]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
* breakpoint.c:
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4b188b9f 4 2000, 2001, 2003, 2004, 2005
e4bbbda8 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
13437d4b 23
13437d4b
KB
24#include "defs.h"
25
13437d4b 26#include "elf/external.h"
21479ded 27#include "elf/common.h"
f7856c8f 28#include "elf/mips.h"
13437d4b
KB
29
30#include "symtab.h"
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbcore.h"
13437d4b 35#include "target.h"
13437d4b 36#include "inferior.h"
13437d4b 37
4b188b9f
MK
38#include "gdb_assert.h"
39
13437d4b 40#include "solist.h"
bba93f6c 41#include "solib.h"
13437d4b
KB
42#include "solib-svr4.h"
43
2f4950cd
AC
44#include "bfd-target.h"
45#include "exec.h"
46
e5e2b9ff 47static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 48static int svr4_have_link_map_offsets (void);
1c4dcb57 49
4b188b9f
MK
50/* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
13437d4b
KB
62 };
63
64/* On SVR4 systems, a list of symbols in the dynamic linker where
65 GDB can try to place a breakpoint to monitor shared library
66 events.
67
68 If none of these symbols are found, or other errors occur, then
69 SVR4 systems will fall back to using a symbol as the "startup
70 mapping complete" breakpoint address. */
71
13437d4b
KB
72static char *solib_break_names[] =
73{
74 "r_debug_state",
75 "_r_debug_state",
76 "_dl_debug_state",
77 "rtld_db_dlactivity",
1f72e589 78 "_rtld_debug_state",
4c0122c8
JB
79
80 /* On the 64-bit PowerPC, the linker symbol with the same name as
81 the C function points to a function descriptor, not to the entry
82 point. The linker symbol whose name is the C function name
83 prefixed with a '.' points to the function's entry point. So
84 when we look through this table, we ignore symbols that point
85 into the data section (thus skipping the descriptor's symbol),
86 and eventually try this one, giving us the real entry point
87 address. */
88 "._dl_debug_state",
89
13437d4b
KB
90 NULL
91};
13437d4b
KB
92
93#define BKPT_AT_SYMBOL 1
94
ab31aa69 95#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
96static char *bkpt_names[] =
97{
98#ifdef SOLIB_BKPT_NAME
99 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
100#endif
101 "_start",
ad3dcc5c 102 "__start",
13437d4b
KB
103 "main",
104 NULL
105};
106#endif
107
13437d4b
KB
108static char *main_name_list[] =
109{
110 "main_$main",
111 NULL
112};
113
ae0167b9
AC
114/* Macro to extract an address from a solib structure. When GDB is
115 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
116 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
117 have to extract only the significant bits of addresses to get the
118 right address when accessing the core file BFD.
119
120 Assume that the address is unsigned. */
13437d4b
KB
121
122#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
ae0167b9 123 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
13437d4b
KB
124
125/* local data declarations */
126
13437d4b
KB
127/* link map access functions */
128
129static CORE_ADDR
130LM_ADDR (struct so_list *so)
131{
4b188b9f 132 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 133
58bc91c9
MH
134 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
135 lmo->l_addr_size);
13437d4b
KB
136}
137
138static CORE_ADDR
139LM_NEXT (struct so_list *so)
140{
4b188b9f 141 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 142
ae0167b9
AC
143 /* Assume that the address is unsigned. */
144 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
145 lmo->l_next_size);
13437d4b
KB
146}
147
148static CORE_ADDR
149LM_NAME (struct so_list *so)
150{
4b188b9f 151 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 152
ae0167b9
AC
153 /* Assume that the address is unsigned. */
154 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
155 lmo->l_name_size);
13437d4b
KB
156}
157
13437d4b
KB
158static int
159IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
160{
4b188b9f 161 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 162
ae0167b9
AC
163 /* Assume that the address is unsigned. */
164 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
165 lmo->l_prev_size) == 0;
13437d4b
KB
166}
167
13437d4b
KB
168static CORE_ADDR debug_base; /* Base of dynamic linker structures */
169static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
170
171/* Local function prototypes */
172
173static int match_main (char *);
174
87f84c9d 175static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
13437d4b
KB
176
177/*
178
179 LOCAL FUNCTION
180
181 bfd_lookup_symbol -- lookup the value for a specific symbol
182
183 SYNOPSIS
184
87f84c9d 185 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b
KB
186
187 DESCRIPTION
188
189 An expensive way to lookup the value of a single symbol for
190 bfd's that are only temporary anyway. This is used by the
191 shared library support to find the address of the debugger
192 interface structures in the shared library.
