcwidth = wctype->length ();
c2792f5a 2504
1f6f6e21
PW
2505 if (VALUE_LVAL (value) == lval_internalvar
2506 && c_is_string_type_p (value_type (value)))
3ae9ce5d 2507 {
50888e42 2508 str = value_contents (value).data ();
df86565b 2509 len = value_type (value)->length ();
3ae9ce5d 2510 }
1f6f6e21 2511 else
c2792f5a 2512 {
1f6f6e21 2513 CORE_ADDR tem = value_as_address (value);
c2792f5a 2514
1f6f6e21
PW
2515 if (tem == 0)
2516 {
2517 DIAGNOSTIC_PUSH
2518 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2519 gdb_printf (stream, format, "(null)");
1f6f6e21
PW
2520 DIAGNOSTIC_POP
2521 return;
2522 }
2523
2524 /* This is a %s argument. Find the length of the string. */
2525 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2526 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2527
2528 for (len = 0;; len += wcwidth)
2529 {
2530 QUIT;
2531 read_memory (tem + len, buf, wcwidth);
2532 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2533 break;
2534 }
2535
2536 /* Copy the string contents into a string inside GDB. */
2537 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2538
2539 if (len != 0)
2540 read_memory (tem, tem_str, len);
2541 memset (&tem_str[len], 0, wcwidth);
2542 str = tem_str;
2543 }
c2792f5a 2544
8268c778 2545 auto_obstack output;
c2792f5a
DE
2546
2547 convert_between_encodings (target_wide_charset (gdbarch),
2548 host_charset (),
1f6f6e21 2549 str, len, wcwidth,
c2792f5a
DE
2550 &output, translit_char);
2551 obstack_grow_str0 (&output, "");
2552
af39b1c2
SM
2553 DIAGNOSTIC_PUSH
2554 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2555 gdb_printf (stream, format, obstack_base (&output));
af39b1c2 2556 DIAGNOSTIC_POP
c2792f5a
DE
2557}
2558
2559/* Subroutine of ui_printf to simplify it.
16e812b2 2560 Print VALUE, a floating point value, to STREAM using FORMAT. */
c2792f5a
DE
2561
2562static void
16e812b2
UW
2563printf_floating (struct ui_file *stream, const char *format,
2564 struct value *value, enum argclass argclass)
c2792f5a 2565{
c2792f5a
DE
2566 /* Parameter data. */
2567 struct type *param_type = value_type (value);
8ee511af 2568 struct gdbarch *gdbarch = param_type->arch ();
c2792f5a 2569
16e812b2
UW
2570 /* Determine target type corresponding to the format string. */
2571 struct type *fmt_type;
2572 switch (argclass)
c2792f5a 2573 {
16e812b2
UW
2574 case double_arg:
2575 fmt_type = builtin_type (gdbarch)->builtin_double;
2576 break;
2577 case long_double_arg:
2578 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2579 break;
2580 case dec32float_arg:
2581 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2582 break;
2583 case dec64float_arg:
2584 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2585 break;
2586 case dec128float_arg:
2587 fmt_type = builtin_type (gdbarch)->builtin_declong;
2588 break;
2589 default:
2590 gdb_assert_not_reached ("unexpected argument class");
c2792f5a
DE
2591 }
2592
16e812b2
UW
2593 /* To match the traditional GDB behavior, the conversion is
2594 done differently depending on the type of the parameter:
2595
2596 - if the parameter has floating-point type, it's value
2597 is converted to the target type;
2598
2599 - otherwise, if the parameter has a type that is of the
2600 same size as a built-in floating-point type, the value
2601 bytes are interpreted as if they were of that type, and
2602 then converted to the target type (this is not done for
2603 decimal floating-point argument classes);
2604
2605 - otherwise, if the source value has an integer value,
2606 it's value is converted to the target type;
c2792f5a 2607
16e812b2 2608 - otherwise, an error is raised.
c2792f5a 2609
16e812b2
UW
2610 In either case, the result of the conversion is a byte buffer
2611 formatted in the target format for the target type. */
2612
78134374 2613 if (fmt_type->code () == TYPE_CODE_FLT)
16e812b2
UW
2614 {
2615 param_type = float_type_from_length (param_type);
2616 if (param_type != value_type (value))
50888e42
SM
2617 value = value_from_contents (param_type,
2618 value_contents (value).data ());
16e812b2
UW
2619 }
2620
2621 value = value_cast (fmt_type, value);
c2792f5a 2622
3b4b2f16 2623 /* Convert the value to a string and print it. */
f69fdf9b 2624 std::string str
50888e42 2625 = target_float_to_string (value_contents (value).data (), fmt_type, format);
0426ad51 2626 gdb_puts (str.c_str (), stream);
c2792f5a
DE
2627}
2628
2629/* Subroutine of ui_printf to simplify it.
