]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/progspace.h
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / progspace.h
CommitLineData
6c95b8df
PA
1/* Program and address space management, for GDB, the GNU debugger.
2
3666a048 3 Copyright (C) 2009-2021 Free Software Foundation, Inc.
6c95b8df
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#ifndef PROGSPACE_H
22#define PROGSPACE_H
23
24#include "target.h"
06333fea 25#include "gdb_bfd.h"
268a13a5 26#include "gdbsupport/gdb_vecs.h"
8e260fc0 27#include "registry.h"
268a13a5
TT
28#include "gdbsupport/next-iterator.h"
29#include "gdbsupport/safe-iterator.h"
d0801dd8 30#include <list>
94c93c35 31#include <vector>
6c95b8df
PA
32
33struct target_ops;
34struct bfd;
35struct objfile;
36struct inferior;
37struct exec;
38struct address_space;
39struct program_space_data;
b26dfc9a 40struct address_space_data;
a1fd1ac9 41struct so_list;
6c95b8df 42
7d7167ce
TT
43typedef std::list<std::shared_ptr<objfile>> objfile_list;
44
45/* An iterator that wraps an iterator over std::shared_ptr<objfile>,
46 and dereferences the returned object. This is useful for iterating
47 over a list of shared pointers and returning raw pointers -- which
48 helped avoid touching a lot of code when changing how objfiles are
49 managed. */
50
51class unwrapping_objfile_iterator
52{
53public:
54
55 typedef unwrapping_objfile_iterator self_type;
56 typedef typename ::objfile *value_type;
57 typedef typename ::objfile &reference;
58 typedef typename ::objfile **pointer;
59 typedef typename objfile_list::iterator::iterator_category iterator_category;
60 typedef typename objfile_list::iterator::difference_type difference_type;
61
62 unwrapping_objfile_iterator (const objfile_list::iterator &iter)
63 : m_iter (iter)
64 {
65 }
66
67 objfile *operator* () const
68 {
69 return m_iter->get ();
70 }
71
72 unwrapping_objfile_iterator operator++ ()
73 {
74 ++m_iter;
75 return *this;
76 }
77
78 bool operator!= (const unwrapping_objfile_iterator &other) const
79 {
80 return m_iter != other.m_iter;
81 }
82
83private:
84
85 /* The underlying iterator. */
86 objfile_list::iterator m_iter;
87};
88
89
90/* A range that returns unwrapping_objfile_iterators. */
91
92struct unwrapping_objfile_range
93{
94 typedef unwrapping_objfile_iterator iterator;
95
96 unwrapping_objfile_range (objfile_list &ol)
97 : m_list (ol)
98 {
99 }
100
101 iterator begin () const
102 {
103 return iterator (m_list.begin ());
104 }
105
106 iterator end () const
107 {
108 return iterator (m_list.end ());
109 }
110
111private:
112
113 objfile_list &m_list;
114};
115
6c95b8df
PA
116/* A program space represents a symbolic view of an address space.
117 Roughly speaking, it holds all the data associated with a
118 non-running-yet program (main executable, main symbols), and when
119 an inferior is running and is bound to it, includes the list of its
120 mapped in shared libraries.
121
122 In the traditional debugging scenario, there's a 1-1 correspondence
123 among program spaces, inferiors and address spaces, like so:
124
125 pspace1 (prog1) <--> inf1(pid1) <--> aspace1
126
127 In the case of debugging more than one traditional unix process or
128 program, we still have:
129
130 |-----------------+------------+---------|
131 | pspace1 (prog1) | inf1(pid1) | aspace1 |
132 |----------------------------------------|
133 | pspace2 (prog1) | no inf yet | aspace2 |
134 |-----------------+------------+---------|
135 | pspace3 (prog2) | inf2(pid2) | aspace3 |
136 |-----------------+------------+---------|
137
138 In the former example, if inf1 forks (and GDB stays attached to
139 both processes), the new child will have its own program and
140 address spaces. Like so:
141
142 |-----------------+------------+---------|
143 | pspace1 (prog1) | inf1(pid1) | aspace1 |
144 |-----------------+------------+---------|
145 | pspace2 (prog1) | inf2(pid2) | aspace2 |
146 |-----------------+------------+---------|
147
148 However, had inf1 from the latter case vforked instead, it would
149 share the program and address spaces with its parent, until it
150 execs or exits, like so:
151
152 |-----------------+------------+---------|
153 | pspace1 (prog1) | inf1(pid1) | aspace1 |
154 | | inf2(pid2) | |
155 |-----------------+------------+---------|
156
157 When the vfork child execs, it is finally given new program and
158 address spaces.