193
87f84c9d
JB
194 If SECT_FLAGS is non-zero, only match symbols in sections whose
195 flags include all those in SECT_FLAGS.
196
13437d4b
KB
197 Note that 0 is specifically allowed as an error return (no
198 such symbol).
199 */
200
201static CORE_ADDR
87f84c9d 202bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b 203{
435b259c 204 long storage_needed;
13437d4b
KB
205 asymbol *sym;
206 asymbol **symbol_table;
207 unsigned int number_of_symbols;
208 unsigned int i;
209 struct cleanup *back_to;
210 CORE_ADDR symaddr = 0;
211
212 storage_needed = bfd_get_symtab_upper_bound (abfd);
213
214 if (storage_needed > 0)
215 {
216 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 217 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
218 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
219
220 for (i = 0; i < number_of_symbols; i++)
221 {
222 sym = *symbol_table++;
6314a349 223 if (strcmp (sym->name, symname) == 0
87f84c9d 224 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
225 {
226 /* Bfd symbols are section relative. */
227 symaddr = sym->value + sym->section->vma;
228 break;
229 }
230 }
231 do_cleanups (back_to);
232 }
233
234 if (symaddr)
235 return symaddr;
236
237 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
238 have to check the dynamic string table too. */
239
240 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
241
242 if (storage_needed > 0)
243 {
244 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 245 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
246 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
247
248 for (i = 0; i < number_of_symbols; i++)
249 {
250 sym = *symbol_table++;
87f84c9d 251
6314a349 252 if (strcmp (sym->name, symname) == 0
87f84c9d 253 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
254 {
255 /* Bfd symbols are section relative. */
256 symaddr = sym->value + sym->section->vma;
257 break;
258 }
259 }
260 do_cleanups (back_to);
261 }
262
263 return symaddr;
264}
265
13437d4b
KB
266/*
267
268 LOCAL FUNCTION
269
270 elf_locate_base -- locate the base address of dynamic linker structs
271 for SVR4 elf targets.
272
273 SYNOPSIS
274
275 CORE_ADDR elf_locate_base (void)
276
277 DESCRIPTION
278
279 For SVR4 elf targets the address of the dynamic linker's runtime
280 structure is contained within the dynamic info section in the
281 executable file. The dynamic section is also mapped into the
282 inferior address space. Because the runtime loader fills in the
283 real address before starting the inferior, we have to read in the
284 dynamic info section from the inferior address space.
285 If there are any errors while trying to find the address, we
286 silently return 0, otherwise the found address is returned.
287
288 */
289
290static CORE_ADDR
291elf_locate_base (void)
292{
7be0c536 293 struct bfd_section *dyninfo_sect;
13437d4b
KB
294 int dyninfo_sect_size;
295 CORE_ADDR dyninfo_addr;
4066fc10
MI
296 gdb_byte *buf;
297 gdb_byte *bufend;
13437d4b
KB
298 int arch_size;
299
300 /* Find the start address of the .dynamic section. */
301 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
302 if (dyninfo_sect == NULL)
303 return 0;
304 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
305
306 /* Read in .dynamic section, silently ignore errors. */
307 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
308 buf = alloca (dyninfo_sect_size);
309 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
310 return 0;
311
312 /* Find the DT_DEBUG entry in the the .dynamic section.
