]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh-tdep.c
Change "set debug symtab-create" to take a verbosity level.
[thirdparty/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
28e7fd62 3 Copyright (C) 1993-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
c906108c 35#include "gdb_string.h"
1c0159e0 36#include "gdb_assert.h"
b4a20239 37#include "arch-utils.h"
fb409745 38#include "floatformat.h"
4e052eda 39#include "regcache.h"
d16aafd8 40#include "doublest.h"
4be87837 41#include "osabi.h"
dda63807 42#include "reggroups.h"
c9ac0a72 43#include "regset.h"
cb2cf4ce 44#include "objfiles.h"
c906108c 45
ab3b8126 46#include "sh-tdep.h"
04dcf5fa 47#include "sh64-tdep.h"
ab3b8126 48
d658f924 49#include "elf-bfd.h"
1a8629c7
MS
50#include "solib-svr4.h"
51
55ff77ac 52/* sh flags */
283150cd 53#include "elf/sh.h"
fa8f86ff 54#include "dwarf2.h"
c378eb4e 55/* registers numbers shared with the simulator. */
1c922164 56#include "gdb/sim-sh.h"
283150cd 57
c055b101
CV
58/* List of "set sh ..." and "show sh ..." commands. */
59static struct cmd_list_element *setshcmdlist = NULL;
60static struct cmd_list_element *showshcmdlist = NULL;
61
62static const char sh_cc_gcc[] = "gcc";
63static const char sh_cc_renesas[] = "renesas";
40478521 64static const char *const sh_cc_enum[] = {
c055b101
CV
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68};
69
70static const char *sh_active_calling_convention = sh_cc_gcc;
71
da962468 72#define SH_NUM_REGS 67
88e04cc1 73
1c0159e0 74struct sh_frame_cache
cc17453a 75{
1c0159e0
CV
76 /* Base address. */
77 CORE_ADDR base;
78 LONGEST sp_offset;
79 CORE_ADDR pc;
80
c378eb4e 81 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
82 int uses_fp;
83
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
86 CORE_ADDR saved_sp;
63978407 87};
c906108c 88
c055b101
CV
89static int
90sh_is_renesas_calling_convention (struct type *func_type)
91{
ca193e27
TS
92 int val = 0;
93
94 if (func_type)
95 {
96 func_type = check_typedef (func_type);
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
100
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
103 val = 1;
104 }
105
106 if (sh_active_calling_convention == sh_cc_renesas)
107 val = 1;
108
109 return val;
c055b101
CV
110}
111
fa88f677 112static const char *
d93859e2 113sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 114{
617daa0e
CV
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
da962468 125 "", "", "", "", "", "", "", "",
cc17453a
EZ
126 };
127 if (reg_nr < 0)
128 return NULL;
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
130 return NULL;
131 return register_names[reg_nr];
132}
133
fa88f677 134static const char *
d93859e2 135sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 136{
617daa0e
CV
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
144 "ssr", "spc",
cc17453a
EZ
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 147 "", "", "", "", "", "", "", "",
cc17453a
EZ
148 };
149 if (reg_nr < 0)
150 return NULL;
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
152 return NULL;
153 return register_names[reg_nr];
154}
155
fa88f677 156static const char *
d93859e2 157sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 158{
617daa0e
CV
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 163 "fpul", "fpscr",
617daa0e
CV
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "ssr", "spc",
cc17453a
EZ
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 169 "", "", "", "", "", "", "", "",
cc17453a
EZ
170 };
171 if (reg_nr < 0)
172 return NULL;
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[reg_nr];
176}
177
2d188dd3 178static const char *
d93859e2 179sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 180{
617daa0e
CV
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 185 "fpul", "fpscr",
617daa0e
CV
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "",
2d188dd3
NC
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
da962468
CV
191 "", "", "", "", "", "", "", "",
192 };
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198}
199
200static const char *
d93859e2 201sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
202{
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "", "",
216 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 217 the bank register (63). */
da962468
CV
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
225 "",
226 /* 64 - 66 */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
229 "bank",
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
232 };
233 if (reg_nr < 0)
234 return NULL;
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
236 return NULL;
237 return register_names[reg_nr];
238}
239
240static const char *
d93859e2 241sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
242{
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 /* 16 - 22 */
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
249 /* 23, 24 */
250 "", "",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
254 /* 41, 42 */
255 "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 257 the bank register (63). */
da962468
CV
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
265 "",
266 /* 64 - 66 */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
269 "bank",
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
2d188dd3
NC
272 };
273 if (reg_nr < 0)
274 return NULL;
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
276 return NULL;
277 return register_names[reg_nr];
278}
279
fa88f677 280static const char *
d93859e2 281sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 282{
617daa0e
CV
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "", "dsr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
290 "", "",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
da962468 293 "", "", "", "", "", "", "", "",
cc17453a
EZ
294 };
295 if (reg_nr < 0)
296 return NULL;
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
298 return NULL;
299 return register_names[reg_nr];
300}
301
fa88f677 302static const char *
d93859e2 303sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 304{
617daa0e
CV
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "", "dsr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
312 "ssr", "spc",
313 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
da962468 316 "", "", "", "", "", "", "", "",
cc17453a
EZ
317 };
318 if (reg_nr < 0)
319 return NULL;
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
321 return NULL;
322 return register_names[reg_nr];
323}
324
fa88f677 325static const char *
d93859e2 326sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 327{
617daa0e 328 static char *register_names[] = {
a38d2a54 329 /* general registers 0-15 */
617daa0e
CV
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 332 /* 16 - 22 */
617daa0e 333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 334 /* 23, 24 */
53116e27 335 "fpul", "fpscr",
a38d2a54 336 /* floating point registers 25 - 40 */
617daa0e
CV
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 339 /* 41, 42 */
617daa0e 340 "ssr", "spc",
a38d2a54 341 /* bank 0 43 - 50 */
53116e27 342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 343 /* bank 1 51 - 58 */
53116e27 344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 345 /* 59 - 66 */
da962468 346 "", "", "", "", "", "", "", "",
c378eb4e 347 /* pseudo bank register. */
da962468 348 "",
a6521d9a 349 /* double precision (pseudo) 68 - 75 */
617daa0e 350 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a6521d9a 351 /* vectors (pseudo) 76 - 79 */
617daa0e 352 "fv0", "fv4", "fv8", "fv12",
a6521d9a
TS
353 /* FIXME: missing XF */
354 /* FIXME: missing XD */
53116e27
EZ
355 };
356 if (reg_nr < 0)
357 return NULL;
358 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
359 return NULL;
360 return register_names[reg_nr];
361}
362
474e5826 363static const char *
d93859e2 364sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
365{
366 static char *register_names[] = {
367 /* general registers 0-15 */
368 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
369 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
370 /* 16 - 22 */
371 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
372 /* 23, 24 */
373 "", "",
374 /* floating point registers 25 - 40 -- not for nofpu target */
375 "", "", "", "", "", "", "", "",
376 "", "", "", "", "", "", "", "",
377 /* 41, 42 */
378 "ssr", "spc",
379 /* bank 0 43 - 50 */
380 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
381 /* bank 1 51 - 58 */
382 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 383 /* 59 - 66 */
da962468 384 "", "", "", "", "", "", "", "",
c378eb4e 385 /* pseudo bank register. */
da962468 386 "",
a6521d9a 387 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
474e5826 388 "", "", "", "", "", "", "", "",
a6521d9a 389 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
474e5826
CV
390 "", "", "", "",
391 };
392 if (reg_nr < 0)
393 return NULL;
394 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
395 return NULL;
396 return register_names[reg_nr];
397}
398
399static const char *
d93859e2 400sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
401{
402 static char *register_names[] = {
403 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
404 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
405 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
406 "", "dsr",
407 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
408 "y0", "y1", "", "", "", "", "", "mod",
409 "ssr", "spc",
410 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
411 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
412 "", "", "", "", "", "", "", "",
da962468 413 "", "", "", "", "", "", "", "",
474e5826
CV
414 };
415 if (reg_nr < 0)
416 return NULL;
417 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
418 return NULL;
419 return register_names[reg_nr];
420}
421
3117ed25 422static const unsigned char *
67d57894 423sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
cc17453a 424{
c378eb4e 425 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
