]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-irix.c
* gdb/score-tdep.c: Delete dead codes.
[thirdparty/binutils-gdb.git] / gdb / solib-irix.c
CommitLineData
dabbe2c0 1/* Shared library support for IRIX.
6aba47ca 2 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
0fb0cc75 3 2007, 2008, 2009 Free Software Foundation, Inc.
dabbe2c0
KB
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
dabbe2c0
KB
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
dabbe2c0
KB
22
23#include "defs.h"
24
25#include "symtab.h"
26#include "bfd.h"
9ab9195f
EZ
27/* FIXME: ezannoni/2004-02-13 Verify that the include below is
28 really needed. */
dabbe2c0
KB
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcore.h"
32#include "target.h"
33#include "inferior.h"
2020b7ab 34#include "gdbthread.h"
dabbe2c0
KB
35
36#include "solist.h"
734598d9
UW
37#include "solib.h"
38#include "solib-irix.h"
39
dabbe2c0
KB
40
41/* Link map info to include in an allocate so_list entry. Unlike some
42 of the other solib backends, this (Irix) backend chooses to decode
43 the link map info obtained from the target and store it as (mostly)
44 CORE_ADDRs which need no further decoding. This is more convenient
45 because there are three different link map formats to worry about.
46 We use a single routine (fetch_lm_info) to read (and decode) the target
47 specific link map data. */
48
49struct lm_info
50{
51 CORE_ADDR addr; /* address of obj_info or obj_list
52 struct on target (from which the
53 following information is obtained). */
54 CORE_ADDR next; /* address of next item in list. */
55 CORE_ADDR reloc_offset; /* amount to relocate by */
56 CORE_ADDR pathname_addr; /* address of pathname */
57 int pathname_len; /* length of pathname */
58};
59
60/* It's not desirable to use the system header files to obtain the
61 structure of the obj_list or obj_info structs. Therefore, we use a
62 platform neutral representation which has been derived from the IRIX
63 header files. */
64
65typedef struct
66{
725a826f 67 gdb_byte b[4];
dabbe2c0
KB
68}
69gdb_int32_bytes;
70typedef struct
71{
725a826f 72 gdb_byte b[8];
dabbe2c0
KB
73}
74gdb_int64_bytes;
75
76/* The "old" obj_list struct. This is used with old (o32) binaries.
77 The ``data'' member points at a much larger and more complicated
78 struct which we will only refer to by offsets. See
79 fetch_lm_info(). */
80
81struct irix_obj_list
82{
83 gdb_int32_bytes data;
84 gdb_int32_bytes next;
85 gdb_int32_bytes prev;
86};
87
88/* The ELF32 and ELF64 versions of the above struct. The oi_magic value
89 corresponds to the ``data'' value in the "old" struct. When this value
90 is 0xffffffff, the data will be in one of the following formats. The
91 ``oi_size'' field is used to decide which one we actually have. */
92
93struct irix_elf32_obj_info
94{
95 gdb_int32_bytes oi_magic;
96 gdb_int32_bytes oi_size;
97 gdb_int32_bytes oi_next;
98 gdb_int32_bytes oi_prev;
99 gdb_int32_bytes oi_ehdr;
100 gdb_int32_bytes oi_orig_ehdr;
101 gdb_int32_bytes oi_pathname;
102 gdb_int32_bytes oi_pathname_len;
103};
104
105struct irix_elf64_obj_info
106{
107 gdb_int32_bytes oi_magic;
108 gdb_int32_bytes oi_size;
109 gdb_int64_bytes oi_next;
110 gdb_int64_bytes oi_prev;
111 gdb_int64_bytes oi_ehdr;
112 gdb_int64_bytes oi_orig_ehdr;
113 gdb_int64_bytes oi_pathname;
114 gdb_int32_bytes oi_pathname_len;
115 gdb_int32_bytes padding;
116};
117
118/* Union of all of the above (plus a split out magic field). */
119
120union irix_obj_info
121{
122 gdb_int32_bytes magic;
123 struct irix_obj_list ol32;
124 struct irix_elf32_obj_info oi32;
125 struct irix_elf64_obj_info oi64;
126};
127
128/* MIPS sign extends its 32 bit addresses. We could conceivably use
129 extract_typed_address here, but to do so, we'd have to construct an
ae0167b9 130 appropriate type. Calling extract_signed_integer seems simpler. */