2630 Print VALUE, a target pointer, to STREAM using FORMAT. */
2631
2632static void
2633printf_pointer (struct ui_file *stream, const char *format,
2634 struct value *value)
2635{
2636 /* We avoid the host's %p because pointers are too
2637 likely to be the wrong size. The only interesting
2638 modifier for %p is a width; extract that, and then
2639 handle %p as glibc would: %#x or a literal "(nil)". */
2640
2641 const char *p;
2642 char *fmt, *fmt_p;
2643#ifdef PRINTF_HAS_LONG_LONG
2644 long long val = value_as_long (value);
2645#else
2646 long val = value_as_long (value);
2647#endif
2648
224c3ddb 2649 fmt = (char *) alloca (strlen (format) + 5);
c2792f5a
DE
2650
2651 /* Copy up to the leading %. */
2652 p = format;
2653 fmt_p = fmt;
2654 while (*p)
2655 {
2656 int is_percent = (*p == '%');
2657
2658 *fmt_p++ = *p++;
2659 if (is_percent)
2660 {
2661 if (*p == '%')
2662 *fmt_p++ = *p++;
2663 else
2664 break;
2665 }
2666 }
2667
2668 if (val != 0)
2669 *fmt_p++ = '#';
2670
b8c2339b
TT
2671 /* Copy any width or flags. Only the "-" flag is valid for pointers
2672 -- see the format_pieces constructor. */
2673 while (*p == '-' || (*p >= '0' && *p < '9'))
c2792f5a
DE
2674 *fmt_p++ = *p++;
2675
2676 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2677 if (val != 0)
2678 {
2679#ifdef PRINTF_HAS_LONG_LONG
2680 *fmt_p++ = 'l';
2681#endif
2682 *fmt_p++ = 'l';
2683 *fmt_p++ = 'x';
2684 *fmt_p++ = '\0';
af39b1c2
SM
2685 DIAGNOSTIC_PUSH
2686 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2687 gdb_printf (stream, fmt, val);
af39b1c2 2688 DIAGNOSTIC_POP
c2792f5a
DE
2689 }
2690 else
2691 {
2692 *fmt_p++ = 's';
2693 *fmt_p++ = '\0';
af39b1c2
SM
2694 DIAGNOSTIC_PUSH
2695 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2696 gdb_printf (stream, fmt, "(nil)");
af39b1c2 2697 DIAGNOSTIC_POP
c2792f5a
DE
2698 }
2699}
2700
a04b0428
JB
2701/* printf "printf format string" ARG to STREAM. */
2702
2703static void
bbc13ae3 2704ui_printf (const char *arg, struct ui_file *stream)
c906108c 2705{
bbc13ae3 2706 const char *s = arg;
8e481c3b 2707 std::vector<struct value *> val_args;
c906108c
SS
2708
2709 if (s == 0)
e2e0b3e5 2710 error_no_arg (_("format-control string and values to print"));
c906108c 2711
f1735a53 2712 s = skip_spaces (s);
c906108c 2713
675dcf4f 2714 /* A format string should follow, enveloped in double quotes. */
c906108c 2715 if (*s++ != '"')
8a3fe4f8 2716 error (_("Bad format string, missing '\"'."));
c906108c 2717
8e481c3b 2718 format_pieces fpieces (&s);
c906108c 2719
d3ce09f5
SS
2720 if (*s++ != '"')
2721 error (_("Bad format string, non-terminated '\"'."));
2722
f1735a53 2723 s = skip_spaces (s);
c906108c
SS
2724
2725 if (*s != ',' && *s != 0)
8a3fe4f8 2726 error (_("Invalid argument syntax"));
c906108c 2727
c5aa993b
JM
2728 if (*s == ',')
2729 s++;
f1735a53 2730 s = skip_spaces (s);
c906108c 2731
c906108c 2732 {
c906108c 2733 int nargs_wanted;
8e481c3b
TT
2734 int i;
2735 const char *current_substring;
c906108c 2736
c906108c 2737 nargs_wanted = 0;
8e481c3b
TT
2738 for (auto &&piece : fpieces)
2739 if (piece.argclass != literal_piece)
d3ce09f5 2740 ++nargs_wanted;
c906108c
SS
2741
2742 /* Now, parse all arguments and evaluate them.