617daa0e
CV
426 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
427
bac718a6
UW
428 /* For remote stub targets, trapa #20 is used. */
429 if (strcmp (target_shortname, "remote") == 0)
430 {
431 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
432 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
433
67d57894 434 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
bac718a6
UW
435 {
436 *lenptr = sizeof (big_remote_breakpoint);
437 return big_remote_breakpoint;
438 }
439 else
440 {
441 *lenptr = sizeof (little_remote_breakpoint);
442 return little_remote_breakpoint;
443 }
444 }
445
cc17453a
EZ
446 *lenptr = sizeof (breakpoint);
447 return breakpoint;
448}
c906108c
SS
449
450/* Prologue looks like
1c0159e0
CV
451 mov.l r14,@-r15
452 sts.l pr,@-r15
453 mov.l <regs>,@-r15
454 sub <room_for_loca_vars>,r15
455 mov r15,r14
8db62801 456
c378eb4e 457 Actually it can be more complicated than this but that's it, basically. */
c906108c 458
1c0159e0
CV
459#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
460#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
461
5f883edd
FF
462/* JSR @Rm 0100mmmm00001011 */
463#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
464
8db62801
EZ
465/* STS.L PR,@-r15 0100111100100010
466 r15-4-->r15, PR-->(r15) */
c906108c 467#define IS_STS(x) ((x) == 0x4f22)
8db62801 468
03131d99
CV
469/* STS.L MACL,@-r15 0100111100010010
470 r15-4-->r15, MACL-->(r15) */
471#define IS_MACL_STS(x) ((x) == 0x4f12)
472
8db62801
EZ
473/* MOV.L Rm,@-r15 00101111mmmm0110
474 r15-4-->r15, Rm-->(R15) */
c906108c 475#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 476
8db62801
EZ
477/* MOV r15,r14 0110111011110011
478 r15-->r14 */
c906108c 479#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
480
481/* ADD #imm,r15 01111111iiiiiiii
482 r15+imm-->r15 */
1c0159e0 483#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 484
c906108c
SS
485#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
486#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
487
488/* ADD r3,r15 0011111100111100
489 r15+r3-->r15 */
c906108c 490#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
491
492/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 493 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 494 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 495/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 496 make this entirely clear. */
1c0159e0
CV
497/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
498#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
499
500/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
501#define IS_MOV_ARG_TO_REG(x) \
502 (((x) & 0xf00f) == 0x6003 && \
503 ((x) & 0x00f0) >= 0x0040 && \
504 ((x) & 0x00f0) <= 0x0070)
505/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
506#define IS_MOV_ARG_TO_IND_R14(x) \
507 (((x) & 0xff0f) == 0x2e02 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
511#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
512 (((x) & 0xff00) == 0x1e00 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515
516/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
517#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
518/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
519#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
520/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
521#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
522/* SUB Rn,R15 00111111nnnn1000 */
523#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 524
1c0159e0 525#define FPSCR_SZ (1 << 20)
cc17453a 526
c378eb4e 527/* The following instructions are used for epilogue testing. */
1c0159e0
CV
528#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
529#define IS_RTS(x) ((x) == 0x000b)
530#define IS_LDS(x) ((x) == 0x4f26)
03131d99 531#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
532#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
533#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
534#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 535
cc17453a 536static CORE_ADDR
e17a4113 537sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 538 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 539 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 540{
e17a4113 541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 542 ULONGEST inst;
1c0159e0
CV
543 int offset;
544 int sav_offset = 0;
c906108c 545 int r3_val = 0;
1c0159e0 546 int reg, sav_reg = -1;
cc17453a 547
1c0159e0 548 cache->uses_fp = 0;
5cbb9812 549 for (; pc < limit_pc; pc += 2)
cc17453a 550 {
e17a4113 551 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 552 /* See where the registers will be saved to. */
f2ea0907 553 if (IS_PUSH (inst))
cc17453a 554 {
1c0159e0
CV
555 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
556 cache->sp_offset += 4;
cc17453a 557 }
f2ea0907 558 else if (IS_STS (inst))
cc17453a 559 {
1c0159e0
CV
560 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
561 cache->sp_offset += 4;
cc17453a 562 }
03131d99
CV
563 else if (IS_MACL_STS (inst))
564 {
565 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
567 }
f2ea0907 568 else if (IS_MOV_R3 (inst))
cc17453a 569 {
f2ea0907 570 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 571 }
f2ea0907 572 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
573 {
574 r3_val <<= 1;
575 }
f2ea0907 576 else if (IS_ADD_R3SP (inst))
cc17453a 577 {
1c0159e0 578 cache->sp_offset += -r3_val;
cc17453a 579 }
f2ea0907 580 else if (IS_ADD_IMM_SP (inst))
cc17453a 581 {
1c0159e0
CV
582 offset = ((inst & 0xff) ^ 0x80) - 0x80;
583 cache->sp_offset -= offset;
c906108c 584 }
1c0159e0 585 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 586 {
1c0159e0
CV
587 if (sav_reg < 0)
588 {
589 reg = GET_TARGET_REG (inst);
590 if (reg < 14)
591 {
592 sav_reg = reg;
a2b4a96c 593 offset = (inst & 0xff) << 1;
1c0159e0 594 sav_offset =
e17a4113 595 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
596 }
597 }
c906108c 598 }
1c0159e0 599 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 600 {
1c0159e0
CV
601 if (sav_reg < 0)
602 {
a2b4a96c 603 reg = GET_TARGET_REG (inst);
1c0159e0
CV
604 if (reg < 14)
605 {
606 sav_reg = reg;
a2b4a96c 607 offset = (inst & 0xff) << 2;
1c0159e0 608 sav_offset =
e17a4113
UW
609 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
610 4, byte_order);
1c0159e0
CV
611 }
612 }
c906108c 613 }
5cbb9812
TS
614 else if (IS_MOVI20 (inst)
615 && (pc + 2 < limit_pc))
03131d99
CV
616 {
617 if (sav_reg < 0)
618 {
619 reg = GET_TARGET_REG (inst);
620 if (reg < 14)
621 {
622 sav_reg = reg;
623 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 624 /* MOVI20 is a 32 bit instruction! */
03131d99 625 pc += 2;
e17a4113
UW
626 sav_offset
627 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
628 /* Now sav_offset contains an unsigned 20 bit value.
629 It must still get sign extended. */
630 if (sav_offset & 0x00080000)
631 sav_offset |= 0xfff00000;
632 }
633 }
634 }
1c0159e0 635 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 636 {
1c0159e0
CV
637 reg = GET_SOURCE_REG (inst);
638 if (sav_reg > 0 && reg == sav_reg)
639 {
640 sav_reg = -1;
641 }
642 cache->sp_offset += sav_offset;
c906108c 643 }
f2ea0907 644 else if (IS_FPUSH (inst))
c906108c 645 {
d2ca4222 646 if (fpscr & FPSCR_SZ)
c906108c 647 {
1c0159e0 648 cache->sp_offset += 8;
c906108c
SS
649 }
650 else
651 {
1c0159e0 652 cache->sp_offset += 4;
c906108c
SS
653 }
654 }
f2ea0907 655 else if (IS_MOV_SP_FP (inst))
617daa0e 656 {
5cbb9812
TS
657 pc += 2;
658 /* Don't go any further than six more instructions. */
659 limit_pc = min (limit_pc, pc + (2 * 6));
660
960ccd7d 661 cache->uses_fp = 1;
1c0159e0
CV
662 /* At this point, only allow argument register moves to other
663 registers or argument register moves to @(X,fp) which are
664 moving the register arguments onto the stack area allocated
665 by a former add somenumber to SP call. Don't allow moving
c378eb4e 666 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 667 for (; pc < limit_pc; pc += 2)
1c0159e0 668 {
e17a4113 669 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 670 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 671 {
1c0159e0
CV
672 reg = GET_SOURCE_REG (inst);
673 if (cache->sp_offset > 0)
617daa0e 674 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
675 }
676 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 677 {
1c0159e0
CV
678 reg = GET_SOURCE_REG (inst);
679 offset = (inst & 0xf) * 4;
680 if (cache->sp_offset > offset)
681 cache->saved_regs[reg] = cache->sp_offset - offset;
682 }
683 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 684 continue;
1c0159e0
CV
685 else
686 break;
687 }
688 break;
689 }
5f883edd
FF
690 else if (IS_JSR (inst))
691 {
692 /* We have found a jsr that has been scheduled into the prologue.
693 If we continue the scan and return a pc someplace after this,
694 then setting a breakpoint on this function will cause it to
695 appear to be called after the function it is calling via the
696 jsr, which will be very confusing. Most likely the next
697 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 698 so, note that before returning the current pc. */
5cbb9812
TS
699 if (pc + 2 < limit_pc)
700 {
701 inst = read_memory_integer (pc + 2, 2, byte_order);
702 if (IS_MOV_SP_FP (inst))
703 cache->uses_fp = 1;
704 }
5f883edd
FF
705 break;
706 }
c378eb4e
MS
707#if 0 /* This used to just stop when it found an instruction
708 that was not considered part of the prologue. Now,
709 we just keep going looking for likely
710 instructions. */
c906108c
SS
711 else
712 break;
2bfa91ee 713#endif
c906108c
SS
714 }
715
1c0159e0
CV
716 return pc;
717}
c906108c 718
c378eb4e 719/* Skip any prologue before the guts of a function. */
1c0159e0 720static CORE_ADDR
8a8bc27f 721sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 722{
5cbb9812 723 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
724 struct sh_frame_cache cache;
725
726 /* See if we can determine the end of the prologue via the symbol table.
