]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh64-tdep.c
remove trivialy unused variables
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
618f726f 3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
79a45b7d 38#include "valprint.h"
55ff77ac
CV
39
40#include "elf-bfd.h"
55ff77ac
CV
41
42/* sh flags */
43#include "elf/sh.h"
c378eb4e 44/* Register numbers shared with the simulator. */
55ff77ac 45#include "gdb/sim-sh.h"
d8ca156b 46#include "language.h"
04dcf5fa 47#include "sh64-tdep.h"
55ff77ac 48
7bb11558 49/* Information that is dependent on the processor variant. */
55ff77ac
CV
50enum sh_abi
51 {
52 SH_ABI_UNKNOWN,
53 SH_ABI_32,
54 SH_ABI_64
55 };
56
57struct gdbarch_tdep
58 {
59 enum sh_abi sh_abi;
60 };
61
c30dc700
CV
62struct sh64_frame_cache
63{
64 /* Base address. */
65 CORE_ADDR base;
66 LONGEST sp_offset;
67 CORE_ADDR pc;
68
c378eb4e 69 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
70 int uses_fp;
71
72 int media_mode;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
76 CORE_ADDR saved_sp;
77};
78
55ff77ac
CV
79/* Registers of SH5 */
80enum
81 {
82 R0_REGNUM = 0,
83 DEFAULT_RETURN_REGNUM = 2,
84 STRUCT_RETURN_REGNUM = 2,
85 ARG0_REGNUM = 2,
86 ARGLAST_REGNUM = 9,
87 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 88 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
89 PR_REGNUM = 18,
90 SR_REGNUM = 65,
91 DR0_REGNUM = 141,
92 DR_LAST_REGNUM = 172,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 95 point register. Unfortunately on the sh5, the floating point
7bb11558 96 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
97 FPP0_REGNUM = 173,
98 FPP_LAST_REGNUM = 204,
99 FV0_REGNUM = 205,
100 FV_LAST_REGNUM = 220,
101 R0_C_REGNUM = 221,
102 R_LAST_C_REGNUM = 236,
103 PC_C_REGNUM = 237,
104 GBR_C_REGNUM = 238,
105 MACH_C_REGNUM = 239,
106 MACL_C_REGNUM = 240,
107 PR_C_REGNUM = 241,
108 T_C_REGNUM = 242,
109 FPSCR_C_REGNUM = 243,
110 FPUL_C_REGNUM = 244,
111 FP0_C_REGNUM = 245,
112 FP_LAST_C_REGNUM = 260,
113 DR0_C_REGNUM = 261,
114 DR_LAST_C_REGNUM = 268,
115 FV0_C_REGNUM = 269,
116 FV_LAST_C_REGNUM = 272,
117 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
118 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
119 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
120 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
121 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
122 };
123
55ff77ac 124static const char *
d93859e2 125sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
126{
127 static char *register_names[] =
128 {
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
139
140 /* pc (64-bit) 64 */
141 "pc",
142
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
144 "sr", "ssr", "spc",
145
c378eb4e 146 /* target registers (64-bit) 68-75 */
55ff77ac
CV
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
148
149 /* floating point state control register (32-bit) 76 */
150 "fpscr",
151
c378eb4e 152 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
161
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
167
c378eb4e 168 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
173
c378eb4e 174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
177
c378eb4e 178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
181 "pc_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
183 "fpscr_c", "fpul_c",
c378eb4e
MS
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199}
200
201#define NUM_PSEUDO_REGS_SH_MEDIA 80
202#define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204/* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 206 symbol's "info" field is used for this purpose.
55ff77ac 207
95f1da47
UW
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 210 minimal symbol to mark it as a 32-bit function
f594e5e9 211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
212
213#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 214 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
215
216static void
217sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218{
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
b887350f 224 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 225 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
226 }
227}
228
229/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231#define IS_ISA32_ADDR(addr) ((addr) & 1)
232#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235static int
236pc_is_isa32 (bfd_vma memaddr)
237{
7cbd4a93 238 struct bound_minimal_symbol sym;
55ff77ac
CV
239
240 /* If bit 0 of the address is set, assume this is a
7bb11558 241 ISA32 (shmedia) address. */
55ff77ac
CV
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
249 if (sym.minsym)
250 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
251 else
252 return 0;
253}
254
255static const unsigned char *
c378eb4e
MS
256sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
257 CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
258{
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
c378eb4e 267 and in little endian mode to 0x3b, 0x0 */
55ff77ac 268
67d57894 269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
c378eb4e
MS
273 static unsigned char big_breakpoint_media[] = {
274 0x6f, 0xf5, 0xff, 0xf0
275 };
55ff77ac
CV
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 *lenptr = sizeof (big_breakpoint_media);
278 return big_breakpoint_media;
279 }
280 else
281 {
282 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
283 *lenptr = sizeof (big_breakpoint_compact);
284 return big_breakpoint_compact;
285 }
286 }
287 else
288 {
289 if (pc_is_isa32 (*pcptr))
290 {
c378eb4e
MS
291 static unsigned char little_breakpoint_media[] = {
292 0xf0, 0xff, 0xf5, 0x6f
293 };
55ff77ac
CV
294 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
295 *lenptr = sizeof (little_breakpoint_media);
296 return little_breakpoint_media;
297 }
298 else
299 {
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301 *lenptr = sizeof (little_breakpoint_compact);
302 return little_breakpoint_compact;
303 }
304 }
305}
306
307/* Prologue looks like
308 [mov.l <regs>,@-r15]...
309 [sts.l pr,@-r15]
310 [mov.l r14,@-r15]
311 [mov r15,r14]
312
313 Actually it can be more complicated than this. For instance, with
314 newer gcc's:
315
316 mov.l r14,@-r15
317 add #-12,r15
318 mov r15,r14
319 mov r4,r1
320 mov r5,r2
321 mov.l r6,@(4,r14)
322 mov.l r7,@(8,r14)
323 mov.b r1,@r14
324 mov r14,r1
325 mov r14,r1
326 add #2,r1
327 mov.w r2,@r1
328
329 */
330
331/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
334
335/* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337#define IS_STS_R0(x) ((x) == 0x4022)
338
339/* STS PR, Rm 0000mmmm00101010
340 PR-->Rm */
341#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
342
343/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
344 Rm-->(dispx4+r15) */
345#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
346
347/* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
350
351/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
354
355/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
358
359/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
362
363/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
366
367/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
370
371/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
374
375/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
376 R15 + imm --> R15 */
377#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
378
379/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
382
383/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
384 R15 + R63 --> R14 */
385#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
386
c378eb4e
MS
387#define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
389
390/* MOV #imm, R0 1110 0000 ssss ssss
391 #imm-->R0 */
392#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
393
394/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
396
397/* ADD r15,r0 0011 0000 1111 1100
398 r15+r0-->r0 */
399#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
400
401/* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
404
405/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 406 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 407/* FIXME: Recognize the float and double register moves too! */
55ff77ac 408#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
412
413/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 415 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
416#define IS_MEDIA_ARG_MOV(x) \
417(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
419
c378eb4e
MS
420/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
425#define IS_MEDIA_MOV_TO_R14(x) \