2743 Store the VALUEs in VAL_ARGS. */
2744
2745 while (*s != '\0')
2746 {
bbc13ae3 2747 const char *s1;
ad3bbd48 2748
a04b0428 2749 s1 = s;
8e481c3b 2750 val_args.push_back (parse_to_comma_and_eval (&s1));
c5aa993b 2751
c906108c
SS
2752 s = s1;
2753 if (*s == ',')
2754 s++;
2755 }
c5aa993b 2756
8e481c3b 2757 if (val_args.size () != nargs_wanted)
8a3fe4f8 2758 error (_("Wrong number of arguments for specified format-string"));
c906108c
SS
2759
2760 /* Now actually print them. */
d3ce09f5 2761 i = 0;
8e481c3b 2762 for (auto &&piece : fpieces)
c906108c 2763 {
8e481c3b
TT
2764 current_substring = piece.string;
2765 switch (piece.argclass)
c906108c
SS
2766 {
2767 case string_arg:
c2792f5a 2768 printf_c_string (stream, current_substring, val_args[i]);
c906108c 2769 break;
6c7a06a3 2770 case wide_string_arg:
c2792f5a 2771 printf_wide_c_string (stream, current_substring, val_args[i]);
6c7a06a3
TT
2772 break;
2773 case wide_char_arg:
2774 {
8ee511af 2775 struct gdbarch *gdbarch = value_type (val_args[i])->arch ();
b858499d 2776 struct type *wctype = lookup_typename (current_language,
e6c014f2 2777 "wchar_t", NULL, 0);
6c7a06a3 2778 struct type *valtype;
6c7a06a3
TT
2779 const gdb_byte *bytes;
2780
2781 valtype = value_type (val_args[i]);
df86565b 2782 if (valtype->length () != wctype->length ()
78134374 2783 || valtype->code () != TYPE_CODE_INT)
6c7a06a3
TT
2784 error (_("expected wchar_t argument for %%lc"));
2785
50888e42 2786 bytes = value_contents (val_args[i]).data ();
6c7a06a3 2787
8268c778 2788 auto_obstack output;
6c7a06a3 2789
f870a310 2790 convert_between_encodings (target_wide_charset (gdbarch),
6c7a06a3 2791 host_charset (),
df86565b
SM
2792 bytes, valtype->length (),
2793 valtype->length (),
6c7a06a3
TT
2794 &output, translit_char);
2795 obstack_grow_str0 (&output, "");
2796
af39b1c2
SM
2797 DIAGNOSTIC_PUSH
2798 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c
TT
2799 gdb_printf (stream, current_substring,
2800 obstack_base (&output));
af39b1c2 2801 DIAGNOSTIC_POP
6c7a06a3
TT
2802 }
2803 break;
c906108c 2804 case long_long_arg:
74a0d9f6 2805#ifdef PRINTF_HAS_LONG_LONG
c906108c
SS
2806 {
2807 long long val = value_as_long (val_args[i]);
ad3bbd48 2808
af39b1c2
SM
2809 DIAGNOSTIC_PUSH
2810 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2811 gdb_printf (stream, current_substring, val);
af39b1c2 2812 DIAGNOSTIC_POP
c906108c
SS
2813 break;
2814 }
2815#else
8a3fe4f8 2816 error (_("long long not supported in printf"));
c906108c
SS
2817#endif
2818 case int_arg:
2819 {
46e9880c 2820 int val = value_as_long (val_args[i]);
ad3bbd48 2821
af39b1c2
SM
2822 DIAGNOSTIC_PUSH
2823 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2824 gdb_printf (stream, current_substring, val);
af39b1c2 2825 DIAGNOSTIC_POP
46e9880c
DJ
2826 break;
2827 }
2828 case long_arg:
2829 {
c906108c 2830 long val = value_as_long (val_args[i]);
ad3bbd48 2831
e06f3d6e
AB
2832 DIAGNOSTIC_PUSH
2833 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2834 gdb_printf (stream, current_substring, val);
e06f3d6e
AB
2835 DIAGNOSTIC_POP
2836 break;
2837 }
2838 case size_t_arg:
2839 {
2840 size_t val = value_as_long (val_args[i]);
2841
af39b1c2
SM
2842 DIAGNOSTIC_PUSH
2843 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2844 gdb_printf (stream, current_substring, val);
af39b1c2 2845 DIAGNOSTIC_POP
c906108c
SS
2846 break;
2847 }
16e812b2
UW
2848 /* Handles floating-point values. */
2849 case double_arg:
2850 case long_double_arg:
2851 case dec32float_arg:
2852 case dec64float_arg:
2853 case dec128float_arg:
2854 printf_floating (stream, current_substring, val_args[i],
8e481c3b 2855 piece.argclass);
c2792f5a 2856 break;
2025a643 2857 case ptr_arg:
c2792f5a
DE
2858 printf_pointer (stream, current_substring, val_args[i]);
2859 break;
d3ce09f5
SS
2860 case literal_piece:
2861 /* Print a portion of the format string that has no
2862 directives. Note that this will not include any
2863 ordinary %-specs, but it might include "%%". That is
6cb06a8c 2864 why we use gdb_printf and not gdb_puts here.