727 If so, then return either PC, or the PC after the prologue, whichever
728 is greater. */
5cbb9812 729 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
730 {
731 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
732 if (post_prologue_pc != 0)
733 return max (pc, post_prologue_pc);
734 }
cc17453a 735
8a8bc27f
TS
736 /* Can't determine prologue from the symbol table, need to examine
737 instructions. */
c906108c 738
5cbb9812
TS
739 /* Find an upper limit on the function prologue using the debug
740 information. If the debug information could not be used to provide
741 that bound, then use an arbitrary large number as the upper bound. */
742 limit_pc = skip_prologue_using_sal (gdbarch, pc);
743 if (limit_pc == 0)
744 /* Don't go any further than 28 instructions. */
745 limit_pc = pc + (2 * 28);
746
747 /* Do not allow limit_pc to be past the function end, if we know
748 where that end is... */
749 if (func_end_addr != 0)
750 limit_pc = min (limit_pc, func_end_addr);
751
1c0159e0 752 cache.sp_offset = -4;
5cbb9812 753 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
754 if (cache.uses_fp)
755 pc = post_prologue_pc;
c906108c 756
1c0159e0
CV
757 return pc;
758}
759
2e952408 760/* The ABI says:
9a5cef92
EZ
761
762 Aggregate types not bigger than 8 bytes that have the same size and
763 alignment as one of the integer scalar types are returned in the
764 same registers as the integer type they match.
765
766 For example, a 2-byte aligned structure with size 2 bytes has the
767 same size and alignment as a short int, and will be returned in R0.
768 A 4-byte aligned structure with size 8 bytes has the same size and
769 alignment as a long long int, and will be returned in R0 and R1.
770
771 When an aggregate type is returned in R0 and R1, R0 contains the
772 first four bytes of the aggregate, and R1 contains the
c378eb4e 773 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 774 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 775 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
776 targets the padding will appear at the most significant end of the
777 last element, for big-endian targets the padding appears at the
778 least significant end of the last element.
779
c378eb4e 780 All other aggregate types are returned by address. The caller
9a5cef92 781 function passes the address of an area large enough to hold the
c378eb4e 782 aggregate value in R2. The called function stores the result in
7fe958be 783 this location.
9a5cef92
EZ
784
785 To reiterate, structs smaller than 8 bytes could also be returned
786 in memory, if they don't pass the "same size and alignment as an
787 integer type" rule.
788
789 For example, in
790
791 struct s { char c[3]; } wibble;
792 struct s foo(void) { return wibble; }
793
794 the return value from foo() will be in memory, not
795 in R0, because there is no 3-byte integer type.
796
7fe958be
EZ
797 Similarly, in
798
799 struct s { char c[2]; } wibble;
800 struct s foo(void) { return wibble; }
801
802 because a struct containing two chars has alignment 1, that matches
803 type char, but size 2, that matches type short. There's no integer
804 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 805 memory. */
9a5cef92 806
1c0159e0 807static int
c055b101 808sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
809{
810 int len = TYPE_LENGTH (type);
811 int nelem = TYPE_NFIELDS (type);
3f997a97 812
c055b101
CV
813 /* The Renesas ABI returns aggregate types always on stack. */
814 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
815 || TYPE_CODE (type) == TYPE_CODE_UNION))
816 return 1;
817
3f997a97
CV
818 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
819 fit in two registers anyway) use struct convention. */
820 if (len != 1 && len != 2 && len != 4 && len != 8)
821 return 1;
822
823 /* Scalar types and aggregate types with exactly one field are aligned
824 by definition. They are returned in registers. */
825 if (nelem <= 1)
826 return 0;
827
828 /* If the first field in the aggregate has the same length as the entire
829 aggregate type, the type is returned in registers. */
830 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
831 return 0;
832
833 /* If the size of the aggregate is 8 bytes and the first field is
834 of size 4 bytes its alignment is equal to long long's alignment,
835 so it's returned in registers. */
836 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
837 return 0;
838
839 /* Otherwise use struct convention. */
840 return 1;
283150cd
EZ
841}
842
c055b101
CV
843static int
844sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
845{
846 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
847 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
848 return 1;
849 return sh_use_struct_convention (renesas_abi, type);
850}
851
19f59343
MS
852static CORE_ADDR
853sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
854{
855 return sp & ~3;
856}
857
55ff77ac 858/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
859 Setup the function arguments for calling a function in the inferior.
860
85a453d5 861 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
862 which are dedicated for passing function arguments. Up to the first
863 four arguments (depending on size) may go into these registers.
864 The rest go on the stack.
865
6df2bf50
MS
866 MVS: Except on SH variants that have floating point registers.
867 In that case, float and double arguments are passed in the same
868 manner, but using FP registers instead of GP registers.
869
c906108c
SS
870 Arguments that are smaller than 4 bytes will still take up a whole
871 register or a whole 32-bit word on the stack, and will be
872 right-justified in the register or the stack word. This includes
873 chars, shorts, and small aggregate types.
874
875 Arguments that are larger than 4 bytes may be split between two or
876 more registers. If there are not enough registers free, an argument
877 may be passed partly in a register (or registers), and partly on the
c378eb4e 878 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
879 As far as I know, there is no upper limit to the size of aggregates
880 that will be passed in this way; in other words, the convention of
881 passing a pointer to a large aggregate instead of a copy is not used.
882
6df2bf50 883 MVS: The above appears to be true for the SH variants that do not
55ff77ac 884 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
885 aggregate argument onto the stack (and not place it in registers)
886 if it is larger than 16 bytes (four GP registers).
887
c906108c
SS
888 An exceptional case exists for struct arguments (and possibly other
889 aggregates such as arrays) if the size is larger than 4 bytes but
890 not a multiple of 4 bytes. In this case the argument is never split
891 between the registers and the stack, but instead is copied in its
892 entirety onto the stack, AND also copied into as many registers as
893 there is room for. In other words, space in registers permitting,
894 two copies of the same argument are passed in. As far as I can tell,
895 only the one on the stack is used, although that may be a function
896 of the level of compiler optimization. I suspect this is a compiler
897 bug. Arguments of these odd sizes are left-justified within the
898 word (as opposed to arguments smaller than 4 bytes, which are
899 right-justified).
c5aa993b 900
c906108c
SS
901 If the function is to return an aggregate type such as a struct, it
902 is either returned in the normal return value register R0 (if its
903 size is no greater than one byte), or else the caller must allocate
904 space into which the callee will copy the return value (if the size
905 is greater than one byte). In this case, a pointer to the return
906 value location is passed into the callee in register R2, which does
907 not displace any of the other arguments passed in via registers R4
c378eb4e 908 to R7. */
c906108c 909
c378eb4e 910/* Helper function to justify value in register according to endianess. */
948f8e3d 911static const gdb_byte *
d93859e2 912sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9 913{
948f8e3d 914 static gdb_byte valbuf[4];
e5e33cd9 915
617daa0e 916 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
917 if (len < 4)
918 {
c378eb4e 919 /* value gets right-justified in the register or stack word. */
d93859e2 920 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
948f8e3d 921 memcpy (valbuf + (4 - len), value_contents (val), len);
e5e33cd9 922 else
948f8e3d 923 memcpy (valbuf, value_contents (val), len);
e5e33cd9
CV
924 return valbuf;
925 }
948f8e3d 926 return value_contents (val);
617daa0e 927}
e5e33cd9 928
c378eb4e 929/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
930static CORE_ADDR
931sh_stack_allocsize (int nargs, struct value **args)
932{
933 int stack_alloc = 0;
934 while (nargs-- > 0)
4991999e 935 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
936 return stack_alloc;
937}
938
939/* Helper functions for getting the float arguments right. Registers usage
940 depends on the ABI and the endianess. The comments should enlighten how
c378eb4e 941 it's intended to work. */
e5e33cd9 942
c378eb4e 943/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
944static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
945
c378eb4e 946/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
947static void
948sh_init_flt_argreg (void)
949{
950 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
951}
952
953/* This function returns the next register to use for float arg passing.
954 It returns either a valid value between FLOAT_ARG0_REGNUM and
955 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
956 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
957
958 Note that register number 0 in flt_argreg_array corresponds with the
959 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
960 29) the parity of the register number is preserved, which is important
c378eb4e 961 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 962static int
c055b101 963sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
964{
965 int argreg;
966
c378eb4e 967 /* First search for the next free register. */
617daa0e
CV
968 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
969 ++argreg)
e5e33cd9
CV
970 if (!flt_argreg_array[argreg])
971 break;
972
c378eb4e 973 /* No register left? */
e5e33cd9
CV
974 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
975 return FLOAT_ARGLAST_REGNUM + 1;
976
977 if (len == 8)
978 {
c378eb4e 979 /* Doubles are always starting in a even register number. */
e5e33cd9 980 if (argreg & 1)
617daa0e 981 {
c055b101
CV
982 /* In gcc ABI, the skipped register is lost for further argument
983 passing now. Not so in Renesas ABI. */
984 if (!sh_is_renesas_calling_convention (func_type))
985 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
986
987 ++argreg;
988
c378eb4e 989 /* No register left? */
e5e33cd9
CV
990 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
991 return FLOAT_ARGLAST_REGNUM + 1;
992 }
c378eb4e 993 /* Also mark the next register as used. */
e5e33cd9
CV
994 flt_argreg_array[argreg + 1] = 1;
995 }
c055b101
CV
996 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
997 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 998 {
c378eb4e 999 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
1000 if (!flt_argreg_array[argreg + 1])
1001 ++argreg;
1002 }
1003 flt_argreg_array[argreg] = 1;
1004 return FLOAT_ARG0_REGNUM + argreg;
1005}
1006
afce3d2a
CV
1007/* Helper function which figures out, if a type is treated like a float type.