426((((x) & 0xfffffc0f) == 0xa0e00000) \
427|| (((x) & 0xfffffc0f) == 0xa4e00000) \
428|| (((x) & 0xfffffc0f) == 0xa8e00000) \
429|| (((x) & 0xfffffc0f) == 0xb4e00000) \
430|| (((x) & 0xfffffc0f) == 0xbce00000))
431
432/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
433 where Rm is r2-r9 */
434#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
437
438/* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
443
444/* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446#define IS_COMPACT_MOV_TO_R14(x) \
447((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
448
449#define IS_JSR_R0(x) ((x) == 0x400b)
450#define IS_NOP(x) ((x) == 0x0009)
451
452
453/* MOV r15,r14 0110111011110011
454 r15-->r14 */
455#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
456
457/* ADD #imm,r15 01111111iiiiiiii
458 r15+imm-->r15 */
459#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
460
c378eb4e 461/* Skip any prologue before the guts of a function. */
55ff77ac 462
7bb11558
MS
463/* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
55ff77ac
CV
465static CORE_ADDR
466after_prologue (CORE_ADDR pc)
467{
468 struct symtab_and_line sal;
469 CORE_ADDR func_addr, func_end;
470
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
473 with this code. */
474 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
475 return 0;
476
c30dc700 477
55ff77ac
CV
478 /* Get the line associated with FUNC_ADDR. */
479 sal = find_pc_line (func_addr, 0);
480
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal.end < func_end)
487 return sal.end;
488 else
489 return 0;
490}
491
492static CORE_ADDR
e17a4113
UW
493look_for_args_moves (struct gdbarch *gdbarch,
494 CORE_ADDR start_pc, int media_mode)
55ff77ac 495{
e17a4113 496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
497 CORE_ADDR here, end;
498 int w;
499 int insn_size = (media_mode ? 4 : 2);
500
501 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
502 {
503 if (media_mode)
504 {
e17a4113
UW
505 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
55ff77ac
CV
507 here += insn_size;
508 if (IS_MEDIA_IND_ARG_MOV (w))
509 {
510 /* This must be followed by a store to r14, so the argument
c378eb4e 511 is where the debug info says it is. This can happen after
7bb11558 512 the SP has been saved, unfortunately. */
55ff77ac
CV
513
514 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 515 insn_size, byte_order);
55ff77ac
CV
516 here += insn_size;
517 if (IS_MEDIA_MOV_TO_R14 (next_insn))
518 start_pc = here;
519 }
520 else if (IS_MEDIA_ARG_MOV (w))
521 {
7bb11558 522 /* These instructions store directly the argument in r14. */
55ff77ac
CV
523 start_pc = here;
524 }
525 else
526 break;
527 }
528 else
529 {
e17a4113 530 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
531 w = w & 0xffff;
532 here += insn_size;
533 if (IS_COMPACT_IND_ARG_MOV (w))
534 {
535 /* This must be followed by a store to r14, so the argument
c378eb4e 536 is where the debug info says it is. This can happen after
7bb11558 537 the SP has been saved, unfortunately. */
55ff77ac 538
e17a4113
UW
539 int next_insn = 0xffff & read_memory_integer (here, insn_size,
540 byte_order);
55ff77ac
CV
541 here += insn_size;
542 if (IS_COMPACT_MOV_TO_R14 (next_insn))
543 start_pc = here;
544 }
545 else if (IS_COMPACT_ARG_MOV (w))
546 {
7bb11558 547 /* These instructions store directly the argument in r14. */
55ff77ac
CV
548 start_pc = here;
549 }
550 else if (IS_MOVL_R0 (w))
551 {
552 /* There is a function that gcc calls to get the arguments
c378eb4e 553 passed correctly to the function. Only after this
55ff77ac 554 function call the arguments will be found at the place
c378eb4e 555 where they are supposed to be. This happens in case the
55ff77ac
CV
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
c378eb4e 567 true after the argument decoder is called. Such a call
7bb11558 568 needs to be considered part of the prologue. */
55ff77ac
CV
569
570 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 571 a NOP instruction. After these, the prologue is over! */
55ff77ac 572
e17a4113
UW
573 int next_insn = 0xffff & read_memory_integer (here, insn_size,
574 byte_order);
55ff77ac
CV
575 here += insn_size;
576 if (IS_JSR_R0 (next_insn))
577 {
e17a4113
UW
578 next_insn = 0xffff & read_memory_integer (here, insn_size,
579 byte_order);
55ff77ac
CV
580 here += insn_size;
581
582 if (IS_NOP (next_insn))
583 start_pc = here;
584 }
585 }
586 else
587 break;
588 }
589 }
590
591 return start_pc;
592}
593
594static CORE_ADDR
e17a4113 595sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 596{
e17a4113 597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
598 CORE_ADDR here, end;
599 int updated_fp = 0;
600 int insn_size = 4;
601 int media_mode = 1;
602
603 if (!start_pc)
604 return 0;
605
606 if (pc_is_isa32 (start_pc) == 0)
607 {
608 insn_size = 2;
609 media_mode = 0;
610 }
611
612 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
613 {
614
615 if (media_mode)
616 {
e17a4113
UW
617 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
618 insn_size, byte_order);
55ff77ac
CV
619 here += insn_size;
620 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
621 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
622 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
623 || IS_PTABSL_R18 (w))
55ff77ac
CV
624 {
625 start_pc = here;
626 }
627 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
628 {
629 start_pc = here;
630 updated_fp = 1;
631 }
632 else
633 if (updated_fp)
634 {
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
7bb11558 637 gdb can print the frames correctly. */
e17a4113
UW
638 start_pc = look_for_args_moves (gdbarch,
639 here - insn_size, media_mode);
55ff77ac
CV
640 break;
641 }
642 }
643 else
644 {
e17a4113 645 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
646 here += insn_size;
647
648 if (IS_STS_R0 (w) || IS_STS_PR (w)
649 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
650 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
651 {
652 start_pc = here;
653 }
654 else if (IS_MOV_SP_FP (w))
655 {
656 start_pc = here;
657 updated_fp = 1;
658 }
659 else
660 if (updated_fp)
661 {
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
7bb11558 664 gdb can print the frames correctly. */
e17a4113
UW
665 start_pc = look_for_args_moves (gdbarch,
666 here - insn_size, media_mode);
55ff77ac
CV
667 break;
668 }
669 }
670 }
671
672 return start_pc;
673}
674
675static CORE_ADDR
6093d2eb 676sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
677{
678 CORE_ADDR post_prologue_pc;
679
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
682 is greater. */
683 post_prologue_pc = after_prologue (pc);
684
685 /* If after_prologue returned a useful address, then use it. Else
7bb11558 686 fall back on the instruction skipping code. */
55ff77ac
CV
687 if (post_prologue_pc != 0)
688 return max (pc, post_prologue_pc);
689 else
e17a4113 690 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
691}
692
55ff77ac
CV
693/* Should call_function allocate stack space for a struct return? */
694static int
c30dc700 695sh64_use_struct_convention (struct type *type)
55ff77ac
CV
696{
697 return (TYPE_LENGTH (type) > 8);
698}
699
7bb11558 700/* For vectors of 4 floating point registers. */
55ff77ac 701static int
d93859e2 702sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
703{
704 int fp_regnum;
705
d93859e2 706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
707 return fp_regnum;
708}
709
c378eb4e 710/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 711static int
d93859e2 712sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
713{
714 int fp_regnum;
715
d93859e2 716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
717 return fp_regnum;
718}
719
c378eb4e 720/* For pairs of floating point registers. */
55ff77ac 721static int
d93859e2 722sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
723{
724 int fp_regnum;
725
d93859e2 726 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
727 return fp_regnum;
728}
729
55ff77ac
CV
730/* *INDENT-OFF* */
731/*
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
734 r0_c 221 0
735 r1_c 222 1
736 r2_c 223 2
737 r3_c 224 3
738 r4_c 225 4
739 r5_c 226 5
740 r6_c 227 6
741 r7_c 228 7
742 r8_c 229 8
743 r9_c 230 9
744 r10_c 231 10
745 r11_c 232 11
746 r12_c 233 12
747 r13_c 234 13
748 r14_c 235 14
749 r15_c 236 15
750
751 pc_c 237 64
752 gbr_c 238 16
753 mach_c 239 17
754 macl_c 240 17
755 pr_c 241 18
756 t_c 242 19
757 fpscr_c 243 76
758 fpul_c 244 109
759
760 fr0_c 245 77
761 fr1_c 246 78
762 fr2_c 247 79
763 fr3_c 248 80
764 fr4_c 249 81
765 fr5_c 250 82
766 fr6_c 251 83
767 fr7_c 252 84
768 fr8_c 253 85
769 fr9_c 254 86
770 fr10_c 255 87
