]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/progspace.c
* dwarf2read.c (add_partial_subprogram): Add missing baseaddr to
[thirdparty/binutils-gdb.git] / gdb / progspace.c
CommitLineData
6c95b8df
PA
1/* Program and address space management, for GDB, the GNU debugger.
2
4c38e0a4 3 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
6c95b8df
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbcmd.h"
22#include "objfiles.h"
23#include "arch-utils.h"
24#include "gdbcore.h"
25#include "solib.h"
26#include "gdbthread.h"
27
28/* The last program space number assigned. */
29int last_program_space_num = 0;
30
31/* The head of the program spaces list. */
32struct program_space *program_spaces;
33
34/* Pointer to the current program space. */
35struct program_space *current_program_space;
36
37/* The last address space number assigned. */
38static int highest_address_space_num;
39
40/* Prototypes for local functions */
41
42static void program_space_alloc_data (struct program_space *);
43static void program_space_free_data (struct program_space *);
44\f
45
46/* An address space. Currently this is not used for much other than
47 for comparing if pspaces/inferior/threads see the same address
48 space. */
49
50struct address_space
51{
52 int num;
53};
54
55/* Create a new address space object, and add it to the list. */
56
57struct address_space *
58new_address_space (void)
59{
60 struct address_space *aspace;
61
62 aspace = XZALLOC (struct address_space);
63 aspace->num = ++highest_address_space_num;
64
65 return aspace;
66}
67
68/* Maybe create a new address space object, and add it to the list, or
69 return a pointer to an existing address space, in case inferiors
70 share an address space on this target system. */
71
72struct address_space *
73maybe_new_address_space (void)
74{
75 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
76
77 if (shared_aspace)
78 {
79 /* Just return the first in the list. */
80 return program_spaces->aspace;
81 }
82
83 return new_address_space ();
84}
85
86static void
87free_address_space (struct address_space *aspace)
88{
89 xfree (aspace);
90}
91
c0694254
PA
92int
93address_space_num (struct address_space *aspace)
94{
95 return aspace->num;
96}
97
6c95b8df
PA
98/* Start counting over from scratch. */
99
100static void
101init_address_spaces (void)
102{
103 highest_address_space_num = 0;
104}
105
106\f
107
108/* Adds a new empty program space to the program space list, and binds
109 it to ASPACE. Returns the pointer to the new object. */
110
111struct program_space *
112add_program_space (struct address_space *aspace)
113{
114 struct program_space *pspace;
115
116 pspace = XZALLOC (struct program_space);
117
118 pspace->num = ++last_program_space_num;
119 pspace->aspace = aspace;
120
121 program_space_alloc_data (pspace);
122
123 pspace->next = program_spaces;
124 program_spaces = pspace;
125
126 return pspace;
127}
128
129/* Releases program space PSPACE, and all its contents (shared
130 libraries, objfiles, and any other references to the PSPACE in
131 other modules). It is an internal error to call this when PSPACE
132 is the current program space, since there should always be a
133 program space. */
134
135static void
136release_program_space (struct program_space *pspace)
137{
138 struct cleanup *old_chain = save_current_program_space ();
139
140 gdb_assert (pspace != current_program_space);
141
142 set_current_program_space (pspace);
143
144 breakpoint_program_space_exit (pspace);
145 no_shared_libraries (NULL, 0);
146 exec_close ();
147 free_all_objfiles ();
148 if (!gdbarch_has_shared_address_space (target_gdbarch))
149 free_address_space (pspace->aspace);
150 resize_section_table (&pspace->target_sections,
151 -resize_section_table (&pspace->target_sections, 0));
152 /* Discard any data modules have associated with the PSPACE. */
153 program_space_free_data (pspace);
154 xfree (pspace);
155
156 do_cleanups (old_chain);
157}
158
159/* Unlinks PSPACE from the pspace list, and releases it. */
160
161void
162remove_program_space (struct program_space *pspace)
163{
164 struct program_space *ss, **ss_link;
165
166 ss = program_spaces;
167 ss_link = &program_spaces;
168 while (ss)
169 {
170 if (ss != pspace)
171 {
172 ss_link = &ss->next;
173 ss = *ss_link;
174 continue;
175 }
176
177 *ss_link = ss->next;