313 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
314 no DT_DEBUG entries. */
315
316 arch_size = bfd_get_arch_size (exec_bfd);
317 if (arch_size == -1) /* failure */
318 return 0;
319
320 if (arch_size == 32)
321 { /* 32-bit elf */
322 for (bufend = buf + dyninfo_sect_size;
323 buf < bufend;
324 buf += sizeof (Elf32_External_Dyn))
325 {
326 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
327 long dyn_tag;
328 CORE_ADDR dyn_ptr;
329
330 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
331 if (dyn_tag == DT_NULL)
332 break;
333 else if (dyn_tag == DT_DEBUG)
334 {
335 dyn_ptr = bfd_h_get_32 (exec_bfd,
336 (bfd_byte *) x_dynp->d_un.d_ptr);
337 return dyn_ptr;
338 }
13437d4b
KB
339 else if (dyn_tag == DT_MIPS_RLD_MAP)
340 {
4066fc10 341 gdb_byte *pbuf;
743b930b 342 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
13437d4b 343
743b930b 344 pbuf = alloca (pbuf_size);
13437d4b
KB
345 /* DT_MIPS_RLD_MAP contains a pointer to the address
346 of the dynamic link structure. */
347 dyn_ptr = bfd_h_get_32 (exec_bfd,
348 (bfd_byte *) x_dynp->d_un.d_ptr);
743b930b 349 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
13437d4b 350 return 0;
743b930b 351 return extract_unsigned_integer (pbuf, pbuf_size);
13437d4b 352 }
13437d4b
KB
353 }
354 }
355 else /* 64-bit elf */
356 {
357 for (bufend = buf + dyninfo_sect_size;
358 buf < bufend;
359 buf += sizeof (Elf64_External_Dyn))
360 {
361 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
362 long dyn_tag;
363 CORE_ADDR dyn_ptr;
364
365 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
366 if (dyn_tag == DT_NULL)
367 break;
368 else if (dyn_tag == DT_DEBUG)
369 {
370 dyn_ptr = bfd_h_get_64 (exec_bfd,
371 (bfd_byte *) x_dynp->d_un.d_ptr);
372 return dyn_ptr;
373 }
743b930b
KB
374 else if (dyn_tag == DT_MIPS_RLD_MAP)
375 {
4066fc10 376 gdb_byte *pbuf;
743b930b
KB
377 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
378
379 pbuf = alloca (pbuf_size);
380 /* DT_MIPS_RLD_MAP contains a pointer to the address
381 of the dynamic link structure. */
382 dyn_ptr = bfd_h_get_64 (exec_bfd,
383 (bfd_byte *) x_dynp->d_un.d_ptr);
384 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
385 return 0;
386 return extract_unsigned_integer (pbuf, pbuf_size);
387 }
13437d4b
KB
388 }
389 }
390
391 /* DT_DEBUG entry not found. */
392 return 0;
393}
394
13437d4b
KB
395/*
396
397 LOCAL FUNCTION
398
399 locate_base -- locate the base address of dynamic linker structs
400
401 SYNOPSIS
402
403 CORE_ADDR locate_base (void)
404
405 DESCRIPTION
406
407 For both the SunOS and SVR4 shared library implementations, if the
408 inferior executable has been linked dynamically, there is a single
409 address somewhere in the inferior's data space which is the key to
410 locating all of the dynamic linker's runtime structures. This
411 address is the value of the debug base symbol. The job of this
412 function is to find and return that address, or to return 0 if there
413 is no such address (the executable is statically linked for example).
414
415 For SunOS, the job is almost trivial, since the dynamic linker and
416 all of it's structures are statically linked to the executable at
417 link time. Thus the symbol for the address we are looking for has
418 already been added to the minimal symbol table for the executable's
419 objfile at the time the symbol file's symbols were read, and all we
420 have to do is look it up there. Note that we explicitly do NOT want
421 to find the copies in the shared library.
422
423 The SVR4 version is a bit more complicated because the address
424 is contained somewhere in the dynamic info section. We have to go
425 to a lot more work to discover the address of the debug base symbol.
426 Because of this complexity, we cache the value we find and return that
427 value on subsequent invocations. Note there is no copy in the
428 executable symbol tables.