159
160 |-----------------+------------+---------|
161 | pspace1 (prog1) | inf1(pid1) | aspace1 |
162 |-----------------+------------+---------|
163 | pspace2 (prog1) | inf2(pid2) | aspace2 |
164 |-----------------+------------+---------|
165
166 There are targets where the OS (if any) doesn't provide memory
167 management or VM protection, where all inferiors share the same
168 address space --- e.g. uClinux. GDB models this by having all
169 inferiors share the same address space, but, giving each its own
170 program space, like so:
171
172 |-----------------+------------+---------|
173 | pspace1 (prog1) | inf1(pid1) | |
174 |-----------------+------------+ |
175 | pspace2 (prog1) | inf2(pid2) | aspace1 |
176 |-----------------+------------+ |
177 | pspace3 (prog2) | inf3(pid3) | |
178 |-----------------+------------+---------|
179
180 The address space sharing matters for run control and breakpoints
181 management. E.g., did we just hit a known breakpoint that we need
182 to step over? Is this breakpoint a duplicate of this other one, or
183 do I need to insert a trap?
184
185 Then, there are targets where all symbols look the same for all
186 inferiors, although each has its own address space, as e.g.,
187 Ericsson DICOS. In such case, the model is:
188
189 |---------+------------+---------|
190 | | inf1(pid1) | aspace1 |
191 | +------------+---------|
192 | pspace | inf2(pid2) | aspace2 |
193 | +------------+---------|
194 | | inf3(pid3) | aspace3 |
195 |---------+------------+---------|
196
197 Note however, that the DICOS debug API takes care of making GDB
198 believe that breakpoints are "global". That is, although each
199 process does have its own private copy of data symbols (just like a
200 bunch of forks), to the breakpoints module, all processes share a
201 single address space, so all breakpoints set at the same address
202 are duplicates of each other, even breakpoints set in the data
203 space (e.g., call dummy breakpoints placed on stack). This allows
204 a simplification in the spaces implementation: we avoid caring for
205 a many-many links between address and program spaces. Either
206 there's a single address space bound to the program space
207 (traditional unix/uClinux), or, in the DICOS case, the address
208 space bound to the program space is mostly ignored. */
209
210/* The program space structure. */
211
212struct program_space
564b1e3f 213{
381ce63f
PA
214 /* Constructs a new empty program space, binds it to ASPACE, and
215 adds it to the program space list. */
216 explicit program_space (address_space *aspace);
217
218 /* Releases a program space, and all its contents (shared libraries,
219 objfiles, and any other references to the program space in other
220 modules). It is an internal error to call this when the program
221 space is the current program space, since there should always be
222 a program space. */
564b1e3f
SM
223 ~program_space ();
224
7d7167ce 225 typedef unwrapping_objfile_range objfiles_range;
2030c079 226
30baf67b 227 /* Return an iterable object that can be used to iterate over all
2030c079
TT
228 objfiles. The basic use is in a foreach, like:
229
230 for (objfile *objf : pspace->objfiles ()) { ... } */
7d7167ce 231 objfiles_range objfiles ()
2030c079 232 {
7d7167ce 233 return unwrapping_objfile_range (objfiles_list);
2030c079
TT
234 }
235
d0801dd8 236 typedef basic_safe_range<objfiles_range> objfiles_safe_range;
7e955d83
TT
237
238 /* An iterable object that can be used to iterate over all objfiles.