d3ce09f5
SS
2865 Also, we pass a dummy argument because some platforms
2866 have modified GCC to include -Wformat-security by
2867 default, which will warn here if there is no
2868 argument. */
af39b1c2
SM
2869 DIAGNOSTIC_PUSH
2870 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
6cb06a8c 2871 gdb_printf (stream, current_substring, 0);
af39b1c2 2872 DIAGNOSTIC_POP
d3ce09f5 2873 break;
675dcf4f
MK
2874 default:
2875 internal_error (__FILE__, __LINE__,
2025a643 2876 _("failed internal consistency check"));
c906108c 2877 }
d3ce09f5 2878 /* Maybe advance to the next argument. */
8e481c3b 2879 if (piece.argclass != literal_piece)
d3ce09f5 2880 ++i;
c906108c 2881 }
c906108c 2882 }
c906108c 2883}
c906108c 2884
f1421989
HZ
2885/* Implement the "printf" command. */
2886
a04b0428 2887static void
0b39b52e 2888printf_command (const char *arg, int from_tty)
f1421989 2889{
a04b0428 2890 ui_printf (arg, gdb_stdout);
3cd52293 2891 gdb_stdout->reset_style ();
1285ce86 2892 gdb_stdout->wrap_here (0);
da5bd37e 2893 gdb_stdout->flush ();
f1421989
HZ
2894}
2895
2896/* Implement the "eval" command. */
2897
2898static void
0b39b52e 2899eval_command (const char *arg, int from_tty)
f1421989 2900{
d7e74731 2901 string_file stb;
f1421989 2902
d7e74731 2903 ui_printf (arg, &stb);
f1421989 2904
d7e74731 2905 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
01770bbd 2906
95a6b0a1 2907 execute_command (expanded.c_str (), from_tty);
f1421989
HZ
2908}
2909
48136e00
LM
2910/* Convenience function for error checking in memory-tag commands. */
2911
2912static void
2913show_addr_not_tagged (CORE_ADDR address)
2914{
2915 error (_("Address %s not in a region mapped with a memory tagging flag."),
2916 paddress (target_gdbarch (), address));
2917}
2918
2919/* Convenience function for error checking in memory-tag commands. */
2920
2921static void
2922show_memory_tagging_unsupported (void)
2923{
2924 error (_("Memory tagging not supported or disabled by the current"
2925 " architecture."));
2926}
2927
2928/* Implement the "memory-tag" prefix command. */
2929
2930static void
2931memory_tag_command (const char *arg, int from_tty)
2932{
2933 help_list (memory_tag_list, "memory-tag ", all_commands, gdb_stdout);
2934}
2935
2936/* Helper for print-logical-tag and print-allocation-tag. */
2937
2938static void
2939memory_tag_print_tag_command (const char *args, enum memtag_type tag_type)
2940{
2941 if (args == nullptr)
2942 error_no_arg (_("address or pointer"));
2943
2944 /* Parse args into a value. If the value is a pointer or an address,
2945 then fetch the logical or allocation tag. */
2946 value_print_options print_opts;
2947
2948 struct value *val = process_print_command_args (args, &print_opts, true);
2949
2950 /* If the address is not in a region memory mapped with a memory tagging
2951 flag, it is no use trying to access/manipulate its allocation tag.
2952
2953 It is OK to manipulate the logical tag though. */
2954 if (tag_type == memtag_type::allocation
2955 && !gdbarch_tagged_address_p (target_gdbarch (), val))
2956 show_addr_not_tagged (value_as_address (val));
2957
2958 struct value *tag_value
2959 = gdbarch_get_memtag (target_gdbarch (), val, tag_type);
2960 std::string tag = gdbarch_memtag_to_string (target_gdbarch (), tag_value);
2961
2962 if (tag.empty ())
6cb06a8c
TT
2963 gdb_printf (_("%s tag unavailable.\n"),
2964 tag_type
2965 == memtag_type::logical? "Logical" : "Allocation");
48136e00
LM
2966
2967 struct value *v_tag = process_print_command_args (tag.c_str (),
2968 &print_opts,
2969 true);
2970 print_opts.output_format = 'x';
2971 print_value (v_tag, print_opts);
2972}
2973
2974/* Implement the "memory-tag print-logical-tag" command. */
2975
2976static void
2977memory_tag_print_logical_tag_command (const char *args, int from_tty)
2978{
2979 if (!target_supports_memory_tagging ())
2980 show_memory_tagging_unsupported ();
2981
2982 memory_tag_print_tag_command (args, memtag_type::logical);
2983}
2984
2985/* Implement the "memory-tag print-allocation-tag" command. */
2986
2987static void
2988memory_tag_print_allocation_tag_command (const char *args, int from_tty)
2989{
2990 if (!target_supports_memory_tagging ())
2991 show_memory_tagging_unsupported ();
2992
2993 memory_tag_print_tag_command (args, memtag_type::allocation);
2994}
2995
2996/* Parse ARGS and extract ADDR and TAG.
2997 ARGS should have format <expression> <tag bytes>. */
2998
2999static void
3000parse_with_logical_tag_input (const char *args, struct value **val,
3001 gdb::byte_vector &tags,
3002 value_print_options *print_opts)
3003{
3004 /* Fetch the address. */
3005 std::string address_string = extract_string_maybe_quoted (&args);
3006
3007 /* Parse the address into a value. */
3008 *val = process_print_command_args (address_string.c_str (), print_opts,
3009 true);
3010
3011 /* Fetch the tag bytes. */
3012 std::string tag_string = extract_string_maybe_quoted (&args);
3013
3014 /* Validate the input. */
3015 if (address_string.empty () || tag_string.empty ())
3016 error (_("Missing arguments."));
3017
3018 if (tag_string.length () != 2)
3019 error (_("Error parsing tags argument. The tag should be 2 digits."));
3020
3021 tags = hex2bin (tag_string.c_str ());
3022}
3023
3024/* Implement the "memory-tag with-logical-tag" command. */
3025
3026static void
3027memory_tag_with_logical_tag_command (const char *args, int from_tty)
3028{
3029 if (!target_supports_memory_tagging ())
3030 show_memory_tagging_unsupported ();
3031
3032 if (args == nullptr)
3033 error_no_arg (_("<address> <tag>"));
3034
3035 gdb::byte_vector tags;
3036 struct value *val;
3037 value_print_options print_opts;
3038
3039 /* Parse the input. */
3040 parse_with_logical_tag_input (args, &val, tags, &print_opts);
3041
3042 /* Setting the logical tag is just a local operation that does not touch
3043 any memory from the target. Given an input value, we modify the value
3044 to include the appropriate tag.