429
430 */
431
432static CORE_ADDR
433locate_base (void)
434{
13437d4b
KB
435 /* Check to see if we have a currently valid address, and if so, avoid
436 doing all this work again and just return the cached address. If
437 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
438 section for ELF executables. There's no point in doing any of this
439 though if we don't have some link map offsets to work with. */
13437d4b 440
d5a921c9 441 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
442 {
443 if (exec_bfd != NULL
444 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
445 debug_base = elf_locate_base ();
13437d4b
KB
446 }
447 return (debug_base);
13437d4b
KB
448}
449
450/*
451
452 LOCAL FUNCTION
453
454 first_link_map_member -- locate first member in dynamic linker's map
455
456 SYNOPSIS
457
458 static CORE_ADDR first_link_map_member (void)
459
460 DESCRIPTION
461
462 Find the first element in the inferior's dynamic link map, and
463 return its address in the inferior. This function doesn't copy the
464 link map entry itself into our address space; current_sos actually
465 does the reading. */
466
467static CORE_ADDR
468first_link_map_member (void)
469{
470 CORE_ADDR lm = 0;
4b188b9f 471 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
4066fc10 472 gdb_byte *r_map_buf = xmalloc (lmo->r_map_size);
b8c9b27d 473 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
13437d4b
KB
474
475 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
476
ae0167b9
AC
477 /* Assume that the address is unsigned. */
478 lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size);
13437d4b
KB
479
480 /* FIXME: Perhaps we should validate the info somehow, perhaps by
481 checking r_version for a known version number, or r_state for
482 RT_CONSISTENT. */
483
484 do_cleanups (cleanups);
485
13437d4b
KB
486 return (lm);
487}
488
13437d4b
KB
489/*
490
491 LOCAL FUNCTION
492
493 open_symbol_file_object
494
495 SYNOPSIS
496
497 void open_symbol_file_object (void *from_tty)
498
499 DESCRIPTION
500
501 If no open symbol file, attempt to locate and open the main symbol
502 file. On SVR4 systems, this is the first link map entry. If its
503 name is here, we can open it. Useful when attaching to a process
504 without first loading its symbol file.
505
506 If FROM_TTYP dereferences to a non-zero integer, allow messages to
507 be printed. This parameter is a pointer rather than an int because
508 open_symbol_file_object() is called via catch_errors() and
509 catch_errors() requires a pointer argument. */
510
511static int
512open_symbol_file_object (void *from_ttyp)
513{
514 CORE_ADDR lm, l_name;
515 char *filename;
516 int errcode;
517 int from_tty = *(int *)from_ttyp;
4b188b9f 518 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
4066fc10 519 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
b8c9b27d 520 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
521
522 if (symfile_objfile)
523 if (!query ("Attempt to reload symbols from process? "))
524 return 0;
525
526 if ((debug_base = locate_base ()) == 0)
527 return 0; /* failed somehow... */
528
529 /* First link map member should be the executable. */
530 if ((lm = first_link_map_member ()) == 0)
531 return 0; /* failed somehow... */
532
533 /* Read address of name from target memory to GDB. */
534 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
535
ae0167b9
AC
536 /* Convert the address to host format. Assume that the address is
537 unsigned. */
538 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
13437d4b
KB
539
540 /* Free l_name_buf. */
541 do_cleanups (cleanups);
542
543 if (l_name == 0)
544 return 0; /* No filename. */
545
546 /* Now fetch the filename from target memory. */
547 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
548
549 if (errcode)
550 {
8a3fe4f8 551 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
552 safe_strerror (errcode));
553 return 0;
554 }
555
b8c9b27d 556 make_cleanup (xfree, filename);
13437d4b 557 /* Have a pathname: read the symbol file. */
1adeb98a 558 symbol_file_add_main (filename, from_tty);
13437d4b
KB
559
560 return 1;
561}
13437d4b
KB
562
563/* LOCAL FUNCTION
564
565 current_sos -- build a list of currently loaded shared objects
566
567 SYNOPSIS
568
569 struct so_list *current_sos ()
570
571 DESCRIPTION
572
573 Build a list of `struct so_list' objects describing the shared
574 objects currently loaded in the inferior. This list does not
575 include an entry for the main executable file.
