]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh64-tdep.c
Add markers for release 2.26
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
32d0add0 3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
79a45b7d 38#include "valprint.h"
55ff77ac
CV
39
40#include "elf-bfd.h"
55ff77ac
CV
41
42/* sh flags */
43#include "elf/sh.h"
c378eb4e 44/* Register numbers shared with the simulator. */
55ff77ac 45#include "gdb/sim-sh.h"
d8ca156b 46#include "language.h"
04dcf5fa 47#include "sh64-tdep.h"
55ff77ac 48
7bb11558 49/* Information that is dependent on the processor variant. */
55ff77ac
CV
50enum sh_abi
51 {
52 SH_ABI_UNKNOWN,
53 SH_ABI_32,
54 SH_ABI_64
55 };
56
57struct gdbarch_tdep
58 {
59 enum sh_abi sh_abi;
60 };
61
c30dc700
CV
62struct sh64_frame_cache
63{
64 /* Base address. */
65 CORE_ADDR base;
66 LONGEST sp_offset;
67 CORE_ADDR pc;
68
c378eb4e 69 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
70 int uses_fp;
71
72 int media_mode;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
76 CORE_ADDR saved_sp;
77};
78
55ff77ac
CV
79/* Registers of SH5 */
80enum
81 {
82 R0_REGNUM = 0,
83 DEFAULT_RETURN_REGNUM = 2,
84 STRUCT_RETURN_REGNUM = 2,
85 ARG0_REGNUM = 2,
86 ARGLAST_REGNUM = 9,
87 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 88 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
89 PR_REGNUM = 18,
90 SR_REGNUM = 65,
91 DR0_REGNUM = 141,
92 DR_LAST_REGNUM = 172,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 95 point register. Unfortunately on the sh5, the floating point
7bb11558 96 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
97 FPP0_REGNUM = 173,
98 FPP_LAST_REGNUM = 204,
99 FV0_REGNUM = 205,
100 FV_LAST_REGNUM = 220,
101 R0_C_REGNUM = 221,
102 R_LAST_C_REGNUM = 236,
103 PC_C_REGNUM = 237,
104 GBR_C_REGNUM = 238,
105 MACH_C_REGNUM = 239,
106 MACL_C_REGNUM = 240,
107 PR_C_REGNUM = 241,
108 T_C_REGNUM = 242,
109 FPSCR_C_REGNUM = 243,
110 FPUL_C_REGNUM = 244,
111 FP0_C_REGNUM = 245,
112 FP_LAST_C_REGNUM = 260,
113 DR0_C_REGNUM = 261,
114 DR_LAST_C_REGNUM = 268,
115 FV0_C_REGNUM = 269,
116 FV_LAST_C_REGNUM = 272,
117 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
118 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
119 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
120 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
121 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
122 };
123
55ff77ac 124static const char *
d93859e2 125sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
126{
127 static char *register_names[] =
128 {
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
139
140 /* pc (64-bit) 64 */
141 "pc",
142
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
144 "sr", "ssr", "spc",
145
c378eb4e 146 /* target registers (64-bit) 68-75 */
55ff77ac
CV
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
148
149 /* floating point state control register (32-bit) 76 */
150 "fpscr",
151
c378eb4e 152 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
161
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
167
c378eb4e 168 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
173
c378eb4e 174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
177
c378eb4e 178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
181 "pc_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
183 "fpscr_c", "fpul_c",
c378eb4e
MS
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199}
200
201#define NUM_PSEUDO_REGS_SH_MEDIA 80
202#define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204/* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 206 symbol's "info" field is used for this purpose.
55ff77ac 207
95f1da47
UW
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 210 minimal symbol to mark it as a 32-bit function
f594e5e9 211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
212
213#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 214 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
215
216static void
217sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218{
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
b887350f 224 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 225 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
226 }
227}
228
229/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231#define IS_ISA32_ADDR(addr) ((addr) & 1)
232#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235static int
236pc_is_isa32 (bfd_vma memaddr)
237{
7cbd4a93 238 struct bound_minimal_symbol sym;
55ff77ac
CV
239
240 /* If bit 0 of the address is set, assume this is a
7bb11558 241 ISA32 (shmedia) address. */
55ff77ac
CV
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
249 if (sym.minsym)
250 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
251 else
252 return 0;
253}
254
255static const unsigned char *
c378eb4e
MS
256sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
257 CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
258{
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
c378eb4e 267 and in little endian mode to 0x3b, 0x0 */
55ff77ac 268
67d57894 269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
c378eb4e
MS
273 static unsigned char big_breakpoint_media[] = {
274 0x6f, 0xf5, 0xff, 0xf0
275 };
55ff77ac
CV
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 *lenptr = sizeof (big_breakpoint_media);
278 return big_breakpoint_media;
279 }
280 else
281 {
282 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
283 *lenptr = sizeof (big_breakpoint_compact);
284 return big_breakpoint_compact;
285 }
286 }
287 else
288 {
289 if (pc_is_isa32 (*pcptr))
290 {
c378eb4e
MS
291 static unsigned char little_breakpoint_media[] = {
292 0xf0, 0xff, 0xf5, 0x6f
293 };
55ff77ac
CV
294 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
295 *lenptr = sizeof (little_breakpoint_media);
296 return little_breakpoint_media;
297 }
298 else
299 {
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301 *lenptr = sizeof (little_breakpoint_compact);
302 return little_breakpoint_compact;
303 }
304 }
305}
306
307/* Prologue looks like
308 [mov.l <regs>,@-r15]...
309 [sts.l pr,@-r15]
310 [mov.l r14,@-r15]
311 [mov r15,r14]
312
313 Actually it can be more complicated than this. For instance, with
314 newer gcc's:
315
316 mov.l r14,@-r15
317 add #-12,r15
318 mov r15,r14
319 mov r4,r1
320 mov r5,r2
321 mov.l r6,@(4,r14)
322 mov.l r7,@(8,r14)
323 mov.b r1,@r14
324 mov r14,r1
325 mov r14,r1
326 add #2,r1
327 mov.w r2,@r1
328
329 */
330
331/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
334
335/* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337#define IS_STS_R0(x) ((x) == 0x4022)
338
339/* STS PR, Rm 0000mmmm00101010
340 PR-->Rm */
341#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
342
343/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
344 Rm-->(dispx4+r15) */
345#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
346
347/* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
350
351/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
354
355/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
358
359/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
362
363/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
366
367/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
370
371/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
374
375/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
376 R15 + imm --> R15 */
377#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
378
379/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
382
383/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
384 R15 + R63 --> R14 */
385#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
386
c378eb4e
MS
387#define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
389
390/* MOV #imm, R0 1110 0000 ssss ssss
391 #imm-->R0 */
392#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
393
394/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
396
397/* ADD r15,r0 0011 0000 1111 1100
398 r15+r0-->r0 */
399#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
400
401/* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
404
405/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 406 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 407/* FIXME: Recognize the float and double register moves too! */
55ff77ac 408#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
412
413/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 415 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
416#define IS_MEDIA_ARG_MOV(x) \
417(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
419
c378eb4e
MS
420/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
425#define IS_MEDIA_MOV_TO_R14(x) \
426((((x) & 0xfffffc0f) == 0xa0e00000) \
427|| (((x) & 0xfffffc0f) == 0xa4e00000) \