1008
2e952408 1009 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1010 Structures with exactly one member, which is of type float or double, are
1011 treated exactly as the base types float or double:
1012
1013 struct sf {
1014 float f;
1015 };
1016
1017 struct sd {
1018 double d;
1019 };
1020
1021 are handled the same way as just
1022
1023 float f;
1024
1025 double d;
1026
1027 As a result, arguments of these struct types are pushed into floating point
1028 registers exactly as floats or doubles, using the same decision algorithm.
1029
1030 The same is valid if these types are used as function return types. The
1031 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1032 or even using struct convention as it is for other structs. */
1033
1034static int
1035sh_treat_as_flt_p (struct type *type)
1036{
afce3d2a
CV
1037 /* Ordinary float types are obviously treated as float. */
1038 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1039 return 1;
1040 /* Otherwise non-struct types are not treated as float. */
1041 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1042 return 0;
1043 /* Otherwise structs with more than one memeber are not treated as float. */
1044 if (TYPE_NFIELDS (type) != 1)
1045 return 0;
1046 /* Otherwise if the type of that member is float, the whole type is
1047 treated as float. */
1048 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1049 return 1;
1050 /* Otherwise it's not treated as float. */
1051 return 0;
1052}
1053
cc17453a 1054static CORE_ADDR
617daa0e 1055sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1056 struct value *function,
617daa0e 1057 struct regcache *regcache,
6df2bf50 1058 CORE_ADDR bp_addr, int nargs,
617daa0e 1059 struct value **args,
6df2bf50
MS
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
1062{
e17a4113 1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1064 int stack_offset = 0;
1065 int argreg = ARG0_REGNUM;
8748518b 1066 int flt_argreg = 0;
6df2bf50 1067 int argnum;
c055b101 1068 struct type *func_type = value_type (function);
6df2bf50
MS
1069 struct type *type;
1070 CORE_ADDR regval;
948f8e3d 1071 const gdb_byte *val;
8748518b 1072 int len, reg_size = 0;
afce3d2a
CV
1073 int pass_on_stack = 0;
1074 int treat_as_flt;
c055b101
CV
1075 int last_reg_arg = INT_MAX;
1076
1077 /* The Renesas ABI expects all varargs arguments, plus the last
1078 non-vararg argument to be on the stack, no matter how many
1079 registers have been used so far. */
1080 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1081 && TYPE_VARARGS (func_type))
c055b101 1082 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1083
c378eb4e 1084 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1085 sp = sh_frame_align (gdbarch, sp);
1086
c378eb4e 1087 /* Make room on stack for args. */
e5e33cd9
CV
1088 sp -= sh_stack_allocsize (nargs, args);
1089
c378eb4e 1090 /* Initialize float argument mechanism. */
e5e33cd9 1091 sh_init_flt_argreg ();
6df2bf50
MS
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 16 bytes
1095 in four registers available. Loop thru args from first to last. */
e5e33cd9 1096 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1097 {
4991999e 1098 type = value_type (args[argnum]);
6df2bf50 1099 len = TYPE_LENGTH (type);
d93859e2 1100 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1101
1102 /* Some decisions have to be made how various types are handled.
c378eb4e 1103 This also differs in different ABIs. */
e5e33cd9 1104 pass_on_stack = 0;
e5e33cd9 1105
c378eb4e 1106 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1107 treat_as_flt = sh_treat_as_flt_p (type);
1108 if (treat_as_flt)
c055b101
CV
1109 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1110 /* In Renesas ABI, long longs and aggregate types are always passed
1111 on stack. */
1112 else if (sh_is_renesas_calling_convention (func_type)
1113 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1114 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1115 || TYPE_CODE (type) == TYPE_CODE_UNION))
1116 pass_on_stack = 1;
afce3d2a
CV
1117 /* In contrast to non-FPU CPUs, arguments are never split between
1118 registers and stack. If an argument doesn't fit in the remaining
1119 registers it's always pushed entirely on the stack. */
1120 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1121 pass_on_stack = 1;
48db5a3c 1122
6df2bf50
MS
1123 while (len > 0)
1124 {
afce3d2a
CV
1125 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1126 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1127 || pass_on_stack))
1128 || argnum > last_reg_arg)
617daa0e 1129 {
c378eb4e 1130 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1131 reg_size = (len + 3) & ~3;
1132 write_memory (sp + stack_offset, val, reg_size);
1133 stack_offset += reg_size;
6df2bf50 1134 }
afce3d2a 1135 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1136 {
e5e33cd9
CV
1137 /* Argument goes in a float argument register. */
1138 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1139 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1140 /* In little endian mode, float types taking two registers
1141 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1142 be stored swapped in the argument registers. The below
1143 code first writes the first 32 bits in the next but one
1144 register, increments the val and len values accordingly
1145 and then proceeds as normal by writing the second 32 bits
c378eb4e 1146 into the next register. */
b47193f7 1147 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1148 && TYPE_LENGTH (type) == 2 * reg_size)
1149 {
1150 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1151 regval);
1152 val += reg_size;
1153 len -= reg_size;
c378eb4e
MS
1154 regval = extract_unsigned_integer (val, reg_size,
1155 byte_order);
2e952408 1156 }
6df2bf50
MS
1157 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1158 }
afce3d2a 1159 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1160 {
6df2bf50 1161 /* there's room in a register */
e5e33cd9 1162 reg_size = register_size (gdbarch, argreg);
e17a4113 1163 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1164 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1165 }
c378eb4e
MS
1166 /* Store the value one register at a time or in one step on
1167 stack. */
e5e33cd9
CV
1168 len -= reg_size;
1169 val += reg_size;
6df2bf50
MS
1170 }
1171 }
1172
c055b101
CV
1173 if (struct_return)
1174 {
1175 if (sh_is_renesas_calling_convention (func_type))
1176 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1177 the stack and store the struct return address there. */
e17a4113 1178 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1179 else
1180 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1181 its own dedicated register. */
1182 regcache_cooked_write_unsigned (regcache,
1183 STRUCT_RETURN_REGNUM, struct_addr);
1184 }
1185
c378eb4e 1186 /* Store return address. */
55ff77ac 1187 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1188
1189 /* Update stack pointer. */
3e8c568d 1190 regcache_cooked_write_unsigned (regcache,
b47193f7 1191 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1192
1193 return sp;
1194}
1195
1196static CORE_ADDR
617daa0e 1197sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1198 struct value *function,
617daa0e
CV
1199 struct regcache *regcache,
1200 CORE_ADDR bp_addr,
1201 int nargs, struct value **args,
1202 CORE_ADDR sp, int struct_return,
6df2bf50 1203 CORE_ADDR struct_addr)
c906108c 1204{
e17a4113 1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1206 int stack_offset = 0;
1207 int argreg = ARG0_REGNUM;
c906108c 1208 int argnum;
c055b101 1209 struct type *func_type = value_type (function);
c906108c
SS
1210 struct type *type;
1211 CORE_ADDR regval;
948f8e3d 1212 const gdb_byte *val;
c055b101
CV
1213 int len, reg_size = 0;
1214 int pass_on_stack = 0;
1215 int last_reg_arg = INT_MAX;
1216
1217 /* The Renesas ABI expects all varargs arguments, plus the last
1218 non-vararg argument to be on the stack, no matter how many
1219 registers have been used so far. */
1220 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1221 && TYPE_VARARGS (func_type))
c055b101 1222 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1223
c378eb4e 1224 /* First force sp to a 4-byte alignment. */
19f59343 1225 sp = sh_frame_align (gdbarch, sp);
c906108c 1226
c378eb4e 1227 /* Make room on stack for args. */
e5e33cd9 1228 sp -= sh_stack_allocsize (nargs, args);
c906108c 1229
c906108c
SS
1230 /* Now load as many as possible of the first arguments into
1231 registers, and push the rest onto the stack. There are 16 bytes
1232 in four registers available. Loop thru args from first to last. */
e5e33cd9 1233 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1234 {
4991999e 1235 type = value_type (args[argnum]);
c5aa993b 1236 len = TYPE_LENGTH (type);
d93859e2 1237 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1238
c055b101 1239 /* Some decisions have to be made how various types are handled.
c378eb4e 1240 This also differs in different ABIs. */
c055b101
CV
1241 pass_on_stack = 0;
1242 /* Renesas ABI pushes doubles and long longs entirely on stack.