576
577 Note that we only gather information directly available from the
578 inferior --- we don't examine any of the shared library files
579 themselves. The declaration of `struct so_list' says which fields
580 we provide values for. */
581
582static struct so_list *
583svr4_current_sos (void)
584{
585 CORE_ADDR lm;
586 struct so_list *head = 0;
587 struct so_list **link_ptr = &head;
588
589 /* Make sure we've looked up the inferior's dynamic linker's base
590 structure. */
591 if (! debug_base)
592 {
593 debug_base = locate_base ();
594
595 /* If we can't find the dynamic linker's base structure, this
596 must not be a dynamically linked executable. Hmm. */
597 if (! debug_base)
598 return 0;
599 }
600
601 /* Walk the inferior's link map list, and build our list of
602 `struct so_list' nodes. */
603 lm = first_link_map_member ();
604 while (lm)
605 {
4b188b9f 606 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 607 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 608 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 609
13437d4b 610 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 611 make_cleanup (xfree, new->lm_info);
13437d4b 612
f4456994 613 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 614 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
615
616 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
617
618 lm = LM_NEXT (new);
619
620 /* For SVR4 versions, the first entry in the link map is for the
621 inferior executable, so we must ignore it. For some versions of
622 SVR4, it has no name. For others (Solaris 2.3 for example), it
623 does have a name, so we can no longer use a missing name to
624 decide when to ignore it. */
625 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
626 free_so (new);
627 else
628 {
629 int errcode;
630 char *buffer;
631
632 /* Extract this shared object's name. */
633 target_read_string (LM_NAME (new), &buffer,
634 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
635 if (errcode != 0)
8a3fe4f8
AC
636 warning (_("Can't read pathname for load map: %s."),
637 safe_strerror (errcode));
13437d4b
KB
638 else
639 {
640 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
641 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 642 xfree (buffer);
13437d4b
KB
643 strcpy (new->so_original_name, new->so_name);
644 }
645
646 /* If this entry has no name, or its name matches the name
647 for the main executable, don't include it in the list. */
648 if (! new->so_name[0]
649 || match_main (new->so_name))
650 free_so (new);
651 else
652 {
653 new->next = 0;
654 *link_ptr = new;
655 link_ptr = &new->next;
656 }
657 }
658
659 discard_cleanups (old_chain);
660 }
661
662 return head;
663}
664
bc4a16ae
EZ
665/* Get the address of the link_map for a given OBJFILE. Loop through
666 the link maps, and return the address of the one corresponding to
667 the given objfile. Note that this function takes into account that
668 objfile can be the main executable, not just a shared library. The
669 main executable has always an empty name field in the linkmap. */
670
671CORE_ADDR
672svr4_fetch_objfile_link_map (struct objfile *objfile)
673{
674 CORE_ADDR lm;
675
676 if ((debug_base = locate_base ()) == 0)
677 return 0; /* failed somehow... */
678
679 /* Position ourselves on the first link map. */
680 lm = first_link_map_member ();
681 while (lm)
682 {
683 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 684 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
685 int errcode;
686 char *buffer;
687 struct lm_info objfile_lm_info;
688 struct cleanup *old_chain;
689 CORE_ADDR name_address;
4066fc10 690 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
bc4a16ae
EZ
691 old_chain = make_cleanup (xfree, l_name_buf);
692
693 /* Set up the buffer to contain the portion of the link_map
694 structure that gdb cares about. Note that this is not the
695 whole link_map structure. */
f4456994 696 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 697 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
698
699 /* Read the link map into our internal structure. */
700 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
701
702 /* Read address of name from target memory to GDB. */
703 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
704
ae0167b9
AC
705 /* Extract this object's name. Assume that the address is
706 unsigned. */
707 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