178 release_program_space (ss);
179 ss = *ss_link;
180 }
181}
182
183/* Copies program space SRC to DEST. Copies the main executable file,
184 and the main symbol file. Returns DEST. */
185
186struct program_space *
187clone_program_space (struct program_space *dest, struct program_space *src)
188{
189 struct program_space *new_pspace;
190 struct cleanup *old_chain;
191
192 old_chain = save_current_program_space ();
193
194 set_current_program_space (dest);
195
196 if (src->ebfd != NULL)
197 exec_file_attach (bfd_get_filename (src->ebfd), 0);
198
199 if (src->symfile_object_file != NULL)
200 symbol_file_add_main (src->symfile_object_file->name, 0);
201
202 do_cleanups (old_chain);
203 return dest;
204}
205
206/* Sets PSPACE as the current program space. It is the caller's
207 responsibility to make sure that the currently selected
208 inferior/thread matches the selected program space. */
209
210void
211set_current_program_space (struct program_space *pspace)
212{
213 if (current_program_space == pspace)
214 return;
215
216 gdb_assert (pspace != NULL);
217
218 current_program_space = pspace;
219
220 /* Different symbols change our view of the frame chain. */
221 reinit_frame_cache ();
222}
223
224/* A cleanups callback, helper for save_current_program_space
225 below. */
226
227static void
228restore_program_space (void *arg)
229{
230 struct program_space *saved_pspace = arg;
231 set_current_program_space (saved_pspace);
232}
233
234/* Save the current program space so that it may be restored by a later
235 call to do_cleanups. Returns the struct cleanup pointer needed for
236 later doing the cleanup. */
237
238struct cleanup *
239save_current_program_space (void)
240{
241 struct cleanup *old_chain = make_cleanup (restore_program_space,
242 current_program_space);
243 return old_chain;
244}
245
6c95b8df
PA
246/* Returns true iff there's no inferior bound to PSPACE. */
247
248static int
249pspace_empty_p (struct program_space *pspace)
250{
251 struct inferior *inf;
252
253 if (find_inferior_for_program_space (pspace) != NULL)
254 return 0;
255
256 return 1;
257}
258
259/* Prune away automatically added program spaces that aren't required
260 anymore. */
261
262void
263prune_program_spaces (void)
264{
265 struct program_space *ss, **ss_link;
266 struct program_space *current = current_program_space;
267
268 ss = program_spaces;
269 ss_link = &program_spaces;
270 while (ss)
271 {
272 if (ss == current || !pspace_empty_p (ss))
273 {
274 ss_link = &ss->next;
275 ss = *ss_link;
276 continue;
277 }
278
279 *ss_link = ss->next;
280 release_program_space (ss);
281 ss = *ss_link;
282 }
283}
284
285/* Prints the list of program spaces and their details on UIOUT. If
286 REQUESTED is not -1, it's the ID of the pspace that should be
287 printed. Otherwise, all spaces are printed. */
288
289static void
290print_program_space (struct ui_out *uiout, int requested)
291{
292 struct program_space *pspace;
293 int count = 0;
294 struct cleanup *old_chain;
295
296 /* Might as well prune away unneeded ones, so the user doesn't even
297 seem them. */
298 prune_program_spaces ();
299
300 /* Compute number of pspaces we will print. */
301 ALL_PSPACES (pspace)
302 {
303 if (requested != -1 && pspace->num != requested)
304 continue;
305
306 ++count;
307 }
308
309 /* There should always be at least one. */
310 gdb_assert (count > 0);
311
312 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
313 ui_out_table_header (uiout, 1, ui_left, "current", "");
314 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
315 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
316 ui_out_table_body (uiout);
317
318 ALL_PSPACES (pspace)
319 {
320 struct cleanup *chain2;
321 struct inferior *inf;
322 int printed_header;
323
324 if (requested != -1 && requested != pspace->num)
325 continue;
326
327 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
328
329 if (pspace == current_program_space)
330 ui_out_field_string (uiout, "current", "*");
331 else
332 ui_out_field_skip (uiout, "current");
333
334 ui_out_field_int (uiout, "id", pspace->num);
335
336 if (pspace->ebfd)
337 ui_out_field_string (uiout, "exec",
338 bfd_get_filename (pspace->ebfd));
339 else
340 ui_out_field_skip (uiout, "exec");
341
342 /* Print extra info that doesn't really fit in tabular form.