428|| (((x) & 0xfffffc0f) == 0xa8e00000) \
429|| (((x) & 0xfffffc0f) == 0xb4e00000) \
430|| (((x) & 0xfffffc0f) == 0xbce00000))
431
432/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
433 where Rm is r2-r9 */
434#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
437
438/* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
443
444/* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446#define IS_COMPACT_MOV_TO_R14(x) \
447((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
448
449#define IS_JSR_R0(x) ((x) == 0x400b)
450#define IS_NOP(x) ((x) == 0x0009)
451
452
453/* MOV r15,r14 0110111011110011
454 r15-->r14 */
455#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
456
457/* ADD #imm,r15 01111111iiiiiiii
458 r15+imm-->r15 */
459#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
460
c378eb4e 461/* Skip any prologue before the guts of a function. */
55ff77ac 462
7bb11558
MS
463/* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
55ff77ac
CV
465static CORE_ADDR
466after_prologue (CORE_ADDR pc)
467{
468 struct symtab_and_line sal;
469 CORE_ADDR func_addr, func_end;
470
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
473 with this code. */
474 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
475 return 0;
476
c30dc700 477
55ff77ac
CV
478 /* Get the line associated with FUNC_ADDR. */
479 sal = find_pc_line (func_addr, 0);
480
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal.end < func_end)
487 return sal.end;
488 else
489 return 0;
490}
491
492static CORE_ADDR
e17a4113
UW
493look_for_args_moves (struct gdbarch *gdbarch,
494 CORE_ADDR start_pc, int media_mode)
55ff77ac 495{
e17a4113 496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
497 CORE_ADDR here, end;
498 int w;
499 int insn_size = (media_mode ? 4 : 2);
500
501 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
502 {
503 if (media_mode)
504 {
e17a4113
UW
505 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
55ff77ac
CV
507 here += insn_size;
508 if (IS_MEDIA_IND_ARG_MOV (w))
509 {
510 /* This must be followed by a store to r14, so the argument
c378eb4e 511 is where the debug info says it is. This can happen after
7bb11558 512 the SP has been saved, unfortunately. */
55ff77ac
CV
513
514 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 515 insn_size, byte_order);
55ff77ac
CV
516 here += insn_size;
517 if (IS_MEDIA_MOV_TO_R14 (next_insn))
518 start_pc = here;
519 }
520 else if (IS_MEDIA_ARG_MOV (w))
521 {
7bb11558 522 /* These instructions store directly the argument in r14. */
55ff77ac
CV
523 start_pc = here;
524 }
525 else
526 break;
527 }
528 else
529 {
e17a4113 530 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
531 w = w & 0xffff;
532 here += insn_size;
533 if (IS_COMPACT_IND_ARG_MOV (w))
534 {
535 /* This must be followed by a store to r14, so the argument
c378eb4e 536 is where the debug info says it is. This can happen after
7bb11558 537 the SP has been saved, unfortunately. */
55ff77ac 538
e17a4113
UW
539 int next_insn = 0xffff & read_memory_integer (here, insn_size,
540 byte_order);
55ff77ac
CV
541 here += insn_size;
542 if (IS_COMPACT_MOV_TO_R14 (next_insn))
543 start_pc = here;
544 }
545 else if (IS_COMPACT_ARG_MOV (w))
546 {
7bb11558 547 /* These instructions store directly the argument in r14. */
55ff77ac
CV
548 start_pc = here;
549 }
550 else if (IS_MOVL_R0 (w))
551 {
552 /* There is a function that gcc calls to get the arguments
c378eb4e 553 passed correctly to the function. Only after this
55ff77ac 554 function call the arguments will be found at the place
c378eb4e 555 where they are supposed to be. This happens in case the
55ff77ac
CV
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
c378eb4e 567 true after the argument decoder is called. Such a call
7bb11558 568 needs to be considered part of the prologue. */
55ff77ac
CV
569
570 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 571 a NOP instruction. After these, the prologue is over! */
55ff77ac 572
e17a4113
UW
573 int next_insn = 0xffff & read_memory_integer (here, insn_size,
574 byte_order);
55ff77ac
CV
575 here += insn_size;
576 if (IS_JSR_R0 (next_insn))
577 {
e17a4113
UW
578 next_insn = 0xffff & read_memory_integer (here, insn_size,
579 byte_order);
55ff77ac
CV
580 here += insn_size;
581
582 if (IS_NOP (next_insn))
583 start_pc = here;
584 }
585 }
586 else
587 break;
588 }
589 }
590
591 return start_pc;
592}
593
594static CORE_ADDR
e17a4113 595sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 596{
e17a4113 597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
598 CORE_ADDR here, end;
599 int updated_fp = 0;
600 int insn_size = 4;
601 int media_mode = 1;
602
603 if (!start_pc)
604 return 0;
605
606 if (pc_is_isa32 (start_pc) == 0)
607 {
608 insn_size = 2;
609 media_mode = 0;
610 }
611
612 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
613 {
614
615 if (media_mode)
616 {
e17a4113
UW
617 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
618 insn_size, byte_order);
55ff77ac
CV
619 here += insn_size;
620 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
621 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
622 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
623 || IS_PTABSL_R18 (w))
55ff77ac
CV
624 {
625 start_pc = here;
626 }
627 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
628 {
629 start_pc = here;
630 updated_fp = 1;
631 }
632 else
633 if (updated_fp)
634 {
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
7bb11558 637 gdb can print the frames correctly. */
e17a4113
UW
638 start_pc = look_for_args_moves (gdbarch,
639 here - insn_size, media_mode);
55ff77ac
CV
640 break;
641 }
642 }
643 else
644 {
e17a4113 645 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
646 here += insn_size;
647
648 if (IS_STS_R0 (w) || IS_STS_PR (w)
649 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
650 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
651 {
652 start_pc = here;
653 }
654 else if (IS_MOV_SP_FP (w))
655 {
656 start_pc = here;
657 updated_fp = 1;
658 }
659 else
660 if (updated_fp)
661 {
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
7bb11558 664 gdb can print the frames correctly. */
e17a4113
UW
665 start_pc = look_for_args_moves (gdbarch,
666 here - insn_size, media_mode);
55ff77ac
CV
667 break;
668 }
669 }
670 }
671
672 return start_pc;
673}
674
675static CORE_ADDR
6093d2eb 676sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
677{
678 CORE_ADDR post_prologue_pc;
679
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
682 is greater. */
683 post_prologue_pc = after_prologue (pc);
684
685 /* If after_prologue returned a useful address, then use it. Else
7bb11558 686 fall back on the instruction skipping code. */
55ff77ac
CV
687 if (post_prologue_pc != 0)
688 return max (pc, post_prologue_pc);
689 else
e17a4113 690 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
691}
692
55ff77ac
CV
693/* Should call_function allocate stack space for a struct return? */
694static int
c30dc700 695sh64_use_struct_convention (struct type *type)
55ff77ac
CV
696{
697 return (TYPE_LENGTH (type) > 8);
698}
699
7bb11558 700/* For vectors of 4 floating point registers. */
55ff77ac 701static int
d93859e2 702sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
703{
704 int fp_regnum;
705
d93859e2 706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
707 return fp_regnum;
708}
709
c378eb4e 710/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 711static int
d93859e2 712sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
713{
714 int fp_regnum;
715
d93859e2 716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
717 return fp_regnum;
718}
719
c378eb4e 720/* For pairs of floating point registers. */
55ff77ac 721static int
d93859e2 722sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
723{
724 int fp_regnum;
725
d93859e2 726 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
727 return fp_regnum;
728}
729
55ff77ac
CV
730/* *INDENT-OFF* */
731/*
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
734 r0_c 221 0
735 r1_c 222 1
736 r2_c 223 2
737 r3_c 224 3
738 r4_c 225 4
739 r5_c 226 5
740 r6_c 227 6
741 r7_c 228 7
742 r8_c 229 8
743 r9_c 230 9
744 r10_c 231 10
745 r11_c 232 11
746 r12_c 233 12
747 r13_c 234 13
748 r14_c 235 14
749 r15_c 236 15
750
751 pc_c 237 64
752 gbr_c 238 16
753 mach_c 239 17
754 macl_c 240 17
755 pr_c 241 18
756 t_c 242 19
757 fpscr_c 243 76
758 fpul_c 244 109
759
760 fr0_c 245 77
761 fr1_c 246 78
762 fr2_c 247 79
763 fr3_c 248 80
764 fr4_c 249 81
765 fr5_c 250 82
766 fr6_c 251 83
767 fr7_c 252 84
768 fr8_c 253 85
769 fr9_c 254 86
770 fr10_c 255 87
771 fr11_c 256 88
772 fr12_c 257 89
773 fr13_c 258 90
774 fr14_c 259 91
775 fr15_c 260 92
776
777 dr0_c 261 77
778 dr2_c 262 79
779 dr4_c 263 81