771 fr11_c 256 88
772 fr12_c 257 89
773 fr13_c 258 90
774 fr14_c 259 91
775 fr15_c 260 92
776
777 dr0_c 261 77
778 dr2_c 262 79
779 dr4_c 263 81
780 dr6_c 264 83
781 dr8_c 265 85
782 dr10_c 266 87
783 dr12_c 267 89
784 dr14_c 268 91
785
786 fv0_c 269 77
787 fv4_c 270 81
788 fv8_c 271 85
789 fv12_c 272 91
790*/
791/* *INDENT-ON* */
792static int
d93859e2 793sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 794{
c30dc700 795 int base_regnum = reg_nr;
55ff77ac
CV
796
797 /* general register N maps to general register N */
798 if (reg_nr >= R0_C_REGNUM
799 && reg_nr <= R_LAST_C_REGNUM)
800 base_regnum = reg_nr - R0_C_REGNUM;
801
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr >= FP0_C_REGNUM
804 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 805 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
806
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr >= DR0_C_REGNUM
809 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
810 base_regnum = sh64_dr_reg_base_num (gdbarch,
811 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
812
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr >= FV0_C_REGNUM
815 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
816 base_regnum = sh64_fv_reg_base_num (gdbarch,
817 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
818
819 else if (reg_nr == PC_C_REGNUM)
d93859e2 820 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
821
822 else if (reg_nr == GBR_C_REGNUM)
823 base_regnum = 16;
824
825 else if (reg_nr == MACH_C_REGNUM
826 || reg_nr == MACL_C_REGNUM)
827 base_regnum = 17;
828
829 else if (reg_nr == PR_C_REGNUM)
c30dc700 830 base_regnum = PR_REGNUM;
55ff77ac
CV
831
832 else if (reg_nr == T_C_REGNUM)
833 base_regnum = 19;
834
835 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 836 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
837
838 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 839 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
840
841 return base_regnum;
842}
843
55ff77ac
CV
844static int
845sign_extend (int value, int bits)
846{
847 value = value & ((1 << bits) - 1);
848 return (value & (1 << (bits - 1))
849 ? value | (~((1 << bits) - 1))
850 : value);
851}
852
853static void
c30dc700
CV
854sh64_analyze_prologue (struct gdbarch *gdbarch,
855 struct sh64_frame_cache *cache,
856 CORE_ADDR func_pc,
857 CORE_ADDR current_pc)
55ff77ac 858{
55ff77ac
CV
859 int pc;
860 int opc;
861 int insn;
862 int r0_val = 0;
55ff77ac 863 int insn_size;
e17a4113 864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 865
c30dc700 866 cache->sp_offset = 0;
55ff77ac
CV
867
868 /* Loop around examining the prologue insns until we find something
869 that does not appear to be part of the prologue. But give up
7bb11558 870 after 20 of them, since we're getting silly then. */
55ff77ac 871
c30dc700 872 pc = func_pc;
55ff77ac 873
c30dc700
CV
874 if (cache->media_mode)
875 insn_size = 4;
55ff77ac 876 else
c30dc700 877 insn_size = 2;
55ff77ac 878
c30dc700
CV
879 opc = pc + (insn_size * 28);
880 if (opc > current_pc)
881 opc = current_pc;
882 for ( ; pc <= opc; pc += insn_size)
55ff77ac 883 {
c30dc700
CV
884 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
885 : pc,
e17a4113 886 insn_size, byte_order);
55ff77ac 887
c30dc700 888 if (!cache->media_mode)
55ff77ac
CV
889 {
890 if (IS_STS_PR (insn))
891 {
e17a4113
UW
892 int next_insn = read_memory_integer (pc + insn_size,
893 insn_size, byte_order);
55ff77ac
CV
894 if (IS_MOV_TO_R15 (next_insn))
895 {
c378eb4e
MS
896 cache->saved_regs[PR_REGNUM]
897 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
898 - 0x8) << 2);
55ff77ac
CV
899 pc += insn_size;
900 }
901 }
c30dc700 902
55ff77ac 903 else if (IS_MOV_R14 (insn))
c30dc700
CV
904 cache->saved_regs[MEDIA_FP_REGNUM] =
905 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
906
907 else if (IS_MOV_R0 (insn))
908 {
909 /* Put in R0 the offset from SP at which to store some
c378eb4e 910 registers. We are interested in this value, because it
55ff77ac
CV
911 will tell us where the given registers are stored within
912 the frame. */
913 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
914 }
c30dc700 915
55ff77ac
CV
916 else if (IS_ADD_SP_R0 (insn))
917 {
918 /* This instruction still prepares r0, but we don't care.
7bb11558 919 We already have the offset in r0_val. */
55ff77ac 920 }
c30dc700 921
55ff77ac
CV
922 else if (IS_STS_R0 (insn))
923 {
c378eb4e 924 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 925 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 926 r0_val -= 4;
55ff77ac 927 }
c30dc700 928
55ff77ac
CV
929 else if (IS_MOV_R14_R0 (insn))
930 {
c378eb4e 931 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
932 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
933 - (r0_val - 4);
55ff77ac
CV
934 r0_val -= 4;
935 }
936
937 else if (IS_ADD_SP (insn))
c30dc700
CV
938 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
939
55ff77ac
CV
940 else if (IS_MOV_SP_FP (insn))
941 break;
942 }
943 else
944 {
c30dc700
CV
945 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
946 cache->sp_offset -=
947 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
948
949 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
950 cache->saved_regs[PR_REGNUM]
951 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
952 9) << 3);
55ff77ac
CV
953
954 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 2);
55ff77ac
CV
958
959 else if (IS_STQ_R14_R15 (insn))
c378eb4e
MS
960 cache->saved_regs[MEDIA_FP_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 3);
55ff77ac
CV
963
964 else if (IS_STL_R14_R15 (insn))
c378eb4e
MS
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 2);
55ff77ac
CV
968
969 else if (IS_MOV_SP_FP_MEDIA (insn))
970 break;
971 }
972 }
973
c30dc700
CV
974 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
975 cache->uses_fp = 1;
55ff77ac
CV
976}
977
55ff77ac 978static CORE_ADDR
c30dc700 979sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 980{
c30dc700 981 return sp & ~7;
55ff77ac
CV
982}
983
c30dc700 984/* Function: push_dummy_call
55ff77ac
CV
985 Setup the function arguments for calling a function in the inferior.
986
85a453d5 987 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
988 which are dedicated for passing function arguments. Up to the first
989 four arguments (depending on size) may go into these registers.
990 The rest go on the stack.
991
992 Arguments that are smaller than 4 bytes will still take up a whole
993 register or a whole 32-bit word on the stack, and will be
994 right-justified in the register or the stack word. This includes
995 chars, shorts, and small aggregate types.
996
997 Arguments that are larger than 4 bytes may be split between two or
998 more registers. If there are not enough registers free, an argument
999 may be passed partly in a register (or registers), and partly on the
c378eb4e 1000 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1001 As far as I know, there is no upper limit to the size of aggregates
1002 that will be passed in this way; in other words, the convention of
1003 passing a pointer to a large aggregate instead of a copy is not used.
1004
1005 An exceptional case exists for struct arguments (and possibly other
1006 aggregates such as arrays) if the size is larger than 4 bytes but
1007 not a multiple of 4 bytes. In this case the argument is never split
1008 between the registers and the stack, but instead is copied in its
1009 entirety onto the stack, AND also copied into as many registers as
1010 there is room for. In other words, space in registers permitting,
1011 two copies of the same argument are passed in. As far as I can tell,
1012 only the one on the stack is used, although that may be a function
1013 of the level of compiler optimization. I suspect this is a compiler
1014 bug. Arguments of these odd sizes are left-justified within the
1015 word (as opposed to arguments smaller than 4 bytes, which are
1016 right-justified).
1017
1018 If the function is to return an aggregate type such as a struct, it
1019 is either returned in the normal return value register R0 (if its
1020 size is no greater than one byte), or else the caller must allocate
1021 space into which the callee will copy the return value (if the size
1022 is greater than one byte). In this case, a pointer to the return
1023 value location is passed into the callee in register R2, which does
1024 not displace any of the other arguments passed in via registers R4
c378eb4e 1025 to R7. */
55ff77ac
CV
1026
1027/* R2-R9 for integer types and integer equivalent (char, pointers) and
1028 non-scalar (struct, union) elements (even if the elements are
1029 floats).