1243 Same goes for aggregate types. */
1244 if (sh_is_renesas_calling_convention (func_type)
1245 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1246 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1247 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (type) == TYPE_CODE_UNION))
1249 pass_on_stack = 1;
c906108c
SS
1250 while (len > 0)
1251 {
c055b101
CV
1252 if (argreg > ARGLAST_REGNUM || pass_on_stack
1253 || argnum > last_reg_arg)
617daa0e 1254 {
e5e33cd9 1255 /* The remainder of the data goes entirely on the stack,
c378eb4e 1256 4-byte aligned. */
e5e33cd9
CV
1257 reg_size = (len + 3) & ~3;
1258 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1259 stack_offset += reg_size;
c906108c 1260 }
e5e33cd9 1261 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1262 {
c378eb4e 1263 /* There's room in a register. */
e5e33cd9 1264 reg_size = register_size (gdbarch, argreg);
e17a4113 1265 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1266 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1267 }
e5e33cd9
CV
1268 /* Store the value reg_size bytes at a time. This means that things
1269 larger than reg_size bytes may go partly in registers and partly
c906108c 1270 on the stack. */
e5e33cd9
CV
1271 len -= reg_size;
1272 val += reg_size;
c906108c
SS
1273 }
1274 }
48db5a3c 1275
c055b101
CV
1276 if (struct_return)
1277 {
1278 if (sh_is_renesas_calling_convention (func_type))
1279 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1280 the stack and store the struct return address there. */
e17a4113 1281 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1282 else
1283 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1284 its own dedicated register. */
1285 regcache_cooked_write_unsigned (regcache,
1286 STRUCT_RETURN_REGNUM, struct_addr);
1287 }
1288
c378eb4e 1289 /* Store return address. */
55ff77ac 1290 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1291
1292 /* Update stack pointer. */
3e8c568d 1293 regcache_cooked_write_unsigned (regcache,
b47193f7 1294 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1295
c906108c
SS
1296 return sp;
1297}
1298
cc17453a
EZ
1299/* Find a function's return value in the appropriate registers (in
1300 regbuf), and copy it into valbuf. Extract from an array REGBUF
1301 containing the (raw) register state a function return value of type
1302 TYPE, and copy that, in virtual format, into VALBUF. */
1303static void
3ffc5b9b 1304sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1305 gdb_byte *valbuf)
c906108c 1306{
e17a4113
UW
1307 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1309 int len = TYPE_LENGTH (type);
3116c80a
EZ
1310 int return_register = R0_REGNUM;
1311 int offset;
617daa0e 1312
cc17453a 1313 if (len <= 4)
3116c80a 1314 {
48db5a3c
CV
1315 ULONGEST c;
1316
1317 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1318 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1319 }
48db5a3c 1320 else if (len == 8)
3116c80a 1321 {
48db5a3c
CV
1322 int i, regnum = R0_REGNUM;
1323 for (i = 0; i < len; i += 4)
948f8e3d 1324 regcache_raw_read (regcache, regnum++, valbuf + i);
3116c80a
EZ
1325 }
1326 else
8a3fe4f8 1327 error (_("bad size for return value"));
3116c80a
EZ
1328}
1329
1330static void
3ffc5b9b 1331sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1332 gdb_byte *valbuf)
3116c80a 1333{
d93859e2 1334 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1335 if (sh_treat_as_flt_p (type))
3116c80a 1336 {
48db5a3c 1337 int len = TYPE_LENGTH (type);
d93859e2 1338 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1339 for (i = 0; i < len; i += 4)
d93859e2 1340 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c378eb4e 1341 regcache_raw_read (regcache, regnum++,
948f8e3d 1342 valbuf + len - 4 - i);
2e952408 1343 else
948f8e3d 1344 regcache_raw_read (regcache, regnum++, valbuf + i);
3116c80a 1345 }
cc17453a 1346 else
3ffc5b9b 1347 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1348}
c906108c 1349
cc17453a
EZ
1350/* Write into appropriate registers a function return value
1351 of type TYPE, given in virtual format.
1352 If the architecture is sh4 or sh3e, store a function's return value
1353 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1354 depending on the type of the return value. In all the other cases
1355 the result is stored in r0, left-justified. */
cc17453a 1356static void
3ffc5b9b 1357sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1358 const gdb_byte *valbuf)
cc17453a 1359{
e17a4113
UW
1360 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1362 ULONGEST val;
1363 int len = TYPE_LENGTH (type);
d19b71be 1364
48db5a3c 1365 if (len <= 4)
d19b71be 1366 {
e17a4113 1367 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1368 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1369 }
1370 else
48db5a3c
CV
1371 {
1372 int i, regnum = R0_REGNUM;
1373 for (i = 0; i < len; i += 4)
948f8e3d 1374 regcache_raw_write (regcache, regnum++, valbuf + i);
48db5a3c 1375 }
cc17453a 1376}
c906108c 1377
cc17453a 1378static void
3ffc5b9b 1379sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1380 const gdb_byte *valbuf)
cc17453a 1381{
d93859e2 1382 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1383 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1384 {
1385 int len = TYPE_LENGTH (type);
d93859e2 1386 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1387 for (i = 0; i < len; i += 4)
d93859e2 1388 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c8a3b559 1389 regcache_raw_write (regcache, regnum++,
948f8e3d 1390 valbuf + len - 4 - i);
c8a3b559 1391 else
948f8e3d 1392 regcache_raw_write (regcache, regnum++, valbuf + i);
48db5a3c 1393 }
cc17453a 1394 else
3ffc5b9b 1395 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1396}
1397
c0409442 1398static enum return_value_convention
6a3a010b 1399sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1400 struct type *type, struct regcache *regcache,
18cf8b5b 1401 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1402{
6a3a010b
MR
1403 struct type *func_type = function ? value_type (function) : NULL;
1404
c055b101
CV
1405 if (sh_use_struct_convention_nofpu (
1406 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1407 return RETURN_VALUE_STRUCT_CONVENTION;
1408 if (writebuf)
3ffc5b9b 1409 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1410 else if (readbuf)
3ffc5b9b 1411 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1412 return RETURN_VALUE_REGISTER_CONVENTION;
1413}
1414
1415static enum return_value_convention
6a3a010b 1416sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1417 struct type *type, struct regcache *regcache,
18cf8b5b 1418 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1419{
6a3a010b
MR
1420 struct type *func_type = function ? value_type (function) : NULL;
1421
c055b101
CV
1422 if (sh_use_struct_convention (
1423 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1424 return RETURN_VALUE_STRUCT_CONVENTION;
1425 if (writebuf)
3ffc5b9b 1426 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1427 else if (readbuf)
3ffc5b9b 1428 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1429 return RETURN_VALUE_REGISTER_CONVENTION;
1430}
1431
da962468
CV
1432static struct type *
1433sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1434{
b47193f7 1435 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1436 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1437 return builtin_type (gdbarch)->builtin_float;
da962468 1438 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1439 return builtin_type (gdbarch)->builtin_double;
da962468 1440 else
0dfff4cb 1441 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1442}
1443
cc17453a
EZ
1444/* Return the GDB type object for the "standard" data type
1445 of data in register N. */
cc17453a 1446static struct type *
48db5a3c 1447sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1448{
b47193f7 1449 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1450 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1451 return builtin_type (gdbarch)->builtin_float;
8db62801 1452 else
0dfff4cb 1453 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1454}
1455
7f4dbe94 1456static struct type *
0dfff4cb 1457sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1458{
e3506a9f
UW
1459 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1460 0, high);
7f4dbe94
EZ
1461}
1462
53116e27 1463static struct type *
48db5a3c 1464sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1465{
b47193f7 1466 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1467 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1468 return builtin_type (gdbarch)->builtin_float;
617daa0e 1469 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1470 return builtin_type (gdbarch)->builtin_double;
617daa0e 1471 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1472 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1473 else
0dfff4cb 1474 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1475}
1476
cc17453a 1477static struct type *
48db5a3c 1478sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1479{
0dfff4cb 1480 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1481}
1482
dda63807
AS
1483/* Is a register in a reggroup?
1484 The default code in reggroup.c doesn't identify system registers, some
1485 float registers or any of the vector registers.
1486 TODO: sh2a and dsp registers. */
63807e1d 1487static int
dda63807
AS
1488sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1489 struct reggroup *reggroup)
1490{
b47193f7
UW
1491 if (gdbarch_register_name (gdbarch, regnum) == NULL
1492 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1493 return 0;
1494
1495 if (reggroup == float_reggroup
1496 && (regnum == FPUL_REGNUM
1497 || regnum == FPSCR_REGNUM))
1498 return 1;
1499
1500 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1501 {
1502 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1503 return 1;
1504 if (reggroup == general_reggroup)
1505 return 0;
1506 }
1507
1508 if (regnum == VBR_REGNUM
1509 || regnum == SR_REGNUM
1510 || regnum == FPSCR_REGNUM
1511 || regnum == SSR_REGNUM
1512 || regnum == SPC_REGNUM)
1513 {
1514 if (reggroup == system_reggroup)
1515 return 1;
1516 if (reggroup == general_reggroup)
1517 return 0;
1518 }
1519
1520 /* The default code can cope with any other registers. */
1521 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1522}
1523
fb409745 1524/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1525 is little endian. When the user writes one of those registers, for
a6521d9a 1526 instance with 'set var $dr0=1', we want the double to be stored
fb409745 1527 like this:
a6521d9a
TS
1528 fr0 = 0x00 0x00 0xf0 0x3f
1529 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1530
1531 This corresponds to little endian byte order & big endian word
1532 order. However if we let gdb write the register w/o conversion, it
1533 will write fr0 and fr1 this way:
a6521d9a
TS
1534 fr0 = 0x00 0x00 0x00 0x00
1535 fr1 = 0x00 0x00 0xf0 0x3f
fb409745
EZ
1536 because it will consider fr0 and fr1 as a single LE stretch of memory.