343 Currently, we print the list of inferiors bound to a pspace.
344 There can be more than one inferior bound to the same pspace,
345 e.g., both parent/child inferiors in a vfork, or, on targets
346 that share pspaces between inferiors. */
347 printed_header = 0;
348 for (inf = inferior_list; inf; inf = inf->next)
349 if (inf->pspace == pspace)
350 {
351 if (!printed_header)
352 {
353 printed_header = 1;
354 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
355 inf->num,
356 target_pid_to_str (pid_to_ptid (inf->pid)));
357 }
358 else
359 printf_filtered (", ID %d (%s)",
360 inf->num,
361 target_pid_to_str (pid_to_ptid (inf->pid)));
362 }
363
364 ui_out_text (uiout, "\n");
365 do_cleanups (chain2);
366 }
367
368 do_cleanups (old_chain);
369}
370
371/* Boolean test for an already-known program space id. */
372
373static int
374valid_program_space_id (int num)
375{
376 struct program_space *pspace;
377
378 ALL_PSPACES (pspace)
379 if (pspace->num == num)
380 return 1;
381
382 return 0;
383}
384
385/* If ARGS is NULL or empty, print information about all program
386 spaces. Otherwise, ARGS is a text representation of a LONG
387 indicating which the program space to print information about. */
388
389static void
390maintenance_info_program_spaces_command (char *args, int from_tty)
391{
392 int requested = -1;
393
394 if (args && *args)
395 {
396 requested = parse_and_eval_long (args);
397 if (!valid_program_space_id (requested))
398 error (_("program space ID %d not known."), requested);
399 }
400
401 print_program_space (uiout, requested);
402}
403
404/* Simply returns the count of program spaces. */
405
406int
407number_of_program_spaces (void)
408{
409 struct program_space *pspace;
410 int count = 0;
411
412 ALL_PSPACES (pspace)
413 count++;
414
415 return count;
416}
417
418/* Update all program spaces matching to address spaces. The user may
419 have created several program spaces, and loaded executables into
420 them before connecting to the target interface that will create the
421 inferiors. All that happens before GDB has a chance to know if the
422 inferiors will share an address space or not. Call this after
423 having connected to the target interface and having fetched the
424 target description, to fixup the program/address spaces mappings.
425
426 It is assumed that there are no bound inferiors yet, otherwise,
427 they'd be left with stale referenced to released aspaces. */
428
429void
430update_address_spaces (void)
431{
432 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
433 struct address_space *aspace = NULL;
434 struct program_space *pspace;
435
436 init_address_spaces ();
437
438 ALL_PSPACES (pspace)
439 {
440 free_address_space (pspace->aspace);
441
442 if (shared_aspace)
443 {
444 if (aspace == NULL)
445 aspace = new_address_space ();
446 pspace->aspace = aspace;
447 }
448 else
449 pspace->aspace = new_address_space ();
450 }
451}
452
453/* Save the current program space so that it may be restored by a later
454 call to do_cleanups. Returns the struct cleanup pointer needed for
455 later doing the cleanup. */
456
457struct cleanup *
458save_current_space_and_thread (void)
459{
460 struct cleanup *old_chain;
461
462 /* If restoring to null thread, we need to restore the pspace as
463 well, hence, we need to save the current program space first. */
464 old_chain = save_current_program_space ();
465 save_current_inferior ();
466 make_cleanup_restore_current_thread ();
467
468 return old_chain;
469}
470
471/* Switches full context to program space PSPACE. Switches to the
472 first thread found bound to PSPACE. */
473
474void
475switch_to_program_space_and_thread (struct program_space *pspace)
476{
477 struct inferior *inf;
478
479 inf = find_inferior_for_program_space (pspace);
480 if (inf != NULL)
481 {
482 struct thread_info *tp;
483