3045
3046 For this reason we need to cast the argument value to a
3047 (void *) pointer. This is so we have the right type for the gdbarch
3048 hook to manipulate the value and insert the tag.
3049
3050 Otherwise, this would fail if, for example, GDB parsed the argument value
3051 into an int-sized value and the pointer value has a type of greater
3052 length. */
3053
3054 /* Cast to (void *). */
3055 val = value_cast (builtin_type (target_gdbarch ())->builtin_data_ptr,
3056 val);
3057
3058 /* Length doesn't matter for a logical tag. Pass 0. */
3059 if (!gdbarch_set_memtags (target_gdbarch (), val, 0, tags,
3060 memtag_type::logical))
6cb06a8c 3061 gdb_printf (_("Could not update the logical tag data.\n"));
48136e00
LM
3062 else
3063 {
3064 /* Always print it in hex format. */
3065 print_opts.output_format = 'x';
3066 print_value (val, print_opts);
3067 }
3068}
3069
3070/* Parse ARGS and extract ADDR, LENGTH and TAGS. */
3071
3072static void
3073parse_set_allocation_tag_input (const char *args, struct value **val,
3074 size_t *length, gdb::byte_vector &tags)
3075{
3076 /* Fetch the address. */
3077 std::string address_string = extract_string_maybe_quoted (&args);
3078
3079 /* Parse the address into a value. */
3080 value_print_options print_opts;
3081 *val = process_print_command_args (address_string.c_str (), &print_opts,
3082 true);
3083
3084 /* Fetch the length. */
3085 std::string length_string = extract_string_maybe_quoted (&args);
3086
3087 /* Fetch the tag bytes. */
3088 std::string tags_string = extract_string_maybe_quoted (&args);
3089
3090 /* Validate the input. */
3091 if (address_string.empty () || length_string.empty () || tags_string.empty ())
3092 error (_("Missing arguments."));
3093
3094 errno = 0;
3095 const char *trailer = nullptr;
3096 LONGEST parsed_length = strtoulst (length_string.c_str (), &trailer, 10);
3097
3098 if (errno != 0 || (trailer != nullptr && trailer[0] != '\0'))
3099 error (_("Error parsing length argument."));
3100
3101 if (parsed_length <= 0)
3102 error (_("Invalid zero or negative length."));
3103
3104 *length = parsed_length;
3105
3106 if (tags_string.length () % 2)
3107 error (_("Error parsing tags argument. Tags should be 2 digits per byte."));
3108
3109 tags = hex2bin (tags_string.c_str ());
3110
3111 /* If the address is not in a region memory mapped with a memory tagging
3112 flag, it is no use trying to access/manipulate its allocation tag. */
3113 if (!gdbarch_tagged_address_p (target_gdbarch (), *val))
3114 show_addr_not_tagged (value_as_address (*val));
3115}
3116
3117/* Implement the "memory-tag set-allocation-tag" command.
3118 ARGS should be in the format <address> <length> <tags>. */
3119
3120static void
3121memory_tag_set_allocation_tag_command (const char *args, int from_tty)
3122{
3123 if (!target_supports_memory_tagging ())
3124 show_memory_tagging_unsupported ();
3125
3126 if (args == nullptr)
3127 error_no_arg (_("<starting address> <length> <tag bytes>"));
3128
3129 gdb::byte_vector tags;
3130 size_t length = 0;
3131 struct value *val;
3132
3133 /* Parse the input. */
3134 parse_set_allocation_tag_input (args, &val, &length, tags);
3135
3136 if (!gdbarch_set_memtags (target_gdbarch (), val, length, tags,
3137 memtag_type::allocation))
6cb06a8c 3138 gdb_printf (_("Could not update the allocation tag(s).\n"));
48136e00 3139 else
6cb06a8c 3140 gdb_printf (_("Allocation tag(s) updated successfully.\n"));
48136e00
LM
3141}
3142
3143/* Implement the "memory-tag check" command. */
3144
3145static void
3146memory_tag_check_command (const char *args, int from_tty)
3147{
3148 if (!target_supports_memory_tagging ())
3149 show_memory_tagging_unsupported ();
3150
3151 if (args == nullptr)
3152 error (_("Argument required (address or pointer)"));
3153
3154 /* Parse the expression into a value. If the value is an address or
3155 pointer, then check its logical tag against the allocation tag. */
3156 value_print_options print_opts;
3157
3158 struct value *val = process_print_command_args (args, &print_opts, true);
3159
3160 /* If the address is not in a region memory mapped with a memory tagging
3161 flag, it is no use trying to access/manipulate its allocation tag. */
3162 if (!gdbarch_tagged_address_p (target_gdbarch (), val))
3163 show_addr_not_tagged (value_as_address (val));
3164
3165 CORE_ADDR addr = value_as_address (val);
3166
3167 /* Check if the tag is valid. */
3168 if (!gdbarch_memtag_matches_p (target_gdbarch (), val))
3169 {
3170 struct value *tag
3171 = gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical);
3172 std::string ltag
3173 = gdbarch_memtag_to_string (target_gdbarch (), tag);
3174
3175 tag = gdbarch_get_memtag (target_gdbarch (), val,
3176 memtag_type::allocation);
3177 std::string atag
3178 = gdbarch_memtag_to_string (target_gdbarch (), tag);