dabbe2c0
KB
131
132static CORE_ADDR
e17a4113 133extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
dabbe2c0 134{
e17a4113 135 return extract_signed_integer (addr, len, byte_order);
dabbe2c0
KB
136}
137
138/* Fetch and return the link map data associated with ADDR. Note that
139 this routine automatically determines which (of three) link map
140 formats is in use by the target. */
141
63807e1d 142static struct lm_info
dabbe2c0
KB
143fetch_lm_info (CORE_ADDR addr)
144{
e17a4113 145 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
dabbe2c0
KB
146 struct lm_info li;
147 union irix_obj_info buf;
148
149 li.addr = addr;
150
151 /* The smallest region that we'll need is for buf.ol32. We'll read
152 that first. We'll read more of the buffer later if we have to deal
153 with one of the other cases. (We don't want to incur a memory error
154 if we were to read a larger region that generates an error due to
155 being at the end of a page or the like.) */
156 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157
e17a4113
UW
158 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159 != 0xffffffff)
dabbe2c0
KB
160 {
161 /* Use buf.ol32... */
162 char obj_buf[432];
163 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
e17a4113
UW
164 sizeof (buf.ol32.data),
165 byte_order);
166 li.next = extract_mips_address (&buf.ol32.next,
167 sizeof (buf.ol32.next), byte_order);
dabbe2c0
KB
168
169 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
170
e17a4113 171 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
dabbe2c0 172 li.pathname_len = 0; /* unknown */
e17a4113
UW
173 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
174 - extract_mips_address (&obj_buf[248], 4, byte_order);
dabbe2c0
KB
175
176 }
725a826f 177 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
e17a4113 178 sizeof (buf.oi32.oi_size), byte_order)
dabbe2c0
KB
179 == sizeof (buf.oi32))
180 {
181 /* Use buf.oi32... */
182
183 /* Read rest of buffer. */
184 read_memory (addr + sizeof (buf.ol32),
185 ((char *) &buf) + sizeof (buf.ol32),
186 sizeof (buf.oi32) - sizeof (buf.ol32));
187
188 /* Fill in fields using buffer contents. */
189 li.next = extract_mips_address (&buf.oi32.oi_next,
e17a4113 190 sizeof (buf.oi32.oi_next), byte_order);
dabbe2c0 191 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
e17a4113
UW
192 sizeof (buf.oi32.oi_ehdr),
193 byte_order)
dabbe2c0 194 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
e17a4113 195 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
dabbe2c0 196 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
e17a4113
UW
197 sizeof (buf.oi32.oi_pathname),
198 byte_order);
725a826f 199 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
dabbe2c0 200 sizeof (buf.oi32.
e17a4113
UW
201 oi_pathname_len),
202 byte_order);
dabbe2c0 203 }
725a826f 204 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
e17a4113 205 sizeof (buf.oi64.oi_size), byte_order)
dabbe2c0
KB
206 == sizeof (buf.oi64))
207 {
208 /* Use buf.oi64... */
209
210 /* Read rest of buffer. */
211 read_memory (addr + sizeof (buf.ol32),
212 ((char *) &buf) + sizeof (buf.ol32),
213 sizeof (buf.oi64) - sizeof (buf.ol32));
214
215 /* Fill in fields using buffer contents. */
216 li.next = extract_mips_address (&buf.oi64.oi_next,
e17a4113 217 sizeof (buf.oi64.oi_next), byte_order);
dabbe2c0 218 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
e17a4113
UW
219 sizeof (buf.oi64.oi_ehdr),
220 byte_order)
dabbe2c0 221 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
e17a4113 222 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
dabbe2c0 223 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
e17a4113
UW
224 sizeof (buf.oi64.oi_pathname),
225 byte_order);
725a826f 226 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
dabbe2c0 227 sizeof (buf.oi64.