1537
1538 To achieve what we want we must force gdb to store things in
1539 floatformat_ieee_double_littlebyte_bigword (which is defined in
1540 include/floatformat.h and libiberty/floatformat.c.
1541
1542 In case the target is big endian, there is no problem, the
1543 raw bytes will look like:
a6521d9a
TS
1544 fr0 = 0x3f 0xf0 0x00 0x00
1545 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1546
1547 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1548 because they are stored as 4 individual FP elements. */
fb409745 1549
7bd872fe 1550static void
a6521d9a 1551sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1552 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1553{
a6521d9a
TS
1554 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1555 {
1556 /* It is a no-op. */
1557 memcpy (to, from, register_size (gdbarch, regnum));
1558 return;
1559 }
1560
617daa0e 1561 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1562 {
1563 DOUBLEST val;
617daa0e
CV
1564 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1565 from, &val);
55ff77ac 1566 store_typed_floating (to, type, val);
283150cd
EZ
1567 }
1568 else
617daa0e
CV
1569 error
1570 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1571}
1572
1573static void
a6521d9a 1574sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
948f8e3d 1575 int regnum, const gdb_byte *from, gdb_byte *to)
283150cd 1576{
a6521d9a
TS
1577 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1578 {
1579 /* It is a no-op. */
1580 memcpy (to, from, register_size (gdbarch, regnum));
1581 return;
1582 }
1583
617daa0e 1584 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1585 {
48db5a3c 1586 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1587 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1588 &val, to);
283150cd
EZ
1589 }
1590 else
8a3fe4f8 1591 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1592}
1593
c378eb4e 1594/* For vectors of 4 floating point registers. */
1c0159e0 1595static int
d93859e2 1596fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1597{
1598 int fp_regnum;
1599
d93859e2 1600 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1601 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1602 return fp_regnum;
1603}
1604
c378eb4e 1605/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1606static int
d93859e2 1607dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1608{
1609 int fp_regnum;
1610
d93859e2 1611 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1612 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1613 return fp_regnum;
1614}
1615
05d1431c
PA
1616/* Concatenate PORTIONS contiguous raw registers starting at
1617 BASE_REGNUM into BUFFER. */
1618
1619static enum register_status
1620pseudo_register_read_portions (struct gdbarch *gdbarch,
1621 struct regcache *regcache,
1622 int portions,
1623 int base_regnum, gdb_byte *buffer)
1624{
1625 int portion;
1626
1627 for (portion = 0; portion < portions; portion++)
1628 {
1629 enum register_status status;
1630 gdb_byte *b;
1631
1632 b = buffer + register_size (gdbarch, base_regnum) * portion;
1633 status = regcache_raw_read (regcache, base_regnum + portion, b);
1634 if (status != REG_VALID)
1635 return status;
1636 }
1637
1638 return REG_VALID;
1639}
1640
1641static enum register_status
d8124050 1642sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1643 int reg_nr, gdb_byte *buffer)
53116e27 1644{
05d1431c 1645 int base_regnum;
948f8e3d 1646 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1647 enum register_status status;
53116e27 1648
9bed62d7 1649 if (reg_nr == PSEUDO_BANK_REGNUM)
05d1431c
PA
1650 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1651 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1652 {
d93859e2 1653 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1654
c378eb4e 1655 /* Build the value in the provided buffer. */
7bd872fe 1656 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1657 status = pseudo_register_read_portions (gdbarch, regcache,
1658 2, base_regnum, temp_buffer);
1659 if (status == REG_VALID)
1660 {
1661 /* We must pay attention to the endiannes. */
a6521d9a 1662 sh_register_convert_to_virtual (gdbarch, reg_nr,
05d1431c
PA
1663 register_type (gdbarch, reg_nr),
1664 temp_buffer, buffer);
1665 }
1666 return status;
7bd872fe 1667 }
617daa0e 1668 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1669 {
d93859e2 1670 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1671
1672 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1673 return pseudo_register_read_portions (gdbarch, regcache,
1674 4, base_regnum, buffer);
53116e27 1675 }
05d1431c
PA
1676 else
1677 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1678}
1679
a78f21af 1680static void
d8124050 1681sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1682 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1683{
1684 int base_regnum, portion;
948f8e3d 1685 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
53116e27 1686
9bed62d7
CV
1687 if (reg_nr == PSEUDO_BANK_REGNUM)
1688 {
1689 /* When the bank register is written to, the whole register bank
1690 is switched and all values in the bank registers must be read
c378eb4e 1691 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1692 so that a re-read happens next time it's necessary. */
1693 int bregnum;
1694
1695 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1696 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
9c5ea4d9 1697 regcache_invalidate (regcache, bregnum);
9bed62d7
CV
1698 }
1699 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1700 {
d93859e2 1701 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1702
c378eb4e 1703 /* We must pay attention to the endiannes. */
a6521d9a 1704 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
b66ba949 1705 reg_nr, buffer, temp_buffer);
7bd872fe 1706
53116e27
EZ
1707 /* Write the real regs for which this one is an alias. */
1708 for (portion = 0; portion < 2; portion++)
617daa0e 1709 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1710 (temp_buffer
617daa0e
CV
1711 + register_size (gdbarch,
1712 base_regnum) * portion));
53116e27 1713 }
617daa0e 1714 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1715 {
d93859e2 1716 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1717
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 4; portion++)
d8124050 1720 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1721 (buffer
617daa0e
CV
1722 + register_size (gdbarch,
1723 base_regnum) * portion));
53116e27
EZ
1724 }
1725}
1726
2f14585c 1727static int
e7faf938 1728sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1729{
e7faf938
MD
1730 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1731 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1732 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1733 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1734 if (nr == MOD_REGNUM)
2f14585c 1735 return SIM_SH_MOD_REGNUM;
f2ea0907 1736 if (nr == RS_REGNUM)
2f14585c 1737 return SIM_SH_RS_REGNUM;
f2ea0907 1738 if (nr == RE_REGNUM)
2f14585c 1739 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1740 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1741 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1742 return nr;
1743}
1c0159e0 1744
da962468 1745static int
e7faf938 1746sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1747{
1748 switch (nr)
1749 {
1750 case TBR_REGNUM:
1751 return SIM_SH_TBR_REGNUM;
1752 case IBNR_REGNUM:
1753 return SIM_SH_IBNR_REGNUM;
1754 case IBCR_REGNUM:
1755 return SIM_SH_IBCR_REGNUM;
1756 case BANK_REGNUM:
1757 return SIM_SH_BANK_REGNUM;
1758 case MACLB_REGNUM:
1759 return SIM_SH_BANK_MACL_REGNUM;
1760 case GBRB_REGNUM:
1761 return SIM_SH_BANK_GBR_REGNUM;
1762 case PRB_REGNUM:
1763 return SIM_SH_BANK_PR_REGNUM;
1764 case IVNB_REGNUM:
1765 return SIM_SH_BANK_IVN_REGNUM;
1766 case MACHB_REGNUM:
1767 return SIM_SH_BANK_MACH_REGNUM;
1768 default:
1769 break;
1770 }
e7faf938 1771 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1772}
1773
357d3800
AS
1774/* Set up the register unwinding such that call-clobbered registers are
1775 not displayed in frames >0 because the true value is not certain.
