]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
0b302171
JB
3 Copyright (C) 1990-1996, 1998-2001, 2003-2012 Free Software
4 Foundation, Inc.
13437d4b
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 20
13437d4b
KB
21#include "defs.h"
22
13437d4b 23#include "elf/external.h"
21479ded 24#include "elf/common.h"
f7856c8f 25#include "elf/mips.h"
13437d4b
KB
26
27#include "symtab.h"
28#include "bfd.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcore.h"
13437d4b 32#include "target.h"
13437d4b 33#include "inferior.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b 37
4b188b9f
MK
38#include "gdb_assert.h"
39
13437d4b 40#include "solist.h"
bba93f6c 41#include "solib.h"
13437d4b
KB
42#include "solib-svr4.h"
43
2f4950cd 44#include "bfd-target.h"
cc10cae3 45#include "elf-bfd.h"
2f4950cd 46#include "exec.h"
8d4e36ba 47#include "auxv.h"
f1838a98 48#include "exceptions.h"
695c3173 49#include "gdb_bfd.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
cc10cae3 59 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
60 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
61 When prelinking is involved and the prelink base address changes,
62 we may need a different offset - the recomputed offset is in L_ADDR.
63 It is commonly the same value. It is cached as we want to warn about
64 the difference and compute it only once. L_ADDR is valid
65 iff L_ADDR_P. */
66 CORE_ADDR l_addr, l_addr_inferior;
67 unsigned int l_addr_p : 1;
93a57060
DJ
68
69 /* The target location of lm. */
70 CORE_ADDR lm_addr;
3957565a
JK
71
72 /* Values read in from inferior's fields of the same name. */
73 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
74 };
75
76/* On SVR4 systems, a list of symbols in the dynamic linker where
77 GDB can try to place a breakpoint to monitor shared library
78 events.
79
80 If none of these symbols are found, or other errors occur, then
81 SVR4 systems will fall back to using a symbol as the "startup
82 mapping complete" breakpoint address. */
83
bc043ef3 84static const char * const solib_break_names[] =
13437d4b
KB
85{
86 "r_debug_state",
87 "_r_debug_state",
88 "_dl_debug_state",
89 "rtld_db_dlactivity",
4c7dcb84 90 "__dl_rtld_db_dlactivity",
1f72e589 91 "_rtld_debug_state",
4c0122c8 92
13437d4b
KB
93 NULL
94};
13437d4b 95
bc043ef3 96static const char * const bkpt_names[] =
13437d4b 97{
13437d4b 98 "_start",
ad3dcc5c 99 "__start",
13437d4b
KB
100 "main",
101 NULL
102};
13437d4b 103
bc043ef3 104static const char * const main_name_list[] =
13437d4b
KB
105{
106 "main_$main",
107 NULL
108};
109
4d7b2d5b
JB
110/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
111 the same shared library. */
112
113static int
114svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
115{
116 if (strcmp (gdb_so_name, inferior_so_name) == 0)
117 return 1;
118
119 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
120 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
121 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
122 sometimes they have identical content, but are not linked to each
123 other. We don't restrict this check for Solaris, but the chances
124 of running into this situation elsewhere are very low. */
125 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
126 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
127 return 1;
128
129 /* Similarly, we observed the same issue with sparc64, but with
130 different locations. */
131 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
132 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
133 return 1;
134
135 return 0;
136}
137
138static int
139svr4_same (struct so_list *gdb, struct so_list *inferior)
140{
141 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
142}
143
3957565a
JK
144static struct lm_info *
145lm_info_read (CORE_ADDR lm_addr)
13437d4b 146{
4b188b9f 147 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
148 gdb_byte *lm;
149 struct lm_info *lm_info;
150 struct cleanup *back_to;
151
152 lm = xmalloc (lmo->link_map_size);
153 back_to = make_cleanup (xfree, lm);
154
155 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
156 {
157 warning (_("Error reading shared library list entry at %s"),
f5656ead 158 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
159 lm_info = NULL;
160 }
161 else
162 {
f5656ead 163 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 164
3957565a
JK
165 lm_info = xzalloc (sizeof (*lm_info));
166 lm_info->lm_addr = lm_addr;
167
168 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
169 ptr_type);
170 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
171 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
172 ptr_type);
173 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
174 ptr_type);
175 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
176 ptr_type);
177 }
178
179 do_cleanups (back_to);
180
181 return lm_info;
13437d4b
KB
182}
183
cc10cae3 184static int
b23518f0 185has_lm_dynamic_from_link_map (void)
cc10cae3
AO
186{
187 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
188
cfaefc65 189 return lmo->l_ld_offset >= 0;
cc10cae3
AO
190}
191
cc10cae3 192static CORE_ADDR
b23518f0 193lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3 194{
3957565a 195 if (!so->lm_info->l_addr_p)
cc10cae3
AO
196 {
197 struct bfd_section *dyninfo_sect;
28f34a8f 198 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 199
3957565a 200 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 201
b23518f0 202 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
203 goto set_addr;
204
3957565a 205 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
206
207 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
208 if (dyninfo_sect == NULL)
209 goto set_addr;
210
211 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
212
213 if (dynaddr + l_addr != l_dynaddr)
214 {
28f34a8f 215 CORE_ADDR align = 0x1000;
4e1fc9c9 216 CORE_ADDR minpagesize = align;
28f34a8f 217
cc10cae3
AO
218 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
219 {
220 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
221 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
222 int i;
223
224 align = 1;
225
226 for (i = 0; i < ehdr->e_phnum; i++)
227 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
228 align = phdr[i].p_align;
4e1fc9c9
JK
229
230 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
231 }
232
233 /* Turn it into a mask. */
234 align--;
235
236 /* If the changes match the alignment requirements, we
237 assume we're using a core file that was generated by the
238 same binary, just prelinked with a different base offset.
239 If it doesn't match, we may have a different binary, the
240 same binary with the dynamic table loaded at an unrelated
241 location, or anything, really. To avoid regressions,
242 don't adjust the base offset in the latter case, although
243 odds are that, if things really changed, debugging won't
5c0d192f
JK
244 quite work.
245
246 One could expect more the condition
247 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
248 but the one below is relaxed for PPC. The PPC kernel supports
249 either 4k or 64k page sizes. To be prepared for 64k pages,
250 PPC ELF files are built using an alignment requirement of 64k.
251 However, when running on a kernel supporting 4k pages, the memory
252 mapping of the library may not actually happen on a 64k boundary!
253
254 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
255 equivalent to the possibly expected check above.)
256
257 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 258
02835898
JK
259 l_addr = l_dynaddr - dynaddr;
260
4e1fc9c9
JK
261 if ((l_addr & (minpagesize - 1)) == 0
262 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 263 {
701ed6dc 264 if (info_verbose)
ccf26247
JK
265 printf_unfiltered (_("Using PIC (Position Independent Code) "
266 "prelink displacement %s for \"%s\".\n"),
f5656ead 267 paddress (target_gdbarch (), l_addr),
ccf26247 268 so->so_name);
cc10cae3 269 }
79d4c408 270 else
02835898
JK
271 {
272 /* There is no way to verify the library file matches. prelink
273 can during prelinking of an unprelinked file (or unprelinking
274 of a prelinked file) shift the DYNAMIC segment by arbitrary
275 offset without any page size alignment. There is no way to
276 find out the ELF header and/or Program Headers for a limited
277 verification if it they match. One could do a verification
278 of the DYNAMIC segment. Still the found address is the best
279 one GDB could find. */
280
281 warning (_(".dynamic section for \"%s\" "
282 "is not at the expected address "
283 "(wrong library or version mismatch?)"), so->so_name);
284 }
cc10cae3
AO
285 }
286
287 set_addr:
288 so->lm_info->l_addr = l_addr;
3957565a 289 so->lm_info->l_addr_p = 1;
cc10cae3
AO
290 }
291
292 return so->lm_info->l_addr;
293}
294
6c95b8df 295/* Per pspace SVR4 specific data. */
13437d4b 296
1a816a87
PA
297struct svr4_info
298{
c378eb4e 299 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
300
301 /* Validity flag for debug_loader_offset. */
302 int debug_loader_offset_p;
303
304 /* Load address for the dynamic linker, inferred. */
305 CORE_ADDR debug_loader_offset;
306
307 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
308 char *debug_loader_name;
309
310 /* Load map address for the main executable. */
311 CORE_ADDR main_lm_addr;
1a816a87 312
6c95b8df
PA
313 CORE_ADDR interp_text_sect_low;
314 CORE_ADDR interp_text_sect_high;
315 CORE_ADDR interp_plt_sect_low;
316 CORE_ADDR interp_plt_sect_high;
317};
1a816a87 318
6c95b8df
PA
319/* Per-program-space data key. */
320static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 321
6c95b8df
PA
322static void
323svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 324{
6c95b8df 325 struct svr4_info *info;
1a816a87 326
6c95b8df
PA
327 info = program_space_data (pspace, solib_svr4_pspace_data);
328 xfree (info);
1a816a87
PA
329}
330
6c95b8df
PA
331/* Get the current svr4 data. If none is found yet, add it now. This
332 function always returns a valid object. */
34439770 333
6c95b8df
PA
334static struct svr4_info *
335get_svr4_info (void)
1a816a87 336{
6c95b8df 337 struct svr4_info *info;
1a816a87 338
6c95b8df
PA
339 info = program_space_data (current_program_space, solib_svr4_pspace_data);
340 if (info != NULL)
341 return info;
34439770 342
6c95b8df
PA
343 info = XZALLOC (struct svr4_info);
344 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
345 return info;
1a816a87 346}
93a57060 347
13437d4b
KB
348/* Local function prototypes */
349
bc043ef3 350static int match_main (const char *);
13437d4b 351
97ec2c2f
UW
352/* Read program header TYPE from inferior memory. The header is found
353 by scanning the OS auxillary vector.