239 The basic use is in a foreach, like:
240
241 for (objfile *objf : pspace->objfiles_safe ()) { ... }
242
243 This variant uses a basic_safe_iterator so that objfiles can be
244 deleted during iteration. */
245 objfiles_safe_range objfiles_safe ()
246 {
d0801dd8 247 return objfiles_safe_range (objfiles_list);
7e955d83
TT
248 }
249
7cac64af
TT
250 /* Add OBJFILE to the list of objfiles, putting it just before
251 BEFORE. If BEFORE is nullptr, it will go at the end of the
252 list. */
7d7167ce
TT
253 void add_objfile (std::shared_ptr<objfile> &&objfile,
254 struct objfile *before);
7cac64af 255
23452926
TT
256 /* Remove OBJFILE from the list of objfiles. */
257 void remove_objfile (struct objfile *objfile);
7cac64af 258
deeafabb
TT
259 /* Return true if there is more than one object file loaded; false
260 otherwise. */
d0801dd8
TT
261 bool multi_objfile_p () const
262 {
263 return objfiles_list.size () > 1;
264 }
deeafabb 265
343cc952
TT
266 /* Free all the objfiles associated with this program space. */
267 void free_all_objfiles ();
268
a1fd1ac9
TT
269 /* Return a range adapter for iterating over all the solibs in this
270 program space. Use it like:
271
272 for (so_list *so : pspace->solibs ()) { ... } */
273 next_adapter<struct so_list> solibs () const;
274
8a4f1402
TT
275 /* Close and clear exec_bfd. If we end up with no target sections
276 to read memory from, this unpushes the exec_ops target. */
277 void exec_close ();
deeafabb 278
7e10abd1
TT
279 /* Return the exec BFD for this program space. */
280 bfd *exec_bfd () const
281 {
19f6550e 282 return ebfd.get ();
7e10abd1
TT
283 }
284
285 /* Set the exec BFD for this program space to ABFD. */
19f6550e 286 void set_exec_bfd (gdb_bfd_ref_ptr &&abfd)
7e10abd1 287 {
19f6550e 288 ebfd = std::move (abfd);
7e10abd1
TT
289 }
290
e39fb971
TT
291 /* Reset saved solib data at the start of an solib event. This lets
292 us properly collect the data when calling solib_add, so it can then
293 later be printed. */
294 void clear_solib_cache ();
295
004eecfd
TT
296 /* Returns true iff there's no inferior bound to this program
297 space. */
298 bool empty ();
299
2a3f84af
TT
300 /* Remove all target sections owned by OWNER. */
301 void remove_target_sections (void *owner);
302
3769e227
TT
303 /* Add the sections array defined by SECTIONS to the
304 current set of target sections. */
305 void add_target_sections (void *owner,
306 const target_section_table &sections);
307
d9eebde0
TT
308 /* Add the sections of OBJFILE to the current set of target
309 sections. They are given OBJFILE as the "owner". */
310 void add_target_sections (struct objfile *objfile);
311
564b1e3f
SM
312 /* Unique ID number. */
313 int num = 0;
314
315 /* The main executable loaded into this program space. This is
316 managed by the exec target. */
317
318 /* The BFD handle for the main executable. */
19f6550e 319 gdb_bfd_ref_ptr ebfd;
564b1e3f
SM
320 /* The last-modified time, from when the exec was brought in. */
321 long ebfd_mtime = 0;
322 /* Similar to bfd_get_filename (exec_bfd) but in original form given
c20cb686
TT
323 by user, without symbolic links and pathname resolved. It is not
324 NULL iff EBFD is not NULL. */
325 gdb::unique_xmalloc_ptr<char> exec_filename;
564b1e3f 326
e540a5a2 327 /* Binary file diddling handle for the core file. */
06333fea 328 gdb_bfd_ref_ptr cbfd;
e540a5a2 329
564b1e3f
SM
330 /* The address space attached to this program space. More than one
331 program space may be bound to the same address space. In the
332 traditional unix-like debugging scenario, this will usually
333 match the address space bound to the inferior, and is mostly
334 used by the breakpoints module for address matches. If the
335 target shares a program space for all inferiors and breakpoints
336 are global, then this field is ignored (we don't currently
337 support inferiors sharing a program space if the target doesn't
338 make breakpoints global). */
339 struct address_space *aspace = NULL;
340
341 /* True if this program space's section offsets don't yet represent
342 the final offsets of the "live" address space (that is, the
343 section addresses still require the relocation offsets to be
344 applied, and hence we can't trust the section addresses for
345 anything that pokes at live memory). E.g., for qOffsets
346 targets, or for PIE executables, until we connect and ask the
347 target for the final relocation offsets, the symbols we've used
348 to set breakpoints point at the wrong addresses. */
349 int executing_startup = 0;
350
351 /* True if no breakpoints should be inserted in this program
352 space. */
353 int breakpoints_not_allowed = 0;
354
355 /* The object file that the main symbol table was loaded from
356 (e.g. the argument to the "symbol-file" or "file" command). */
357 struct objfile *symfile_object_file = NULL;
358
d0801dd8 359 /* All known objfiles are kept in a linked list. */
7d7167ce 360 std::list<std::shared_ptr<objfile>> objfiles_list;
564b1e3f
SM
361
362 /* The set of target sections matching the sections mapped into
363 this program space. Managed by both exec_ops and solib.c. */
d7a78e5c 364 target_section_table target_sections;
564b1e3f
SM
365
366 /* List of shared objects mapped into this space. Managed by
367 solib.c. */
368 struct so_list *so_list = NULL;
369
370 /* Number of calls to solib_add. */
371 unsigned int solib_add_generation = 0;
372
373 /* When an solib is added, it is also added to this vector. This
374 is so we can properly report solib changes to the user. */
bcb430e4 375 std::vector<struct so_list *> added_solibs;
564b1e3f
SM
376
377 /* When an solib is removed, its name is added to this vector.
