]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/progspace.c
* elf32-rx.c (rx_table_map): Use BFD_VMA_FMT for portability.
[thirdparty/binutils-gdb.git] / gdb / progspace.c
CommitLineData
6c95b8df
PA
1/* Program and address space management, for GDB, the GNU debugger.
2
ecd75fc8 3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
6c95b8df
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbcmd.h"
22#include "objfiles.h"
23#include "arch-utils.h"
24#include "gdbcore.h"
25#include "solib.h"
26#include "gdbthread.h"
27
28/* The last program space number assigned. */
29int last_program_space_num = 0;
30
31/* The head of the program spaces list. */
32struct program_space *program_spaces;
33
34/* Pointer to the current program space. */
35struct program_space *current_program_space;
36
37/* The last address space number assigned. */
38static int highest_address_space_num;
39
8e260fc0
TT
40\f
41
42/* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
6b81941e 45DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
6c95b8df 46
3a8356ff
YQ
47/* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
6c95b8df
PA
49 space. */
50
51struct address_space
52{
53 int num;
3a8356ff
YQ
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
6c95b8df
PA
57};
58
3a8356ff
YQ
59/* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64\f
65
6c95b8df
PA
66/* Create a new address space object, and add it to the list. */
67
68struct address_space *
69new_address_space (void)
70{
71 struct address_space *aspace;
72
41bf6aca 73 aspace = XCNEW (struct address_space);
6c95b8df 74 aspace->num = ++highest_address_space_num;
3a8356ff 75 address_space_alloc_data (aspace);
6c95b8df
PA
76
77 return aspace;
78}
79
80/* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84struct address_space *
85maybe_new_address_space (void)
86{
f5656ead 87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
6c95b8df
PA
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96}
97
98static void
99free_address_space (struct address_space *aspace)
100{
3a8356ff 101 address_space_free_data (aspace);
6c95b8df
PA
102 xfree (aspace);
103}
104
c0694254
PA
105int
106address_space_num (struct address_space *aspace)
107{
108 return aspace->num;
109}
110
6c95b8df
PA
111/* Start counting over from scratch. */
112
113static void
114init_address_spaces (void)
115{
116 highest_address_space_num = 0;
117}
118
119\f
120
121/* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124struct program_space *
125add_program_space (struct address_space *aspace)
126{
127 struct program_space *pspace;
128
41bf6aca 129 pspace = XCNEW (struct program_space);
6c95b8df
PA
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 pspace->next = program_spaces;
137 program_spaces = pspace;
138
139 return pspace;
140}
141
142/* Releases program space PSPACE, and all its contents (shared
143 libraries, objfiles, and any other references to the PSPACE in
144 other modules). It is an internal error to call this when PSPACE
145 is the current program space, since there should always be a
146 program space. */
147
148static void
149release_program_space (struct program_space *pspace)
150{
151 struct cleanup *old_chain = save_current_program_space ();
152
153 gdb_assert (pspace != current_program_space);
154
155 set_current_program_space (pspace);
156
157 breakpoint_program_space_exit (pspace);
158 no_shared_libraries (NULL, 0);
159 exec_close ();
160 free_all_objfiles ();
f5656ead 161 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
6c95b8df
PA
162 free_address_space (pspace->aspace);
163 resize_section_table (&pspace->target_sections,
164 -resize_section_table (&pspace->target_sections, 0));
edcc5120 165 clear_program_space_solib_cache (pspace);
6c95b8df
PA
166 /* Discard any data modules have associated with the PSPACE. */
167 program_space_free_data (pspace);
168 xfree (pspace);
169
170 do_cleanups (old_chain);
171}
172
6c95b8df
PA
173/* Copies program space SRC to DEST. Copies the main executable file,
174 and the main symbol file. Returns DEST. */
175
176struct program_space *
177clone_program_space (struct program_space *dest, struct program_space *src)
178{
6c95b8df
PA
179 struct cleanup *old_chain;
180
181 old_chain = save_current_program_space ();
182
183 set_current_program_space (dest);
184
1f0c4988
JK
185 if (src->pspace_exec_filename != NULL)
186 exec_file_attach (src->pspace_exec_filename, 0);
6c95b8df
PA
187
188 if (src->symfile_object_file != NULL)
4262abfb 189 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
6c95b8df
PA
190
191 do_cleanups (old_chain);
192 return dest;
193}
194
195/* Sets PSPACE as the current program space. It is the caller's
196 responsibility to make sure that the currently selected
197 inferior/thread matches the selected program space. */
198
199void
200set_current_program_space (struct program_space *pspace)
201{
202 if (current_program_space == pspace)
203 return;
204
205 gdb_assert (pspace != NULL);
206
207 current_program_space = pspace;
208
209 /* Different symbols change our view of the frame chain. */
210 reinit_frame_cache ();
211}
212
213/* A cleanups callback, helper for save_current_program_space
214 below. */
215
216static void
217restore_program_space (void *arg)
218{
219 struct program_space *saved_pspace = arg;