354
09919ac2
JK
355 If TYPE == -1, return the program headers instead of the contents of
356 one program header.
357
97ec2c2f
UW
358 Return a pointer to allocated memory holding the program header contents,
359 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
360 size of those contents is returned to P_SECT_SIZE. Likewise, the target
361 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
362
363static gdb_byte *
364read_program_header (int type, int *p_sect_size, int *p_arch_size)
365{
f5656ead 366 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 367 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
368 int arch_size, sect_size;
369 CORE_ADDR sect_addr;
370 gdb_byte *buf;
43136979 371 int pt_phdr_p = 0;
97ec2c2f
UW
372
373 /* Get required auxv elements from target. */
374 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
375 return 0;
376 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
377 return 0;
378 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
379 return 0;
380 if (!at_phdr || !at_phnum)
381 return 0;
382
383 /* Determine ELF architecture type. */
384 if (at_phent == sizeof (Elf32_External_Phdr))
385 arch_size = 32;
386 else if (at_phent == sizeof (Elf64_External_Phdr))
387 arch_size = 64;
388 else
389 return 0;
390
09919ac2
JK
391 /* Find the requested segment. */
392 if (type == -1)
393 {
394 sect_addr = at_phdr;
395 sect_size = at_phent * at_phnum;
396 }
397 else if (arch_size == 32)
97ec2c2f
UW
398 {
399 Elf32_External_Phdr phdr;
400 int i;
401
402 /* Search for requested PHDR. */
403 for (i = 0; i < at_phnum; i++)
404 {
43136979
AR
405 int p_type;
406
97ec2c2f
UW
407 if (target_read_memory (at_phdr + i * sizeof (phdr),
408 (gdb_byte *)&phdr, sizeof (phdr)))
409 return 0;
410
43136979
AR
411 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
412 4, byte_order);
413
414 if (p_type == PT_PHDR)
415 {
416 pt_phdr_p = 1;
417 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
418 4, byte_order);
419 }
420
421 if (p_type == type)
97ec2c2f
UW
422 break;
423 }
424
425 if (i == at_phnum)
426 return 0;
427
428 /* Retrieve address and size. */
e17a4113
UW
429 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
430 4, byte_order);
431 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
432 4, byte_order);
97ec2c2f
UW
433 }
434 else
435 {
436 Elf64_External_Phdr phdr;
437 int i;
438
439 /* Search for requested PHDR. */
440 for (i = 0; i < at_phnum; i++)
441 {
43136979
AR
442 int p_type;
443
97ec2c2f
UW
444 if (target_read_memory (at_phdr + i * sizeof (phdr),
445 (gdb_byte *)&phdr, sizeof (phdr)))
446 return 0;
447
43136979
AR
448 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
449 4, byte_order);
450
451 if (p_type == PT_PHDR)
452 {
453 pt_phdr_p = 1;
454 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
455 8, byte_order);
456 }
457
458 if (p_type == type)
97ec2c2f
UW
459 break;
460 }
461
462 if (i == at_phnum)
463 return 0;
464
465 /* Retrieve address and size. */
e17a4113
UW
466 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
467 8, byte_order);
468 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
469 8, byte_order);
97ec2c2f
UW
470 }
471
43136979
AR
472 /* PT_PHDR is optional, but we really need it
473 for PIE to make this work in general. */
474
475 if (pt_phdr_p)
476 {
477 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
478 Relocation offset is the difference between the two. */
479 sect_addr = sect_addr + (at_phdr - pt_phdr);
480 }
481
97ec2c2f
UW
482 /* Read in requested program header. */
483 buf = xmalloc (sect_size);
484 if (target_read_memory (sect_addr, buf, sect_size))
485 {
486 xfree (buf);
487 return NULL;
488 }
489
490 if (p_arch_size)
491 *p_arch_size = arch_size;
492 if (p_sect_size)
493 *p_sect_size = sect_size;
494
495 return buf;
496}
497
498
499/* Return program interpreter string. */
500static gdb_byte *
501find_program_interpreter (void)
502{
503 gdb_byte *buf = NULL;
504
505 /* If we have an exec_bfd, use its section table. */
506 if (exec_bfd
507 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
508 {
509 struct bfd_section *interp_sect;
510
511 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
512 if (interp_sect != NULL)
513 {
97ec2c2f
UW
514 int sect_size = bfd_section_size (exec_bfd, interp_sect);
515
516 buf = xmalloc (sect_size);
517 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
518 }
519 }
520
521 /* If we didn't find it, use the target auxillary vector. */
522 if (!buf)
523 buf = read_program_header (PT_INTERP, NULL, NULL);
524
525 return buf;
526}
527
528
c378eb4e 529/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
530 returned and the corresponding PTR is set. */
531
532static int
533scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
534{
535 int arch_size, step, sect_size;
536 long dyn_tag;
b381ea14 537 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 538 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
539 Elf32_External_Dyn *x_dynp_32;
540 Elf64_External_Dyn *x_dynp_64;
541 struct bfd_section *sect;
61f0d762 542 struct target_section *target_section;
3a40aaa0
UW
543
544 if (abfd == NULL)
545 return 0;
0763ab81
PA
546
547 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
548 return 0;
549
3a40aaa0
UW
550 arch_size = bfd_get_arch_size (abfd);
551 if (arch_size == -1)
0763ab81 552 return 0;
3a40aaa0
UW
553
554 /* Find the start address of the .dynamic section. */
555 sect = bfd_get_section_by_name (abfd, ".dynamic");
556 if (sect == NULL)
557 return 0;
61f0d762
JK
558
559 for (target_section = current_target_sections->sections;
560 target_section < current_target_sections->sections_end;
561 target_section++)
562 if (sect == target_section->the_bfd_section)
563 break;
b381ea14
JK
564 if (target_section < current_target_sections->sections_end)
565 dyn_addr = target_section->addr;
566 else
567 {
568 /* ABFD may come from OBJFILE acting only as a symbol file without being
569 loaded into the target (see add_symbol_file_command). This case is
570 such fallback to the file VMA address without the possibility of
571 having the section relocated to its actual in-memory address. */
572
573 dyn_addr = bfd_section_vma (abfd, sect);
574 }
3a40aaa0 575
65728c26
DJ
576 /* Read in .dynamic from the BFD. We will get the actual value
577 from memory later. */
3a40aaa0 578 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
579 buf = bufstart = alloca (sect_size);
580 if (!bfd_get_section_contents (abfd, sect,
581 buf, 0, sect_size))
582 return 0;
3a40aaa0
UW
583
584 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
585 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
586 : sizeof (Elf64_External_Dyn);
587 for (bufend = buf + sect_size;
588 buf < bufend;
589 buf += step)
590 {
591 if (arch_size == 32)
592 {
593 x_dynp_32 = (Elf32_External_Dyn *) buf;
594 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
595 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
596 }
65728c26 597 else
3a40aaa0
UW
598 {
599 x_dynp_64 = (Elf64_External_Dyn *) buf;
600 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
601 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
602 }
603 if (dyn_tag == DT_NULL)
604 return 0;
605 if (dyn_tag == dyntag)
606 {
65728c26
DJ
607 /* If requested, try to read the runtime value of this .dynamic
608 entry. */
3a40aaa0 609 if (ptr)
65728c26 610 {
b6da22b0 611 struct type *ptr_type;
65728c26
DJ
612 gdb_byte ptr_buf[8];
613 CORE_ADDR ptr_addr;
614
f5656ead 615 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 616 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 617 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 618 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
619 *ptr = dyn_ptr;
620 }
621 return 1;
3a40aaa0
UW
622 }
623 }
624
625 return 0;
626}
627
97ec2c2f
UW
628/* Scan for DYNTAG in .dynamic section of the target's main executable,
629 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
630 returned and the corresponding PTR is set. */
631
632static int
633scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
634{
f5656ead 635 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f
UW
636 int sect_size, arch_size, step;
637 long dyn_tag;
638 CORE_ADDR dyn_ptr;
639 gdb_byte *bufend, *bufstart, *buf;
640
641 /* Read in .dynamic section. */
642 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
643 if (!buf)
644 return 0;
645
646 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
647 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
648 : sizeof (Elf64_External_Dyn);
649 for (bufend = buf + sect_size;
650 buf < bufend;
651 buf += step)
652 {
653 if (arch_size == 32)
654 {
655 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 656
e17a4113
UW
657 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
658 4, byte_order);
659 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
660 4, byte_order);
97ec2c2f
UW
661 }
662 else
663 {
664 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 665
e17a4113
UW
666 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
667 8, byte_order);
668 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
669 8, byte_order);
97ec2c2f
UW
670 }
671 if (dyn_tag == DT_NULL)
672 break;
673
674 if (dyn_tag == dyntag)
675 {
676 if (ptr)
677 *ptr = dyn_ptr;
678
679 xfree (bufstart);
680 return 1;
681 }
682 }
683
684 xfree (bufstart);
685 return 0;
686}
687
7f86f058
PA
688/* Locate the base address of dynamic linker structs for SVR4 elf
689 targets.
13437d4b
KB
690
691 For SVR4 elf targets the address of the dynamic linker's runtime
692 structure is contained within the dynamic info section in the
693 executable file. The dynamic section is also mapped into the
694 inferior address space. Because the runtime loader fills in the
695 real address before starting the inferior, we have to read in the
696 dynamic info section from the inferior address space.