780 dr6_c 264 83
781 dr8_c 265 85
782 dr10_c 266 87
783 dr12_c 267 89
784 dr14_c 268 91
785
786 fv0_c 269 77
787 fv4_c 270 81
788 fv8_c 271 85
789 fv12_c 272 91
790*/
791/* *INDENT-ON* */
792static int
d93859e2 793sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 794{
c30dc700 795 int base_regnum = reg_nr;
55ff77ac
CV
796
797 /* general register N maps to general register N */
798 if (reg_nr >= R0_C_REGNUM
799 && reg_nr <= R_LAST_C_REGNUM)
800 base_regnum = reg_nr - R0_C_REGNUM;
801
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr >= FP0_C_REGNUM
804 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 805 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
806
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr >= DR0_C_REGNUM
809 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
810 base_regnum = sh64_dr_reg_base_num (gdbarch,
811 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
812
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr >= FV0_C_REGNUM
815 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
816 base_regnum = sh64_fv_reg_base_num (gdbarch,
817 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
818
819 else if (reg_nr == PC_C_REGNUM)
d93859e2 820 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
821
822 else if (reg_nr == GBR_C_REGNUM)
823 base_regnum = 16;
824
825 else if (reg_nr == MACH_C_REGNUM
826 || reg_nr == MACL_C_REGNUM)
827 base_regnum = 17;
828
829 else if (reg_nr == PR_C_REGNUM)
c30dc700 830 base_regnum = PR_REGNUM;
55ff77ac
CV
831
832 else if (reg_nr == T_C_REGNUM)
833 base_regnum = 19;
834
835 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 836 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
837
838 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 839 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
840
841 return base_regnum;
842}
843
55ff77ac
CV
844static int
845sign_extend (int value, int bits)
846{
847 value = value & ((1 << bits) - 1);
848 return (value & (1 << (bits - 1))
849 ? value | (~((1 << bits) - 1))
850 : value);
851}
852
853static void
c30dc700
CV
854sh64_analyze_prologue (struct gdbarch *gdbarch,
855 struct sh64_frame_cache *cache,
856 CORE_ADDR func_pc,
857 CORE_ADDR current_pc)
55ff77ac 858{
55ff77ac
CV
859 int pc;
860 int opc;
861 int insn;
862 int r0_val = 0;
55ff77ac
CV
863 int insn_size;
864 int gdb_register_number;
865 int register_number;
c30dc700 866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 868
c30dc700 869 cache->sp_offset = 0;
55ff77ac
CV
870
871 /* Loop around examining the prologue insns until we find something
872 that does not appear to be part of the prologue. But give up
7bb11558 873 after 20 of them, since we're getting silly then. */
55ff77ac 874
c30dc700 875 pc = func_pc;
55ff77ac 876
c30dc700
CV
877 if (cache->media_mode)
878 insn_size = 4;
55ff77ac 879 else
c30dc700 880 insn_size = 2;
55ff77ac 881
c30dc700
CV
882 opc = pc + (insn_size * 28);
883 if (opc > current_pc)
884 opc = current_pc;
885 for ( ; pc <= opc; pc += insn_size)
55ff77ac 886 {
c30dc700
CV
887 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
888 : pc,
e17a4113 889 insn_size, byte_order);
55ff77ac 890
c30dc700 891 if (!cache->media_mode)
55ff77ac
CV
892 {
893 if (IS_STS_PR (insn))
894 {
e17a4113
UW
895 int next_insn = read_memory_integer (pc + insn_size,
896 insn_size, byte_order);
55ff77ac
CV
897 if (IS_MOV_TO_R15 (next_insn))
898 {
c378eb4e
MS
899 cache->saved_regs[PR_REGNUM]
900 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
901 - 0x8) << 2);
55ff77ac
CV
902 pc += insn_size;
903 }
904 }
c30dc700 905
55ff77ac 906 else if (IS_MOV_R14 (insn))
c30dc700
CV
907 cache->saved_regs[MEDIA_FP_REGNUM] =
908 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
909
910 else if (IS_MOV_R0 (insn))
911 {
912 /* Put in R0 the offset from SP at which to store some
c378eb4e 913 registers. We are interested in this value, because it
55ff77ac
CV
914 will tell us where the given registers are stored within
915 the frame. */
916 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
917 }
c30dc700 918
55ff77ac
CV
919 else if (IS_ADD_SP_R0 (insn))
920 {
921 /* This instruction still prepares r0, but we don't care.
7bb11558 922 We already have the offset in r0_val. */
55ff77ac 923 }
c30dc700 924
55ff77ac
CV
925 else if (IS_STS_R0 (insn))
926 {
c378eb4e 927 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 928 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 929 r0_val -= 4;
55ff77ac 930 }
c30dc700 931
55ff77ac
CV
932 else if (IS_MOV_R14_R0 (insn))
933 {
c378eb4e 934 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
935 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
936 - (r0_val - 4);
55ff77ac
CV
937 r0_val -= 4;
938 }
939
940 else if (IS_ADD_SP (insn))
c30dc700
CV
941 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
942
55ff77ac
CV
943 else if (IS_MOV_SP_FP (insn))
944 break;
945 }
946 else
947 {
c30dc700
CV
948 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
949 cache->sp_offset -=
950 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
951
952 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
953 cache->saved_regs[PR_REGNUM]
954 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
955 9) << 3);
55ff77ac
CV
956
957 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
958 cache->saved_regs[PR_REGNUM]
959 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
960 9) << 2);
55ff77ac
CV
961
962 else if (IS_STQ_R14_R15 (insn))
c378eb4e
MS
963 cache->saved_regs[MEDIA_FP_REGNUM]
964 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
965 9) << 3);
55ff77ac
CV
966
967 else if (IS_STL_R14_R15 (insn))
c378eb4e
MS
968 cache->saved_regs[MEDIA_FP_REGNUM]
969 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
970 9) << 2);
55ff77ac
CV
971
972 else if (IS_MOV_SP_FP_MEDIA (insn))
973 break;
974 }
975 }
976
c30dc700
CV
977 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
978 cache->uses_fp = 1;
55ff77ac
CV
979}
980
55ff77ac 981static CORE_ADDR
c30dc700 982sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 983{
c30dc700 984 return sp & ~7;
55ff77ac
CV
985}
986
c30dc700 987/* Function: push_dummy_call
55ff77ac
CV
988 Setup the function arguments for calling a function in the inferior.
989
85a453d5 990 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
991 which are dedicated for passing function arguments. Up to the first
992 four arguments (depending on size) may go into these registers.
993 The rest go on the stack.
994
995 Arguments that are smaller than 4 bytes will still take up a whole
996 register or a whole 32-bit word on the stack, and will be
997 right-justified in the register or the stack word. This includes
998 chars, shorts, and small aggregate types.
999
1000 Arguments that are larger than 4 bytes may be split between two or
1001 more registers. If there are not enough registers free, an argument
1002 may be passed partly in a register (or registers), and partly on the
c378eb4e 1003 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1004 As far as I know, there is no upper limit to the size of aggregates
1005 that will be passed in this way; in other words, the convention of
1006 passing a pointer to a large aggregate instead of a copy is not used.
1007
1008 An exceptional case exists for struct arguments (and possibly other
1009 aggregates such as arrays) if the size is larger than 4 bytes but
1010 not a multiple of 4 bytes. In this case the argument is never split
1011 between the registers and the stack, but instead is copied in its
1012 entirety onto the stack, AND also copied into as many registers as
1013 there is room for. In other words, space in registers permitting,
1014 two copies of the same argument are passed in. As far as I can tell,
1015 only the one on the stack is used, although that may be a function
1016 of the level of compiler optimization. I suspect this is a compiler
1017 bug. Arguments of these odd sizes are left-justified within the
1018 word (as opposed to arguments smaller than 4 bytes, which are
1019 right-justified).
1020
1021 If the function is to return an aggregate type such as a struct, it
1022 is either returned in the normal return value register R0 (if its
1023 size is no greater than one byte), or else the caller must allocate
1024 space into which the callee will copy the return value (if the size
1025 is greater than one byte). In this case, a pointer to the return
1026 value location is passed into the callee in register R2, which does
1027 not displace any of the other arguments passed in via registers R4
c378eb4e 1028 to R7. */
55ff77ac
CV
1029
1030/* R2-R9 for integer types and integer equivalent (char, pointers) and
1031 non-scalar (struct, union) elements (even if the elements are
1032 floats).