e17a4113
UW
228 oi_pathname_len),
229 byte_order);
dabbe2c0
KB
230 }
231 else
232 {
8a3fe4f8 233 error (_("Unable to fetch shared library obj_info or obj_list info."));
dabbe2c0
KB
234 }
235
236 return li;
237}
238
239/* The symbol which starts off the list of shared libraries. */
240#define DEBUG_BASE "__rld_obj_head"
241
8181d85f 242static void *base_breakpoint;
dabbe2c0
KB
243
244static CORE_ADDR debug_base; /* Base of dynamic linker structures */
dabbe2c0
KB
245
246/*
247
248 LOCAL FUNCTION
249
250 locate_base -- locate the base address of dynamic linker structs
251
252 SYNOPSIS
253
254 CORE_ADDR locate_base (void)
255
256 DESCRIPTION
257
258 For both the SunOS and SVR4 shared library implementations, if the
259 inferior executable has been linked dynamically, there is a single
260 address somewhere in the inferior's data space which is the key to
261 locating all of the dynamic linker's runtime structures. This
262 address is the value of the symbol defined by the macro DEBUG_BASE.
263 The job of this function is to find and return that address, or to
264 return 0 if there is no such address (the executable is statically
265 linked for example).
266
267 For SunOS, the job is almost trivial, since the dynamic linker and
268 all of it's structures are statically linked to the executable at
269 link time. Thus the symbol for the address we are looking for has
270 already been added to the minimal symbol table for the executable's
271 objfile at the time the symbol file's symbols were read, and all we
272 have to do is look it up there. Note that we explicitly do NOT want
273 to find the copies in the shared library.
274
275 The SVR4 version is much more complicated because the dynamic linker
276 and it's structures are located in the shared C library, which gets
277 run as the executable's "interpreter" by the kernel. We have to go
278 to a lot more work to discover the address of DEBUG_BASE. Because
279 of this complexity, we cache the value we find and return that value
280 on subsequent invocations. Note there is no copy in the executable
281 symbol tables.
282
283 Irix 5 is basically like SunOS.
284
285 Note that we can assume nothing about the process state at the time
286 we need to find this address. We may be stopped on the first instruc-
287 tion of the interpreter (C shared library), the first instruction of
288 the executable itself, or somewhere else entirely (if we attached
289 to the process for example).
290
291 */
292
293static CORE_ADDR
294locate_base (void)
295{
296 struct minimal_symbol *msymbol;
297 CORE_ADDR address = 0;
298
299 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
300 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
301 {
302 address = SYMBOL_VALUE_ADDRESS (msymbol);
303 }
304 return (address);
305}
306
307/*
308
309 LOCAL FUNCTION
310
311 disable_break -- remove the "mapping changed" breakpoint
312
313 SYNOPSIS
314
315 static int disable_break ()
316
317 DESCRIPTION
318
319 Removes the breakpoint that gets hit when the dynamic linker
320 completes a mapping change.
321
322 */
323
324static int
325disable_break (void)
326{
327 int status = 1;
328
329
330 /* Note that breakpoint address and original contents are in our address
331 space, so we just need to write the original contents back. */
332
a6d9a66e 333 if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
dabbe2c0
KB
334 {
335 status = 0;
336 }
337
8181d85f
DJ
338 base_breakpoint = NULL;
339
9185ddce
JB
340 /* Note that it is possible that we have stopped at a location that
341 is different from the location where we inserted our breakpoint.
342 On mips-irix, we can actually land in __dbx_init(), so we should
343 not check the PC against our breakpoint address here. See procfs.c
344 for more details. */
dabbe2c0
KB
345
346 return (status);
347}
348
349/*
350
351 LOCAL FUNCTION
352
353 enable_break -- arrange for dynamic linker to hit breakpoint
354
355 SYNOPSIS
356
357 int enable_break (void)
358
359 DESCRIPTION
360
361 This functions inserts a breakpoint at the entry point of the
362 main executable, where all shared libraries are mapped in.
