]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-irix.c
2004-02-14 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / solib-irix.c
CommitLineData
dabbe2c0
KB
1/* Shared library support for IRIX.
2 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26
27#include "symtab.h"
28#include "bfd.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcore.h"
32#include "target.h"
33#include "inferior.h"
34
35#include "solist.h"
36
37/* Link map info to include in an allocate so_list entry. Unlike some
38 of the other solib backends, this (Irix) backend chooses to decode
39 the link map info obtained from the target and store it as (mostly)
40 CORE_ADDRs which need no further decoding. This is more convenient
41 because there are three different link map formats to worry about.
42 We use a single routine (fetch_lm_info) to read (and decode) the target
43 specific link map data. */
44
45struct lm_info
46{
47 CORE_ADDR addr; /* address of obj_info or obj_list
48 struct on target (from which the
49 following information is obtained). */
50 CORE_ADDR next; /* address of next item in list. */
51 CORE_ADDR reloc_offset; /* amount to relocate by */
52 CORE_ADDR pathname_addr; /* address of pathname */
53 int pathname_len; /* length of pathname */
54};
55
56/* It's not desirable to use the system header files to obtain the
57 structure of the obj_list or obj_info structs. Therefore, we use a
58 platform neutral representation which has been derived from the IRIX
59 header files. */
60
61typedef struct
62{
63 char b[4];
64}
65gdb_int32_bytes;
66typedef struct
67{
68 char b[8];
69}
70gdb_int64_bytes;
71
72/* The "old" obj_list struct. This is used with old (o32) binaries.
73 The ``data'' member points at a much larger and more complicated
74 struct which we will only refer to by offsets. See
75 fetch_lm_info(). */
76
77struct irix_obj_list
78{
79 gdb_int32_bytes data;
80 gdb_int32_bytes next;
81 gdb_int32_bytes prev;
82};
83
84/* The ELF32 and ELF64 versions of the above struct. The oi_magic value
85 corresponds to the ``data'' value in the "old" struct. When this value
86 is 0xffffffff, the data will be in one of the following formats. The
87 ``oi_size'' field is used to decide which one we actually have. */
88
89struct irix_elf32_obj_info
90{
91 gdb_int32_bytes oi_magic;
92 gdb_int32_bytes oi_size;
93 gdb_int32_bytes oi_next;
94 gdb_int32_bytes oi_prev;
95 gdb_int32_bytes oi_ehdr;
96 gdb_int32_bytes oi_orig_ehdr;
97 gdb_int32_bytes oi_pathname;
98 gdb_int32_bytes oi_pathname_len;
99};
100
101struct irix_elf64_obj_info
102{
103 gdb_int32_bytes oi_magic;
104 gdb_int32_bytes oi_size;
105 gdb_int64_bytes oi_next;
106 gdb_int64_bytes oi_prev;
107 gdb_int64_bytes oi_ehdr;
108 gdb_int64_bytes oi_orig_ehdr;
109 gdb_int64_bytes oi_pathname;
110 gdb_int32_bytes oi_pathname_len;
111 gdb_int32_bytes padding;
112};
113
114/* Union of all of the above (plus a split out magic field). */
115
116union irix_obj_info
117{
118 gdb_int32_bytes magic;
119 struct irix_obj_list ol32;
120 struct irix_elf32_obj_info oi32;
121 struct irix_elf64_obj_info oi64;
122};
123
124/* MIPS sign extends its 32 bit addresses. We could conceivably use
125 extract_typed_address here, but to do so, we'd have to construct an
ae0167b9 126 appropriate type. Calling extract_signed_integer seems simpler. */
dabbe2c0
KB
127
128static CORE_ADDR
129extract_mips_address (void *addr, int len)
130{
ae0167b9 131 return extract_signed_integer (addr, len);
dabbe2c0
KB
132}
133
134/* Fetch and return the link map data associated with ADDR. Note that
135 this routine automatically determines which (of three) link map
136 formats is in use by the target. */
137
138struct lm_info
139fetch_lm_info (CORE_ADDR addr)
140{
141 struct lm_info li;
142 union irix_obj_info buf;
143
144 li.addr = addr;
145
146 /* The smallest region that we'll need is for buf.ol32. We'll read
147 that first. We'll read more of the buffer later if we have to deal
148 with one of the other cases. (We don't want to incur a memory error