1033 FR0-FR11 for single precision floating point (float)
1034 DR0-DR10 for double precision floating point (double)
1035
1036 If a float is argument number 3 (for instance) and arguments number
1037 1,2, and 4 are integer, the mapping will be:
c378eb4e 1038 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1039
1040 If a float is argument number 10 (for instance) and arguments number
1041 1 through 10 are integer, the mapping will be:
1042 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1043 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1044 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1045
1046 Different rules apply for variable arguments functions, and for functions
7bb11558 1047 for which the prototype is not known. */
55ff77ac
CV
1048
1049static CORE_ADDR
c30dc700
CV
1050sh64_push_dummy_call (struct gdbarch *gdbarch,
1051 struct value *function,
1052 struct regcache *regcache,
1053 CORE_ADDR bp_addr,
1054 int nargs, struct value **args,
1055 CORE_ADDR sp, int struct_return,
1056 CORE_ADDR struct_addr)
55ff77ac 1057{
e17a4113 1058 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1059 int stack_offset, stack_alloc;
1060 int int_argreg;
1061 int float_argreg;
1062 int double_argreg;
1063 int float_arg_index = 0;
1064 int double_arg_index = 0;
1065 int argnum;
1066 struct type *type;
1067 CORE_ADDR regval;
948f8e3d
PA
1068 const gdb_byte *val;
1069 gdb_byte valbuf[8];
55ff77ac
CV
1070 int len;
1071 int argreg_size;
1072 int fp_args[12];
55ff77ac
CV
1073
1074 memset (fp_args, 0, sizeof (fp_args));
1075
c378eb4e 1076 /* First force sp to a 8-byte alignment. */
c30dc700 1077 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1078
1079 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1080 register. */
55ff77ac
CV
1081
1082 if (struct_return)
c30dc700
CV
1083 regcache_cooked_write_unsigned (regcache,
1084 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1085
c378eb4e 1086 /* Now make sure there's space on the stack. */
55ff77ac 1087 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1088 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1089 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 64 bytes
1093 in eight registers available. Loop thru args from first to last. */
1094
1095 int_argreg = ARG0_REGNUM;
58643501 1096 float_argreg = gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
1097 double_argreg = DR0_REGNUM;
1098
1099 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1100 {
4991999e 1101 type = value_type (args[argnum]);
55ff77ac
CV
1102 len = TYPE_LENGTH (type);
1103 memset (valbuf, 0, sizeof (valbuf));
1104
1105 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1106 {
58643501 1107 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1108
1109 if (len < argreg_size)
1110 {
c378eb4e 1111 /* value gets right-justified in the register or stack word. */
58643501 1112 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1113 memcpy (valbuf + argreg_size - len,
948f8e3d 1114 value_contents (args[argnum]), len);
55ff77ac 1115 else
948f8e3d 1116 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1117
1118 val = valbuf;
1119 }
1120 else
948f8e3d 1121 val = value_contents (args[argnum]);
55ff77ac
CV
1122
1123 while (len > 0)
1124 {
1125 if (int_argreg > ARGLAST_REGNUM)
1126 {
c378eb4e 1127 /* Must go on the stack. */
948f8e3d 1128 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1129 stack_offset += 8;/*argreg_size;*/
1130 }
1131 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1132 That's because some *&^%$ things get passed on the stack
1133 AND in the registers! */
1134 if (int_argreg <= ARGLAST_REGNUM)
1135 {
c378eb4e 1136 /* There's room in a register. */
e17a4113
UW
1137 regval = extract_unsigned_integer (val, argreg_size,
1138 byte_order);
c378eb4e
MS
1139 regcache_cooked_write_unsigned (regcache,
1140 int_argreg, regval);
55ff77ac
CV
1141 }
1142 /* Store the value 8 bytes at a time. This means that
1143 things larger than 8 bytes may go partly in registers
c378eb4e 1144 and partly on the stack. FIXME: argreg is incremented
7bb11558 1145 before we use its size. */
55ff77ac
CV
1146 len -= argreg_size;
1147 val += argreg_size;
1148 int_argreg++;
1149 }
1150 }
1151 else
1152 {
948f8e3d 1153 val = value_contents (args[argnum]);
55ff77ac
CV
1154 if (len == 4)
1155 {
c378eb4e 1156 /* Where is it going to be stored? */
55ff77ac
CV
1157 while (fp_args[float_arg_index])
1158 float_arg_index ++;
1159
1160 /* Now float_argreg points to the register where it
1161 should be stored. Are we still within the allowed
c378eb4e 1162 register set? */
55ff77ac
CV
1163 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1164 {
1165 /* Goes in FR0...FR11 */
c30dc700 1166 regcache_cooked_write (regcache,
58643501 1167 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1168 + float_arg_index,
c30dc700 1169 val);
55ff77ac 1170 fp_args[float_arg_index] = 1;
7bb11558 1171 /* Skip the corresponding general argument register. */
55ff77ac
CV
1172 int_argreg ++;
1173 }
1174 else
d4fb63e1
TT
1175 {
1176 /* Store it as the integers, 8 bytes at the time, if
1177 necessary spilling on the stack. */
1178 }
55ff77ac
CV
1179 }
1180 else if (len == 8)
1181 {
c378eb4e 1182 /* Where is it going to be stored? */
55ff77ac
CV
1183 while (fp_args[double_arg_index])
1184 double_arg_index += 2;
1185 /* Now double_argreg points to the register
1186 where it should be stored.
c378eb4e 1187 Are we still within the allowed register set? */
55ff77ac
CV
1188 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1189 {
1190 /* Goes in DR0...DR10 */
1191 /* The numbering of the DRi registers is consecutive,
7bb11558 1192 i.e. includes odd numbers. */
55ff77ac 1193 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1194 int regnum = DR0_REGNUM + double_register_offset;
1195 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1196 fp_args[double_arg_index] = 1;
1197 fp_args[double_arg_index + 1] = 1;
7bb11558 1198 /* Skip the corresponding general argument register. */
55ff77ac
CV
1199 int_argreg ++;
1200 }
1201 else
d4fb63e1
TT
1202 {
1203 /* Store it as the integers, 8 bytes at the time, if
1204 necessary spilling on the stack. */
1205 }
55ff77ac
CV
1206 }
1207 }
1208 }
c378eb4e 1209 /* Store return address. */
c30dc700 1210 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1211
c30dc700 1212 /* Update stack pointer. */
3e8c568d 1213 regcache_cooked_write_unsigned (regcache,
58643501 1214 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1215
55ff77ac
CV
1216 return sp;
1217}
1218
1219/* Find a function's return value in the appropriate registers (in
1220 regbuf), and copy it into valbuf. Extract from an array REGBUF
1221 containing the (raw) register state a function return value of type
1222 TYPE, and copy that, in virtual format, into VALBUF. */
1223static void
c30dc700 1224sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1225 gdb_byte *valbuf)
55ff77ac 1226{
d93859e2 1227 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1229 int len = TYPE_LENGTH (type);
d93859e2 1230
55ff77ac
CV
1231 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1232 {
1233 if (len == 4)
1234 {
c378eb4e 1235 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1236 regcache_raw_read (regcache,
d93859e2 1237 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1238 }
1239 else if (len == 8)
1240 {
c378eb4e 1241 /* return value stored in DR0_REGNUM. */
55ff77ac 1242 DOUBLEST val;
18cf8b5b 1243 gdb_byte buf[8];
55ff77ac 1244
18cf8b5b 1245 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1246
d93859e2 1247 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1248 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1249 buf, &val);
55ff77ac
CV
1250 else
1251 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1252 buf, &val);
7bb11558 1253 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1254 }
1255 }
1256 else
1257 {
1258 if (len <= 8)
1259 {
c30dc700 1260 int offset;
e362b510 1261 gdb_byte buf[8];
c378eb4e 1262 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1263 at the most significant end. */
c30dc700
CV
1264 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1265
d93859e2
UW
1266 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1267 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1268 - len;
55ff77ac 1269 else
c30dc700
CV
1270 offset = 0;
1271 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1272 }
1273 else
a73c6dcd 1274 error (_("bad size for return value"));
55ff77ac
CV
1275 }
1276}
1277
1278/* Write into appropriate registers a function return value
1279 of type TYPE, given in virtual format.