1776 The 'undefined' registers will show up as 'not available' unless the
1777 CFI says otherwise.
1778
1779 This function is currently set up for SH4 and compatible only. */
1780
1781static void
1782sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1783 struct dwarf2_frame_state_reg *reg,
4a4e5149 1784 struct frame_info *this_frame)
357d3800
AS
1785{
1786 /* Mark the PC as the destination for the return address. */
b47193f7 1787 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1788 reg->how = DWARF2_FRAME_REG_RA;
1789
1790 /* Mark the stack pointer as the call frame address. */
b47193f7 1791 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1792 reg->how = DWARF2_FRAME_REG_CFA;
1793
1794 /* The above was taken from the default init_reg in dwarf2-frame.c
1795 while the below is SH specific. */
1796
1797 /* Caller save registers. */
1798 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1799 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1800 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1801 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1802 || (regnum == MACH_REGNUM)
1803 || (regnum == MACL_REGNUM)
1804 || (regnum == FPUL_REGNUM)
1805 || (regnum == SR_REGNUM))
1806 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1807
1808 /* Callee save registers. */
1809 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1810 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1811 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1812 || (regnum == FV0_REGNUM+3))
1813 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1814
1815 /* Other registers. These are not in the ABI and may or may not
1816 mean anything in frames >0 so don't show them. */
1817 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1818 || (regnum == GBR_REGNUM)
1819 || (regnum == VBR_REGNUM)
1820 || (regnum == FPSCR_REGNUM)
1821 || (regnum == SSR_REGNUM)
1822 || (regnum == SPC_REGNUM))
1823 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1824}
1825
1c0159e0
CV
1826static struct sh_frame_cache *
1827sh_alloc_frame_cache (void)
1828{
1829 struct sh_frame_cache *cache;
1830 int i;
1831
1832 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1833
1834 /* Base address. */
1835 cache->base = 0;
1836 cache->saved_sp = 0;
1837 cache->sp_offset = 0;
1838 cache->pc = 0;
1839
1840 /* Frameless until proven otherwise. */
1841 cache->uses_fp = 0;
617daa0e 1842
1c0159e0
CV
1843 /* Saved registers. We initialize these to -1 since zero is a valid
1844 offset (that's where fp is supposed to be stored). */
1845 for (i = 0; i < SH_NUM_REGS; i++)
1846 {
1847 cache->saved_regs[i] = -1;
1848 }
617daa0e 1849
1c0159e0 1850 return cache;
617daa0e 1851}
1c0159e0
CV
1852
1853static struct sh_frame_cache *
94afd7a6 1854sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1855{
e17a4113 1856 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1857 struct sh_frame_cache *cache;
1858 CORE_ADDR current_pc;
1859 int i;
1860
1861 if (*this_cache)
1862 return *this_cache;
1863
1864 cache = sh_alloc_frame_cache ();
1865 *this_cache = cache;
1866
1867 /* In principle, for normal frames, fp holds the frame pointer,
1868 which holds the base address for the current stack frame.
1869 However, for functions that don't need it, the frame pointer is
1870 optional. For these "frameless" functions the frame pointer is
c378eb4e 1871 actually the frame pointer of the calling frame. */
94afd7a6 1872 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1873 if (cache->base == 0)
1874 return cache;
1875
94afd7a6
UW
1876 cache->pc = get_frame_func (this_frame);
1877 current_pc = get_frame_pc (this_frame);
1c0159e0 1878 if (cache->pc != 0)
d2ca4222
UW
1879 {
1880 ULONGEST fpscr;
9fc05685
KB
1881
1882 /* Check for the existence of the FPSCR register. If it exists,
1883 fetch its value for use in prologue analysis. Passing a zero
1884 value is the best choice for architecture variants upon which
1885 there's no FPSCR register. */
1886 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1887 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1888 else
1889 fpscr = 0;
1890
e17a4113 1891 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1892 }
617daa0e 1893
1c0159e0
CV
1894 if (!cache->uses_fp)
1895 {
1896 /* We didn't find a valid frame, which means that CACHE->base
1897 currently holds the frame pointer for our calling frame. If
1898 we're at the start of a function, or somewhere half-way its
1899 prologue, the function's frame probably hasn't been fully
1900 setup yet. Try to reconstruct the base address for the stack
1901 frame by looking at the stack pointer. For truly "frameless"
1902 functions this might work too. */
94afd7a6 1903 cache->base = get_frame_register_unsigned
e17a4113 1904 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1905 }
1906
1907 /* Now that we have the base address for the stack frame we can
1908 calculate the value of sp in the calling frame. */
1909 cache->saved_sp = cache->base + cache->sp_offset;
1910
1911 /* Adjust all the saved registers such that they contain addresses
1912 instead of offsets. */
1913 for (i = 0; i < SH_NUM_REGS; i++)
1914 if (cache->saved_regs[i] != -1)
1915 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1916
1917 return cache;
1918}
1919
94afd7a6
UW
1920static struct value *
1921sh_frame_prev_register (struct frame_info *this_frame,
1922 void **this_cache, int regnum)
1c0159e0 1923{
94afd7a6
UW
1924 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1925 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1926
1927 gdb_assert (regnum >= 0);
1928
b47193f7 1929 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1930 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1931
1932 /* The PC of the previous frame is stored in the PR register of
1933 the current frame. Frob regnum so that we pull the value from
1934 the correct place. */
b47193f7 1935 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1936 regnum = PR_REGNUM;
1937
1938 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1939 return frame_unwind_got_memory (this_frame, regnum,
1940 cache->saved_regs[regnum]);
1c0159e0 1941
94afd7a6 1942 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1943}
1944
1945static void
94afd7a6 1946sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1947 struct frame_id *this_id)
1948{
94afd7a6 1949 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1950
1951 /* This marks the outermost frame. */
1952 if (cache->base == 0)
1953 return;
1954
1955 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1956}
1c0159e0 1957
617daa0e 1958static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1959 NORMAL_FRAME,
8fbca658 1960 default_frame_unwind_stop_reason,
1c0159e0 1961 sh_frame_this_id,
94afd7a6
UW
1962 sh_frame_prev_register,
1963 NULL,
1964 default_frame_sniffer
1c0159e0
CV
1965};
1966
1c0159e0
CV
1967static CORE_ADDR
1968sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1969{
3e8c568d 1970 return frame_unwind_register_unsigned (next_frame,
b47193f7 1971 gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1972}
1973
1974static CORE_ADDR
1975sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1976{
3e8c568d 1977 return frame_unwind_register_unsigned (next_frame,
b47193f7 1978 gdbarch_pc_regnum (gdbarch));
1c0159e0
CV
1979}
1980
1981static struct frame_id
94afd7a6 1982sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1c0159e0 1983{
94afd7a6
UW
1984 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1985 gdbarch_sp_regnum (gdbarch));
1986 return frame_id_build (sp, get_frame_pc (this_frame));
1c0159e0
CV
1987}
1988
1989static CORE_ADDR
94afd7a6 1990sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 1991{
94afd7a6 1992 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 1993
1c0159e0
CV
1994 return cache->base;
1995}
617daa0e
CV
1996
1997static const struct frame_base sh_frame_base = {
1c0159e0
CV
1998 &sh_frame_unwind,
1999 sh_frame_base_address,
2000 sh_frame_base_address,
2001 sh_frame_base_address
617daa0e 2002};
1c0159e0 2003
cb2cf4ce
TS
2004static struct sh_frame_cache *
2005sh_make_stub_cache (struct frame_info *this_frame)
2006{
2007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2008 struct sh_frame_cache *cache;
2009
2010 cache = sh_alloc_frame_cache ();
2011
2012 cache->saved_sp
2013 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2014
2015 return cache;
2016}
2017
2018static void
2019sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2020 struct frame_id *this_id)
2021{
2022 struct sh_frame_cache *cache;
2023
2024 if (*this_cache == NULL)
2025 *this_cache = sh_make_stub_cache (this_frame);
2026 cache = *this_cache;
2027
2028 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2029}
2030
2031static int
2032sh_stub_unwind_sniffer (const struct frame_unwind *self,
2033 struct frame_info *this_frame,
2034 void **this_prologue_cache)
2035{
2036 CORE_ADDR addr_in_block;
2037
2038 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 2039 if (in_plt_section (addr_in_block))
cb2cf4ce
TS
2040 return 1;
2041
2042 return 0;
2043}
2044
2045static const struct frame_unwind sh_stub_unwind =
2046{
2047 NORMAL_FRAME,
2048 default_frame_unwind_stop_reason,
2049 sh_stub_this_id,
2050 sh_frame_prev_register,
2051 NULL,
2052 sh_stub_unwind_sniffer
2053};
2054
1c0159e0
CV
2055/* The epilogue is defined here as the area at the end of a function,
2056 either on the `ret' instruction itself or after an instruction which
c378eb4e 2057 destroys the function's stack frame. */
1c0159e0
CV
2058static int
2059sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2060{
e17a4113 2061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2062 CORE_ADDR func_addr = 0, func_end = 0;
2063
2064 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2065 {
2066 ULONGEST inst;
2067 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2068 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2069 unfortunately also treated as part of the function (which
c378eb4e 2070 means, they are below func_end. */
1c0159e0
CV
2071 CORE_ADDR addr = func_end - 28;
2072 if (addr < func_addr + 4)
617daa0e 2073 addr = func_addr + 4;
1c0159e0
CV
2074 if (pc < addr)
2075 return 0;
2076
c378eb4e 2077 /* First search forward until hitting an rts. */
1c0159e0 2078 while (addr < func_end
e17a4113 2079 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2080 addr += 2;
2081 if (addr >= func_end)
617daa0e 2082 return 0;
1c0159e0
CV
2083
2084 /* At this point we should find a mov.l @r15+,r14 instruction,
2085 either before or after the rts. If not, then the function has
c378eb4e 2086 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2087 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2088 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2089 byte_order)))
617daa0e 2090 addr -= 2;
e17a4113
UW
2091 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2092 byte_order)))
1c0159e0
CV
2093 return 0;
2094
e17a4113 2095 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2096
c378eb4e 2097 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2098 if (IS_MACL_LDS (inst))
2099 {
2100 addr -= 2;
e17a4113 2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2102 }
2103
c378eb4e 2104 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2105 if (IS_LDS (inst))
617daa0e 2106 {
1c0159e0 2107 addr -= 2;
e17a4113 2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2109 }
2110
c378eb4e 2111 /* Step over possible mov r14,r15. */
1c0159e0 2112 if (IS_MOV_FP_SP (inst))
617daa0e 2113 {
1c0159e0 2114 addr -= 2;
e17a4113 2115 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2116 }
2117
2118 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2119 instructions. */
1c0159e0 2120 while (addr > func_addr + 4
617daa0e 2121 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2122 {
2123 addr -= 2;
e17a4113 2124 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2125 }
2126
03131d99
CV
2127 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2128 That's allowed for the epilogue. */
2129 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2130 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2131 && addr > func_addr + 6
e17a4113
UW
2132 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2133 byte_order)))
03131d99
CV
2134 addr -= 4;
2135
1c0159e0
CV
2136 if (pc >= addr)
2137 return 1;
2138 }
2139 return 0;
2140}
c9ac0a72
AS
2141
2142
2143/* Supply register REGNUM from the buffer specified by REGS and LEN
2144 in the register set REGSET to register cache REGCACHE.