149 if we were to read a larger region that generates an error due to
150 being at the end of a page or the like.) */
151 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
152
153 if (extract_unsigned_integer (&buf.magic, sizeof (buf.magic)) != 0xffffffff)
154 {
155 /* Use buf.ol32... */
156 char obj_buf[432];
157 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
158 sizeof (buf.ol32.data));
159 li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next));
160
161 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
162
163 li.pathname_addr = extract_mips_address (&obj_buf[236], 4);
164 li.pathname_len = 0; /* unknown */
165 li.reloc_offset = extract_mips_address (&obj_buf[196], 4)
166 - extract_mips_address (&obj_buf[248], 4);
167
168 }
169 else if (extract_unsigned_integer (&buf.oi32.oi_size,
170 sizeof (buf.oi32.oi_size))
171 == sizeof (buf.oi32))
172 {
173 /* Use buf.oi32... */
174
175 /* Read rest of buffer. */
176 read_memory (addr + sizeof (buf.ol32),
177 ((char *) &buf) + sizeof (buf.ol32),
178 sizeof (buf.oi32) - sizeof (buf.ol32));
179
180 /* Fill in fields using buffer contents. */
181 li.next = extract_mips_address (&buf.oi32.oi_next,
182 sizeof (buf.oi32.oi_next));
183 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
184 sizeof (buf.oi32.oi_ehdr))
185 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
186 sizeof (buf.oi32.oi_orig_ehdr));
187 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
188 sizeof (buf.oi32.oi_pathname));
189 li.pathname_len = extract_unsigned_integer (&buf.oi32.oi_pathname_len,
190 sizeof (buf.oi32.
191 oi_pathname_len));
192 }
193 else if (extract_unsigned_integer (&buf.oi64.oi_size,
194 sizeof (buf.oi64.oi_size))
195 == sizeof (buf.oi64))
196 {
197 /* Use buf.oi64... */
198
199 /* Read rest of buffer. */
200 read_memory (addr + sizeof (buf.ol32),
201 ((char *) &buf) + sizeof (buf.ol32),
202 sizeof (buf.oi64) - sizeof (buf.ol32));
203
204 /* Fill in fields using buffer contents. */
205 li.next = extract_mips_address (&buf.oi64.oi_next,
206 sizeof (buf.oi64.oi_next));
207 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
208 sizeof (buf.oi64.oi_ehdr))
209 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
210 sizeof (buf.oi64.oi_orig_ehdr));
211 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
212 sizeof (buf.oi64.oi_pathname));
213 li.pathname_len = extract_unsigned_integer (&buf.oi64.oi_pathname_len,
214 sizeof (buf.oi64.
215 oi_pathname_len));
216 }
217 else
218 {
219 error ("Unable to fetch shared library obj_info or obj_list info.");
220 }
221
222 return li;
223}
224
225/* The symbol which starts off the list of shared libraries. */
226#define DEBUG_BASE "__rld_obj_head"
227
228char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
229
230static CORE_ADDR debug_base; /* Base of dynamic linker structures */
231static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
232
233/*
234
235 LOCAL FUNCTION
236
237 locate_base -- locate the base address of dynamic linker structs
238
239 SYNOPSIS
240
241 CORE_ADDR locate_base (void)
242
243 DESCRIPTION
244
245 For both the SunOS and SVR4 shared library implementations, if the
246 inferior executable has been linked dynamically, there is a single
247 address somewhere in the inferior's data space which is the key to
248 locating all of the dynamic linker's runtime structures. This
249 address is the value of the symbol defined by the macro DEBUG_BASE.
250 The job of this function is to find and return that address, or to
251 return 0 if there is no such address (the executable is statically
252 linked for example).
253
254 For SunOS, the job is almost trivial, since the dynamic linker and
255 all of it's structures are statically linked to the executable at
256 link time. Thus the symbol for the address we are looking for has
257 already been added to the minimal symbol table for the executable's
258 objfile at the time the symbol file's symbols were read, and all we
259 have to do is look it up there. Note that we explicitly do NOT want
260 to find the copies in the shared library.