1280 If the architecture is sh4 or sh3e, store a function's return value
1281 in the R0 general register or in the FP0 floating point register,
c378eb4e 1282 depending on the type of the return value. In all the other cases
7bb11558 1283 the result is stored in r0, left-justified. */
55ff77ac
CV
1284
1285static void
c30dc700 1286sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1287 const gdb_byte *valbuf)
55ff77ac 1288{
d93859e2 1289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e362b510 1290 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1291 int len = TYPE_LENGTH (type);
1292
1293 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1294 {
d93859e2 1295 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1296 for (i = 0; i < len; i += 4)
d93859e2 1297 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1298 regcache_raw_write (regcache, regnum++,
948f8e3d 1299 valbuf + len - 4 - i);
c30dc700 1300 else
948f8e3d 1301 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1302 }
1303 else
1304 {
1305 int return_register = DEFAULT_RETURN_REGNUM;
1306 int offset = 0;
1307
d93859e2 1308 if (len <= register_size (gdbarch, return_register))
55ff77ac 1309 {
7bb11558 1310 /* Pad with zeros. */
d93859e2
UW
1311 memset (buf, 0, register_size (gdbarch, return_register));
1312 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1313 offset = 0; /*register_size (gdbarch,
7bb11558 1314 return_register) - len;*/
55ff77ac 1315 else
d93859e2 1316 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1317
1318 memcpy (buf + offset, valbuf, len);
c30dc700 1319 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1320 }
1321 else
c30dc700 1322 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1323 }
1324}
1325
c30dc700 1326static enum return_value_convention
6a3a010b 1327sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1328 struct type *type, struct regcache *regcache,
18cf8b5b 1329 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1330{
1331 if (sh64_use_struct_convention (type))
1332 return RETURN_VALUE_STRUCT_CONVENTION;
1333 if (writebuf)
1334 sh64_store_return_value (type, regcache, writebuf);
1335 else if (readbuf)
1336 sh64_extract_return_value (type, regcache, readbuf);
1337 return RETURN_VALUE_REGISTER_CONVENTION;
1338}
1339
55ff77ac
CV
1340/* *INDENT-OFF* */
1341/*
1342 SH MEDIA MODE (ISA 32)
1343 general registers (64-bit) 0-63
13440 r0, r1, r2, r3, r4, r5, r6, r7,
134564 r8, r9, r10, r11, r12, r13, r14, r15,
1346128 r16, r17, r18, r19, r20, r21, r22, r23,
1347192 r24, r25, r26, r27, r28, r29, r30, r31,
1348256 r32, r33, r34, r35, r36, r37, r38, r39,
1349320 r40, r41, r42, r43, r44, r45, r46, r47,
1350384 r48, r49, r50, r51, r52, r53, r54, r55,
1351448 r56, r57, r58, r59, r60, r61, r62, r63,
1352
1353 pc (64-bit) 64
1354512 pc,
1355
1356 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1357520 sr, ssr, spc,
1358
1359 target registers (64-bit) 68-75
1360544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1361
1362 floating point state control register (32-bit) 76
1363608 fpscr,
1364
1365 single precision floating point registers (32-bit) 77-140
1366612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1367644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1368676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1369708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1370740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1371772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1372804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1373836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1374
1375TOTAL SPACE FOR REGISTERS: 868 bytes
1376
1377From here on they are all pseudo registers: no memory allocated.
1378REGISTER_BYTE returns the register byte for the base register.
1379
1380 double precision registers (pseudo) 141-172
1381 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1382 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1383 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1384 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1385
1386 floating point pairs (pseudo) 173-204
1387 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1388 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1389 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1390 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1391
1392 floating point vectors (4 floating point regs) (pseudo) 205-220
1393 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1394 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1395
1396 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1397 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1398 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1399 pc_c,
1400 gbr_c, mach_c, macl_c, pr_c, t_c,
1401 fpscr_c, fpul_c,
1402 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1403 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1404 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1405 fv0_c, fv4_c, fv8_c, fv12_c
1406*/
55ff77ac 1407
55ff77ac 1408static struct type *
0dfff4cb 1409sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1410{
e3506a9f
UW
1411 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1412 0, high);
55ff77ac
CV
1413}
1414
7bb11558
MS
1415/* Return the GDB type object for the "standard" data type
1416 of data in register REG_NR. */
55ff77ac 1417static struct type *
7bb11558 1418sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1419{
58643501 1420 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1421 && reg_nr <= FP_LAST_REGNUM)
1422 || (reg_nr >= FP0_C_REGNUM
1423 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1424 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1425 else if ((reg_nr >= DR0_REGNUM
1426 && reg_nr <= DR_LAST_REGNUM)
1427 || (reg_nr >= DR0_C_REGNUM
1428 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1429 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1430 else if (reg_nr >= FPP0_REGNUM
1431 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1432 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1433 else if ((reg_nr >= FV0_REGNUM
1434 && reg_nr <= FV_LAST_REGNUM)
1435 ||(reg_nr >= FV0_C_REGNUM
1436 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1437 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1438 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1439 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1440 else if (reg_nr >= R0_C_REGNUM
1441 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1442 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1443 else
0dfff4cb 1444 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1445}
1446
1447static void
d93859e2 1448sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1449 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1450{
d93859e2 1451 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1452 {
7bb11558 1453 /* It is a no-op. */
d93859e2 1454 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1455 return;
1456 }
1457
1458 if ((regnum >= DR0_REGNUM
1459 && regnum <= DR_LAST_REGNUM)
1460 || (regnum >= DR0_C_REGNUM
1461 && regnum <= DR_LAST_C_REGNUM))
1462 {
1463 DOUBLEST val;
7bb11558
MS
1464 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1465 from, &val);
39add00a 1466 store_typed_floating (to, type, val);
55ff77ac
CV
1467 }
1468 else
a73c6dcd
MS
1469 error (_("sh64_register_convert_to_virtual "
1470 "called with non DR register number"));
55ff77ac
CV
1471}
1472
1473static void
d93859e2
UW
1474sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1475 int regnum, const void *from, void *to)
55ff77ac 1476{
d93859e2 1477 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1478 {
7bb11558 1479 /* It is a no-op. */
d93859e2 1480 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1481 return;
1482 }
1483
1484 if ((regnum >= DR0_REGNUM
1485 && regnum <= DR_LAST_REGNUM)
1486 || (regnum >= DR0_C_REGNUM
1487 && regnum <= DR_LAST_C_REGNUM))
1488 {
e035e373 1489 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1490 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1491 &val, to);
55ff77ac
CV
1492 }
1493 else
a73c6dcd
MS
1494 error (_("sh64_register_convert_to_raw called "
1495 "with non DR register number"));
55ff77ac
CV
1496}
1497
05d1431c
PA
1498/* Concatenate PORTIONS contiguous raw registers starting at
1499 BASE_REGNUM into BUFFER. */
1500
1501static enum register_status
1502pseudo_register_read_portions (struct gdbarch *gdbarch,
1503 struct regcache *regcache,
1504 int portions,
1505 int base_regnum, gdb_byte *buffer)
1506{
1507 int portion;
1508
1509 for (portion = 0; portion < portions; portion++)
1510 {
1511 enum register_status status;
1512 gdb_byte *b;
1513
1514 b = buffer + register_size (gdbarch, base_regnum) * portion;
1515 status = regcache_raw_read (regcache, base_regnum + portion, b);
1516 if (status != REG_VALID)
1517 return status;
1518 }
1519
1520 return REG_VALID;
1521}
1522
1523static enum register_status
55ff77ac 1524sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1525 int reg_nr, gdb_byte *buffer)
55ff77ac 1526{
e17a4113 1527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1528 int base_regnum;
55ff77ac 1529 int offset = 0;
948f8e3d 1530 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1531 enum register_status status;
55ff77ac
CV
1532
1533 if (reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 {
d93859e2 1536 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1537
7bb11558 1538 /* Build the value in the provided buffer. */
55ff77ac 1539 /* DR regs are double precision registers obtained by
7bb11558 1540 concatenating 2 single precision floating point registers. */
05d1431c
PA
1541 status = pseudo_register_read_portions (gdbarch, regcache,
1542 2, base_regnum, temp_buffer);
1543 if (status == REG_VALID)
1544 {
1545 /* We must pay attention to the endianness. */
1546 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1547 register_type (gdbarch, reg_nr),
1548 temp_buffer, buffer);
1549 }
55ff77ac 1550
05d1431c 1551 return status;
55ff77ac
CV
1552 }
1553
05d1431c 1554 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1555 && reg_nr <= FPP_LAST_REGNUM)
1556 {
d93859e2 1557 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1558
7bb11558 1559 /* Build the value in the provided buffer. */
55ff77ac 1560 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1561 concatenating 2 single precision floating point registers. */
05d1431c
PA
1562 return pseudo_register_read_portions (gdbarch, regcache,
1563 2, base_regnum, buffer);
55ff77ac
CV
1564 }
1565
1566 else if (reg_nr >= FV0_REGNUM
1567 && reg_nr <= FV_LAST_REGNUM)
1568 {
d93859e2 1569 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1570
7bb11558 1571 /* Build the value in the provided buffer. */
55ff77ac 1572 /* FV regs are vectors of single precision registers obtained by
7bb11558 1573 concatenating 4 single precision floating point registers. */
05d1431c
PA
1574 return pseudo_register_read_portions (gdbarch, regcache,
1575 4, base_regnum, buffer);
55ff77ac
CV
1576 }
1577
c378eb4e 1578 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1579 else if (reg_nr >= R0_C_REGNUM
1580 && reg_nr <= T_C_REGNUM)
1581 {
d93859e2 1582 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1583
7bb11558 1584 /* Build the value in the provided buffer. */
05d1431c
PA
1585 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1586 if (status != REG_VALID)
1587 return status;
58643501 1588 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1589 offset = 4;
c378eb4e
MS
1590 memcpy (buffer,
1591 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1592 return REG_VALID;
55ff77ac
CV
1593 }
1594
1595 else if (reg_nr >= FP0_C_REGNUM
1596 && reg_nr <= FP_LAST_C_REGNUM)
1597 {
d93859e2 1598 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1599
7bb11558 1600 /* Build the value in the provided buffer. */
55ff77ac 1601 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1602 they have the same size and endianness. */
05d1431c 1603 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1604 }
1605
1606 else if (reg_nr >= DR0_C_REGNUM
1607 && reg_nr <= DR_LAST_C_REGNUM)
1608 {
d93859e2 1609 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1610
1611 /* DR_C regs are double precision registers obtained by
7bb11558 1612 concatenating 2 single precision floating point registers. */
05d1431c
PA
1613 status = pseudo_register_read_portions (gdbarch, regcache,
1614 2, base_regnum, temp_buffer);
1615 if (status == REG_VALID)
1616 {
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1619 register_type (gdbarch, reg_nr),
1620 temp_buffer, buffer);
1621 }
1622 return status;
55ff77ac
CV
1623 }
1624
1625 else if (reg_nr >= FV0_C_REGNUM
1626 && reg_nr <= FV_LAST_C_REGNUM)
1627 {
d93859e2 1628 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1629
7bb11558 1630 /* Build the value in the provided buffer. */
55ff77ac 1631 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1632 concatenating 4 single precision floating point registers. */
05d1431c
PA
1633 return pseudo_register_read_portions (gdbarch, regcache,
1634 4, base_regnum, buffer);
55ff77ac
CV
1635 }
1636
1637 else if (reg_nr == FPSCR_C_REGNUM)
1638 {
1639 int fpscr_base_regnum;
1640 int sr_base_regnum;
1641 unsigned int fpscr_value;
1642 unsigned int sr_value;
1643 unsigned int fpscr_c_value;
1644 unsigned int fpscr_c_part1_value;
1645 unsigned int fpscr_c_part2_value;
1646
1647 fpscr_base_regnum = FPSCR_REGNUM;
1648 sr_base_regnum = SR_REGNUM;
1649
7bb11558 1650 /* Build the value in the provided buffer. */
55ff77ac
CV
1651 /* FPSCR_C is a very weird register that contains sparse bits
1652 from the FPSCR and the SR architectural registers.