2145 REGTABLE specifies where each register can be found in REGS.
2146 If REGNUM is -1, do this for all registers in REGSET. */
2147
2148void
2149sh_corefile_supply_regset (const struct regset *regset,
2150 struct regcache *regcache,
2151 int regnum, const void *regs, size_t len)
2152{
2153 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2155 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2156 ? tdep->core_gregmap
2157 : tdep->core_fpregmap);
2158 int i;
2159
2160 for (i = 0; regmap[i].regnum != -1; i++)
2161 {
2162 if ((regnum == -1 || regnum == regmap[i].regnum)
2163 && regmap[i].offset + 4 <= len)
2164 regcache_raw_supply (regcache, regmap[i].regnum,
2165 (char *)regs + regmap[i].offset);
2166 }
2167}
2168
2169/* Collect register REGNUM in the register set REGSET from register cache
2170 REGCACHE into the buffer specified by REGS and LEN.
2171 REGTABLE specifies where each register can be found in REGS.
2172 If REGNUM is -1, do this for all registers in REGSET. */
2173
2174void
2175sh_corefile_collect_regset (const struct regset *regset,
2176 const struct regcache *regcache,
2177 int regnum, void *regs, size_t len)
2178{
2179 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2181 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2182 ? tdep->core_gregmap
2183 : tdep->core_fpregmap);
2184 int i;
2185
2186 for (i = 0; regmap[i].regnum != -1; i++)
2187 {
2188 if ((regnum == -1 || regnum == regmap[i].regnum)
2189 && regmap[i].offset + 4 <= len)
2190 regcache_raw_collect (regcache, regmap[i].regnum,
2191 (char *)regs + regmap[i].offset);
2192 }
2193}
2194
2195/* The following two regsets have the same contents, so it is tempting to
2196 unify them, but they are distiguished by their address, so don't. */
2197
2198struct regset sh_corefile_gregset =
2199{
2200 NULL,
2201 sh_corefile_supply_regset,
2202 sh_corefile_collect_regset
2203};
2204
2205static struct regset sh_corefile_fpregset =
2206{
2207 NULL,
2208 sh_corefile_supply_regset,
2209 sh_corefile_collect_regset
2210};
2211
2212static const struct regset *
2213sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2214 size_t sect_size)
2215{
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2217
2218 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2219 return &sh_corefile_gregset;
2220
2221 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2222 return &sh_corefile_fpregset;
2223
2224 return NULL;
2225}
18648a37
YQ
2226
2227/* This is the implementation of gdbarch method
2228 return_in_first_hidden_param_p. */
2229
2230static int
2231sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2232 struct type *type)
2233{
2234 return 0;
2235}
2236
ccf00f21 2237\f
cc17453a
EZ
2238
2239static struct gdbarch *
fba45db2 2240sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2241{
cc17453a 2242 struct gdbarch *gdbarch;
c9ac0a72 2243 struct gdbarch_tdep *tdep;
d658f924 2244
2d4c29c5
TS
2245 /* SH5 is handled entirely in sh64-tdep.c. */
2246 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2247 return sh64_gdbarch_init (info, arches);
55ff77ac 2248
4be87837
DJ
2249 /* If there is already a candidate, use it. */
2250 arches = gdbarch_list_lookup_by_info (arches, &info);
2251 if (arches != NULL)
2252 return arches->gdbarch;
cc17453a
EZ
2253
2254 /* None found, create a new architecture from the information
c378eb4e 2255 provided. */
c9ac0a72
AS
2256 tdep = XZALLOC (struct gdbarch_tdep);
2257 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2258
48db5a3c
CV
2259 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2260 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2261 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2262 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2263 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2264 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2265 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2266 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2267
f2ea0907 2268 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2269 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2270 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2271 set_gdbarch_fp0_regnum (gdbarch, -1);
2272 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2273
1c0159e0 2274 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2275 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2276
eaf90c5d 2277 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
48db5a3c 2278
9dae60cc 2279 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2f14585c 2280 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2281
c0409442 2282 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2283
48db5a3c
CV
2284 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2285 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2286
1c0159e0 2287 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
18648a37
YQ
2288 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2289 sh_return_in_first_hidden_param_p);
1c0159e0 2290
48db5a3c
CV
2291 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2292
19f59343 2293 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2294 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2295 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
94afd7a6 2296 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
1c0159e0
CV
2297 frame_base_set_default (gdbarch, &sh_frame_base);
2298
617daa0e 2299 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
cc17453a 2300
357d3800
AS
2301 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2302
c9ac0a72
AS
2303 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2304
cc17453a 2305 switch (info.bfd_arch_info->mach)
8db62801 2306 {
cc17453a 2307 case bfd_mach_sh:
48db5a3c 2308 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2309 break;
1c0159e0 2310
cc17453a 2311 case bfd_mach_sh2:
48db5a3c 2312 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2313 break;
1c0159e0 2314
2d188dd3 2315 case bfd_mach_sh2e:
c378eb4e 2316 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2317 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2318 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2319
2320 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2321 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2322 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2323 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2324 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2325 break;
1c0159e0 2326
da962468
CV
2327 case bfd_mach_sh2a:
2328 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2329 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2330 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2331
2332 set_gdbarch_fp0_regnum (gdbarch, 25);
2333 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2334 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2335 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2336 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2337 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2338 break;
2339
2340 case bfd_mach_sh2a_nofpu:
2341 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2342 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2343
2344 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2345 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2346 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2347 break;
2348
cc17453a 2349 case bfd_mach_sh_dsp:
48db5a3c 2350 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2351 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2352 break;
1c0159e0 2353
cc17453a 2354 case bfd_mach_sh3:
4e6cbc38
AS
2355 case bfd_mach_sh3_nommu:
2356 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2357 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2358 break;
1c0159e0 2359
cc17453a 2360 case bfd_mach_sh3e:
4e6cbc38 2361 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2362 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2363 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2364 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2365
2366 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2367 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2368 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2369 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2370 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2371 break;
1c0159e0 2372
cc17453a 2373 case bfd_mach_sh3_dsp:
48db5a3c 2374 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2375 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2376 break;
1c0159e0 2377
cc17453a 2378 case bfd_mach_sh4:
474e5826 2379 case bfd_mach_sh4a:
46e8a76b 2380 case bfd_mach_sh2a_or_sh4:
48db5a3c 2381 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2382 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2383 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2384 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2385 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2386 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2387 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2388 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2389 break;
1c0159e0 2390
474e5826
CV
2391 case bfd_mach_sh4_nofpu:
2392 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2393 case bfd_mach_sh4_nommu_nofpu:
2394 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2395 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2396 break;
2397
2398 case bfd_mach_sh4al_dsp:
2399 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2400 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2401 break;
2402
cc17453a 2403 default:
b58cbbf2 2404 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2405 break;
8db62801 2406 }
cc17453a 2407
4be87837
DJ
2408 /* Hook in ABI-specific overrides, if they have been registered. */
2409 gdbarch_init_osabi (info, gdbarch);
d658f924 2410
94afd7a6 2411 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2412 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2413 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2414
cc17453a 2415 return gdbarch;
8db62801
EZ
2416}
2417
c055b101
CV
2418static void
2419show_sh_command (char *args, int from_tty)
2420{
2421 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2422}
2423
2424static void
2425set_sh_command (char *args, int from_tty)
2426{
2427 printf_unfiltered
2428 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2429 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2430}
2431
c378eb4e 2432extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2433
c906108c 2434void
fba45db2 2435_initialize_sh_tdep (void)
c906108c 2436{
f2ea0907 2437 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2438
c055b101
CV
2439 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2440 &setshcmdlist, "set sh ", 0, &setlist);
2441 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2442 &showshcmdlist, "show sh ", 0, &showlist);
2443
2444 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2445 &sh_active_calling_convention,
2446 _("Set calling convention used when calling target "
2447 "functions from GDB."),
2448 _("Show calling convention used when calling target "
2449 "functions from GDB."),
2450 _("gcc - Use GCC calling convention (default).\n"
2451 "renesas - Enforce Renesas calling convention."),
2452 NULL, NULL,
2453 &setshcmdlist, &showshcmdlist);
c906108c 2454}