261
262 The SVR4 version is much more complicated because the dynamic linker
263 and it's structures are located in the shared C library, which gets
264 run as the executable's "interpreter" by the kernel. We have to go
265 to a lot more work to discover the address of DEBUG_BASE. Because
266 of this complexity, we cache the value we find and return that value
267 on subsequent invocations. Note there is no copy in the executable
268 symbol tables.
269
270 Irix 5 is basically like SunOS.
271
272 Note that we can assume nothing about the process state at the time
273 we need to find this address. We may be stopped on the first instruc-
274 tion of the interpreter (C shared library), the first instruction of
275 the executable itself, or somewhere else entirely (if we attached
276 to the process for example).
277
278 */
279
280static CORE_ADDR
281locate_base (void)
282{
283 struct minimal_symbol *msymbol;
284 CORE_ADDR address = 0;
285
286 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
287 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
288 {
289 address = SYMBOL_VALUE_ADDRESS (msymbol);
290 }
291 return (address);
292}
293
294/*
295
296 LOCAL FUNCTION
297
298 disable_break -- remove the "mapping changed" breakpoint
299
300 SYNOPSIS
301
302 static int disable_break ()
303
304 DESCRIPTION
305
306 Removes the breakpoint that gets hit when the dynamic linker
307 completes a mapping change.
308
309 */
310
311static int
312disable_break (void)
313{
314 int status = 1;
315
316
317 /* Note that breakpoint address and original contents are in our address
318 space, so we just need to write the original contents back. */
319
320 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
321 {
322 status = 0;
323 }
324
325 /* For the SVR4 version, we always know the breakpoint address. For the
326 SunOS version we don't know it until the above code is executed.
327 Grumble if we are stopped anywhere besides the breakpoint address. */
328
329 if (stop_pc != breakpoint_addr)
330 {
331 warning
332 ("stopped at unknown breakpoint while handling shared libraries");
333 }
334
335 return (status);
336}
337
338/*
339
340 LOCAL FUNCTION
341
342 enable_break -- arrange for dynamic linker to hit breakpoint
343
344 SYNOPSIS
345
346 int enable_break (void)
347
348 DESCRIPTION
349
350 This functions inserts a breakpoint at the entry point of the
351 main executable, where all shared libraries are mapped in.
352 */
353
354static int
355enable_break (void)
356{
357 if (symfile_objfile != NULL
358 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
359 shadow_contents) == 0)
360 {
361 breakpoint_addr = symfile_objfile->ei.entry_point;
362 return 1;
363 }
364
365 return 0;
366}
367
368/*
369
370 LOCAL FUNCTION
371
372 irix_solib_create_inferior_hook -- shared library startup support
373
374 SYNOPSIS
375
376 void solib_create_inferior_hook()
377
378 DESCRIPTION
379
380 When gdb starts up the inferior, it nurses it along (through the
381 shell) until it is ready to execute it's first instruction. At this
382 point, this function gets called via expansion of the macro
383 SOLIB_CREATE_INFERIOR_HOOK.
384
385 For SunOS executables, this first instruction is typically the
386 one at "_start", or a similar text label, regardless of whether
387 the executable is statically or dynamically linked. The runtime
388 startup code takes care of dynamically linking in any shared
389 libraries, once gdb allows the inferior to continue.
390
391 For SVR4 executables, this first instruction is either the first
392 instruction in the dynamic linker (for dynamically linked
393 executables) or the instruction at "start" for statically linked
394 executables. For dynamically linked executables, the system
395 first exec's /lib/libc.so.N, which contains the dynamic linker,
396 and starts it running. The dynamic linker maps in any needed
397 shared libraries, maps in the actual user executable, and then
398 jumps to "start" in the user executable.
399
400 For both SunOS shared libraries, and SVR4 shared libraries, we
401 can arrange to cooperate with the dynamic linker to discover the
402 names of shared libraries that are dynamically linked, and the
403 base addresses to which they are linked.
404
405 This function is responsible for discovering those names and
406 addresses, and saving sufficient information about them to allow
407 their symbols to be read at a later time.
408
409 FIXME
410
411 Between enable_break() and disable_break(), this code does not
412 properly handle hitting breakpoints which the user might have
413 set in the startup code or in the dynamic linker itself. Proper
414 handling will probably have to wait until the implementation is
415 changed to use the "breakpoint handler function" method.