363 */
364
365static int
366enable_break (void)
367{
8181d85f 368 if (symfile_objfile != NULL)
dabbe2c0 369 {
8181d85f 370 base_breakpoint
a6d9a66e
UW
371 = deprecated_insert_raw_breakpoint (target_gdbarch,
372 entry_point_address ());
8181d85f
DJ
373
374 if (base_breakpoint != NULL)
375 return 1;
dabbe2c0
KB
376 }
377
378 return 0;
379}
380
381/*
382
383 LOCAL FUNCTION
384
385 irix_solib_create_inferior_hook -- shared library startup support
386
387 SYNOPSIS
388
7095b863 389 void solib_create_inferior_hook ()
dabbe2c0
KB
390
391 DESCRIPTION
392
393 When gdb starts up the inferior, it nurses it along (through the
394 shell) until it is ready to execute it's first instruction. At this
395 point, this function gets called via expansion of the macro
396 SOLIB_CREATE_INFERIOR_HOOK.
397
398 For SunOS executables, this first instruction is typically the
399 one at "_start", or a similar text label, regardless of whether
400 the executable is statically or dynamically linked. The runtime
401 startup code takes care of dynamically linking in any shared
402 libraries, once gdb allows the inferior to continue.
403
404 For SVR4 executables, this first instruction is either the first
405 instruction in the dynamic linker (for dynamically linked
406 executables) or the instruction at "start" for statically linked
407 executables. For dynamically linked executables, the system
408 first exec's /lib/libc.so.N, which contains the dynamic linker,
409 and starts it running. The dynamic linker maps in any needed
410 shared libraries, maps in the actual user executable, and then
411 jumps to "start" in the user executable.
412
413 For both SunOS shared libraries, and SVR4 shared libraries, we
414 can arrange to cooperate with the dynamic linker to discover the
415 names of shared libraries that are dynamically linked, and the
416 base addresses to which they are linked.
417
418 This function is responsible for discovering those names and
419 addresses, and saving sufficient information about them to allow
420 their symbols to be read at a later time.
421
422 FIXME
423
424 Between enable_break() and disable_break(), this code does not
425 properly handle hitting breakpoints which the user might have
426 set in the startup code or in the dynamic linker itself. Proper
427 handling will probably have to wait until the implementation is
428 changed to use the "breakpoint handler function" method.
429
430 Also, what if child has exit()ed? Must exit loop somehow.
431 */
432
433static void
434irix_solib_create_inferior_hook (void)
435{
d6b48e9c 436 struct inferior *inf;
2020b7ab
PA
437 struct thread_info *tp;
438
dabbe2c0
KB
439 if (!enable_break ())
440 {
8a3fe4f8 441 warning (_("shared library handler failed to enable breakpoint"));
dabbe2c0
KB
442 return;
443 }
444
445 /* Now run the target. It will eventually hit the breakpoint, at
446 which point all of the libraries will have been mapped in and we
447 can go groveling around in the dynamic linker structures to find
448 out what we need to know about them. */
449
d6b48e9c 450 inf = current_inferior ();
2020b7ab 451 tp = inferior_thread ();
d6b48e9c 452
dabbe2c0 453 clear_proceed_status ();
d6b48e9c
PA
454
455 inf->stop_soon = STOP_QUIETLY;
2020b7ab 456 tp->stop_signal = TARGET_SIGNAL_0;
d6b48e9c 457
dabbe2c0
KB
458 do
459 {
2020b7ab 460 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 461 wait_for_inferior (0);
dabbe2c0 462 }
2020b7ab 463 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
dabbe2c0
KB
464
465 /* We are now either at the "mapping complete" breakpoint (or somewhere
466 else, a condition we aren't prepared to deal with anyway), so adjust
467 the PC as necessary after a breakpoint, disable the breakpoint, and
468 add any shared libraries that were mapped in. */
469
470 if (!disable_break ())
471 {
8a3fe4f8 472 warning (_("shared library handler failed to disable breakpoint"));
dabbe2c0
KB
473 }
474
475 /* solib_add will call reinit_frame_cache.