697 If there are any errors while trying to find the address, we
7f86f058 698 silently return 0, otherwise the found address is returned. */
13437d4b
KB
699
700static CORE_ADDR
701elf_locate_base (void)
702{
3a40aaa0
UW
703 struct minimal_symbol *msymbol;
704 CORE_ADDR dyn_ptr;
13437d4b 705
65728c26
DJ
706 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
707 instead of DT_DEBUG, although they sometimes contain an unused
708 DT_DEBUG. */
97ec2c2f
UW
709 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
710 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 711 {
f5656ead 712 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 713 gdb_byte *pbuf;
b6da22b0 714 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 715
3a40aaa0
UW
716 pbuf = alloca (pbuf_size);
717 /* DT_MIPS_RLD_MAP contains a pointer to the address
718 of the dynamic link structure. */
719 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 720 return 0;
b6da22b0 721 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
722 }
723
65728c26 724 /* Find DT_DEBUG. */
97ec2c2f
UW
725 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
726 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
727 return dyn_ptr;
728
3a40aaa0
UW
729 /* This may be a static executable. Look for the symbol
730 conventionally named _r_debug, as a last resort. */
731 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
732 if (msymbol != NULL)
733 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
734
735 /* DT_DEBUG entry not found. */
736 return 0;
737}
738
7f86f058 739/* Locate the base address of dynamic linker structs.
13437d4b
KB
740
741 For both the SunOS and SVR4 shared library implementations, if the
742 inferior executable has been linked dynamically, there is a single
743 address somewhere in the inferior's data space which is the key to
744 locating all of the dynamic linker's runtime structures. This
745 address is the value of the debug base symbol. The job of this
746 function is to find and return that address, or to return 0 if there
747 is no such address (the executable is statically linked for example).
748
749 For SunOS, the job is almost trivial, since the dynamic linker and
750 all of it's structures are statically linked to the executable at
751 link time. Thus the symbol for the address we are looking for has
752 already been added to the minimal symbol table for the executable's
753 objfile at the time the symbol file's symbols were read, and all we
754 have to do is look it up there. Note that we explicitly do NOT want
755 to find the copies in the shared library.
756
757 The SVR4 version is a bit more complicated because the address
758 is contained somewhere in the dynamic info section. We have to go
759 to a lot more work to discover the address of the debug base symbol.
760 Because of this complexity, we cache the value we find and return that
761 value on subsequent invocations. Note there is no copy in the
7f86f058 762 executable symbol tables. */
13437d4b
KB
763
764static CORE_ADDR
1a816a87 765locate_base (struct svr4_info *info)
13437d4b 766{
13437d4b
KB
767 /* Check to see if we have a currently valid address, and if so, avoid
768 doing all this work again and just return the cached address. If
769 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
770 section for ELF executables. There's no point in doing any of this
771 though if we don't have some link map offsets to work with. */
13437d4b 772
1a816a87 773 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 774 info->debug_base = elf_locate_base ();
1a816a87 775 return info->debug_base;
13437d4b
KB
776}
777
e4cd0d6a 778/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
779 return its address in the inferior. Return zero if the address
780 could not be determined.
13437d4b 781
e4cd0d6a
MK
782 FIXME: Perhaps we should validate the info somehow, perhaps by
783 checking r_version for a known version number, or r_state for
784 RT_CONSISTENT. */
13437d4b
KB
785
786static CORE_ADDR
1a816a87 787solib_svr4_r_map (struct svr4_info *info)
13437d4b 788{
4b188b9f 789 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 790 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
791 CORE_ADDR addr = 0;
792 volatile struct gdb_exception ex;
13437d4b 793
08597104
JB
794 TRY_CATCH (ex, RETURN_MASK_ERROR)
795 {
796 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
797 ptr_type);
798 }
799 exception_print (gdb_stderr, ex);
800 return addr;
e4cd0d6a 801}
13437d4b 802
7cd25cfc
DJ
803/* Find r_brk from the inferior's debug base. */
804
805static CORE_ADDR
1a816a87 806solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
807{
808 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 809 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 810
1a816a87
PA
811 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
812 ptr_type);
7cd25cfc
DJ
813}
814
e4cd0d6a
MK
815/* Find the link map for the dynamic linker (if it is not in the
816 normal list of loaded shared objects). */
13437d4b 817
e4cd0d6a 818static CORE_ADDR
1a816a87 819solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
820{
821 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
822 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
823 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 824 ULONGEST version;
13437d4b 825
e4cd0d6a
MK
826 /* Check version, and return zero if `struct r_debug' doesn't have
827 the r_ldsomap member. */
1a816a87
PA
828 version
829 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 830 lmo->r_version_size, byte_order);
e4cd0d6a
MK
831 if (version < 2 || lmo->r_ldsomap_offset == -1)
832 return 0;
13437d4b 833
1a816a87 834 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 835 ptr_type);
13437d4b
KB
836}
837
de18c1d8
JM
838/* On Solaris systems with some versions of the dynamic linker,
839 ld.so's l_name pointer points to the SONAME in the string table
840 rather than into writable memory. So that GDB can find shared
841 libraries when loading a core file generated by gcore, ensure that
842 memory areas containing the l_name string are saved in the core
843 file. */
844
845static int
846svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
847{
848 struct svr4_info *info;
849 CORE_ADDR ldsomap;
850 struct so_list *new;
851 struct cleanup *old_chain;
852 struct link_map_offsets *lmo;
74de0234 853 CORE_ADDR name_lm;
de18c1d8
JM
854
855 info = get_svr4_info ();
856
857 info->debug_base = 0;
858 locate_base (info);
859 if (!info->debug_base)
860 return 0;
861
862 ldsomap = solib_svr4_r_ldsomap (info);
863 if (!ldsomap)
864 return 0;
865
866 lmo = svr4_fetch_link_map_offsets ();
867 new = XZALLOC (struct so_list);
868 old_chain = make_cleanup (xfree, new);
3957565a 869 new->lm_info = lm_info_read (ldsomap);
de18c1d8 870 make_cleanup (xfree, new->lm_info);
3957565a 871 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
872 do_cleanups (old_chain);
873
74de0234 874 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
875}
876
7f86f058 877/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 878
7f86f058
PA
879 If no open symbol file, attempt to locate and open the main symbol
880 file. On SVR4 systems, this is the first link map entry. If its
881 name is here, we can open it. Useful when attaching to a process
882 without first loading its symbol file. */
13437d4b
KB
883
884static int
885open_symbol_file_object (void *from_ttyp)
886{
887 CORE_ADDR lm, l_name;
888 char *filename;
889 int errcode;
890 int from_tty = *(int *)from_ttyp;
4b188b9f 891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 893 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 894 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 895 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 896 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
897
898 if (symfile_objfile)
9e2f0ad4 899 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
900 {
901 do_cleanups (cleanups);
902 return 0;
903 }
13437d4b 904
7cd25cfc 905 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
906 info->debug_base = 0;
907 if (locate_base (info) == 0)
3bb47e8b
TT
908 {
909 do_cleanups (cleanups);
910 return 0; /* failed somehow... */
911 }
13437d4b
KB
912
913 /* First link map member should be the executable. */
1a816a87 914 lm = solib_svr4_r_map (info);
e4cd0d6a 915 if (lm == 0)
3bb47e8b
TT
916 {
917 do_cleanups (cleanups);
918 return 0; /* failed somehow... */
919 }
13437d4b
KB
920
921 /* Read address of name from target memory to GDB. */
cfaefc65 922 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 923
cfaefc65 924 /* Convert the address to host format. */
b6da22b0 925 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 926
13437d4b 927 if (l_name == 0)
3bb47e8b
TT
928 {
929 do_cleanups (cleanups);
930 return 0; /* No filename. */
931 }
13437d4b
KB
932
933 /* Now fetch the filename from target memory. */
934 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 935 make_cleanup (xfree, filename);
13437d4b
KB
936
937 if (errcode)
938 {
8a3fe4f8 939 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 940 safe_strerror (errcode));
3bb47e8b 941 do_cleanups (cleanups);
13437d4b
KB
942 return 0;
943 }
944
13437d4b 945 /* Have a pathname: read the symbol file. */
1adeb98a 946 symbol_file_add_main (filename, from_tty);
13437d4b 947
3bb47e8b 948 do_cleanups (cleanups);
13437d4b
KB
949 return 1;
950}
13437d4b 951
2268b414
JK
952/* Data exchange structure for the XML parser as returned by
953 svr4_current_sos_via_xfer_libraries. */
954
955struct svr4_library_list
956{
957 struct so_list *head, **tailp;
958
959 /* Inferior address of struct link_map used for the main executable. It is
960 NULL if not known. */
961 CORE_ADDR main_lm;
962};
963
93f2a35e
JK
964/* Implementation for target_so_ops.free_so. */
965
966static void
967svr4_free_so (struct so_list *so)
968{
969 xfree (so->lm_info);
970}
971
972/* Free so_list built so far (called via cleanup). */
973
974static void
975svr4_free_library_list (void *p_list)
976{
977 struct so_list *list = *(struct so_list **) p_list;
978
979 while (list != NULL)
980 {
981 struct so_list *next = list->next;
982
3756ef7e 983 free_so (list);
93f2a35e
JK
984 list = next;
985 }
986}
987
2268b414
JK
988#ifdef HAVE_LIBEXPAT
989
990#include "xml-support.h"
991
992/* Handle the start of a <library> element. Note: new elements are added
993 at the tail of the list, keeping the list in order. */
994
995static void
996library_list_start_library (struct gdb_xml_parser *parser,
997 const struct gdb_xml_element *element,
998 void *user_data, VEC(gdb_xml_value_s) *attributes)
999{
1000 struct svr4_library_list *list = user_data;
1001 const char *name = xml_find_attribute (attributes, "name")->value;
1002 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1003 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1004 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1005 struct so_list *new_elem;
1006
1007 new_elem = XZALLOC (struct so_list);
1008 new_elem->lm_info = XZALLOC (struct lm_info);
1009 new_elem->lm_info->lm_addr = *lmp;
1010 new_elem->lm_info->l_addr_inferior = *l_addrp;
1011 new_elem->lm_info->l_ld = *l_ldp;
1012
1013 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1014 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1015 strcpy (new_elem->so_original_name, new_elem->so_name);
1016
1017 *list->tailp = new_elem;
1018 list->tailp = &new_elem->next;
1019}
1020
1021/* Handle the start of a <library-list-svr4> element. */
1022
1023static void
1024svr4_library_list_start_list (struct gdb_xml_parser *parser,
1025 const struct gdb_xml_element *element,
1026 void *user_data, VEC(gdb_xml_value_s) *attributes)
1027{
1028 struct svr4_library_list *list = user_data;
1029 const char *version = xml_find_attribute (attributes, "version")->value;
1030 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1031
1032 if (strcmp (version, "1.0") != 0)
1033 gdb_xml_error (parser,
1034 _("SVR4 Library list has unsupported version \"%s\""),
1035 version);
1036
1037 if (main_lm)
1038 list->main_lm = *(ULONGEST *) main_lm->value;
1039}
1040
1041/* The allowed elements and attributes for an XML library list.