bc4a16ae
EZ
708 target_read_string (name_address, &buffer,
709 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
710 make_cleanup (xfree, buffer);
711 if (errcode != 0)
8a3fe4f8
AC
712 warning (_("Can't read pathname for load map: %s."),
713 safe_strerror (errcode));
bc4a16ae
EZ
714 else
715 {
716 /* Is this the linkmap for the file we want? */
717 /* If the file is not a shared library and has no name,
718 we are sure it is the main executable, so we return that. */
719 if ((buffer && strcmp (buffer, objfile->name) == 0)
720 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
721 {
722 do_cleanups (old_chain);
723 return lm;
724 }
725 }
ae0167b9
AC
726 /* Not the file we wanted, continue checking. Assume that the
727 address is unsigned. */
728 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
729 lmo->l_next_size);
bc4a16ae
EZ
730 do_cleanups (old_chain);
731 }
732 return 0;
733}
13437d4b
KB
734
735/* On some systems, the only way to recognize the link map entry for
736 the main executable file is by looking at its name. Return
737 non-zero iff SONAME matches one of the known main executable names. */
738
739static int
740match_main (char *soname)
741{
742 char **mainp;
743
744 for (mainp = main_name_list; *mainp != NULL; mainp++)
745 {
746 if (strcmp (soname, *mainp) == 0)
747 return (1);
748 }
749
750 return (0);
751}
752
13437d4b
KB
753/* Return 1 if PC lies in the dynamic symbol resolution code of the
754 SVR4 run time loader. */
13437d4b
KB
755static CORE_ADDR interp_text_sect_low;
756static CORE_ADDR interp_text_sect_high;
757static CORE_ADDR interp_plt_sect_low;
758static CORE_ADDR interp_plt_sect_high;
759
d7fa2ae2
KB
760static int
761svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
762{
763 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
764 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
765 || in_plt_section (pc, NULL));
766}
13437d4b 767
2f4950cd
AC
768/* Given an executable's ABFD and target, compute the entry-point
769 address. */
770
771static CORE_ADDR
772exec_entry_point (struct bfd *abfd, struct target_ops *targ)
773{
774 /* KevinB wrote ... for most targets, the address returned by
775 bfd_get_start_address() is the entry point for the start
776 function. But, for some targets, bfd_get_start_address() returns
777 the address of a function descriptor from which the entry point
778 address may be extracted. This address is extracted by
779 gdbarch_convert_from_func_ptr_addr(). The method
780 gdbarch_convert_from_func_ptr_addr() is the merely the identify
781 function for targets which don't use function descriptors. */
782 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
783 bfd_get_start_address (abfd),
784 targ);
785}
13437d4b
KB
786
787/*
788
789 LOCAL FUNCTION
790
791 enable_break -- arrange for dynamic linker to hit breakpoint
792
793 SYNOPSIS
794
795 int enable_break (void)
796
797 DESCRIPTION
798
799 Both the SunOS and the SVR4 dynamic linkers have, as part of their
800 debugger interface, support for arranging for the inferior to hit
801 a breakpoint after mapping in the shared libraries. This function
802 enables that breakpoint.
803
804 For SunOS, there is a special flag location (in_debugger) which we
805 set to 1. When the dynamic linker sees this flag set, it will set
806 a breakpoint at a location known only to itself, after saving the
807 original contents of that place and the breakpoint address itself,
808 in it's own internal structures. When we resume the inferior, it
809 will eventually take a SIGTRAP when it runs into the breakpoint.
810 We handle this (in a different place) by restoring the contents of
811 the breakpointed location (which is only known after it stops),
812 chasing around to locate the shared libraries that have been
813 loaded, then resuming.
814
815 For SVR4, the debugger interface structure contains a member (r_brk)
816 which is statically initialized at the time the shared library is
817 built, to the offset of a function (_r_debug_state) which is guaran-
818 teed to be called once before mapping in a library, and again when
819 the mapping is complete. At the time we are examining this member,
820 it contains only the unrelocated offset of the function, so we have
821 to do our own relocation. Later, when the dynamic linker actually
822 runs, it relocates r_brk to be the actual address of _r_debug_state().