476 But we are stopped in the startup code and we might not have symbols
477 for the startup code, so heuristic_proc_start could be called
478 and will put out an annoying warning.
c0236d92 479 Delaying the resetting of stop_soon until after symbol loading
dabbe2c0
KB
480 suppresses the warning. */
481 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
d6b48e9c 482 inf->stop_soon = NO_STOP_QUIETLY;
dabbe2c0
KB
483}
484
485/* LOCAL FUNCTION
486
487 current_sos -- build a list of currently loaded shared objects
488
489 SYNOPSIS
490
491 struct so_list *current_sos ()
492
493 DESCRIPTION
494
495 Build a list of `struct so_list' objects describing the shared
496 objects currently loaded in the inferior. This list does not
497 include an entry for the main executable file.
498
499 Note that we only gather information directly available from the
500 inferior --- we don't examine any of the shared library files
501 themselves. The declaration of `struct so_list' says which fields
502 we provide values for. */
503
504static struct so_list *
505irix_current_sos (void)
506{
e17a4113
UW
507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
508 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
dabbe2c0
KB
509 CORE_ADDR lma;
510 char addr_buf[8];
511 struct so_list *head = 0;
512 struct so_list **link_ptr = &head;
513 int is_first = 1;
514 struct lm_info lm;
515
516 /* Make sure we've looked up the inferior's dynamic linker's base
517 structure. */
518 if (!debug_base)
519 {
520 debug_base = locate_base ();
521
522 /* If we can't find the dynamic linker's base structure, this
523 must not be a dynamically linked executable. Hmm. */
524 if (!debug_base)
525 return 0;
526 }
527
e17a4113
UW
528 read_memory (debug_base, addr_buf, addr_size);
529 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
530
531 while (lma)
532 {
533 lm = fetch_lm_info (lma);
534 if (!is_first)
535 {
536 int errcode;
537 char *name_buf;
538 int name_size;
539 struct so_list *new
540 = (struct so_list *) xmalloc (sizeof (struct so_list));
541 struct cleanup *old_chain = make_cleanup (xfree, new);
542
543 memset (new, 0, sizeof (*new));
544
545 new->lm_info = xmalloc (sizeof (struct lm_info));
546 make_cleanup (xfree, new->lm_info);
547
548 *new->lm_info = lm;
549
550 /* Extract this shared object's name. */
551 name_size = lm.pathname_len;
552 if (name_size == 0)
553 name_size = SO_NAME_MAX_PATH_SIZE - 1;
554
555 if (name_size >= SO_NAME_MAX_PATH_SIZE)
556 {
557 name_size = SO_NAME_MAX_PATH_SIZE - 1;
558 warning
559 ("current_sos: truncating name of %d characters to only %d characters",
560 lm.pathname_len, name_size);
561 }
562
563 target_read_string (lm.pathname_addr, &name_buf,
564 name_size, &errcode);
565 if (errcode != 0)
8a3fe4f8 566 warning (_("Can't read pathname for load map: %s."),
dabbe2c0 567 safe_strerror (errcode));
dabbe2c0
KB
568 else
569 {
570 strncpy (new->so_name, name_buf, name_size);
571 new->so_name[name_size] = '\0';
572 xfree (name_buf);
573 strcpy (new->so_original_name, new->so_name);
574 }
575
576 new->next = 0;
577 *link_ptr = new;
578 link_ptr = &new->next;
579
580 discard_cleanups (old_chain);
581 }
582 is_first = 0;
583 lma = lm.next;
584 }
585
586 return head;
587}
588
589/*
590
591 LOCAL FUNCTION
592
593 irix_open_symbol_file_object
594
595 SYNOPSIS
596
597 void irix_open_symbol_file_object (void *from_tty)
598
599 DESCRIPTION
600
601 If no open symbol file, attempt to locate and open the main symbol
602 file. On IRIX, this is the first link map entry. If its name is
603 here, we can open it. Useful when attaching to a process without
604 first loading its symbol file.