1653 Specifically: */
1654 /* *INDENT-OFF* */
1655 /*
1656 FPSRC_C bit
1657 0 Bit 0 of FPSCR
1658 1 reserved
1659 2-17 Bit 2-18 of FPSCR
1660 18-20 Bits 12,13,14 of SR
1661 21-31 reserved
1662 */
1663 /* *INDENT-ON* */
c378eb4e 1664 /* Get FPSCR into a local buffer. */
05d1431c
PA
1665 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1666 if (status != REG_VALID)
1667 return status;
7bb11558 1668 /* Get value as an int. */
e17a4113 1669 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1670 /* Get SR into a local buffer */
05d1431c
PA
1671 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1672 if (status != REG_VALID)
1673 return status;
7bb11558 1674 /* Get value as an int. */
e17a4113 1675 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1676 /* Build the new value. */
55ff77ac
CV
1677 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1678 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1679 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1680 /* Store that in out buffer!!! */
e17a4113 1681 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1682 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1683
1684 return REG_VALID;
55ff77ac
CV
1685 }
1686
1687 else if (reg_nr == FPUL_C_REGNUM)
1688 {
d93859e2 1689 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1690
1691 /* FPUL_C register is floating point register 32,
7bb11558 1692 same size, same endianness. */
05d1431c 1693 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1694 }
05d1431c
PA
1695 else
1696 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1697}
1698
1699static void
1700sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1701 int reg_nr, const gdb_byte *buffer)
55ff77ac 1702{
e17a4113 1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1704 int base_regnum, portion;
1705 int offset;
948f8e3d 1706 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1707
1708 if (reg_nr >= DR0_REGNUM
1709 && reg_nr <= DR_LAST_REGNUM)
1710 {
d93859e2 1711 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1712 /* We must pay attention to the endianness. */
d93859e2 1713 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1714 reg_nr,
1715 buffer, temp_buffer);
55ff77ac
CV
1716
1717 /* Write the real regs for which this one is an alias. */
1718 for (portion = 0; portion < 2; portion++)
1719 regcache_raw_write (regcache, base_regnum + portion,
1720 (temp_buffer
948f8e3d 1721 + register_size (gdbarch,
7bb11558 1722 base_regnum) * portion));
55ff77ac
CV
1723 }
1724
1725 else if (reg_nr >= FPP0_REGNUM
1726 && reg_nr <= FPP_LAST_REGNUM)
1727 {
d93859e2 1728 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 2; portion++)
1732 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1733 (buffer + register_size (gdbarch,
1734 base_regnum) * portion));
55ff77ac
CV
1735 }
1736
1737 else if (reg_nr >= FV0_REGNUM
1738 && reg_nr <= FV_LAST_REGNUM)
1739 {
d93859e2 1740 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1741
1742 /* Write the real regs for which this one is an alias. */
1743 for (portion = 0; portion < 4; portion++)
1744 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1745 (buffer + register_size (gdbarch,
1746 base_regnum) * portion));
55ff77ac
CV
1747 }
1748
c378eb4e 1749 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1750 register but only 4 bytes of it. */
1751 else if (reg_nr >= R0_C_REGNUM
1752 && reg_nr <= T_C_REGNUM)
1753 {
d93859e2 1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1755 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1756 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1757 offset = 4;
1758 else
1759 offset = 0;
1760 /* Let's read the value of the base register into a temporary
1761 buffer, so that overwriting the last four bytes with the new
7bb11558 1762 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1763 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1764 /* Write as an 8 byte quantity. */
55ff77ac
CV
1765 memcpy (temp_buffer + offset, buffer, 4);
1766 regcache_raw_write (regcache, base_regnum, temp_buffer);
1767 }
1768
c378eb4e
MS
1769 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1770 registers. Both are 4 bytes. */
55ff77ac
CV
1771 else if (reg_nr >= FP0_C_REGNUM
1772 && reg_nr <= FP_LAST_C_REGNUM)
1773 {
d93859e2 1774 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1775 regcache_raw_write (regcache, base_regnum, buffer);
1776 }
1777
1778 else if (reg_nr >= DR0_C_REGNUM
1779 && reg_nr <= DR_LAST_C_REGNUM)
1780 {
d93859e2 1781 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1782 for (portion = 0; portion < 2; portion++)
1783 {
7bb11558 1784 /* We must pay attention to the endianness. */
d93859e2
UW
1785 sh64_register_convert_to_raw (gdbarch,
1786 register_type (gdbarch, reg_nr),
39add00a
MS
1787 reg_nr,
1788 buffer, temp_buffer);
55ff77ac
CV
1789
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
7bb11558
MS
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
55ff77ac
CV
1794 }
1795 }
1796
1797 else if (reg_nr >= FV0_C_REGNUM
1798 && reg_nr <= FV_LAST_C_REGNUM)
1799 {
d93859e2 1800 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1801
1802 for (portion = 0; portion < 4; portion++)
1803 {
1804 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1805 (buffer
7bb11558
MS
1806 + register_size (gdbarch,
1807 base_regnum) * portion));
55ff77ac
CV
1808 }
1809 }
1810
1811 else if (reg_nr == FPSCR_C_REGNUM)
1812 {
1813 int fpscr_base_regnum;
1814 int sr_base_regnum;
1815 unsigned int fpscr_value;
1816 unsigned int sr_value;
1817 unsigned int old_fpscr_value;
1818 unsigned int old_sr_value;
1819 unsigned int fpscr_c_value;
1820 unsigned int fpscr_mask;
1821 unsigned int sr_mask;
1822
1823 fpscr_base_regnum = FPSCR_REGNUM;
1824 sr_base_regnum = SR_REGNUM;
1825
1826 /* FPSCR_C is a very weird register that contains sparse bits
1827 from the FPSCR and the SR architectural registers.