416
417 Also, what if child has exit()ed? Must exit loop somehow.
418 */
419
420static void
421irix_solib_create_inferior_hook (void)
422{
423 if (!enable_break ())
424 {
425 warning ("shared library handler failed to enable breakpoint");
426 return;
427 }
428
429 /* Now run the target. It will eventually hit the breakpoint, at
430 which point all of the libraries will have been mapped in and we
431 can go groveling around in the dynamic linker structures to find
432 out what we need to know about them. */
433
434 clear_proceed_status ();
c0236d92 435 stop_soon = STOP_QUIETLY;
dabbe2c0
KB
436 stop_signal = TARGET_SIGNAL_0;
437 do
438 {
439 target_resume (pid_to_ptid (-1), 0, stop_signal);
440 wait_for_inferior ();
441 }
442 while (stop_signal != TARGET_SIGNAL_TRAP);
443
444 /* We are now either at the "mapping complete" breakpoint (or somewhere
445 else, a condition we aren't prepared to deal with anyway), so adjust
446 the PC as necessary after a breakpoint, disable the breakpoint, and
447 add any shared libraries that were mapped in. */
448
449 if (!disable_break ())
450 {
451 warning ("shared library handler failed to disable breakpoint");
452 }
453
454 /* solib_add will call reinit_frame_cache.
455 But we are stopped in the startup code and we might not have symbols
456 for the startup code, so heuristic_proc_start could be called
457 and will put out an annoying warning.
c0236d92 458 Delaying the resetting of stop_soon until after symbol loading
dabbe2c0
KB
459 suppresses the warning. */
460 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
c0236d92 461 stop_soon = NO_STOP_QUIETLY;
dabbe2c0
KB
462 re_enable_breakpoints_in_shlibs ();
463}
464
465/* LOCAL FUNCTION
466
467 current_sos -- build a list of currently loaded shared objects
468
469 SYNOPSIS
470
471 struct so_list *current_sos ()
472
473 DESCRIPTION
474
475 Build a list of `struct so_list' objects describing the shared
476 objects currently loaded in the inferior. This list does not
477 include an entry for the main executable file.
478
479 Note that we only gather information directly available from the
480 inferior --- we don't examine any of the shared library files
481 themselves. The declaration of `struct so_list' says which fields
482 we provide values for. */
483
484static struct so_list *
485irix_current_sos (void)
486{
487 CORE_ADDR lma;
488 char addr_buf[8];
489 struct so_list *head = 0;
490 struct so_list **link_ptr = &head;
491 int is_first = 1;
492 struct lm_info lm;
493
494 /* Make sure we've looked up the inferior's dynamic linker's base
495 structure. */
496 if (!debug_base)
497 {
498 debug_base = locate_base ();
499
500 /* If we can't find the dynamic linker's base structure, this
501 must not be a dynamically linked executable. Hmm. */
502 if (!debug_base)
503 return 0;
504 }
505
506 read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
507 lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
508
509 while (lma)
510 {
511 lm = fetch_lm_info (lma);
512 if (!is_first)
513 {
514 int errcode;
515 char *name_buf;
516 int name_size;
517 struct so_list *new
518 = (struct so_list *) xmalloc (sizeof (struct so_list));
519 struct cleanup *old_chain = make_cleanup (xfree, new);
520
521 memset (new, 0, sizeof (*new));
522
523 new->lm_info = xmalloc (sizeof (struct lm_info));
524 make_cleanup (xfree, new->lm_info);
525
526 *new->lm_info = lm;
527
528 /* Extract this shared object's name. */
529 name_size = lm.pathname_len;
530 if (name_size == 0)
531 name_size = SO_NAME_MAX_PATH_SIZE - 1;
532
533 if (name_size >= SO_NAME_MAX_PATH_SIZE)
534 {
535 name_size = SO_NAME_MAX_PATH_SIZE - 1;
536 warning
537 ("current_sos: truncating name of %d characters to only %d characters",
538 lm.pathname_len, name_size);
539 }
540
541 target_read_string (lm.pathname_addr, &name_buf,
542 name_size, &errcode);
543 if (errcode != 0)
544 {
545 warning ("current_sos: Can't read pathname for load map: %s\n",
546 safe_strerror (errcode));
547 }
548 else
549 {
550 strncpy (new->so_name, name_buf, name_size);
551 new->so_name[name_size] = '\0';
552 xfree (name_buf);
553 strcpy (new->so_original_name, new->so_name);
554 }
555
556 new->next = 0;
557 *link_ptr = new;
558 link_ptr = &new->next;
559
560 discard_cleanups (old_chain);
561 }
562 is_first = 0;
563 lma = lm.next;
564 }
565
566 return head;
567}
568
569/*
570
571 LOCAL FUNCTION
572
573 irix_open_symbol_file_object
574
575 SYNOPSIS
576
577 void irix_open_symbol_file_object (void *from_tty)
578
579 DESCRIPTION
580
581 If no open symbol file, attempt to locate and open the main symbol
582 file. On IRIX, this is the first link map entry. If its name is
583 here, we can open it. Useful when attaching to a process without
584 first loading its symbol file.