ad3bbd48 220
6c95b8df
PA
221 set_current_program_space (saved_pspace);
222}
223
224/* Save the current program space so that it may be restored by a later
225 call to do_cleanups. Returns the struct cleanup pointer needed for
226 later doing the cleanup. */
227
228struct cleanup *
229save_current_program_space (void)
230{
231 struct cleanup *old_chain = make_cleanup (restore_program_space,
232 current_program_space);
ad3bbd48 233
6c95b8df
PA
234 return old_chain;
235}
236
6c95b8df
PA
237/* Returns true iff there's no inferior bound to PSPACE. */
238
239static int
240pspace_empty_p (struct program_space *pspace)
241{
6c95b8df
PA
242 if (find_inferior_for_program_space (pspace) != NULL)
243 return 0;
244
245 return 1;
246}
247
248/* Prune away automatically added program spaces that aren't required
249 anymore. */
250
251void
252prune_program_spaces (void)
253{
254 struct program_space *ss, **ss_link;
255 struct program_space *current = current_program_space;
256
257 ss = program_spaces;
258 ss_link = &program_spaces;
259 while (ss)
260 {
261 if (ss == current || !pspace_empty_p (ss))
262 {
263 ss_link = &ss->next;
264 ss = *ss_link;
265 continue;
266 }
267
268 *ss_link = ss->next;
269 release_program_space (ss);
270 ss = *ss_link;
271 }
272}
273
274/* Prints the list of program spaces and their details on UIOUT. If
275 REQUESTED is not -1, it's the ID of the pspace that should be
276 printed. Otherwise, all spaces are printed. */
277
278static void
279print_program_space (struct ui_out *uiout, int requested)
280{
281 struct program_space *pspace;
282 int count = 0;
283 struct cleanup *old_chain;
284
285 /* Might as well prune away unneeded ones, so the user doesn't even
286 seem them. */
287 prune_program_spaces ();
288
289 /* Compute number of pspaces we will print. */
290 ALL_PSPACES (pspace)
291 {
292 if (requested != -1 && pspace->num != requested)
293 continue;
294
295 ++count;
296 }
297
298 /* There should always be at least one. */
299 gdb_assert (count > 0);
300
301 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
302 ui_out_table_header (uiout, 1, ui_left, "current", "");
303 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
304 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
305 ui_out_table_body (uiout);
306
307 ALL_PSPACES (pspace)
308 {
309 struct cleanup *chain2;
310 struct inferior *inf;
311 int printed_header;
312
313 if (requested != -1 && requested != pspace->num)
314 continue;
315
316 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
317
318 if (pspace == current_program_space)
319 ui_out_field_string (uiout, "current", "*");
320 else
321 ui_out_field_skip (uiout, "current");
322
323 ui_out_field_int (uiout, "id", pspace->num);
324
1f0c4988
JK
325 if (pspace->pspace_exec_filename)
326 ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename);
6c95b8df
PA
327 else
328 ui_out_field_skip (uiout, "exec");
329
330 /* Print extra info that doesn't really fit in tabular form.
331 Currently, we print the list of inferiors bound to a pspace.
332 There can be more than one inferior bound to the same pspace,
333 e.g., both parent/child inferiors in a vfork, or, on targets
334 that share pspaces between inferiors. */
335 printed_header = 0;
336 for (inf = inferior_list; inf; inf = inf->next)
337 if (inf->pspace == pspace)
338 {
339 if (!printed_header)
340 {
341 printed_header = 1;
342 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
343 inf->num,
344 target_pid_to_str (pid_to_ptid (inf->pid)));
345 }
346 else
347 printf_filtered (", ID %d (%s)",
348 inf->num,
349 target_pid_to_str (pid_to_ptid (inf->pid)));
350 }
351
352 ui_out_text (uiout, "\n");
353 do_cleanups (chain2);
354 }
355
356 do_cleanups (old_chain);
357}
358
359/* Boolean test for an already-known program space id. */
360
361static int
362valid_program_space_id (int num)
363{
364 struct program_space *pspace;
365
366 ALL_PSPACES (pspace)
367 if (pspace->num == num)
368 return 1;
369
370 return 0;
371}
372
373/* If ARGS is NULL or empty, print information about all program
374 spaces. Otherwise, ARGS is a text representation of a LONG
375 indicating which the program space to print information about. */
376
377static void
378maintenance_info_program_spaces_command (char *args, int from_tty)
379{
380 int requested = -1;
381
382 if (args && *args)
383 {
384 requested = parse_and_eval_long (args);
385 if (!valid_program_space_id (requested))
386 error (_("program space ID %d not known."), requested);
387 }
388
79a45e25 389 print_program_space (current_uiout, requested);
6c95b8df
PA
390}
391
392/* Simply returns the count of program spaces. */
393
394int
395number_of_program_spaces (void)
396{
397 struct program_space *pspace;
398 int count = 0;
399
400 ALL_PSPACES (pspace)
401 count++;
402
403 return count;
404}
405
406/* Update all program spaces matching to address spaces. The user may
407 have created several program spaces, and loaded executables into
408 them before connecting to the target interface that will create the
409 inferiors. All that happens before GDB has a chance to know if the
410 inferiors will share an address space or not. Call this after
411 having connected to the target interface and having fetched the
412 target description, to fixup the program/address spaces mappings.