1030 FR0-FR11 for single precision floating point (float)
1031 DR0-DR10 for double precision floating point (double)
1032
1033 If a float is argument number 3 (for instance) and arguments number
1034 1,2, and 4 are integer, the mapping will be:
c378eb4e 1035 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1036
1037 If a float is argument number 10 (for instance) and arguments number
1038 1 through 10 are integer, the mapping will be:
1039 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1040 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1041 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1042
1043 Different rules apply for variable arguments functions, and for functions
7bb11558 1044 for which the prototype is not known. */
55ff77ac
CV
1045
1046static CORE_ADDR
c30dc700
CV
1047sh64_push_dummy_call (struct gdbarch *gdbarch,
1048 struct value *function,
1049 struct regcache *regcache,
1050 CORE_ADDR bp_addr,
1051 int nargs, struct value **args,
1052 CORE_ADDR sp, int struct_return,
1053 CORE_ADDR struct_addr)
55ff77ac 1054{
e17a4113 1055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1056 int stack_offset, stack_alloc;
1057 int int_argreg;
55ff77ac
CV
1058 int float_arg_index = 0;
1059 int double_arg_index = 0;
1060 int argnum;
1061 struct type *type;
1062 CORE_ADDR regval;
948f8e3d
PA
1063 const gdb_byte *val;
1064 gdb_byte valbuf[8];
55ff77ac
CV
1065 int len;
1066 int argreg_size;
1067 int fp_args[12];
55ff77ac
CV
1068
1069 memset (fp_args, 0, sizeof (fp_args));
1070
c378eb4e 1071 /* First force sp to a 8-byte alignment. */
c30dc700 1072 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1073
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1075 register. */
55ff77ac
CV
1076
1077 if (struct_return)
c30dc700
CV
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1080
c378eb4e 1081 /* Now make sure there's space on the stack. */
55ff77ac 1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1084 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1085
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1089
1090 int_argreg = ARG0_REGNUM;
55ff77ac
CV
1091
1092 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1093 {
4991999e 1094 type = value_type (args[argnum]);
55ff77ac
CV
1095 len = TYPE_LENGTH (type);
1096 memset (valbuf, 0, sizeof (valbuf));
1097
1098 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1099 {
58643501 1100 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1101
1102 if (len < argreg_size)
1103 {
c378eb4e 1104 /* value gets right-justified in the register or stack word. */
58643501 1105 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1106 memcpy (valbuf + argreg_size - len,
948f8e3d 1107 value_contents (args[argnum]), len);
55ff77ac 1108 else
948f8e3d 1109 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1110
1111 val = valbuf;
1112 }
1113 else
948f8e3d 1114 val = value_contents (args[argnum]);
55ff77ac
CV
1115
1116 while (len > 0)
1117 {
1118 if (int_argreg > ARGLAST_REGNUM)
1119 {
c378eb4e 1120 /* Must go on the stack. */
948f8e3d 1121 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1122 stack_offset += 8;/*argreg_size;*/
1123 }
1124 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1125 That's because some *&^%$ things get passed on the stack
1126 AND in the registers! */
1127 if (int_argreg <= ARGLAST_REGNUM)
1128 {
c378eb4e 1129 /* There's room in a register. */
e17a4113
UW
1130 regval = extract_unsigned_integer (val, argreg_size,
1131 byte_order);
c378eb4e
MS
1132 regcache_cooked_write_unsigned (regcache,
1133 int_argreg, regval);
55ff77ac
CV
1134 }
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
c378eb4e 1137 and partly on the stack. FIXME: argreg is incremented
7bb11558 1138 before we use its size. */
55ff77ac
CV
1139 len -= argreg_size;
1140 val += argreg_size;
1141 int_argreg++;
1142 }
1143 }
1144 else
1145 {
948f8e3d 1146 val = value_contents (args[argnum]);
55ff77ac
CV
1147 if (len == 4)
1148 {
c378eb4e 1149 /* Where is it going to be stored? */
55ff77ac
CV
1150 while (fp_args[float_arg_index])
1151 float_arg_index ++;
1152
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
c378eb4e 1155 register set? */
55ff77ac
CV
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1157 {
1158 /* Goes in FR0...FR11 */
c30dc700 1159 regcache_cooked_write (regcache,
58643501 1160 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1161 + float_arg_index,
c30dc700 1162 val);
55ff77ac 1163 fp_args[float_arg_index] = 1;
7bb11558 1164 /* Skip the corresponding general argument register. */
55ff77ac
CV
1165 int_argreg ++;
1166 }
1167 else
d4fb63e1
TT
1168 {
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1171 }
55ff77ac
CV
1172 }
1173 else if (len == 8)
1174 {
c378eb4e 1175 /* Where is it going to be stored? */
55ff77ac
CV
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
c378eb4e 1180 Are we still within the allowed register set? */
55ff77ac
CV
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
7bb11558 1185 i.e. includes odd numbers. */
55ff77ac 1186 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
7bb11558 1191 /* Skip the corresponding general argument register. */
55ff77ac
CV
1192 int_argreg ++;
1193 }
1194 else
d4fb63e1
TT
1195 {
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1198 }
55ff77ac
CV
1199 }
1200 }
1201 }
c378eb4e 1202 /* Store return address. */
c30dc700 1203 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1204
c30dc700 1205 /* Update stack pointer. */
3e8c568d 1206 regcache_cooked_write_unsigned (regcache,
58643501 1207 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1208
55ff77ac
CV
1209 return sp;
1210}
1211
1212/* Find a function's return value in the appropriate registers (in
1213 regbuf), and copy it into valbuf. Extract from an array REGBUF
1214 containing the (raw) register state a function return value of type
1215 TYPE, and copy that, in virtual format, into VALBUF. */
1216static void
c30dc700 1217sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1218 gdb_byte *valbuf)
55ff77ac 1219{
d93859e2 1220 struct gdbarch *gdbarch = get_regcache_arch (regcache);
55ff77ac 1221 int len = TYPE_LENGTH (type);
d93859e2 1222
55ff77ac
CV
1223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1224 {
1225 if (len == 4)
1226 {
c378eb4e 1227 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1228 regcache_raw_read (regcache,
d93859e2 1229 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1230 }
1231 else if (len == 8)
1232 {
c378eb4e 1233 /* return value stored in DR0_REGNUM. */
55ff77ac 1234 DOUBLEST val;
18cf8b5b 1235 gdb_byte buf[8];
55ff77ac 1236
18cf8b5b 1237 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1238
d93859e2 1239 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1240 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1241 buf, &val);
55ff77ac
CV
1242 else
1243 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1244 buf, &val);
7bb11558 1245 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1246 }
1247 }
1248 else
1249 {
1250 if (len <= 8)
1251 {
c30dc700 1252 int offset;
e362b510 1253 gdb_byte buf[8];
c378eb4e 1254 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1255 at the most significant end. */
c30dc700
CV
1256 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1257
d93859e2
UW
1258 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1259 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1260 - len;
55ff77ac 1261 else
c30dc700
CV
1262 offset = 0;
1263 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1264 }
1265 else
a73c6dcd 1266 error (_("bad size for return value"));
55ff77ac
CV
1267 }
1268}
1269
1270/* Write into appropriate registers a function return value
1271 of type TYPE, given in virtual format.
1272 If the architecture is sh4 or sh3e, store a function's return value
1273 in the R0 general register or in the FP0 floating point register,
c378eb4e 1274 depending on the type of the return value. In all the other cases
7bb11558 1275 the result is stored in r0, left-justified. */
55ff77ac
CV
1276
1277static void
c30dc700 1278sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1279 const gdb_byte *valbuf)
55ff77ac 1280{
d93859e2 1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e362b510 1282 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1283 int len = TYPE_LENGTH (type);
1284
1285 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1286 {
d93859e2 1287 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1288 for (i = 0; i < len; i += 4)
d93859e2 1289 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1290 regcache_raw_write (regcache, regnum++,
948f8e3d 1291 valbuf + len - 4 - i);
c30dc700 1292 else
948f8e3d 1293 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1294 }
1295 else
1296 {
1297 int return_register = DEFAULT_RETURN_REGNUM;
1298 int offset = 0;
1299
d93859e2 1300 if (len <= register_size (gdbarch, return_register))
55ff77ac 1301 {
7bb11558 1302 /* Pad with zeros. */
d93859e2
UW
1303 memset (buf, 0, register_size (gdbarch, return_register));
1304 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1305 offset = 0; /*register_size (gdbarch,
7bb11558 1306 return_register) - len;*/
55ff77ac 1307 else
d93859e2 1308 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1309
1310 memcpy (buf + offset, valbuf, len);
c30dc700 1311 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1312 }
1313 else
c30dc700 1314 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1315 }
1316}
1317
c30dc700 1318static enum return_value_convention
6a3a010b 1319sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1320 struct type *type, struct regcache *regcache,
18cf8b5b 1321 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1322{
1323 if (sh64_use_struct_convention (type))
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1325 if (writebuf)
1326 sh64_store_return_value (type, regcache, writebuf);
1327 else if (readbuf)
1328 sh64_extract_return_value (type, regcache, readbuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330}
1331
55ff77ac
CV
1332/* *INDENT-OFF* */
1333/*
1334 SH MEDIA MODE (ISA 32)
1335 general registers (64-bit) 0-63
13360 r0, r1, r2, r3, r4, r5, r6, r7,
133764 r8, r9, r10, r11, r12, r13, r14, r15,
1338128 r16, r17, r18, r19, r20, r21, r22, r23,
1339192 r24, r25, r26, r27, r28, r29, r30, r31,
1340256 r32, r33, r34, r35, r36, r37, r38, r39,
1341320 r40, r41, r42, r43, r44, r45, r46, r47,
1342384 r48, r49, r50, r51, r52, r53, r54, r55,
1343448 r56, r57, r58, r59, r60, r61, r62, r63,
1344
1345 pc (64-bit) 64
1346512 pc,
1347
1348 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1349520 sr, ssr, spc,
1350
1351 target registers (64-bit) 68-75
1352544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1353
1354 floating point state control register (32-bit) 76
1355608 fpscr,
1356
1357 single precision floating point registers (32-bit) 77-140
1358612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1359644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1360676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1361708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1362740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1363772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1364804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1365836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1366
1367TOTAL SPACE FOR REGISTERS: 868 bytes
1368
1369From here on they are all pseudo registers: no memory allocated.