1042 The root element is a <library-list>. */
1043
1044static const struct gdb_xml_attribute svr4_library_attributes[] =
1045{
1046 { "name", GDB_XML_AF_NONE, NULL, NULL },
1047 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1048 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1049 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1050 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1051};
1052
1053static const struct gdb_xml_element svr4_library_list_children[] =
1054{
1055 {
1056 "library", svr4_library_attributes, NULL,
1057 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1058 library_list_start_library, NULL
1059 },
1060 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1061};
1062
1063static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1064{
1065 { "version", GDB_XML_AF_NONE, NULL, NULL },
1066 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1067 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1068};
1069
1070static const struct gdb_xml_element svr4_library_list_elements[] =
1071{
1072 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1073 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1074 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1075};
1076
2268b414
JK
1077/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1078
1079 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1080 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1081 empty, caller is responsible for freeing all its entries. */
1082
1083static int
1084svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1085{
1086 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1087 &list->head);
1088
1089 memset (list, 0, sizeof (*list));
1090 list->tailp = &list->head;
1091 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1092 svr4_library_list_elements, document, list) == 0)
1093 {
1094 /* Parsed successfully, keep the result. */
1095 discard_cleanups (back_to);
1096 return 1;
1097 }
1098
1099 do_cleanups (back_to);
1100 return 0;
1101}
1102
1103/* Attempt to get so_list from target via qXfer:libraries:read packet.
1104
1105 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1106 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1107 empty, caller is responsible for freeing all its entries. */
1108
1109static int
1110svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1111{
1112 char *svr4_library_document;
1113 int result;
1114 struct cleanup *back_to;
1115
1116 /* Fetch the list of shared libraries. */
1117 svr4_library_document = target_read_stralloc (&current_target,
1118 TARGET_OBJECT_LIBRARIES_SVR4,
1119 NULL);
1120 if (svr4_library_document == NULL)
1121 return 0;
1122
1123 back_to = make_cleanup (xfree, svr4_library_document);
1124 result = svr4_parse_libraries (svr4_library_document, list);
1125 do_cleanups (back_to);
1126
1127 return result;
1128}
1129
1130#else
1131
1132static int
1133svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1134{
1135 return 0;
1136}
1137
1138#endif
1139
34439770
DJ
1140/* If no shared library information is available from the dynamic
1141 linker, build a fallback list from other sources. */
1142
1143static struct so_list *
1144svr4_default_sos (void)
1145{
6c95b8df 1146 struct svr4_info *info = get_svr4_info ();
8e5c319d 1147 struct so_list *new;
1a816a87 1148
8e5c319d
JK
1149 if (!info->debug_loader_offset_p)
1150 return NULL;
34439770 1151
8e5c319d 1152 new = XZALLOC (struct so_list);
34439770 1153
3957565a 1154 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1155
3957565a 1156 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1157 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1158 new->lm_info->l_addr_p = 1;
34439770 1159
8e5c319d
JK
1160 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1161 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1162 strcpy (new->so_original_name, new->so_name);
34439770 1163
8e5c319d 1164 return new;
34439770
DJ
1165}
1166
cb08cc53
JK
1167/* Read the whole inferior libraries chain starting at address LM. Add the
1168 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1169 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
13437d4b 1170
cb08cc53
JK
1171static void
1172svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1173 int ignore_first)
13437d4b 1174{
cb08cc53 1175 CORE_ADDR prev_lm = 0, next_lm;
13437d4b 1176
cb08cc53 1177 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1178 {
4b188b9f 1179 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cb08cc53
JK
1180 struct so_list *new;
1181 struct cleanup *old_chain;
1182 int errcode;
1183 char *buffer;
13437d4b 1184
cb08cc53
JK
1185 new = XZALLOC (struct so_list);
1186 old_chain = make_cleanup_free_so (new);
13437d4b 1187
3957565a
JK
1188 new->lm_info = lm_info_read (lm);
1189 if (new->lm_info == NULL)
1190 {
1191 do_cleanups (old_chain);
1192 break;
1193 }
13437d4b 1194
3957565a 1195 next_lm = new->lm_info->l_next;
492928e4 1196
3957565a 1197 if (new->lm_info->l_prev != prev_lm)
492928e4 1198 {
2268b414 1199 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1200 paddress (target_gdbarch (), prev_lm),
1201 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53
JK
1202 do_cleanups (old_chain);
1203 break;
492928e4 1204 }
13437d4b
KB
1205
1206 /* For SVR4 versions, the first entry in the link map is for the
1207 inferior executable, so we must ignore it. For some versions of
1208 SVR4, it has no name. For others (Solaris 2.3 for example), it
1209 does have a name, so we can no longer use a missing name to
c378eb4e 1210 decide when to ignore it. */
3957565a 1211 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1212 {
cb08cc53
JK
1213 struct svr4_info *info = get_svr4_info ();
1214
1a816a87 1215 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1216 do_cleanups (old_chain);
1217 continue;
93a57060 1218 }
13437d4b 1219
cb08cc53 1220 /* Extract this shared object's name. */
3957565a 1221 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1222 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1223 if (errcode != 0)
1224 {
1225 warning (_("Can't read pathname for load map: %s."),
1226 safe_strerror (errcode));
1227 do_cleanups (old_chain);
1228 continue;
13437d4b
KB
1229 }
1230
cb08cc53
JK
1231 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1232 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1233 strcpy (new->so_original_name, new->so_name);
1234 xfree (buffer);
492928e4 1235
cb08cc53
JK
1236 /* If this entry has no name, or its name matches the name
1237 for the main executable, don't include it in the list. */
1238 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1239 {
cb08cc53
JK
1240 do_cleanups (old_chain);
1241 continue;
492928e4 1242 }
e4cd0d6a 1243
13437d4b 1244 discard_cleanups (old_chain);
cb08cc53
JK
1245 new->next = 0;
1246 **link_ptr_ptr = new;
1247 *link_ptr_ptr = &new->next;
13437d4b 1248 }
cb08cc53
JK
1249}
1250
1251/* Implement the "current_sos" target_so_ops method. */
1252
1253static struct so_list *
1254svr4_current_sos (void)
1255{
1256 CORE_ADDR lm;
1257 struct so_list *head = NULL;
1258 struct so_list **link_ptr = &head;
1259 struct svr4_info *info;
1260 struct cleanup *back_to;
1261 int ignore_first;
2268b414
JK
1262 struct svr4_library_list library_list;
1263
0c5bf5a9
JK
1264 /* Fall back to manual examination of the target if the packet is not
1265 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1266 tests a case where gdbserver cannot find the shared libraries list while