3179
6cb06a8c
TT
3180 gdb_printf (_("Logical tag (%s) does not match"
3181 " the allocation tag (%s) for address %s.\n"),
3182 ltag.c_str (), atag.c_str (),
3183 paddress (target_gdbarch (), addr));
48136e00
LM
3184 }
3185 else
3186 {
3187 struct value *tag
3188 = gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical);
3189 std::string ltag
3190 = gdbarch_memtag_to_string (target_gdbarch (), tag);
3191
6cb06a8c
TT
3192 gdb_printf (_("Memory tags for address %s match (%s).\n"),
3193 paddress (target_gdbarch (), addr), ltag.c_str ());
48136e00
LM
3194 }
3195}
3196
6c265988 3197void _initialize_printcmd ();
c906108c 3198void
6c265988 3199_initialize_printcmd ()
c906108c 3200{
c94fdfd0
EZ
3201 struct cmd_list_element *c;
3202
c906108c
SS
3203 current_display_number = -1;
3204
c90e7d63
SM
3205 gdb::observers::free_objfile.attach (clear_dangling_display_expressions,
3206 "printcmd");
a3247a22 3207
11db9430 3208 add_info ("address", info_address_command,
188e1fa9
TT
3209 _("Describe where symbol SYM is stored.\n\
3210Usage: info address SYM"));
c906108c 3211
11db9430 3212 add_info ("symbol", info_symbol_command, _("\
1bedd215 3213Describe what symbol is at location ADDR.\n\
188e1fa9 3214Usage: info symbol ADDR\n\
1bedd215 3215Only for symbols with fixed locations (global or static scope)."));
c906108c 3216
037d7135 3217 c = add_com ("x", class_vars, x_command, _("\
1bedd215 3218Examine memory: x/FMT ADDRESS.\n\
c906108c
SS
3219ADDRESS is an expression for the memory address to examine.\n\
3220FMT is a repeat count followed by a format letter and a size letter.\n\
3221Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
6fbe845e
AB
3222 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
3223 and z(hex, zero padded on the left).\n\
1bedd215 3224Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
c906108c 3225The specified number of objects of the specified size are printed\n\
bb556f1f
TK
3226according to the format. If a negative number is specified, memory is\n\
3227examined backward from the address.\n\n\
c906108c
SS
3228Defaults for format and size letters are those previously used.\n\
3229Default count is 1. Default address is following last thing printed\n\
1bedd215 3230with this command or \"print\"."));
037d7135 3231 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
c906108c 3232
11db9430 3233 add_info ("display", info_display_command, _("\
188e1fa9
TT
3234Expressions to display when program stops, with code numbers.\n\
3235Usage: info display"));
c906108c 3236
1a966eab
AC
3237 add_cmd ("undisplay", class_vars, undisplay_command, _("\
3238Cancel some expressions to be displayed when program stops.\n\
188e1fa9 3239Usage: undisplay [NUM]...\n\
c906108c
SS
3240Arguments are the code numbers of the expressions to stop displaying.\n\
3241No argument means cancel all automatic-display expressions.\n\
3242\"delete display\" has the same effect as this command.\n\
1a966eab 3243Do \"info display\" to see current list of code numbers."),
c5aa993b 3244 &cmdlist);
c906108c 3245
037d7135 3246 c = add_com ("display", class_vars, display_command, _("\
1bedd215 3247Print value of expression EXP each time the program stops.\n\
188e1fa9 3248Usage: display[/FMT] EXP\n\
c906108c
SS
3249/FMT may be used before EXP as in the \"print\" command.\n\
3250/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
3251as in the \"x\" command, and then EXP is used to get the address to examine\n\
3252and examining is done as in the \"x\" command.\n\n\
3253With no argument, display all currently requested auto-display expressions.\n\
1bedd215 3254Use \"undisplay\" to cancel display requests previously made."));
037d7135 3255 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
c906108c 3256
c9174737 3257 add_cmd ("display", class_vars, enable_display_command, _("\
1a966eab 3258Enable some expressions to be displayed when program stops.\n\
188e1fa9 3259Usage: enable display [NUM]...\n\
c906108c
SS
3260Arguments are the code numbers of the expressions to resume displaying.\n\
3261No argument means enable all automatic-display expressions.\n\
1a966eab 3262Do \"info display\" to see current list of code numbers."), &enablelist);
c906108c 3263
1a966eab
AC
3264 add_cmd ("display", class_vars, disable_display_command, _("\
3265Disable some expressions to be displayed when program stops.\n\
188e1fa9 3266Usage: disable display [NUM]...\n\
c906108c
SS
3267Arguments are the code numbers of the expressions to stop displaying.\n\
3268No argument means disable all automatic-display expressions.\n\
1a966eab 3269Do \"info display\" to see current list of code numbers."), &disablelist);
c906108c 3270
1a966eab
AC
3271 add_cmd ("display", class_vars, undisplay_command, _("\
3272Cancel some expressions to be displayed when program stops.\n\