1370REGISTER_BYTE returns the register byte for the base register.
1371
1372 double precision registers (pseudo) 141-172
1373 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1374 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1375 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1376 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1377
1378 floating point pairs (pseudo) 173-204
1379 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1380 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1381 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1382 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1383
1384 floating point vectors (4 floating point regs) (pseudo) 205-220
1385 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1386 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1387
1388 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1389 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1390 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1391 pc_c,
1392 gbr_c, mach_c, macl_c, pr_c, t_c,
1393 fpscr_c, fpul_c,
1394 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1395 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1396 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1397 fv0_c, fv4_c, fv8_c, fv12_c
1398*/
55ff77ac 1399
55ff77ac 1400static struct type *
0dfff4cb 1401sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1402{
e3506a9f
UW
1403 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1404 0, high);
55ff77ac
CV
1405}
1406
7bb11558
MS
1407/* Return the GDB type object for the "standard" data type
1408 of data in register REG_NR. */
55ff77ac 1409static struct type *
7bb11558 1410sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1411{
58643501 1412 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1413 && reg_nr <= FP_LAST_REGNUM)
1414 || (reg_nr >= FP0_C_REGNUM
1415 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1416 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1417 else if ((reg_nr >= DR0_REGNUM
1418 && reg_nr <= DR_LAST_REGNUM)
1419 || (reg_nr >= DR0_C_REGNUM
1420 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1421 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1422 else if (reg_nr >= FPP0_REGNUM
1423 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1424 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1425 else if ((reg_nr >= FV0_REGNUM
1426 && reg_nr <= FV_LAST_REGNUM)
1427 ||(reg_nr >= FV0_C_REGNUM
1428 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1429 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1430 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1431 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1432 else if (reg_nr >= R0_C_REGNUM
1433 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1434 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1435 else
0dfff4cb 1436 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1437}
1438
1439static void
d93859e2 1440sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1441 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1442{
d93859e2 1443 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1444 {
7bb11558 1445 /* It is a no-op. */
d93859e2 1446 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1447 return;
1448 }
1449
1450 if ((regnum >= DR0_REGNUM
1451 && regnum <= DR_LAST_REGNUM)
1452 || (regnum >= DR0_C_REGNUM
1453 && regnum <= DR_LAST_C_REGNUM))
1454 {
1455 DOUBLEST val;
7bb11558
MS
1456 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1457 from, &val);
39add00a 1458 store_typed_floating (to, type, val);
55ff77ac
CV
1459 }
1460 else
a73c6dcd
MS
1461 error (_("sh64_register_convert_to_virtual "
1462 "called with non DR register number"));
55ff77ac
CV
1463}
1464
1465static void
d93859e2
UW
1466sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1467 int regnum, const void *from, void *to)
55ff77ac 1468{
d93859e2 1469 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1470 {
7bb11558 1471 /* It is a no-op. */
d93859e2 1472 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1473 return;
1474 }
1475
1476 if ((regnum >= DR0_REGNUM
1477 && regnum <= DR_LAST_REGNUM)
1478 || (regnum >= DR0_C_REGNUM
1479 && regnum <= DR_LAST_C_REGNUM))
1480 {
e035e373 1481 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1482 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1483 &val, to);
55ff77ac
CV
1484 }
1485 else
a73c6dcd
MS
1486 error (_("sh64_register_convert_to_raw called "
1487 "with non DR register number"));
55ff77ac
CV
1488}
1489
05d1431c
PA
1490/* Concatenate PORTIONS contiguous raw registers starting at
1491 BASE_REGNUM into BUFFER. */
1492
1493static enum register_status
1494pseudo_register_read_portions (struct gdbarch *gdbarch,
1495 struct regcache *regcache,
1496 int portions,
1497 int base_regnum, gdb_byte *buffer)
1498{
1499 int portion;
1500
1501 for (portion = 0; portion < portions; portion++)
1502 {
1503 enum register_status status;
1504 gdb_byte *b;
1505
1506 b = buffer + register_size (gdbarch, base_regnum) * portion;
1507 status = regcache_raw_read (regcache, base_regnum + portion, b);
1508 if (status != REG_VALID)
1509 return status;
1510 }
1511
1512 return REG_VALID;
1513}
1514
1515static enum register_status
55ff77ac 1516sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1517 int reg_nr, gdb_byte *buffer)
55ff77ac 1518{
e17a4113 1519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1520 int base_regnum;
55ff77ac 1521 int offset = 0;
948f8e3d 1522 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1523 enum register_status status;
55ff77ac
CV
1524
1525 if (reg_nr >= DR0_REGNUM
1526 && reg_nr <= DR_LAST_REGNUM)
1527 {
d93859e2 1528 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1529
7bb11558 1530 /* Build the value in the provided buffer. */
55ff77ac 1531 /* DR regs are double precision registers obtained by
7bb11558 1532 concatenating 2 single precision floating point registers. */
05d1431c
PA
1533 status = pseudo_register_read_portions (gdbarch, regcache,
1534 2, base_regnum, temp_buffer);
1535 if (status == REG_VALID)
1536 {
1537 /* We must pay attention to the endianness. */
1538 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1539 register_type (gdbarch, reg_nr),
1540 temp_buffer, buffer);
1541 }
55ff77ac 1542
05d1431c 1543 return status;
55ff77ac
CV
1544 }
1545
05d1431c 1546 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1547 && reg_nr <= FPP_LAST_REGNUM)
1548 {
d93859e2 1549 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1550
7bb11558 1551 /* Build the value in the provided buffer. */
55ff77ac 1552 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1553 concatenating 2 single precision floating point registers. */
05d1431c
PA
1554 return pseudo_register_read_portions (gdbarch, regcache,
1555 2, base_regnum, buffer);
55ff77ac
CV
1556 }
1557
1558 else if (reg_nr >= FV0_REGNUM
1559 && reg_nr <= FV_LAST_REGNUM)
1560 {
d93859e2 1561 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1562
7bb11558 1563 /* Build the value in the provided buffer. */
55ff77ac 1564 /* FV regs are vectors of single precision registers obtained by
7bb11558 1565 concatenating 4 single precision floating point registers. */
05d1431c
PA
1566 return pseudo_register_read_portions (gdbarch, regcache,
1567 4, base_regnum, buffer);
55ff77ac
CV
1568 }
1569
c378eb4e 1570 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1571 else if (reg_nr >= R0_C_REGNUM
1572 && reg_nr <= T_C_REGNUM)
1573 {
d93859e2 1574 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1575
7bb11558 1576 /* Build the value in the provided buffer. */
05d1431c
PA
1577 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1578 if (status != REG_VALID)
1579 return status;
58643501 1580 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1581 offset = 4;
c378eb4e
MS
1582 memcpy (buffer,
1583 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1584 return REG_VALID;
55ff77ac
CV
1585 }
1586
1587 else if (reg_nr >= FP0_C_REGNUM
1588 && reg_nr <= FP_LAST_C_REGNUM)
1589 {
d93859e2 1590 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1591
7bb11558 1592 /* Build the value in the provided buffer. */
55ff77ac 1593 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1594 they have the same size and endianness. */
05d1431c 1595 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1596 }
1597
1598 else if (reg_nr >= DR0_C_REGNUM
1599 && reg_nr <= DR_LAST_C_REGNUM)
1600 {
d93859e2 1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1602
1603 /* DR_C regs are double precision registers obtained by
7bb11558 1604 concatenating 2 single precision floating point registers. */
05d1431c
PA
1605 status = pseudo_register_read_portions (gdbarch, regcache,
1606 2, base_regnum, temp_buffer);
1607 if (status == REG_VALID)
1608 {
1609 /* We must pay attention to the endianness. */
1610 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1611 register_type (gdbarch, reg_nr),
1612 temp_buffer, buffer);
1613 }
1614 return status;
55ff77ac
CV
1615 }
1616
1617 else if (reg_nr >= FV0_C_REGNUM
1618 && reg_nr <= FV_LAST_C_REGNUM)
1619 {
d93859e2 1620 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1621
7bb11558 1622 /* Build the value in the provided buffer. */
55ff77ac 1623 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1624 concatenating 4 single precision floating point registers. */
05d1431c
PA
1625 return pseudo_register_read_portions (gdbarch, regcache,
1626 4, base_regnum, buffer);
55ff77ac
CV
1627 }
1628
1629 else if (reg_nr == FPSCR_C_REGNUM)
1630 {
1631 int fpscr_base_regnum;
1632 int sr_base_regnum;
1633 unsigned int fpscr_value;
1634 unsigned int sr_value;
1635 unsigned int fpscr_c_value;
1636 unsigned int fpscr_c_part1_value;
1637 unsigned int fpscr_c_part2_value;
1638
1639 fpscr_base_regnum = FPSCR_REGNUM;
1640 sr_base_regnum = SR_REGNUM;
1641
7bb11558 1642 /* Build the value in the provided buffer. */
55ff77ac
CV
1643 /* FPSCR_C is a very weird register that contains sparse bits
1644 from the FPSCR and the SR architectural registers.