1828 Specifically: */
1829 /* *INDENT-OFF* */
1830 /*
1831 FPSRC_C bit
1832 0 Bit 0 of FPSCR
1833 1 reserved
1834 2-17 Bit 2-18 of FPSCR
1835 18-20 Bits 12,13,14 of SR
1836 21-31 reserved
1837 */
1838 /* *INDENT-ON* */
7bb11558 1839 /* Get value as an int. */
e17a4113 1840 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1841
7bb11558 1842 /* Build the new values. */
55ff77ac
CV
1843 fpscr_mask = 0x0003fffd;
1844 sr_mask = 0x001c0000;
1845
1846 fpscr_value = fpscr_c_value & fpscr_mask;
1847 sr_value = (fpscr_value & sr_mask) >> 6;
1848
1849 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1850 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1851 old_fpscr_value &= 0xfffc0002;
1852 fpscr_value |= old_fpscr_value;
e17a4113 1853 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1854 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1855
1856 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1857 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1858 old_sr_value &= 0xffff8fff;
1859 sr_value |= old_sr_value;
e17a4113 1860 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1861 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1862 }
1863
1864 else if (reg_nr == FPUL_C_REGNUM)
1865 {
d93859e2 1866 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1867 regcache_raw_write (regcache, base_regnum, buffer);
1868 }
1869}
1870
55ff77ac 1871/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1872 shmedia REGISTERS. */
1873/* Control registers, compact mode. */
55ff77ac 1874static void
c30dc700
CV
1875sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1876 int cr_c_regnum)
55ff77ac
CV
1877{
1878 switch (cr_c_regnum)
1879 {
c30dc700
CV
1880 case PC_C_REGNUM:
1881 fprintf_filtered (file, "pc_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1883 break;
c30dc700
CV
1884 case GBR_C_REGNUM:
1885 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1887 break;
c30dc700
CV
1888 case MACH_C_REGNUM:
1889 fprintf_filtered (file, "mach_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1891 break;
c30dc700
CV
1892 case MACL_C_REGNUM:
1893 fprintf_filtered (file, "macl_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1895 break;
c30dc700
CV
1896 case PR_C_REGNUM:
1897 fprintf_filtered (file, "pr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1899 break;
c30dc700
CV
1900 case T_C_REGNUM:
1901 fprintf_filtered (file, "t_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1903 break;
c30dc700
CV
1904 case FPSCR_C_REGNUM:
1905 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1906 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1907 break;
c30dc700
CV
1908 case FPUL_C_REGNUM:
1909 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1910 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1911 break;
1912 }
1913}
1914
1915static void
c30dc700
CV
1916sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1917 struct frame_info *frame, int regnum)
c378eb4e 1918{ /* Do values for FP (float) regs. */
079c8cd0 1919 unsigned char *raw_buffer;
c378eb4e 1920 double flt; /* Double extracted from raw hex data. */
55ff77ac
CV
1921 int inv;
1922 int j;
1923
7bb11558 1924 /* Allocate space for the float. */
c378eb4e
MS
1925 raw_buffer = (unsigned char *)
1926 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1927
1928 /* Get the data in raw format. */
ca9d61b9 1929 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1930 error (_("can't read register %d (%s)"),
58643501 1931 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1932
c378eb4e
MS
1933 /* Get the register as a number. */
1934 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1935 raw_buffer, &inv);
55ff77ac 1936
7bb11558 1937 /* Print the name and some spaces. */
58643501 1938 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1939 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1940 (gdbarch, regnum)), file);
55ff77ac 1941
7bb11558 1942 /* Print the value. */
55ff77ac
CV
1943 if (inv)
1944 fprintf_filtered (file, "<invalid float>");
1945 else
1946 fprintf_filtered (file, "%-10.9g", flt);
1947
7bb11558 1948 /* Print the fp register as hex. */
2cc762b5
AB
1949 fprintf_filtered (file, "\t(raw ");
1950 print_hex_chars (file, raw_buffer,
1951 register_size (gdbarch, regnum),
1952 gdbarch_byte_order (gdbarch));
55ff77ac
CV
1953 fprintf_filtered (file, ")");
1954 fprintf_filtered (file, "\n");
1955}
1956
1957static void
c30dc700
CV
1958sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1959 struct frame_info *frame, int regnum)
55ff77ac 1960{
7bb11558 1961 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1962
58643501
UW
1963 if (regnum < gdbarch_num_regs (gdbarch)
1964 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1965 + NUM_PSEUDO_REGS_SH_MEDIA
1966 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1967 internal_error (__FILE__, __LINE__,
e2e0b3e5 1968 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1969
c30dc700
CV
1970 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1971 {
d93859e2 1972 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1973 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1975 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1976 }
55ff77ac 1977
c30dc700
CV
1978 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1979 {
d93859e2 1980 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1981 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1984 }
55ff77ac 1985
c30dc700
CV
1986 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1987 {
d93859e2 1988 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1989 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1990 regnum - FV0_REGNUM,
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1995 }
55ff77ac 1996
c30dc700
CV
1997 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1998 {
d93859e2 1999 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2000 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2001 regnum - FV0_C_REGNUM,
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2006 }
2007
2008 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2009 {
d93859e2 2010 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2011 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2014 }
2015
2016 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2017 {
d93859e2 2018 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2019 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2020 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2021 }
2022 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2023 /* This should work also for pseudoregs. */
c30dc700
CV
2024 sh64_do_fp_register (gdbarch, file, frame, regnum);
2025 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2026 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2027}
2028
2029static void
c30dc700
CV
2030sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2031 struct frame_info *frame, int regnum)
55ff77ac 2032{
079c8cd0 2033 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2034 struct value_print_options opts;
55ff77ac 2035
58643501 2036 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2037 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2038 (gdbarch, regnum)), file);
55ff77ac
CV
2039
2040 /* Get the data in raw format. */
ca9d61b9 2041 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
47061676
AB
2042 {
2043 fprintf_filtered (file, "*value not available*\n");
2044 return;
2045 }
79a45b7d
TT
2046
2047 get_formatted_print_options (&opts, 'x');
2048 opts.deref_ref = 1;
7b9ee6a8 2049 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2050 file, 0, NULL, &opts, current_language);
55ff77ac 2051 fprintf_filtered (file, "\t");
79a45b7d
TT
2052 get_formatted_print_options (&opts, 0);
2053 opts.deref_ref = 1;
7b9ee6a8 2054 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2055 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2056 fprintf_filtered (file, "\n");
2057}
2058
2059static void
c30dc700
CV
2060sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2061 struct frame_info *frame, int regnum)
55ff77ac 2062{
58643501
UW
2063 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2064 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2065 internal_error (__FILE__, __LINE__,
e2e0b3e5 2066 _("Invalid register number %d\n"), regnum);
55ff77ac 2067
58643501 2068 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2069 {
7b9ee6a8 2070 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2071 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2072 else
c30dc700 2073 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2074 }
2075
58643501
UW
2076 else if (regnum < gdbarch_num_regs (gdbarch)
2077 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2078 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2079}
2080
2081static void
c30dc700
CV
2082sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2083 struct frame_info *frame, int regnum,
2084 int fpregs)
55ff77ac 2085{
c378eb4e 2086 if (regnum != -1) /* Do one specified register. */
55ff77ac 2087 {
58643501 2088 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2089 error (_("Not a valid register for the current processor type"));
55ff77ac 2090
c30dc700 2091 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2092 }
2093 else
c378eb4e 2094 /* Do all (or most) registers. */
55ff77ac
CV
2095 {
2096 regnum = 0;
58643501 2097 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2098 {
2099 /* If the register name is empty, it is undefined for this
2100 processor, so don't display anything. */
58643501
UW
2101 if (gdbarch_register_name (gdbarch, regnum) == NULL
2102 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2103 {
2104 regnum++;
2105 continue;
2106 }
2107
7b9ee6a8 2108 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2109 == TYPE_CODE_FLT)
55ff77ac
CV
2110 {
2111 if (fpregs)
2112 {
c378eb4e 2113 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2114 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2115 regnum ++;
2116 }
2117 else
58643501 2118 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2119 /* skip FP regs */
55ff77ac
CV
2120 }
2121 else
2122 {
c30dc700 2123 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2124 regnum++;
2125 }
2126 }
2127
2128 if (fpregs)
58643501
UW
2129 while (regnum < gdbarch_num_regs (gdbarch)
2130 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2131 {
c30dc700 2132 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2133 regnum++;
2134 }
2135 }
2136}
2137
2138static void
c30dc700
CV
2139sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2140 struct ui_file *file,
2141 struct frame_info *frame, int regnum,
2142 int fpregs)
55ff77ac 2143{
c378eb4e 2144 if (regnum != -1) /* Do one specified register. */
55ff77ac 2145 {
58643501 2146 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2147 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2148
2149 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2150 error (_("Not a valid register for the current processor mode."));
55ff77ac 2151
c30dc700 2152 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2153 }
2154 else
c378eb4e 2155 /* Do all compact registers. */
55ff77ac
CV
2156 {
2157 regnum = R0_C_REGNUM;
58643501
UW
2158 while (regnum < gdbarch_num_regs (gdbarch)
2159 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2160 {
c30dc700 2161 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2162 regnum++;
2163 }
2164 }
2165}
2166
2167static void
c30dc700
CV
2168sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2169 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2170{
c30dc700
CV
2171 if (pc_is_isa32 (get_frame_pc (frame)))
2172 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2173 else
c30dc700 2174 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2175}
2176
c30dc700
CV
2177static struct sh64_frame_cache *
2178sh64_alloc_frame_cache (void)
2179{
2180 struct sh64_frame_cache *cache;
2181 int i;
2182
2183 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2184
2185 /* Base address. */
2186 cache->base = 0;
2187 cache->saved_sp = 0;
2188 cache->sp_offset = 0;
2189 cache->pc = 0;
55ff77ac 2190
c30dc700
CV
2191 /* Frameless until proven otherwise. */
2192 cache->uses_fp = 0;
55ff77ac 2193
c30dc700
CV
2194 /* Saved registers. We initialize these to -1 since zero is a valid
2195 offset (that's where fp is supposed to be stored). */
2196 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2197 {
2198 cache->saved_regs[i] = -1;
2199 }
2200
2201 return cache;
2202}
2203
2204static struct sh64_frame_cache *
94afd7a6 2205sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2206{
58643501 2207 struct gdbarch *gdbarch;
c30dc700
CV
2208 struct sh64_frame_cache *cache;
2209 CORE_ADDR current_pc;
2210 int i;
55ff77ac 2211
c30dc700 2212 if (*this_cache)
19ba03f4 2213 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2214
94afd7a6 2215 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2216 cache = sh64_alloc_frame_cache ();
2217 *this_cache = cache;
2218
94afd7a6 2219 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2220 cache->media_mode = pc_is_isa32 (current_pc);
2221
2222 /* In principle, for normal frames, fp holds the frame pointer,
2223 which holds the base address for the current stack frame.