378 This is so we can properly report solib changes to the user. */
6fb16ce6 379 std::vector<std::string> deleted_solibs;
564b1e3f
SM
380
381 /* Per pspace data-pointers required by other GDB modules. */
382 REGISTRY_FIELDS {};
383};
6c95b8df 384
55b11ddf
PA
385/* An address space. It is used for comparing if
386 pspaces/inferior/threads see the same address space and for
387 associating caches to each address space. */
388struct address_space
389{
390 int num;
391
392 /* Per aspace data-pointers required by other GDB modules. */
393 REGISTRY_FIELDS;
394};
395
6c95b8df 396/* The list of all program spaces. There's always at least one. */
94c93c35 397extern std::vector<struct program_space *>program_spaces;
6c95b8df
PA
398
399/* The current program space. This is always non-null. */
400extern struct program_space *current_program_space;
401
6c95b8df
PA
402/* Copies program space SRC to DEST. Copies the main executable file,
403 and the main symbol file. Returns DEST. */
404extern struct program_space *clone_program_space (struct program_space *dest,
405 struct program_space *src);
406
6c95b8df
PA
407/* Sets PSPACE as the current program space. This is usually used
408 instead of set_current_space_and_thread when the current
409 thread/inferior is not important for the operations that follow.
410 E.g., when accessing the raw symbol tables. If memory access is
411 required, then you should use switch_to_program_space_and_thread.
412 Otherwise, it is the caller's responsibility to make sure that the
413 currently selected inferior/thread matches the selected program
414 space. */
415extern void set_current_program_space (struct program_space *pspace);
416
5ed8105e
PA
417/* Save/restore the current program space. */
418
419class scoped_restore_current_program_space
420{
421public:
422 scoped_restore_current_program_space ()
423 : m_saved_pspace (current_program_space)
424 {}
425
426 ~scoped_restore_current_program_space ()
427 { set_current_program_space (m_saved_pspace); }
428
d6541620 429 DISABLE_COPY_AND_ASSIGN (scoped_restore_current_program_space);
6c95b8df 430
5ed8105e
PA
431private:
432 program_space *m_saved_pspace;
433};
6c95b8df
PA
434
435/* Create a new address space object, and add it to the list. */
436extern struct address_space *new_address_space (void);
437
438/* Maybe create a new address space object, and add it to the list, or
439 return a pointer to an existing address space, in case inferiors
440 share an address space. */
441extern struct address_space *maybe_new_address_space (void);
442
c0694254
PA
443/* Returns the integer address space id of ASPACE. */
444extern int address_space_num (struct address_space *aspace);
445
6c95b8df
PA
446/* Update all program spaces matching to address spaces. The user may
447 have created several program spaces, and loaded executables into
448 them before connecting to the target interface that will create the
449 inferiors. All that happens before GDB has a chance to know if the
450 inferiors will share an address space or not. Call this after
451 having connected to the target interface and having fetched the
452 target description, to fixup the program/address spaces
453 mappings. */
454extern void update_address_spaces (void);
455
6c95b8df
PA
456/* Keep a registry of per-pspace data-pointers required by other GDB
457 modules. */
458
8e260fc0 459DECLARE_REGISTRY (program_space);
6c95b8df 460
3a8356ff
YQ
461/* Keep a registry of per-aspace data-pointers required by other GDB
462 modules. */
463
464DECLARE_REGISTRY (address_space);
465
6c95b8df 466#endif