1645 Specifically: */
1646 /* *INDENT-OFF* */
1647 /*
1648 FPSRC_C bit
1649 0 Bit 0 of FPSCR
1650 1 reserved
1651 2-17 Bit 2-18 of FPSCR
1652 18-20 Bits 12,13,14 of SR
1653 21-31 reserved
1654 */
1655 /* *INDENT-ON* */
c378eb4e 1656 /* Get FPSCR into a local buffer. */
05d1431c
PA
1657 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1658 if (status != REG_VALID)
1659 return status;
7bb11558 1660 /* Get value as an int. */
e17a4113 1661 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1662 /* Get SR into a local buffer */
05d1431c
PA
1663 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1664 if (status != REG_VALID)
1665 return status;
7bb11558 1666 /* Get value as an int. */
e17a4113 1667 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1668 /* Build the new value. */
55ff77ac
CV
1669 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1670 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1671 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1672 /* Store that in out buffer!!! */
e17a4113 1673 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1674 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1675
1676 return REG_VALID;
55ff77ac
CV
1677 }
1678
1679 else if (reg_nr == FPUL_C_REGNUM)
1680 {
d93859e2 1681 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1682
1683 /* FPUL_C register is floating point register 32,
7bb11558 1684 same size, same endianness. */
05d1431c 1685 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1686 }
05d1431c
PA
1687 else
1688 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1689}
1690
1691static void
1692sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1693 int reg_nr, const gdb_byte *buffer)
55ff77ac 1694{
e17a4113 1695 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1696 int base_regnum, portion;
1697 int offset;
948f8e3d 1698 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1699
1700 if (reg_nr >= DR0_REGNUM
1701 && reg_nr <= DR_LAST_REGNUM)
1702 {
d93859e2 1703 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1704 /* We must pay attention to the endianness. */
d93859e2 1705 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1706 reg_nr,
1707 buffer, temp_buffer);
55ff77ac
CV
1708
1709 /* Write the real regs for which this one is an alias. */
1710 for (portion = 0; portion < 2; portion++)
1711 regcache_raw_write (regcache, base_regnum + portion,
1712 (temp_buffer
948f8e3d 1713 + register_size (gdbarch,
7bb11558 1714 base_regnum) * portion));
55ff77ac
CV
1715 }
1716
1717 else if (reg_nr >= FPP0_REGNUM
1718 && reg_nr <= FPP_LAST_REGNUM)
1719 {
d93859e2 1720 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1721
1722 /* Write the real regs for which this one is an alias. */
1723 for (portion = 0; portion < 2; portion++)
1724 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1725 (buffer + register_size (gdbarch,
1726 base_regnum) * portion));
55ff77ac
CV
1727 }
1728
1729 else if (reg_nr >= FV0_REGNUM
1730 && reg_nr <= FV_LAST_REGNUM)
1731 {
d93859e2 1732 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1733
1734 /* Write the real regs for which this one is an alias. */
1735 for (portion = 0; portion < 4; portion++)
1736 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1737 (buffer + register_size (gdbarch,
1738 base_regnum) * portion));
55ff77ac
CV
1739 }
1740
c378eb4e 1741 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1742 register but only 4 bytes of it. */
1743 else if (reg_nr >= R0_C_REGNUM
1744 && reg_nr <= T_C_REGNUM)
1745 {
d93859e2 1746 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1747 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1748 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1749 offset = 4;
1750 else
1751 offset = 0;
1752 /* Let's read the value of the base register into a temporary
1753 buffer, so that overwriting the last four bytes with the new
7bb11558 1754 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1755 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1756 /* Write as an 8 byte quantity. */
55ff77ac
CV
1757 memcpy (temp_buffer + offset, buffer, 4);
1758 regcache_raw_write (regcache, base_regnum, temp_buffer);
1759 }
1760
c378eb4e
MS
1761 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1762 registers. Both are 4 bytes. */
55ff77ac
CV
1763 else if (reg_nr >= FP0_C_REGNUM
1764 && reg_nr <= FP_LAST_C_REGNUM)
1765 {
d93859e2 1766 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1767 regcache_raw_write (regcache, base_regnum, buffer);
1768 }
1769
1770 else if (reg_nr >= DR0_C_REGNUM
1771 && reg_nr <= DR_LAST_C_REGNUM)
1772 {
d93859e2 1773 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1774 for (portion = 0; portion < 2; portion++)
1775 {
7bb11558 1776 /* We must pay attention to the endianness. */
d93859e2
UW
1777 sh64_register_convert_to_raw (gdbarch,
1778 register_type (gdbarch, reg_nr),
39add00a
MS
1779 reg_nr,
1780 buffer, temp_buffer);
55ff77ac
CV
1781
1782 regcache_raw_write (regcache, base_regnum + portion,
1783 (temp_buffer
7bb11558
MS
1784 + register_size (gdbarch,
1785 base_regnum) * portion));
55ff77ac
CV
1786 }
1787 }
1788
1789 else if (reg_nr >= FV0_C_REGNUM
1790 && reg_nr <= FV_LAST_C_REGNUM)
1791 {
d93859e2 1792 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1793
1794 for (portion = 0; portion < 4; portion++)
1795 {
1796 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1797 (buffer
7bb11558
MS
1798 + register_size (gdbarch,
1799 base_regnum) * portion));
55ff77ac
CV
1800 }
1801 }
1802
1803 else if (reg_nr == FPSCR_C_REGNUM)
1804 {
1805 int fpscr_base_regnum;
1806 int sr_base_regnum;
1807 unsigned int fpscr_value;
1808 unsigned int sr_value;
1809 unsigned int old_fpscr_value;
1810 unsigned int old_sr_value;
1811 unsigned int fpscr_c_value;
1812 unsigned int fpscr_mask;
1813 unsigned int sr_mask;
1814
1815 fpscr_base_regnum = FPSCR_REGNUM;
1816 sr_base_regnum = SR_REGNUM;
1817
1818 /* FPSCR_C is a very weird register that contains sparse bits
1819 from the FPSCR and the SR architectural registers.