605
606 If FROM_TTYP dereferences to a non-zero integer, allow messages to
607 be printed. This parameter is a pointer rather than an int because
608 open_symbol_file_object() is called via catch_errors() and
609 catch_errors() requires a pointer argument. */
610
611static int
612irix_open_symbol_file_object (void *from_ttyp)
613{
e17a4113
UW
614 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
615 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
dabbe2c0
KB
616 CORE_ADDR lma;
617 char addr_buf[8];
618 struct lm_info lm;
619 struct cleanup *cleanups;
620 int errcode;
621 int from_tty = *(int *) from_ttyp;
622 char *filename;
623
624 if (symfile_objfile)
9e2f0ad4 625 if (!query (_("Attempt to reload symbols from process? ")))
dabbe2c0
KB
626 return 0;
627
628 if ((debug_base = locate_base ()) == 0)
629 return 0; /* failed somehow... */
630
631 /* First link map member should be the executable. */
e17a4113
UW
632 read_memory (debug_base, addr_buf, addr_size);
633 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
634 if (lma == 0)
635 return 0; /* failed somehow... */
636
637 lm = fetch_lm_info (lma);
638
639 if (lm.pathname_addr == 0)
640 return 0; /* No filename. */
641
642 /* Now fetch the filename from target memory. */
643 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
644 &errcode);
645
646 if (errcode)
647 {
8a3fe4f8 648 warning (_("failed to read exec filename from attached file: %s"),
dabbe2c0
KB
649 safe_strerror (errcode));
650 return 0;
651 }
652
653 cleanups = make_cleanup (xfree, filename);
654 /* Have a pathname: read the symbol file. */
655 symbol_file_add_main (filename, from_tty);
656
657 do_cleanups (cleanups);
658
659 return 1;
660}
661
662
663/*
664
665 LOCAL FUNCTION
666
667 irix_special_symbol_handling -- additional shared library symbol handling
668
669 SYNOPSIS
670
671 void irix_special_symbol_handling ()
672
673 DESCRIPTION
674
675 Once the symbols from a shared object have been loaded in the usual
676 way, we are called to do any system specific symbol handling that
677 is needed.
678
679 For SunOS4, this consisted of grunging around in the dynamic
680 linkers structures to find symbol definitions for "common" symbols
681 and adding them to the minimal symbol table for the runtime common
682 objfile.
683
684 However, for IRIX, there's nothing to do.
685
686 */
687
688static void
689irix_special_symbol_handling (void)
690{
691}
692
693/* Using the solist entry SO, relocate the addresses in SEC. */
694
695static void
696irix_relocate_section_addresses (struct so_list *so,
0542c86d 697 struct target_section *sec)
dabbe2c0
KB
698{
699 sec->addr += so->lm_info->reloc_offset;
700 sec->endaddr += so->lm_info->reloc_offset;
701}
702
703/* Free the lm_info struct. */
704
705static void
706irix_free_so (struct so_list *so)
707{
708 xfree (so->lm_info);
709}
710
711/* Clear backend specific state. */
712
713static void
714irix_clear_solib (void)
715{
716 debug_base = 0;
717}
718
719/* Return 1 if PC lies in the dynamic symbol resolution code of the
720 run time loader. */
721static int
722irix_in_dynsym_resolve_code (CORE_ADDR pc)
723{
724 return 0;
725}
726
734598d9 727struct target_so_ops irix_so_ops;
dabbe2c0 728
63807e1d
PA
729/* Provide a prototype to silence -Wmissing-prototypes. */
730extern initialize_file_ftype _initialize_irix_solib;
731
dabbe2c0
KB
732void
733_initialize_irix_solib (void)
734{
735 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
736 irix_so_ops.free_so = irix_free_so;
737 irix_so_ops.clear_solib = irix_clear_solib;
738 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
739 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
740 irix_so_ops.current_sos = irix_current_sos;
741 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
742 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
831a0c44 743 irix_so_ops.bfd_open = solib_bfd_open;
dabbe2c0 744}