484 tp = any_live_thread_of_process (inf->pid);
485 if (tp != NULL)
486 {
487 switch_to_thread (tp->ptid);
488 /* Switching thread switches pspace implicitly. We're
489 done. */
490 return;
491 }
492 }
493
494 switch_to_thread (null_ptid);
495 set_current_program_space (pspace);
496}
497
498\f
499
500/* Keep a registry of per-program_space data-pointers required by other GDB
501 modules. */
502
503struct program_space_data
504{
505 unsigned index;
506 void (*cleanup) (struct program_space *, void *);
507};
508
509struct program_space_data_registration
510{
511 struct program_space_data *data;
512 struct program_space_data_registration *next;
513};
514
515struct program_space_data_registry
516{
517 struct program_space_data_registration *registrations;
518 unsigned num_registrations;
519};
520
521static struct program_space_data_registry program_space_data_registry
522 = { NULL, 0 };
523
524const struct program_space_data *
525register_program_space_data_with_cleanup
526 (void (*cleanup) (struct program_space *, void *))
527{
528 struct program_space_data_registration **curr;
529
530 /* Append new registration. */
531 for (curr = &program_space_data_registry.registrations;
532 *curr != NULL; curr = &(*curr)->next);
533
534 *curr = XMALLOC (struct program_space_data_registration);
535 (*curr)->next = NULL;
536 (*curr)->data = XMALLOC (struct program_space_data);
537 (*curr)->data->index = program_space_data_registry.num_registrations++;
538 (*curr)->data->cleanup = cleanup;
539
540 return (*curr)->data;
541}
542
543const struct program_space_data *
544register_program_space_data (void)
545{
546 return register_program_space_data_with_cleanup (NULL);
547}
548
549static void
550program_space_alloc_data (struct program_space *pspace)
551{
552 gdb_assert (pspace->data == NULL);
553 pspace->num_data = program_space_data_registry.num_registrations;
554 pspace->data = XCALLOC (pspace->num_data, void *);
555}
556
557static void
558program_space_free_data (struct program_space *pspace)
559{
560 gdb_assert (pspace->data != NULL);
561 clear_program_space_data (pspace);
562 xfree (pspace->data);
563 pspace->data = NULL;
564}
565
566void
567clear_program_space_data (struct program_space *pspace)
568{
569 struct program_space_data_registration *registration;
570 int i;
571
572 gdb_assert (pspace->data != NULL);
573
574 for (registration = program_space_data_registry.registrations, i = 0;
575 i < pspace->num_data;
576 registration = registration->next, i++)
577 if (pspace->data[i] != NULL && registration->data->cleanup)
578 registration->data->cleanup (pspace, pspace->data[i]);
579
580 memset (pspace->data, 0, pspace->num_data * sizeof (void *));
581}
582
583void
584set_program_space_data (struct program_space *pspace,
585 const struct program_space_data *data,
586 void *value)
587{
588 gdb_assert (data->index < pspace->num_data);
589 pspace->data[data->index] = value;
590}
591
592void *
593program_space_data (struct program_space *pspace, const struct program_space_data *data)
594{
595 gdb_assert (data->index < pspace->num_data);
596 return pspace->data[data->index];
597}
598
599\f
600
601void
602initialize_progspace (void)
603{
604 add_cmd ("program-spaces", class_maintenance,
605 maintenance_info_program_spaces_command, _("\
606Info about currently known program spaces."),
607 &maintenanceinfolist);
608
609 /* There's always one program space. Note that this function isn't
610 an automatic _initialize_foo function, since other
611 _initialize_foo routines may need to install their per-pspace
612 data keys. We can only allocate a progspace when all those
613 modules have done that. Do this before
614 initialize_current_architecture, because that accesses exec_bfd,
615 which in turn dereferences current_program_space. */
616 current_program_space = add_program_space (new_address_space ());
617}