413
414 It is assumed that there are no bound inferiors yet, otherwise,
415 they'd be left with stale referenced to released aspaces. */
416
417void
418update_address_spaces (void)
419{
f5656ead 420 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
6c95b8df 421 struct program_space *pspace;
7e9af34a 422 struct inferior *inf;
6c95b8df
PA
423
424 init_address_spaces ();
425
7e9af34a 426 if (shared_aspace)
6c95b8df 427 {
7e9af34a 428 struct address_space *aspace = new_address_space ();
ad3bbd48 429
7e9af34a
DJ
430 free_address_space (current_program_space->aspace);
431 ALL_PSPACES (pspace)
432 pspace->aspace = aspace;
6c95b8df 433 }
7e9af34a
DJ
434 else
435 ALL_PSPACES (pspace)
436 {
437 free_address_space (pspace->aspace);
438 pspace->aspace = new_address_space ();
439 }
440
441 for (inf = inferior_list; inf; inf = inf->next)
f5656ead 442 if (gdbarch_has_global_solist (target_gdbarch ()))
7e9af34a
DJ
443 inf->aspace = maybe_new_address_space ();
444 else
445 inf->aspace = inf->pspace->aspace;
6c95b8df
PA
446}
447
448/* Save the current program space so that it may be restored by a later
449 call to do_cleanups. Returns the struct cleanup pointer needed for
450 later doing the cleanup. */
451
452struct cleanup *
453save_current_space_and_thread (void)
454{
455 struct cleanup *old_chain;
456
457 /* If restoring to null thread, we need to restore the pspace as
458 well, hence, we need to save the current program space first. */
459 old_chain = save_current_program_space ();
23a44de8
DE
460 /* There's no need to save the current inferior here.
461 That is handled by make_cleanup_restore_current_thread. */
6c95b8df
PA
462 make_cleanup_restore_current_thread ();
463
464 return old_chain;
465}
466
467/* Switches full context to program space PSPACE. Switches to the
468 first thread found bound to PSPACE. */
469
470void
471switch_to_program_space_and_thread (struct program_space *pspace)
472{
473 struct inferior *inf;
474
475 inf = find_inferior_for_program_space (pspace);
476 if (inf != NULL)
477 {
478 struct thread_info *tp;
479
480 tp = any_live_thread_of_process (inf->pid);
481 if (tp != NULL)
482 {
483 switch_to_thread (tp->ptid);
484 /* Switching thread switches pspace implicitly. We're
485 done. */
486 return;
487 }
488 }
489
490 switch_to_thread (null_ptid);
491 set_current_program_space (pspace);
492}
493
494\f
495
edcc5120
TT
496/* See progspace.h. */
497
498void
499clear_program_space_solib_cache (struct program_space *pspace)
500{
edcc5120 501 VEC_free (so_list_ptr, pspace->added_solibs);
e4ab2fad
JK
502
503 free_char_ptr_vec (pspace->deleted_solibs);
504 pspace->deleted_solibs = NULL;
edcc5120
TT
505}
506
507\f
508
6c95b8df
PA
509void
510initialize_progspace (void)
511{
512 add_cmd ("program-spaces", class_maintenance,
3e43a32a
MS
513 maintenance_info_program_spaces_command,
514 _("Info about currently known program spaces."),
6c95b8df
PA
515 &maintenanceinfolist);
516
517 /* There's always one program space. Note that this function isn't
518 an automatic _initialize_foo function, since other
519 _initialize_foo routines may need to install their per-pspace
520 data keys. We can only allocate a progspace when all those
521 modules have done that. Do this before
522 initialize_current_architecture, because that accesses exec_bfd,
523 which in turn dereferences current_program_space. */
524 current_program_space = add_program_space (new_address_space ());
525}