585
586 If FROM_TTYP dereferences to a non-zero integer, allow messages to
587 be printed. This parameter is a pointer rather than an int because
588 open_symbol_file_object() is called via catch_errors() and
589 catch_errors() requires a pointer argument. */
590
591static int
592irix_open_symbol_file_object (void *from_ttyp)
593{
594 CORE_ADDR lma;
595 char addr_buf[8];
596 struct lm_info lm;
597 struct cleanup *cleanups;
598 int errcode;
599 int from_tty = *(int *) from_ttyp;
600 char *filename;
601
602 if (symfile_objfile)
603 if (!query ("Attempt to reload symbols from process? "))
604 return 0;
605
606 if ((debug_base = locate_base ()) == 0)
607 return 0; /* failed somehow... */
608
609 /* First link map member should be the executable. */
610 read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
611 lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
612 if (lma == 0)
613 return 0; /* failed somehow... */
614
615 lm = fetch_lm_info (lma);
616
617 if (lm.pathname_addr == 0)
618 return 0; /* No filename. */
619
620 /* Now fetch the filename from target memory. */
621 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
622 &errcode);
623
624 if (errcode)
625 {
626 warning ("failed to read exec filename from attached file: %s",
627 safe_strerror (errcode));
628 return 0;
629 }
630
631 cleanups = make_cleanup (xfree, filename);
632 /* Have a pathname: read the symbol file. */
633 symbol_file_add_main (filename, from_tty);
634
635 do_cleanups (cleanups);
636
637 return 1;
638}
639
640
641/*
642
643 LOCAL FUNCTION
644
645 irix_special_symbol_handling -- additional shared library symbol handling
646
647 SYNOPSIS
648
649 void irix_special_symbol_handling ()
650
651 DESCRIPTION
652
653 Once the symbols from a shared object have been loaded in the usual
654 way, we are called to do any system specific symbol handling that
655 is needed.
656
657 For SunOS4, this consisted of grunging around in the dynamic
658 linkers structures to find symbol definitions for "common" symbols
659 and adding them to the minimal symbol table for the runtime common
660 objfile.
661
662 However, for IRIX, there's nothing to do.
663
664 */
665
666static void
667irix_special_symbol_handling (void)
668{
669}
670
671/* Using the solist entry SO, relocate the addresses in SEC. */
672
673static void
674irix_relocate_section_addresses (struct so_list *so,
675 struct section_table *sec)
676{
677 sec->addr += so->lm_info->reloc_offset;
678 sec->endaddr += so->lm_info->reloc_offset;
679}
680
681/* Free the lm_info struct. */
682
683static void
684irix_free_so (struct so_list *so)
685{
686 xfree (so->lm_info);
687}
688
689/* Clear backend specific state. */
690
691static void
692irix_clear_solib (void)
693{
694 debug_base = 0;
695}
696
697/* Return 1 if PC lies in the dynamic symbol resolution code of the
698 run time loader. */
699static int
700irix_in_dynsym_resolve_code (CORE_ADDR pc)
701{
702 return 0;
703}
704
705static struct target_so_ops irix_so_ops;
706
707void
708_initialize_irix_solib (void)
709{
710 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
711 irix_so_ops.free_so = irix_free_so;
712 irix_so_ops.clear_solib = irix_clear_solib;
713 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
714 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
715 irix_so_ops.current_sos = irix_current_sos;
716 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
717 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
718
719 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
720 current_target_so_ops = &irix_so_ops;
721}