1820 Specifically: */
1821 /* *INDENT-OFF* */
1822 /*
1823 FPSRC_C bit
1824 0 Bit 0 of FPSCR
1825 1 reserved
1826 2-17 Bit 2-18 of FPSCR
1827 18-20 Bits 12,13,14 of SR
1828 21-31 reserved
1829 */
1830 /* *INDENT-ON* */
7bb11558 1831 /* Get value as an int. */
e17a4113 1832 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1833
7bb11558 1834 /* Build the new values. */
55ff77ac
CV
1835 fpscr_mask = 0x0003fffd;
1836 sr_mask = 0x001c0000;
1837
1838 fpscr_value = fpscr_c_value & fpscr_mask;
1839 sr_value = (fpscr_value & sr_mask) >> 6;
1840
1841 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1842 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1843 old_fpscr_value &= 0xfffc0002;
1844 fpscr_value |= old_fpscr_value;
e17a4113 1845 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1846 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1847
1848 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1849 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1850 old_sr_value &= 0xffff8fff;
1851 sr_value |= old_sr_value;
e17a4113 1852 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1853 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1854 }
1855
1856 else if (reg_nr == FPUL_C_REGNUM)
1857 {
d93859e2 1858 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1859 regcache_raw_write (regcache, base_regnum, buffer);
1860 }
1861}
1862
55ff77ac 1863/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1864 shmedia REGISTERS. */
1865/* Control registers, compact mode. */
55ff77ac 1866static void
c30dc700
CV
1867sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1868 int cr_c_regnum)
55ff77ac
CV
1869{
1870 switch (cr_c_regnum)
1871 {
c30dc700
CV
1872 case PC_C_REGNUM:
1873 fprintf_filtered (file, "pc_c\t0x%08x\n",
1874 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1875 break;
c30dc700
CV
1876 case GBR_C_REGNUM:
1877 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1878 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1879 break;
c30dc700
CV
1880 case MACH_C_REGNUM:
1881 fprintf_filtered (file, "mach_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1883 break;
c30dc700
CV
1884 case MACL_C_REGNUM:
1885 fprintf_filtered (file, "macl_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1887 break;
c30dc700
CV
1888 case PR_C_REGNUM:
1889 fprintf_filtered (file, "pr_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1891 break;
c30dc700
CV
1892 case T_C_REGNUM:
1893 fprintf_filtered (file, "t_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1895 break;
c30dc700
CV
1896 case FPSCR_C_REGNUM:
1897 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1899 break;
c30dc700
CV
1900 case FPUL_C_REGNUM:
1901 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1903 break;
1904 }
1905}
1906
1907static void
c30dc700
CV
1908sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1909 struct frame_info *frame, int regnum)
c378eb4e 1910{ /* Do values for FP (float) regs. */
079c8cd0 1911 unsigned char *raw_buffer;
c378eb4e 1912 double flt; /* Double extracted from raw hex data. */
55ff77ac 1913 int inv;
55ff77ac 1914
7bb11558 1915 /* Allocate space for the float. */
c378eb4e
MS
1916 raw_buffer = (unsigned char *)
1917 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1918
1919 /* Get the data in raw format. */
ca9d61b9 1920 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1921 error (_("can't read register %d (%s)"),
58643501 1922 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1923
c378eb4e
MS
1924 /* Get the register as a number. */
1925 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1926 raw_buffer, &inv);
55ff77ac 1927
7bb11558 1928 /* Print the name and some spaces. */
58643501 1929 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1930 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1931 (gdbarch, regnum)), file);
55ff77ac 1932
7bb11558 1933 /* Print the value. */
55ff77ac
CV
1934 if (inv)
1935 fprintf_filtered (file, "<invalid float>");
1936 else
1937 fprintf_filtered (file, "%-10.9g", flt);
1938
7bb11558 1939 /* Print the fp register as hex. */
2cc762b5
AB
1940 fprintf_filtered (file, "\t(raw ");
1941 print_hex_chars (file, raw_buffer,
1942 register_size (gdbarch, regnum),
1943 gdbarch_byte_order (gdbarch));
55ff77ac
CV
1944 fprintf_filtered (file, ")");
1945 fprintf_filtered (file, "\n");
1946}
1947
1948static void
c30dc700
CV
1949sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1950 struct frame_info *frame, int regnum)
55ff77ac 1951{
7bb11558 1952 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1953
58643501
UW
1954 if (regnum < gdbarch_num_regs (gdbarch)
1955 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1956 + NUM_PSEUDO_REGS_SH_MEDIA
1957 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1958 internal_error (__FILE__, __LINE__,
e2e0b3e5 1959 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1960
c30dc700
CV
1961 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1962 {
d93859e2 1963 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1964 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1965 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1966 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1967 }
55ff77ac 1968
c30dc700
CV
1969 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1970 {
d93859e2 1971 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1972 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1975 }
55ff77ac 1976
c30dc700
CV
1977 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1978 {
d93859e2 1979 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1980 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1981 regnum - FV0_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1986 }
55ff77ac 1987
c30dc700
CV
1988 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1989 {
d93859e2 1990 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1991 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_C_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1997 }
1998
1999 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2000 {
d93859e2 2001 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2002 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2005 }
2006
2007 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2008 {
d93859e2 2009 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2010 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2012 }
2013 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2014 /* This should work also for pseudoregs. */
c30dc700
CV
2015 sh64_do_fp_register (gdbarch, file, frame, regnum);
2016 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2017 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2018}
2019
2020static void
c30dc700
CV
2021sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2022 struct frame_info *frame, int regnum)
55ff77ac 2023{
079c8cd0 2024 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2025 struct value_print_options opts;
55ff77ac 2026
58643501 2027 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2028 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2029 (gdbarch, regnum)), file);
55ff77ac
CV
2030
2031 /* Get the data in raw format. */
ca9d61b9 2032 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
47061676
AB
2033 {
2034 fprintf_filtered (file, "*value not available*\n");
2035 return;
2036 }
79a45b7d
TT
2037
2038 get_formatted_print_options (&opts, 'x');
2039 opts.deref_ref = 1;
7b9ee6a8 2040 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2041 file, 0, NULL, &opts, current_language);
55ff77ac 2042 fprintf_filtered (file, "\t");
79a45b7d
TT
2043 get_formatted_print_options (&opts, 0);
2044 opts.deref_ref = 1;
7b9ee6a8 2045 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2046 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2047 fprintf_filtered (file, "\n");
2048}
2049
2050static void
c30dc700
CV
2051sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2052 struct frame_info *frame, int regnum)
55ff77ac 2053{
58643501
UW
2054 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2055 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2056 internal_error (__FILE__, __LINE__,
e2e0b3e5 2057 _("Invalid register number %d\n"), regnum);
55ff77ac 2058
58643501 2059 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2060 {
7b9ee6a8 2061 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2062 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2063 else
c30dc700 2064 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2065 }
2066
58643501
UW
2067 else if (regnum < gdbarch_num_regs (gdbarch)
2068 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2069 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2070}
2071
2072static void
c30dc700
CV
2073sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2074 struct frame_info *frame, int regnum,
2075 int fpregs)
55ff77ac 2076{
c378eb4e 2077 if (regnum != -1) /* Do one specified register. */
55ff77ac 2078 {
58643501 2079 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2080 error (_("Not a valid register for the current processor type"));
55ff77ac 2081
c30dc700 2082 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2083 }
2084 else
c378eb4e 2085 /* Do all (or most) registers. */
55ff77ac
CV
2086 {
2087 regnum = 0;
58643501 2088 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2089 {
2090 /* If the register name is empty, it is undefined for this
2091 processor, so don't display anything. */
58643501
UW
2092 if (gdbarch_register_name (gdbarch, regnum) == NULL
2093 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2094 {
2095 regnum++;
2096 continue;
2097 }
2098
7b9ee6a8 2099 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2100 == TYPE_CODE_FLT)
55ff77ac
CV
2101 {
2102 if (fpregs)
2103 {
c378eb4e 2104 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2105 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2106 regnum ++;
2107 }
2108 else
58643501 2109 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2110 /* skip FP regs */
55ff77ac
CV
2111 }
2112 else
2113 {
c30dc700 2114 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2115 regnum++;
2116 }
2117 }
2118
2119 if (fpregs)
58643501
UW
2120 while (regnum < gdbarch_num_regs (gdbarch)
2121 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2122 {
c30dc700 2123 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2124 regnum++;
2125 }
2126 }
2127}
2128
2129static void
c30dc700
CV
2130sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2131 struct ui_file *file,
2132 struct frame_info *frame, int regnum,
2133 int fpregs)
55ff77ac 2134{
c378eb4e 2135 if (regnum != -1) /* Do one specified register. */
55ff77ac 2136 {
58643501 2137 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2138 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2139
2140 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2141 error (_("Not a valid register for the current processor mode."));
55ff77ac 2142
c30dc700 2143 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2144 }
2145 else
c378eb4e 2146 /* Do all compact registers. */
55ff77ac
CV
2147 {
2148 regnum = R0_C_REGNUM;
58643501
UW
2149 while (regnum < gdbarch_num_regs (gdbarch)
2150 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2151 {
c30dc700 2152 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2153 regnum++;
2154 }
2155 }
2156}
2157
2158static void
c30dc700
CV
2159sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2160 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2161{
c30dc700
CV
2162 if (pc_is_isa32 (get_frame_pc (frame)))
2163 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2164 else
c30dc700 2165 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2166}
2167
c30dc700
CV
2168static struct sh64_frame_cache *
2169sh64_alloc_frame_cache (void)
2170{
2171 struct sh64_frame_cache *cache;
2172 int i;
2173
2174 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2175
2176 /* Base address. */
2177 cache->base = 0;
2178 cache->saved_sp = 0;
2179 cache->sp_offset = 0;
2180 cache->pc = 0;
55ff77ac 2181
c30dc700
CV
2182 /* Frameless until proven otherwise. */
2183 cache->uses_fp = 0;
55ff77ac 2184
c30dc700
CV
2185 /* Saved registers. We initialize these to -1 since zero is a valid
2186 offset (that's where fp is supposed to be stored). */
2187 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2188 {
2189 cache->saved_regs[i] = -1;
2190 }
2191
2192 return cache;
2193}
2194
2195static struct sh64_frame_cache *
94afd7a6 2196sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2197{
58643501 2198 struct gdbarch *gdbarch;
c30dc700
CV
2199 struct sh64_frame_cache *cache;
2200 CORE_ADDR current_pc;
2201 int i;
55ff77ac 2202
c30dc700 2203 if (*this_cache)
19ba03f4 2204 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2205
94afd7a6 2206 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2207 cache = sh64_alloc_frame_cache ();
2208 *this_cache = cache;
2209
94afd7a6 2210 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2211 cache->media_mode = pc_is_isa32 (current_pc);
2212
2213 /* In principle, for normal frames, fp holds the frame pointer,
2214 which holds the base address for the current stack frame.