1267 GDB itself is able to find it via SYMFILE_OBJFILE.
1268
1269 Unfortunately statically linked inferiors will also fall back through this
1270 suboptimal code path. */
1271
2268b414
JK
1272 if (svr4_current_sos_via_xfer_libraries (&library_list))
1273 {
1274 if (library_list.main_lm)
1275 {
1276 info = get_svr4_info ();
1277 info->main_lm_addr = library_list.main_lm;
1278 }
1279
1280 return library_list.head ? library_list.head : svr4_default_sos ();
1281 }
cb08cc53
JK
1282
1283 info = get_svr4_info ();
1284
1285 /* Always locate the debug struct, in case it has moved. */
1286 info->debug_base = 0;
1287 locate_base (info);
1288
1289 /* If we can't find the dynamic linker's base structure, this
1290 must not be a dynamically linked executable. Hmm. */
1291 if (! info->debug_base)
1292 return svr4_default_sos ();
1293
1294 /* Assume that everything is a library if the dynamic loader was loaded
1295 late by a static executable. */
1296 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1297 ignore_first = 0;
1298 else
1299 ignore_first = 1;
1300
1301 back_to = make_cleanup (svr4_free_library_list, &head);
1302
1303 /* Walk the inferior's link map list, and build our list of
1304 `struct so_list' nodes. */
1305 lm = solib_svr4_r_map (info);
1306 if (lm)
1307 svr4_read_so_list (lm, &link_ptr, ignore_first);
1308
1309 /* On Solaris, the dynamic linker is not in the normal list of
1310 shared objects, so make sure we pick it up too. Having
1311 symbol information for the dynamic linker is quite crucial
1312 for skipping dynamic linker resolver code. */
1313 lm = solib_svr4_r_ldsomap (info);
1314 if (lm)
1315 svr4_read_so_list (lm, &link_ptr, 0);
1316
1317 discard_cleanups (back_to);
13437d4b 1318
34439770
DJ
1319 if (head == NULL)
1320 return svr4_default_sos ();
1321
13437d4b
KB
1322 return head;
1323}
1324
93a57060 1325/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1326
1327CORE_ADDR
1328svr4_fetch_objfile_link_map (struct objfile *objfile)
1329{
93a57060 1330 struct so_list *so;
6c95b8df 1331 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1332
93a57060 1333 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1334 if (info->main_lm_addr == 0)
93a57060 1335 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1336
93a57060
DJ
1337 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1338 if (objfile == symfile_objfile)
1a816a87 1339 return info->main_lm_addr;
93a57060
DJ
1340
1341 /* The other link map addresses may be found by examining the list
1342 of shared libraries. */
1343 for (so = master_so_list (); so; so = so->next)
1344 if (so->objfile == objfile)
1345 return so->lm_info->lm_addr;
1346
1347 /* Not found! */
bc4a16ae
EZ
1348 return 0;
1349}
13437d4b
KB
1350
1351/* On some systems, the only way to recognize the link map entry for
1352 the main executable file is by looking at its name. Return
1353 non-zero iff SONAME matches one of the known main executable names. */
1354
1355static int
bc043ef3 1356match_main (const char *soname)
13437d4b 1357{
bc043ef3 1358 const char * const *mainp;
13437d4b
KB
1359
1360 for (mainp = main_name_list; *mainp != NULL; mainp++)
1361 {
1362 if (strcmp (soname, *mainp) == 0)
1363 return (1);
1364 }
1365
1366 return (0);
1367}
1368
13437d4b
KB
1369/* Return 1 if PC lies in the dynamic symbol resolution code of the
1370 SVR4 run time loader. */
13437d4b 1371
7d522c90 1372int
d7fa2ae2 1373svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1374{
6c95b8df
PA
1375 struct svr4_info *info = get_svr4_info ();
1376
1377 return ((pc >= info->interp_text_sect_low
1378 && pc < info->interp_text_sect_high)
1379 || (pc >= info->interp_plt_sect_low
1380 && pc < info->interp_plt_sect_high)
0875794a
JK
1381 || in_plt_section (pc, NULL)
1382 || in_gnu_ifunc_stub (pc));
13437d4b 1383}
13437d4b 1384
2f4950cd
AC
1385/* Given an executable's ABFD and target, compute the entry-point
1386 address. */
1387
1388static CORE_ADDR
1389exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1390{
1391 /* KevinB wrote ... for most targets, the address returned by
1392 bfd_get_start_address() is the entry point for the start
1393 function. But, for some targets, bfd_get_start_address() returns
1394 the address of a function descriptor from which the entry point
1395 address may be extracted. This address is extracted by
1396 gdbarch_convert_from_func_ptr_addr(). The method
1397 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1398 function for targets which don't use function descriptors. */
f5656ead 1399 return gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1400 bfd_get_start_address (abfd),
1401 targ);
1402}
13437d4b 1403
cb457ae2
YQ
1404/* Helper function for gdb_bfd_lookup_symbol. */
1405
1406static int
1407cmp_name_and_sec_flags (asymbol *sym, void *data)
1408{
1409 return (strcmp (sym->name, (const char *) data) == 0
1410 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1411}
7f86f058 1412/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1413
1414 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1415 debugger interface, support for arranging for the inferior to hit
1416 a breakpoint after mapping in the shared libraries. This function
1417 enables that breakpoint.
1418
1419 For SunOS, there is a special flag location (in_debugger) which we
1420 set to 1. When the dynamic linker sees this flag set, it will set
1421 a breakpoint at a location known only to itself, after saving the
1422 original contents of that place and the breakpoint address itself,
1423 in it's own internal structures. When we resume the inferior, it
1424 will eventually take a SIGTRAP when it runs into the breakpoint.
1425 We handle this (in a different place) by restoring the contents of
1426 the breakpointed location (which is only known after it stops),
1427 chasing around to locate the shared libraries that have been
1428 loaded, then resuming.
1429
1430 For SVR4, the debugger interface structure contains a member (r_brk)
1431 which is statically initialized at the time the shared library is
1432 built, to the offset of a function (_r_debug_state) which is guaran-
1433 teed to be called once before mapping in a library, and again when
1434 the mapping is complete. At the time we are examining this member,
1435 it contains only the unrelocated offset of the function, so we have
1436 to do our own relocation. Later, when the dynamic linker actually
1437 runs, it relocates r_brk to be the actual address of _r_debug_state().
1438
1439 The debugger interface structure also contains an enumeration which
1440 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1441 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1442 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1443
1444static int
268a4a75 1445enable_break (struct svr4_info *info, int from_tty)
13437d4b 1446{
13437d4b 1447 struct minimal_symbol *msymbol;
bc043ef3 1448 const char * const *bkpt_namep;
13437d4b 1449 asection *interp_sect;
97ec2c2f 1450 gdb_byte *interp_name;
7cd25cfc 1451 CORE_ADDR sym_addr;
13437d4b 1452
6c95b8df
PA
1453 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1454 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1455
7cd25cfc
DJ
1456 /* If we already have a shared library list in the target, and
1457 r_debug contains r_brk, set the breakpoint there - this should
1458 mean r_brk has already been relocated. Assume the dynamic linker
1459 is the object containing r_brk. */
1460
268a4a75 1461 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1462 sym_addr = 0;
1a816a87
PA
1463 if (info->debug_base && solib_svr4_r_map (info) != 0)
1464 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1465
1466 if (sym_addr != 0)
1467 {
1468 struct obj_section *os;
1469
b36ec657 1470 sym_addr = gdbarch_addr_bits_remove
f5656ead 1471 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
1472 sym_addr,
1473 &current_target));
b36ec657 1474
48379de6
DE
1475 /* On at least some versions of Solaris there's a dynamic relocation
1476 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1477 we get control before the dynamic linker has self-relocated.
1478 Check if SYM_ADDR is in a known section, if it is assume we can
1479 trust its value. This is just a heuristic though, it could go away
1480 or be replaced if it's getting in the way.
1481
1482 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1483 however it's spelled in your particular system) is ARM or Thumb.
1484 That knowledge is encoded in the address, if it's Thumb the low bit
1485 is 1. However, we've stripped that info above and it's not clear
1486 what all the consequences are of passing a non-addr_bits_remove'd
1487 address to create_solib_event_breakpoint. The call to
1488 find_pc_section verifies we know about the address and have some
1489 hope of computing the right kind of breakpoint to use (via
1490 symbol info). It does mean that GDB needs to be pointed at a
1491 non-stripped version of the dynamic linker in order to obtain
1492 information it already knows about. Sigh. */
1493
7cd25cfc
DJ
1494 os = find_pc_section (sym_addr);
1495 if (os != NULL)
1496 {
1497 /* Record the relocated start and end address of the dynamic linker
1498 text and plt section for svr4_in_dynsym_resolve_code. */
1499 bfd *tmp_bfd;
1500 CORE_ADDR load_addr;
1501
1502 tmp_bfd = os->objfile->obfd;
1503 load_addr = ANOFFSET (os->objfile->section_offsets,
1504 os->objfile->sect_index_text);
1505
1506 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1507 if (interp_sect)
1508 {
6c95b8df 1509 info->interp_text_sect_low =
7cd25cfc 1510 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1511 info->interp_text_sect_high =
1512 info->interp_text_sect_low
1513 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1514 }
1515 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1516 if (interp_sect)
1517 {
6c95b8df 1518 info->interp_plt_sect_low =
7cd25cfc 1519 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1520 info->interp_plt_sect_high =
1521 info->interp_plt_sect_low
1522 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1523 }
1524
f5656ead 1525 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
7cd25cfc
DJ
1526 return 1;
1527 }
1528 }
1529
97ec2c2f 1530 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1531 into the old breakpoint at symbol code. */
97ec2c2f
UW
1532 interp_name = find_program_interpreter ();
1533 if (interp_name)
13437d4b 1534 {
8ad2fcde
KB
1535 CORE_ADDR load_addr = 0;
1536 int load_addr_found = 0;
2ec9a4f8 1537 int loader_found_in_list = 0;
f8766ec1 1538 struct so_list *so;
e4f7b8c8 1539 bfd *tmp_bfd = NULL;
2f4950cd 1540 struct target_ops *tmp_bfd_target;
f1838a98 1541 volatile struct gdb_exception ex;
13437d4b 1542
7cd25cfc 1543 sym_addr = 0;
13437d4b
KB
1544
1545 /* Now we need to figure out where the dynamic linker was
1546 loaded so that we can load its symbols and place a breakpoint
1547 in the dynamic linker itself.
1548
1549 This address is stored on the stack. However, I've been unable
1550 to find any magic formula to find it for Solaris (appears to
1551 be trivial on GNU/Linux). Therefore, we have to try an alternate
1552 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1553
f1838a98
UW
1554 TRY_CATCH (ex, RETURN_MASK_ALL)
1555 {
97ec2c2f 1556 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1557 }
13437d4b
KB
1558 if (tmp_bfd == NULL)
1559 goto bkpt_at_symbol;
1560
2f4950cd 1561 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 1562 well as BFD operations can be used. */
2f4950cd 1563 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
1564 /* target_bfd_reopen acquired its own reference, so we can
1565 release ours now. */
1566 gdb_bfd_unref (tmp_bfd);
2f4950cd 1567
f8766ec1
KB
1568 /* On a running target, we can get the dynamic linker's base
1569 address from the shared library table. */
f8766ec1
KB
1570 so = master_so_list ();
1571 while (so)
8ad2fcde 1572 {
97ec2c2f 1573 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1574 {
1575 load_addr_found = 1;
2ec9a4f8 1576 loader_found_in_list = 1;
b23518f0 1577 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1578 break;
1579 }
f8766ec1 1580 so = so->next;
8ad2fcde
KB
1581 }
1582
8d4e36ba
JB
1583 /* If we were not able to find the base address of the loader
1584 from our so_list, then try using the AT_BASE auxilliary entry. */
1585 if (!load_addr_found)
1586 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 1587 {
f5656ead 1588 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
1589
1590 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1591 that `+ load_addr' will overflow CORE_ADDR width not creating
1592 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1593 GDB. */
1594
d182d057 1595 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1596 {
d182d057 1597 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1598 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1599 tmp_bfd_target);
1600
1601 gdb_assert (load_addr < space_size);
1602
1603 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1604 64bit ld.so with 32bit executable, it should not happen. */
1605
1606 if (tmp_entry_point < space_size
1607 && tmp_entry_point + load_addr >= space_size)
1608 load_addr -= space_size;
1609 }
1610
1611 load_addr_found = 1;
1612 }
8d4e36ba 1613
8ad2fcde
KB
1614 /* Otherwise we find the dynamic linker's base address by examining
1615 the current pc (which should point at the entry point for the
8d4e36ba
JB
1616 dynamic linker) and subtracting the offset of the entry point.