2224 However, for functions that don't need it, the frame pointer is
2225 optional. For these "frameless" functions the frame pointer is
c378eb4e 2226 actually the frame pointer of the calling frame. */
94afd7a6 2227 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2228 if (cache->base == 0)
2229 return cache;
2230
94afd7a6 2231 cache->pc = get_frame_func (this_frame);
c30dc700 2232 if (cache->pc != 0)
58643501 2233 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2234
2235 if (!cache->uses_fp)
55ff77ac 2236 {
c30dc700
CV
2237 /* We didn't find a valid frame, which means that CACHE->base
2238 currently holds the frame pointer for our calling frame. If
2239 we're at the start of a function, or somewhere half-way its
2240 prologue, the function's frame probably hasn't been fully
2241 setup yet. Try to reconstruct the base address for the stack
2242 frame by looking at the stack pointer. For truly "frameless"
2243 functions this might work too. */
94afd7a6
UW
2244 cache->base = get_frame_register_unsigned
2245 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2246 }
55ff77ac 2247
c30dc700
CV
2248 /* Now that we have the base address for the stack frame we can
2249 calculate the value of sp in the calling frame. */
2250 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2251
c30dc700
CV
2252 /* Adjust all the saved registers such that they contain addresses
2253 instead of offsets. */
2254 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2255 if (cache->saved_regs[i] != -1)
2256 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2257
c30dc700
CV
2258 return cache;
2259}
55ff77ac 2260
94afd7a6
UW
2261static struct value *
2262sh64_frame_prev_register (struct frame_info *this_frame,
2263 void **this_cache, int regnum)
c30dc700 2264{
94afd7a6
UW
2265 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2268
c30dc700 2269 gdb_assert (regnum >= 0);
55ff77ac 2270
58643501 2271 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2272 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2273
2274 /* The PC of the previous frame is stored in the PR register of
2275 the current frame. Frob regnum so that we pull the value from
2276 the correct place. */
58643501 2277 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2278 regnum = PR_REGNUM;
2279
2280 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2281 {
58643501 2282 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2283 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2284 {
94afd7a6 2285 CORE_ADDR val;
e17a4113
UW
2286 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2287 4, byte_order);
94afd7a6 2288 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2289 }
94afd7a6
UW
2290
2291 return frame_unwind_got_memory (this_frame, regnum,
2292 cache->saved_regs[regnum]);
55ff77ac
CV
2293 }
2294
94afd7a6 2295 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2296}
55ff77ac 2297
c30dc700 2298static void
94afd7a6 2299sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2300 struct frame_id *this_id)
2301{
94afd7a6 2302 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2303
2304 /* This marks the outermost frame. */
2305 if (cache->base == 0)
2306 return;
2307
2308 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2309}
2310
2311static const struct frame_unwind sh64_frame_unwind = {
2312 NORMAL_FRAME,
8fbca658 2313 default_frame_unwind_stop_reason,
c30dc700 2314 sh64_frame_this_id,
94afd7a6
UW
2315 sh64_frame_prev_register,
2316 NULL,
2317 default_frame_sniffer
c30dc700
CV
2318};
2319
c30dc700
CV
2320static CORE_ADDR
2321sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2322{
3e8c568d 2323 return frame_unwind_register_unsigned (next_frame,
58643501 2324 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2325}
2326
2327static CORE_ADDR
2328sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2329{
3e8c568d 2330 return frame_unwind_register_unsigned (next_frame,
58643501 2331 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2332}
2333
2334static struct frame_id
94afd7a6 2335sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2336{
94afd7a6
UW
2337 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2338 gdbarch_sp_regnum (gdbarch));
2339 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2340}
2341
2342static CORE_ADDR
94afd7a6 2343sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2344{
94afd7a6 2345 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2346
2347 return cache->base;
2348}
2349
2350static const struct frame_base sh64_frame_base = {
2351 &sh64_frame_unwind,
2352 sh64_frame_base_address,
2353 sh64_frame_base_address,
2354 sh64_frame_base_address
2355};
2356
55ff77ac
CV
2357
2358struct gdbarch *
2359sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2360{
55ff77ac
CV
2361 struct gdbarch *gdbarch;
2362 struct gdbarch_tdep *tdep;
2363
2364 /* If there is already a candidate, use it. */
2365 arches = gdbarch_list_lookup_by_info (arches, &info);
2366 if (arches != NULL)
2367 return arches->gdbarch;
2368
2369 /* None found, create a new architecture from the information
7bb11558 2370 provided. */
70ba0933 2371 tdep = XNEW (struct gdbarch_tdep);
55ff77ac
CV
2372 gdbarch = gdbarch_alloc (&info, tdep);
2373
55ff77ac
CV
2374 /* Determine the ABI */
2375 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2376 {
7bb11558 2377 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2378 tdep->sh_abi = SH_ABI_64;
2379 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2380 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2381 }
2382 else
2383 {
2384 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2385 compact. */
55ff77ac
CV
2386 tdep->sh_abi = SH_ABI_32;
2387 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2388 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2389 }
2390
2391 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2392 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2393 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2394 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2395 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2396 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2398
c30dc700
CV
2399 /* The number of real registers is the same whether we are in
2400 ISA16(compact) or ISA32(media). */
2401 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2402 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2403 set_gdbarch_pc_regnum (gdbarch, 64);
2404 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2405 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2406 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2407
c30dc700
CV
2408 set_gdbarch_register_name (gdbarch, sh64_register_name);
2409 set_gdbarch_register_type (gdbarch, sh64_register_type);
2410
2411 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2412 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2413
2414 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2415
9dae60cc 2416 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2417 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2418
c30dc700 2419 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2420
c30dc700
CV
2421 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2422 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2423
c30dc700 2424 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2425
c30dc700 2426 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2427
c30dc700
CV
2428 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2429 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2430 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2431 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2432 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2433
c30dc700 2434 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2435
55ff77ac
CV
2436 set_gdbarch_elf_make_msymbol_special (gdbarch,
2437 sh64_elf_make_msymbol_special);
2438
2439 /* Hook in ABI-specific overrides, if they have been registered. */
2440 gdbarch_init_osabi (info, gdbarch);
2441
94afd7a6
UW
2442 dwarf2_append_unwinders (gdbarch);
2443 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2444
55ff77ac
CV
2445 return gdbarch;
2446}