2215 However, for functions that don't need it, the frame pointer is
2216 optional. For these "frameless" functions the frame pointer is
c378eb4e 2217 actually the frame pointer of the calling frame. */
94afd7a6 2218 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2219 if (cache->base == 0)
2220 return cache;
2221
94afd7a6 2222 cache->pc = get_frame_func (this_frame);
c30dc700 2223 if (cache->pc != 0)
58643501 2224 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2225
2226 if (!cache->uses_fp)
55ff77ac 2227 {
c30dc700
CV
2228 /* We didn't find a valid frame, which means that CACHE->base
2229 currently holds the frame pointer for our calling frame. If
2230 we're at the start of a function, or somewhere half-way its
2231 prologue, the function's frame probably hasn't been fully
2232 setup yet. Try to reconstruct the base address for the stack
2233 frame by looking at the stack pointer. For truly "frameless"
2234 functions this might work too. */
94afd7a6
UW
2235 cache->base = get_frame_register_unsigned
2236 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2237 }
55ff77ac 2238
c30dc700
CV
2239 /* Now that we have the base address for the stack frame we can
2240 calculate the value of sp in the calling frame. */
2241 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2242
c30dc700
CV
2243 /* Adjust all the saved registers such that they contain addresses
2244 instead of offsets. */
2245 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2246 if (cache->saved_regs[i] != -1)
2247 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2248
c30dc700
CV
2249 return cache;
2250}
55ff77ac 2251
94afd7a6
UW
2252static struct value *
2253sh64_frame_prev_register (struct frame_info *this_frame,
2254 void **this_cache, int regnum)
c30dc700 2255{
94afd7a6
UW
2256 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2257 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2259
c30dc700 2260 gdb_assert (regnum >= 0);
55ff77ac 2261
58643501 2262 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2263 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2264
2265 /* The PC of the previous frame is stored in the PR register of
2266 the current frame. Frob regnum so that we pull the value from
2267 the correct place. */
58643501 2268 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2269 regnum = PR_REGNUM;
2270
2271 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2272 {
58643501 2273 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2274 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2275 {
94afd7a6 2276 CORE_ADDR val;
e17a4113
UW
2277 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2278 4, byte_order);
94afd7a6 2279 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2280 }
94afd7a6
UW
2281
2282 return frame_unwind_got_memory (this_frame, regnum,
2283 cache->saved_regs[regnum]);
55ff77ac
CV
2284 }
2285
94afd7a6 2286 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2287}
55ff77ac 2288
c30dc700 2289static void
94afd7a6 2290sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2291 struct frame_id *this_id)
2292{
94afd7a6 2293 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2294
2295 /* This marks the outermost frame. */
2296 if (cache->base == 0)
2297 return;
2298
2299 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2300}
2301
2302static const struct frame_unwind sh64_frame_unwind = {
2303 NORMAL_FRAME,
8fbca658 2304 default_frame_unwind_stop_reason,
c30dc700 2305 sh64_frame_this_id,
94afd7a6
UW
2306 sh64_frame_prev_register,
2307 NULL,
2308 default_frame_sniffer
c30dc700
CV
2309};
2310
c30dc700
CV
2311static CORE_ADDR
2312sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2313{
3e8c568d 2314 return frame_unwind_register_unsigned (next_frame,
58643501 2315 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2316}
2317
2318static CORE_ADDR
2319sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2320{
3e8c568d 2321 return frame_unwind_register_unsigned (next_frame,
58643501 2322 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2323}
2324
2325static struct frame_id
94afd7a6 2326sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2327{
94afd7a6
UW
2328 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2329 gdbarch_sp_regnum (gdbarch));
2330 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2331}
2332
2333static CORE_ADDR
94afd7a6 2334sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2335{
94afd7a6 2336 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2337
2338 return cache->base;
2339}
2340
2341static const struct frame_base sh64_frame_base = {
2342 &sh64_frame_unwind,
2343 sh64_frame_base_address,
2344 sh64_frame_base_address,
2345 sh64_frame_base_address
2346};
2347
55ff77ac
CV
2348
2349struct gdbarch *
2350sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2351{
55ff77ac
CV
2352 struct gdbarch *gdbarch;
2353 struct gdbarch_tdep *tdep;
2354
2355 /* If there is already a candidate, use it. */
2356 arches = gdbarch_list_lookup_by_info (arches, &info);
2357 if (arches != NULL)
2358 return arches->gdbarch;
2359
2360 /* None found, create a new architecture from the information
7bb11558 2361 provided. */
70ba0933 2362 tdep = XNEW (struct gdbarch_tdep);
55ff77ac
CV
2363 gdbarch = gdbarch_alloc (&info, tdep);
2364
55ff77ac
CV
2365 /* Determine the ABI */
2366 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2367 {
7bb11558 2368 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2369 tdep->sh_abi = SH_ABI_64;
2370 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2371 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2372 }
2373 else
2374 {
2375 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2376 compact. */
55ff77ac
CV
2377 tdep->sh_abi = SH_ABI_32;
2378 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2379 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2380 }
2381
2382 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2383 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2384 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2385 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2386 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2388 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2389
c30dc700
CV
2390 /* The number of real registers is the same whether we are in
2391 ISA16(compact) or ISA32(media). */
2392 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2393 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2394 set_gdbarch_pc_regnum (gdbarch, 64);
2395 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2396 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2397 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2398
c30dc700
CV
2399 set_gdbarch_register_name (gdbarch, sh64_register_name);
2400 set_gdbarch_register_type (gdbarch, sh64_register_type);
2401
2402 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2403 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2404
2405 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2406
9dae60cc 2407 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2408 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2409
c30dc700 2410 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2411
c30dc700
CV
2412 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2413 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2414
c30dc700 2415 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2416
c30dc700 2417 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2418
c30dc700
CV
2419 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2420 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2421 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2422 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2423 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2424
c30dc700 2425 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2426
55ff77ac
CV
2427 set_gdbarch_elf_make_msymbol_special (gdbarch,
2428 sh64_elf_make_msymbol_special);
2429
2430 /* Hook in ABI-specific overrides, if they have been registered. */
2431 gdbarch_init_osabi (info, gdbarch);
2432
94afd7a6
UW
2433 dwarf2_append_unwinders (gdbarch);
2434 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2435
55ff77ac
CV
2436 return gdbarch;
2437}