1617
1618 This is more fragile than the previous approaches, but is a good
1619 fallback method because it has actually been working well in
1620 most cases. */
8ad2fcde 1621 if (!load_addr_found)
fb14de7b 1622 {
c2250ad1 1623 struct regcache *regcache
f5656ead 1624 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 1625
fb14de7b
UW
1626 load_addr = (regcache_read_pc (regcache)
1627 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1628 }
2ec9a4f8
DJ
1629
1630 if (!loader_found_in_list)
34439770 1631 {
1a816a87
PA
1632 info->debug_loader_name = xstrdup (interp_name);
1633 info->debug_loader_offset_p = 1;
1634 info->debug_loader_offset = load_addr;
268a4a75 1635 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1636 }
13437d4b
KB
1637
1638 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1639 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1640 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1641 if (interp_sect)
1642 {
6c95b8df 1643 info->interp_text_sect_low =
13437d4b 1644 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1645 info->interp_text_sect_high =
1646 info->interp_text_sect_low
1647 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1648 }
1649 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1650 if (interp_sect)
1651 {
6c95b8df 1652 info->interp_plt_sect_low =
13437d4b 1653 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1654 info->interp_plt_sect_high =
1655 info->interp_plt_sect_low
1656 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1657 }
1658
1659 /* Now try to set a breakpoint in the dynamic linker. */
1660 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1661 {
cb457ae2
YQ
1662 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1663 (void *) *bkpt_namep);
13437d4b
KB
1664 if (sym_addr != 0)
1665 break;
1666 }
1667
2bbe3cc1
DJ
1668 if (sym_addr != 0)
1669 /* Convert 'sym_addr' from a function pointer to an address.
1670 Because we pass tmp_bfd_target instead of the current
1671 target, this will always produce an unrelocated value. */
f5656ead 1672 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
1673 sym_addr,
1674 tmp_bfd_target);
1675
695c3173
TT
1676 /* We're done with both the temporary bfd and target. Closing
1677 the target closes the underlying bfd, because it holds the
1678 only remaining reference. */
2f4950cd 1679 target_close (tmp_bfd_target, 0);
13437d4b
KB
1680
1681 if (sym_addr != 0)
1682 {
f5656ead 1683 create_solib_event_breakpoint (target_gdbarch (), load_addr + sym_addr);
97ec2c2f 1684 xfree (interp_name);
13437d4b
KB
1685 return 1;
1686 }
1687
1688 /* For whatever reason we couldn't set a breakpoint in the dynamic
1689 linker. Warn and drop into the old code. */
1690 bkpt_at_symbol:
97ec2c2f 1691 xfree (interp_name);
82d03102
PG
1692 warning (_("Unable to find dynamic linker breakpoint function.\n"
1693 "GDB will be unable to debug shared library initializers\n"
1694 "and track explicitly loaded dynamic code."));
13437d4b 1695 }
13437d4b 1696
e499d0f1
DJ
1697 /* Scan through the lists of symbols, trying to look up the symbol and
1698 set a breakpoint there. Terminate loop when we/if we succeed. */
1699
1700 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1701 {
1702 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1703 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1704 {
de64a9ac 1705 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1706 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
1707 sym_addr,
1708 &current_target);
f5656ead 1709 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
e499d0f1
DJ
1710 return 1;
1711 }
1712 }
13437d4b 1713
fb139f32 1714 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 1715 {
c6490bf2 1716 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1717 {
c6490bf2
KB
1718 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1719 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1720 {
1721 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1722 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
1723 sym_addr,
1724 &current_target);
f5656ead 1725 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
c6490bf2
KB
1726 return 1;
1727 }
13437d4b
KB
1728 }
1729 }
542c95c2 1730 return 0;
13437d4b
KB
1731}
1732
7f86f058 1733/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1734
1735static void
1736svr4_special_symbol_handling (void)
1737{
7f86f058 1738 /* Nothing to do. */
13437d4b
KB
1739}
1740
09919ac2
JK
1741/* Read the ELF program headers from ABFD. Return the contents and
1742 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1743
09919ac2
JK
1744static gdb_byte *
1745read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1746{
09919ac2
JK
1747 Elf_Internal_Ehdr *ehdr;
1748 gdb_byte *buf;
e2a44558 1749
09919ac2 1750 ehdr = elf_elfheader (abfd);
b8040f19 1751
09919ac2
JK
1752 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1753 if (*phdrs_size == 0)
1754 return NULL;
1755
1756 buf = xmalloc (*phdrs_size);
1757 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1758 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1759 {
1760 xfree (buf);
1761 return NULL;
1762 }
1763
1764 return buf;
b8040f19
JK
1765}
1766
01c30d6e
JK
1767/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1768 exec_bfd. Otherwise return 0.
1769
1770 We relocate all of the sections by the same amount. This
c378eb4e 1771 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1772 According to the System V Application Binary Interface,
1773 Edition 4.1, page 5-5:
1774
1775 ... Though the system chooses virtual addresses for
1776 individual processes, it maintains the segments' relative
1777 positions. Because position-independent code uses relative
1778 addressesing between segments, the difference between
1779 virtual addresses in memory must match the difference
1780 between virtual addresses in the file. The difference
1781 between the virtual address of any segment in memory and
1782 the corresponding virtual address in the file is thus a
1783 single constant value for any one executable or shared
1784 object in a given process. This difference is the base
1785 address. One use of the base address is to relocate the
1786 memory image of the program during dynamic linking.
1787
1788 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1789 ABI and is left unspecified in some of the earlier editions.
1790
1791 Decide if the objfile needs to be relocated. As indicated above, we will
1792 only be here when execution is stopped. But during attachment PC can be at
1793 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1794 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1795 regcache_read_pc would point to the interpreter and not the main executable.
1796
1797 So, to summarize, relocations are necessary when the start address obtained
1798 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1799
09919ac2
JK
1800 [ The astute reader will note that we also test to make sure that
1801 the executable in question has the DYNAMIC flag set. It is my
1802 opinion that this test is unnecessary (undesirable even). It
1803 was added to avoid inadvertent relocation of an executable
1804 whose e_type member in the ELF header is not ET_DYN. There may
1805 be a time in the future when it is desirable to do relocations
1806 on other types of files as well in which case this condition
1807 should either be removed or modified to accomodate the new file
1808 type. - Kevin, Nov 2000. ] */
b8040f19 1809
01c30d6e
JK
1810static int
1811svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1812{
41752192
JK
1813 /* ENTRY_POINT is a possible function descriptor - before
1814 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1815 CORE_ADDR entry_point, displacement;
b8040f19
JK
1816
1817 if (exec_bfd == NULL)
1818 return 0;
1819
09919ac2
JK
1820 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1821 being executed themselves and PIE (Position Independent Executable)
1822 executables are ET_DYN. */
1823
1824 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1825 return 0;
1826
1827 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1828 return 0;
1829
1830 displacement = entry_point - bfd_get_start_address (exec_bfd);
1831
1832 /* Verify the DISPLACEMENT candidate complies with the required page
1833 alignment. It is cheaper than the program headers comparison below. */
1834
1835 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1836 {
1837 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1838
1839 /* p_align of PT_LOAD segments does not specify any alignment but
1840 only congruency of addresses:
1841 p_offset % p_align == p_vaddr % p_align
1842 Kernel is free to load the executable with lower alignment. */
1843
1844 if ((displacement & (elf->minpagesize - 1)) != 0)
1845 return 0;
1846 }
1847
1848 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1849 comparing their program headers. If the program headers in the auxilliary
1850 vector do not match the program headers in the executable, then we are
1851 looking at a different file than the one used by the kernel - for
1852 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1853
1854 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1855 {
1856 /* Be optimistic and clear OK only if GDB was able to verify the headers
1857 really do not match. */
1858 int phdrs_size, phdrs2_size, ok = 1;
1859 gdb_byte *buf, *buf2;
0a1e94c7 1860 int arch_size;
09919ac2 1861
0a1e94c7 1862 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1863 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1864 if (buf != NULL && buf2 != NULL)
1865 {
f5656ead 1866 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
1867
1868 /* We are dealing with three different addresses. EXEC_BFD
1869 represents current address in on-disk file. target memory content
1870 may be different from EXEC_BFD as the file may have been prelinked
1871 to a different address after the executable has been loaded.
1872 Moreover the address of placement in target memory can be
3e43a32a
MS
1873 different from what the program headers in target memory say -
1874 this is the goal of PIE.