188e1fa9 3273Usage: delete display [NUM]...\n\
c906108c
SS
3274Arguments are the code numbers of the expressions to stop displaying.\n\
3275No argument means cancel all automatic-display expressions.\n\
1a966eab 3276Do \"info display\" to see current list of code numbers."), &deletelist);
c906108c 3277
1bedd215 3278 add_com ("printf", class_vars, printf_command, _("\
80ae639d 3279Formatted printing, like the C \"printf\" function.\n\
188e1fa9 3280Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
80ae639d 3281This supports most C printf format specifications, like %s, %d, etc."));
c906108c 3282
1bedd215
AC
3283 add_com ("output", class_vars, output_command, _("\
3284Like \"print\" but don't put in value history and don't print newline.\n\
188e1fa9 3285Usage: output EXP\n\
1bedd215 3286This is useful in user-defined commands."));
c906108c 3287
1bedd215 3288 add_prefix_cmd ("set", class_vars, set_command, _("\
590042fc 3289Evaluate expression EXP and assign result to variable VAR.\n\
188e1fa9
TT
3290Usage: set VAR = EXP\n\
3291This uses assignment syntax appropriate for the current language\n\
3292(VAR = EXP or VAR := EXP for example).\n\
3293VAR may be a debugger \"convenience\" variable (names starting\n\
c906108c 3294with $), a register (a few standard names starting with $), or an actual\n\
1bedd215
AC
3295variable in the program being debugged. EXP is any valid expression.\n\
3296Use \"set variable\" for variables with names identical to set subcommands.\n\
3297\n\
3298With a subcommand, this command modifies parts of the gdb environment.\n\
3299You can see these environment settings with the \"show\" command."),
2f822da5 3300 &setlist, 1, &cmdlist);
c906108c 3301
0df8b418 3302 /* "call" is the same as "set", but handy for dbx users to call fns. */
1bedd215
AC
3303 c = add_com ("call", class_vars, call_command, _("\
3304Call a function in the program.\n\
188e1fa9 3305Usage: call EXP\n\
c906108c
SS
3306The argument is the function name and arguments, in the notation of the\n\
3307current working language. The result is printed and saved in the value\n\
1bedd215 3308history, if it is not void."));
7d8062de 3309 set_cmd_completer_handle_brkchars (c, print_command_completer);
c906108c 3310
5e84b7ee
SM
3311 cmd_list_element *set_variable_cmd
3312 = add_cmd ("variable", class_vars, set_command, _("\
590042fc 3313Evaluate expression EXP and assign result to variable VAR.\n\
188e1fa9
TT
3314Usage: set variable VAR = EXP\n\
3315This uses assignment syntax appropriate for the current language\n\
3316(VAR = EXP or VAR := EXP for example).\n\
3317VAR may be a debugger \"convenience\" variable (names starting\n\
c906108c
SS
3318with $), a register (a few standard names starting with $), or an actual\n\
3319variable in the program being debugged. EXP is any valid expression.\n\
1a966eab 3320This may usually be abbreviated to simply \"set\"."),
5e84b7ee
SM
3321 &setlist);
3322 add_alias_cmd ("var", set_variable_cmd, class_vars, 0, &setlist);
c906108c 3323
7d8062de
PA
3324 const auto print_opts = make_value_print_options_def_group (nullptr);
3325
8abfcabc 3326 static const std::string print_help = gdb::option::build_help (_("\
1bedd215 3327Print value of expression EXP.\n\
7d8062de
PA
3328Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
3329\n\
3330Options:\n\
590042fc
PW
3331%OPTIONS%\n\
3332\n\
7d8062de
PA
3333Note: because this command accepts arbitrary expressions, if you\n\
3334specify any command option, you must use a double dash (\"--\")\n\
3335to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
3336\n\
c906108c
SS
3337Variables accessible are those of the lexical environment of the selected\n\
3338stack frame, plus all those whose scope is global or an entire file.\n\
3339\n\
3340$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
3341$$NUM refers to NUM'th value back from the last one.\n\
1bedd215
AC
3342Names starting with $ refer to registers (with the values they would have\n\
3343if the program were to return to the stack frame now selected, restoring\n\
c906108c
SS
3344all registers saved by frames farther in) or else to debugger\n\
3345\"convenience\" variables (any such name not a known register).\n\
1bedd215
AC
3346Use assignment expressions to give values to convenience variables.\n\
3347\n\
c906108c
SS
3348{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
3349@ is a binary operator for treating consecutive data objects\n\
3350anywhere in memory as an array. FOO@NUM gives an array whose first\n\
3351element is FOO, whose second element is stored in the space following\n\
3352where FOO is stored, etc. FOO must be an expression whose value\n\
1bedd215
AC
3353resides in memory.\n\
3354\n\
c906108c 3355EXP may be preceded with /FMT, where FMT is a format letter\n\
7d8062de
PA
3356but no count or size letter (see \"x\" command)."),