0a1e94c7
JK
1875
1876 Detected DISPLACEMENT covers both the offsets of PIE placement and
1877 possible new prelink performed after start of the program. Here
1878 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1879 content offset for the verification purpose. */
1880
1881 if (phdrs_size != phdrs2_size
1882 || bfd_get_arch_size (exec_bfd) != arch_size)
1883 ok = 0;
3e43a32a
MS
1884 else if (arch_size == 32
1885 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1886 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1887 {
1888 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1889 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1890 CORE_ADDR displacement = 0;
1891 int i;
1892
1893 /* DISPLACEMENT could be found more easily by the difference of
1894 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1895 already have enough information to compute that displacement
1896 with what we've read. */
1897
1898 for (i = 0; i < ehdr2->e_phnum; i++)
1899 if (phdr2[i].p_type == PT_LOAD)
1900 {
1901 Elf32_External_Phdr *phdrp;
1902 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1903 CORE_ADDR vaddr, paddr;
1904 CORE_ADDR displacement_vaddr = 0;
1905 CORE_ADDR displacement_paddr = 0;
1906
1907 phdrp = &((Elf32_External_Phdr *) buf)[i];
1908 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1909 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1910
1911 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1912 byte_order);
1913 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1914
1915 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1916 byte_order);
1917 displacement_paddr = paddr - phdr2[i].p_paddr;
1918
1919 if (displacement_vaddr == displacement_paddr)
1920 displacement = displacement_vaddr;
1921
1922 break;
1923 }
1924
1925 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1926
1927 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1928 {
1929 Elf32_External_Phdr *phdrp;
1930 Elf32_External_Phdr *phdr2p;
1931 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1932 CORE_ADDR vaddr, paddr;
43b8e241 1933 asection *plt2_asect;
0a1e94c7
JK
1934
1935 phdrp = &((Elf32_External_Phdr *) buf)[i];
1936 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1937 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1938 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1939
1940 /* PT_GNU_STACK is an exception by being never relocated by
1941 prelink as its addresses are always zero. */
1942
1943 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1944 continue;
1945
1946 /* Check also other adjustment combinations - PR 11786. */
1947
3e43a32a
MS
1948 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1949 byte_order);
0a1e94c7
JK
1950 vaddr -= displacement;
1951 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1952
3e43a32a
MS
1953 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1954 byte_order);
0a1e94c7
JK
1955 paddr -= displacement;
1956 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1957
1958 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1959 continue;
1960
43b8e241
JK
1961 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1962 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1963 if (plt2_asect)
1964 {
1965 int content2;
1966 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1967 CORE_ADDR filesz;
1968
1969 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1970 & SEC_HAS_CONTENTS) != 0;
1971
1972 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1973 byte_order);
1974
1975 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1976 FILESZ is from the in-memory image. */
1977 if (content2)
1978 filesz += bfd_get_section_size (plt2_asect);
1979 else
1980 filesz -= bfd_get_section_size (plt2_asect);
1981
1982 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1983 filesz);
1984
1985 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1986 continue;
1987 }
1988
0a1e94c7
JK
1989 ok = 0;
1990 break;
1991 }
1992 }
3e43a32a
MS
1993 else if (arch_size == 64
1994 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1995 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1996 {
1997 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1998 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1999 CORE_ADDR displacement = 0;
2000 int i;
2001
2002 /* DISPLACEMENT could be found more easily by the difference of
2003 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2004 already have enough information to compute that displacement
2005 with what we've read. */
2006
2007 for (i = 0; i < ehdr2->e_phnum; i++)
2008 if (phdr2[i].p_type == PT_LOAD)
2009 {
2010 Elf64_External_Phdr *phdrp;
2011 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2012 CORE_ADDR vaddr, paddr;
2013 CORE_ADDR displacement_vaddr = 0;
2014 CORE_ADDR displacement_paddr = 0;
2015
2016 phdrp = &((Elf64_External_Phdr *) buf)[i];
2017 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2018 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2019
2020 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2021 byte_order);
2022 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2023
2024 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2025 byte_order);
2026 displacement_paddr = paddr - phdr2[i].p_paddr;
2027
2028 if (displacement_vaddr == displacement_paddr)
2029 displacement = displacement_vaddr;
2030
2031 break;
2032 }
2033
2034 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2035
2036 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2037 {
2038 Elf64_External_Phdr *phdrp;
2039 Elf64_External_Phdr *phdr2p;
2040 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2041 CORE_ADDR vaddr, paddr;
43b8e241 2042 asection *plt2_asect;
0a1e94c7
JK
2043
2044 phdrp = &((Elf64_External_Phdr *) buf)[i];
2045 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2046 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2047 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2048
2049 /* PT_GNU_STACK is an exception by being never relocated by
2050 prelink as its addresses are always zero. */
2051
2052 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2053 continue;
2054
2055 /* Check also other adjustment combinations - PR 11786. */
2056
3e43a32a
MS
2057 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2058 byte_order);
0a1e94c7
JK
2059 vaddr -= displacement;
2060 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2061
3e43a32a
MS
2062 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2063 byte_order);
0a1e94c7
JK
2064 paddr -= displacement;
2065 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2066
2067 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2068 continue;
2069
43b8e241
JK
2070 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2071 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2072 if (plt2_asect)
2073 {
2074 int content2;
2075 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2076 CORE_ADDR filesz;
2077
2078 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2079 & SEC_HAS_CONTENTS) != 0;
2080
2081 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2082 byte_order);
2083
2084 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2085 FILESZ is from the in-memory image. */
2086 if (content2)
2087 filesz += bfd_get_section_size (plt2_asect);
2088 else
2089 filesz -= bfd_get_section_size (plt2_asect);
2090
2091 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2092 filesz);
2093
2094 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2095 continue;
2096 }
2097
0a1e94c7
JK
2098 ok = 0;
2099 break;
2100 }
2101 }
2102 else
2103 ok = 0;
2104 }
09919ac2
JK
2105
2106 xfree (buf);
2107 xfree (buf2);
2108
2109 if (!ok)
2110 return 0;
2111 }
b8040f19 2112
ccf26247
JK
2113 if (info_verbose)
2114 {
2115 /* It can be printed repeatedly as there is no easy way to check
2116 the executable symbols/file has been already relocated to
2117 displacement. */
2118
2119 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2120 "displacement %s for \"%s\".\n"),
f5656ead 2121 paddress (target_gdbarch (), displacement),
ccf26247
JK
2122 bfd_get_filename (exec_bfd));
2123 }
2124
01c30d6e
JK
2125 *displacementp = displacement;
2126 return 1;
b8040f19
JK
2127}
2128
2129/* Relocate the main executable. This function should be called upon
c378eb4e 2130 stopping the inferior process at the entry point to the program.
b8040f19
JK
2131 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2132 different, the main executable is relocated by the proper amount. */
2133
2134static void
2135svr4_relocate_main_executable (void)
2136{
01c30d6e
JK
2137 CORE_ADDR displacement;
2138
4e5799b6
JK
2139 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2140 probably contains the offsets computed using the PIE displacement
2141 from the previous run, which of course are irrelevant for this run.
2142 So we need to determine the new PIE displacement and recompute the
2143 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2144 already contains pre-computed offsets.
01c30d6e 2145
4e5799b6 2146 If we cannot compute the PIE displacement, either:
01c30d6e 2147
4e5799b6
JK
2148 - The executable is not PIE.
2149
2150 - SYMFILE_OBJFILE does not match the executable started in the target.
2151 This can happen for main executable symbols loaded at the host while
2152 `ld.so --ld-args main-executable' is loaded in the target.
2153
2154 Then we leave the section offsets untouched and use them as is for
2155 this run. Either:
2156
2157 - These section offsets were properly reset earlier, and thus
2158 already contain the correct values. This can happen for instance
2159 when reconnecting via the remote protocol to a target that supports
2160 the `qOffsets' packet.
2161
2162 - The section offsets were not reset earlier, and the best we can
c378eb4e 2163 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2164
2165 if (! svr4_exec_displacement (&displacement))
2166 return;
b8040f19 2167
01c30d6e
JK
2168 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2169 addresses. */
b8040f19
JK
2170
2171 if (symfile_objfile)
e2a44558 2172 {
e2a44558 2173 struct section_offsets *new_offsets;
b8040f19 2174 int i;
e2a44558 2175
b8040f19
JK
2176 new_offsets = alloca (symfile_objfile->num_sections
2177 * sizeof (*new_offsets));
e2a44558 2178
b8040f19
JK
2179 for (i = 0; i < symfile_objfile->num_sections; i++)
2180 new_offsets->offsets[i] = displacement;
e2a44558 2181
b8040f19 2182 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2183 }
51bee8e9
JK
2184 else if (exec_bfd)
2185 {
2186 asection *asect;
2187
2188 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2189 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2190 (bfd_section_vma (exec_bfd, asect)
2191 + displacement));
2192 }
e2a44558
KB
2193}
2194
7f86f058 2195/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2196
2197 For SVR4 executables, this first instruction is either the first
2198 instruction in the dynamic linker (for dynamically linked
2199 executables) or the instruction at "start" for statically linked
2200 executables. For dynamically linked executables, the system
2201 first exec's /lib/libc.so.N, which contains the dynamic linker,
2202 and starts it running. The dynamic linker maps in any needed
2203 shared libraries, maps in the actual user executable, and then
2204 jumps to "start" in the user executable.
2205
7f86f058
PA
2206 We can arrange to cooperate with the dynamic linker to discover the
2207 names of shared libraries that are dynamically linked, and the base
2208 addresses to which they are linked.
13437d4b
KB
2209
2210 This function is responsible for discovering those names and
2211 addresses, and saving sufficient information about them to allow
2212 their symbols to be read at a later time.
2213
2214 FIXME
2215
2216 Between enable_break() and disable_break(), this code does not
2217 properly handle hitting breakpoints which the user might have
2218 set in the startup code or in the dynamic linker itself. Proper
2219 handling will probably have to wait until the implementation is
2220 changed to use the "breakpoint handler function" method.
2221
7f86f058 2222 Also, what if child has exit()ed? Must exit loop somehow. */
13437d4b 2223
e2a44558 2224static void
268a4a75 2225svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2226{
1cd337a5 2227#if defined(_SCO_DS)
d6b48e9c 2228 struct inferior *inf;
2020b7ab 2229 struct thread_info *tp;
1cd337a5 2230#endif /* defined(_SCO_DS) */
1a816a87
PA
2231 struct svr4_info *info;
2232
6c95b8df 2233 info = get_svr4_info ();
2020b7ab 2234
e2a44558 2235 /* Relocate the main executable if necessary. */
86e4bafc 2236 svr4_relocate_main_executable ();
e2a44558 2237
c91c8c16
PA
2238 /* No point setting a breakpoint in the dynamic linker if we can't
2239 hit it (e.g., a core file, or a trace file). */
2240 if (!target_has_execution)
2241 return;
2242
d5a921c9 2243 if (!svr4_have_link_map_offsets ())
513f5903 2244 return;
d5a921c9 2245
268a4a75 2246 if (!enable_break (info, from_tty))
542c95c2 2247 return;
13437d4b 2248
ab31aa69
KB
2249#if defined(_SCO_DS)
2250 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2251 special shared library breakpoints and the shared library breakpoint
2252 service routine.
2253
2254 Now run the target. It will eventually hit the breakpoint, at
2255 which point all of the libraries will have been mapped in and we
2256 can go groveling around in the dynamic linker structures to find
c378eb4e 2257 out what we need to know about them. */
13437d4b 2258
d6b48e9c 2259 inf = current_inferior ();
2020b7ab
PA
2260 tp = inferior_thread ();
2261
13437d4b 2262 clear_proceed_status ();
16c381f0 2263 inf->control.stop_soon = STOP_QUIETLY;
a493e3e2 2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
13437d4b
KB
2265 do
2266 {
16c381f0 2267 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2268 wait_for_inferior ();
13437d4b 2269 }
a493e3e2 2270 while (tp->suspend.stop_signal != GDB_SIGNAL_TRAP);
16c381f0 2271 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2272#endif /* defined(_SCO_DS) */
13437d4b
KB
2273}
2274
2275static void
2276svr4_clear_solib (void)
2277{
6c95b8df
PA
2278 struct svr4_info *info;
2279
2280 info = get_svr4_info ();
2281 info->debug_base = 0;
2282 info->debug_loader_offset_p = 0;
2283 info->debug_loader_offset = 0;
2284 xfree (info->debug_loader_name);
2285 info->debug_loader_name = NULL;
13437d4b
KB
2286}
2287
6bb7be43
JB
2288/* Clear any bits of ADDR that wouldn't fit in a target-format
2289 data pointer. "Data pointer" here refers to whatever sort of
2290 address the dynamic linker uses to manage its sections. At the
2291 moment, we don't support shared libraries on any processors where
2292 code and data pointers are different sizes.
2293
2294 This isn't really the right solution. What we really need here is
2295 a way to do arithmetic on CORE_ADDR values that respects the
2296 natural pointer/address correspondence. (For example, on the MIPS,
2297 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2298 sign-extend the value. There, simply truncating the bits above
819844ad 2299 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2300 be a new gdbarch method or something. */
2301static CORE_ADDR
2302svr4_truncate_ptr (CORE_ADDR addr)
2303{
f5656ead 2304 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2305 /* We don't need to truncate anything, and the bit twiddling below
2306 will fail due to overflow problems. */
2307 return addr;
2308 else
f5656ead 2309 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2310}
2311
2312
749499cb
KB
2313static void
2314svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2315 struct target_section *sec)
749499cb 2316{
b23518f0 2317 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2318 sec->bfd));
b23518f0 2319 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2320 sec->bfd));
749499cb 2321}
4b188b9f 2322\f
749499cb 2323
4b188b9f 2324/* Architecture-specific operations. */
6bb7be43 2325
4b188b9f
MK
2326/* Per-architecture data key. */
2327static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2328
4b188b9f 2329struct solib_svr4_ops
e5e2b9ff 2330{
4b188b9f
MK
2331 /* Return a description of the layout of `struct link_map'. */
2332 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2333};
e5e2b9ff 2334
4b188b9f 2335/* Return a default for the architecture-specific operations. */
e5e2b9ff 2336
4b188b9f
MK
2337static void *
2338solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2339{
4b188b9f 2340 struct solib_svr4_ops *ops;
e5e2b9ff 2341
4b188b9f 2342 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2343 ops->fetch_link_map_offsets = NULL;
4b188b9f 2344 return ops;
e5e2b9ff
KB
2345}
2346
4b188b9f 2347/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2348 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2349
21479ded 2350void
e5e2b9ff
KB
2351set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2352 struct link_map_offsets *(*flmo) (void))
21479ded 2353{
4b188b9f
MK
2354 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2355
2356 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2357
2358 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2359}
2360
4b188b9f
MK
2361/* Fetch a link_map_offsets structure using the architecture-specific
2362 `struct link_map_offsets' fetcher. */
1c4dcb57 2363
4b188b9f
MK
2364static struct link_map_offsets *
2365svr4_fetch_link_map_offsets (void)
21479ded 2366{
f5656ead 2367 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
2368
2369 gdb_assert (ops->fetch_link_map_offsets);
2370 return ops->fetch_link_map_offsets ();
21479ded
KB
2371}
2372
4b188b9f
MK
2373/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2374
2375static int
2376svr4_have_link_map_offsets (void)
2377{
f5656ead 2378 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 2379
4b188b9f
MK
2380 return (ops->fetch_link_map_offsets != NULL);
2381}
2382\f
2383
e4bbbda8
MK
2384/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2385 `struct r_debug' and a `struct link_map' that are binary compatible
2386 with the origional SVR4 implementation. */
2387
2388/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2389 for an ILP32 SVR4 system. */
d989b283 2390
e4bbbda8
MK
2391struct link_map_offsets *
2392svr4_ilp32_fetch_link_map_offsets (void)
2393{
2394 static struct link_map_offsets lmo;
2395 static struct link_map_offsets *lmp = NULL;
2396
2397 if (lmp == NULL)
2398 {
2399 lmp = &lmo;
2400
e4cd0d6a
MK
2401 lmo.r_version_offset = 0;
2402 lmo.r_version_size = 4;
e4bbbda8 2403 lmo.r_map_offset = 4;
7cd25cfc 2404 lmo.r_brk_offset = 8;
e4cd0d6a 2405 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2406
2407 /* Everything we need is in the first 20 bytes. */
2408 lmo.link_map_size = 20;
2409 lmo.l_addr_offset = 0;
e4bbbda8 2410 lmo.l_name_offset = 4;
cc10cae3 2411 lmo.l_ld_offset = 8;
e4bbbda8 2412 lmo.l_next_offset = 12;
e4bbbda8 2413 lmo.l_prev_offset = 16;
e4bbbda8
MK
2414 }
2415
2416 return lmp;
2417}
2418
2419/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2420 for an LP64 SVR4 system. */
d989b283 2421
e4bbbda8
MK
2422struct link_map_offsets *
2423svr4_lp64_fetch_link_map_offsets (void)
2424{
2425 static struct link_map_offsets lmo;
2426 static struct link_map_offsets *lmp = NULL;
2427
2428 if (lmp == NULL)
2429 {
2430 lmp = &lmo;
2431
e4cd0d6a
MK
2432 lmo.r_version_offset = 0;
2433 lmo.r_version_size = 4;
e4bbbda8 2434 lmo.r_map_offset = 8;
7cd25cfc 2435 lmo.r_brk_offset = 16;
e4cd0d6a 2436 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2437
2438 /* Everything we need is in the first 40 bytes. */
2439 lmo.link_map_size = 40;
2440 lmo.l_addr_offset = 0;
e4bbbda8 2441 lmo.l_name_offset = 8;
cc10cae3 2442 lmo.l_ld_offset = 16;
e4bbbda8 2443 lmo.l_next_offset = 24;
e4bbbda8 2444 lmo.l_prev_offset = 32;
e4bbbda8
MK
2445 }
2446
2447 return lmp;
2448}
2449\f
2450
7d522c90 2451struct target_so_ops svr4_so_ops;
13437d4b 2452
c378eb4e 2453/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2454 different rule for symbol lookup. The lookup begins here in the DSO, not in
2455 the main executable. */
2456
2457static struct symbol *
2458elf_lookup_lib_symbol (const struct objfile *objfile,
2459 const char *name,
21b556f4 2460 const domain_enum domain)
3a40aaa0 2461{
61f0d762
JK
2462 bfd *abfd;
2463
2464 if (objfile == symfile_objfile)
2465 abfd = exec_bfd;
2466 else
2467 {
2468 /* OBJFILE should have been passed as the non-debug one. */
2469 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2470
2471 abfd = objfile->obfd;
2472 }
2473
2474 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2475 return NULL;
2476
94af9270 2477 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2478}
2479
a78f21af
AC
2480extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2481
13437d4b
KB
2482void
2483_initialize_svr4_solib (void)
2484{
4b188b9f 2485 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 2486 solib_svr4_pspace_data
8e260fc0 2487 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 2488
749499cb 2489 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2490 svr4_so_ops.free_so = svr4_free_so;
2491 svr4_so_ops.clear_solib = svr4_clear_solib;
2492 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2493 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2494 svr4_so_ops.current_sos = svr4_current_sos;
2495 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2496 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2497 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2498 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2499 svr4_so_ops.same = svr4_same;
de18c1d8 2500 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2501}