3357 print_opts);
3358
3947f654
SM
3359 cmd_list_element *print_cmd
3360 = add_com ("print", class_vars, print_command, print_help.c_str ());
3361 set_cmd_completer_handle_brkchars (print_cmd, print_command_completer);
3362 add_com_alias ("p", print_cmd, class_vars, 1);
3363 add_com_alias ("inspect", print_cmd, class_vars, 1);
c906108c 3364
35096d9d
AC
3365 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
3366 &max_symbolic_offset, _("\
188e1fa9
TT
3367Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
3368Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
f81d1120
PA
3369Tell GDB to only display the symbolic form of an address if the\n\
3370offset between the closest earlier symbol and the address is less than\n\
3371the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
3372to always print the symbolic form of an address if any symbol precedes\n\
3373it. Zero is equivalent to \"unlimited\"."),
35096d9d 3374 NULL,
920d2a44 3375 show_max_symbolic_offset,
35096d9d 3376 &setprintlist, &showprintlist);
5bf193a2
AC
3377 add_setshow_boolean_cmd ("symbol-filename", no_class,
3378 &print_symbol_filename, _("\
188e1fa9
TT
3379Set printing of source filename and line number with <SYMBOL>."), _("\
3380Show printing of source filename and line number with <SYMBOL>."), NULL,
5bf193a2 3381 NULL,
920d2a44 3382 show_print_symbol_filename,
5bf193a2 3383 &setprintlist, &showprintlist);
f1421989
HZ
3384
3385 add_com ("eval", no_class, eval_command, _("\
188e1fa9
TT
3386Construct a GDB command and then evaluate it.\n\
3387Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
3388Convert the arguments to a string as \"printf\" would, but then\n\
3389treat this string as a command line, and evaluate it."));
48136e00
LM
3390
3391 /* Memory tagging commands. */
3392 add_prefix_cmd ("memory-tag", class_vars, memory_tag_command, _("\
3393Generic command for printing and manipulating memory tag properties."),
2f822da5 3394 &memory_tag_list, 0, &cmdlist);
48136e00
LM
3395 add_cmd ("print-logical-tag", class_vars,
3396 memory_tag_print_logical_tag_command,
3397 ("Print the logical tag from POINTER.\n\
3398Usage: memory-tag print-logical-tag <POINTER>.\n\
3399<POINTER> is an expression that evaluates to a pointer.\n\
3400Print the logical tag contained in POINTER. The tag interpretation is\n\
3401architecture-specific."),
3402 &memory_tag_list);
3403 add_cmd ("print-allocation-tag", class_vars,
3404 memory_tag_print_allocation_tag_command,
3405 _("Print the allocation tag for ADDRESS.\n\
3406Usage: memory-tag print-allocation-tag <ADDRESS>.\n\
3407<ADDRESS> is an expression that evaluates to a memory address.\n\
3408Print the allocation tag associated with the memory address ADDRESS.\n\
3409The tag interpretation is architecture-specific."),
3410 &memory_tag_list);
3411 add_cmd ("with-logical-tag", class_vars, memory_tag_with_logical_tag_command,
3412 _("Print a POINTER with a specific logical TAG.\n\
3413Usage: memory-tag with-logical-tag <POINTER> <TAG>\n\
3414<POINTER> is an expression that evaluates to a pointer.\n\
3415<TAG> is a sequence of hex bytes that is interpreted by the architecture\n\
3416as a single memory tag."),
3417 &memory_tag_list);
3418 add_cmd ("set-allocation-tag", class_vars,
3419 memory_tag_set_allocation_tag_command,
3420 _("Set the allocation tag(s) for a memory range.\n\
3421Usage: memory-tag set-allocation-tag <ADDRESS> <LENGTH> <TAG_BYTES>\n\
3422<ADDRESS> is an expression that evaluates to a memory address\n\
3423<LENGTH> is the number of bytes that is added to <ADDRESS> to calculate\n\
3424the memory range.\n\
3425<TAG_BYTES> is a sequence of hex bytes that is interpreted by the\n\
3426architecture as one or more memory tags.\n\
3427Sets the tags of the memory range [ADDRESS, ADDRESS + LENGTH)\n\
3428to TAG_BYTES.\n\
3429\n\
3430If the number of tags is greater than or equal to the number of tag granules\n\
3431in the [ADDRESS, ADDRESS + LENGTH) range, only the tags up to the\n\
3432number of tag granules are updated.\n\
3433\n\
3434If the number of tags is less than the number of tag granules, then the\n\
3435command is a fill operation. The TAG_BYTES are interpreted as a pattern\n\
3436that gets repeated until the number of tag granules in the memory range\n\
3437[ADDRESS, ADDRESS + LENGTH) is updated."),
3438 &memory_tag_list);
3439 add_cmd ("check", class_vars, memory_tag_check_command,
3440 _("Validate a pointer's logical tag against the allocation tag.\n\
3441Usage: memory-tag check <POINTER>\n\
3442<POINTER> is an expression that evaluates to a pointer\n\
3443Fetch the logical and allocation tags for POINTER and compare them\n\
3444for equality. If the tags do not match, print additional information about\n\
3445the tag mismatch."),
3446 &memory_tag_list);
c906108c 3447}