823
824 The debugger interface structure also contains an enumeration which
825 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
826 depending upon whether or not the library is being mapped or unmapped,
827 and then set to RT_CONSISTENT after the library is mapped/unmapped.
828 */
829
830static int
831enable_break (void)
832{
833 int success = 0;
834
13437d4b
KB
835#ifdef BKPT_AT_SYMBOL
836
837 struct minimal_symbol *msymbol;
838 char **bkpt_namep;
839 asection *interp_sect;
840
841 /* First, remove all the solib event breakpoints. Their addresses
842 may have changed since the last time we ran the program. */
843 remove_solib_event_breakpoints ();
844
13437d4b
KB
845 interp_text_sect_low = interp_text_sect_high = 0;
846 interp_plt_sect_low = interp_plt_sect_high = 0;
847
848 /* Find the .interp section; if not found, warn the user and drop
849 into the old breakpoint at symbol code. */
850 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
851 if (interp_sect)
852 {
853 unsigned int interp_sect_size;
854 char *buf;
8ad2fcde
KB
855 CORE_ADDR load_addr = 0;
856 int load_addr_found = 0;
f8766ec1 857 struct so_list *so;
e4f7b8c8 858 bfd *tmp_bfd = NULL;
2f4950cd 859 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
860 int tmp_fd = -1;
861 char *tmp_pathname = NULL;
13437d4b
KB
862 CORE_ADDR sym_addr = 0;
863
864 /* Read the contents of the .interp section into a local buffer;
865 the contents specify the dynamic linker this program uses. */
866 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
867 buf = alloca (interp_sect_size);
868 bfd_get_section_contents (exec_bfd, interp_sect,
869 buf, 0, interp_sect_size);
870
871 /* Now we need to figure out where the dynamic linker was
872 loaded so that we can load its symbols and place a breakpoint
873 in the dynamic linker itself.
874
875 This address is stored on the stack. However, I've been unable
876 to find any magic formula to find it for Solaris (appears to
877 be trivial on GNU/Linux). Therefore, we have to try an alternate
878 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
879
880 tmp_fd = solib_open (buf, &tmp_pathname);
881 if (tmp_fd >= 0)
9f76c2cd 882 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 883
13437d4b
KB
884 if (tmp_bfd == NULL)
885 goto bkpt_at_symbol;
886
887 /* Make sure the dynamic linker's really a useful object. */
888 if (!bfd_check_format (tmp_bfd, bfd_object))
889 {
8a3fe4f8 890 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
891 bfd_close (tmp_bfd);
892 goto bkpt_at_symbol;
893 }
894
2f4950cd
AC
895 /* Now convert the TMP_BFD into a target. That way target, as
896 well as BFD operations can be used. Note that closing the
897 target will also close the underlying bfd. */
898 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
899
f8766ec1
KB
900 /* On a running target, we can get the dynamic linker's base
901 address from the shared library table. */
902 solib_add (NULL, 0, NULL, auto_solib_add);
903 so = master_so_list ();
904 while (so)
8ad2fcde 905 {
f8766ec1 906 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
907 {
908 load_addr_found = 1;
f8766ec1 909 load_addr = LM_ADDR (so);
8ad2fcde
KB
910 break;
911 }
f8766ec1 912 so = so->next;
8ad2fcde
KB
913 }
914
915 /* Otherwise we find the dynamic linker's base address by examining
916 the current pc (which should point at the entry point for the
917 dynamic linker) and subtracting the offset of the entry point. */
918 if (!load_addr_found)
2f4950cd
AC
919 load_addr = (read_pc ()
920 - exec_entry_point (tmp_bfd, tmp_bfd_target));
13437d4b
KB
921
922 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 923 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
924 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
925 if (interp_sect)
926 {
927 interp_text_sect_low =
928 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
929 interp_text_sect_high =
930 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
931 }
932 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
933 if (interp_sect)
934 {
935 interp_plt_sect_low =
936 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
937 interp_plt_sect_high =
938 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
939 }
940
941 /* Now try to set a breakpoint in the dynamic linker. */
942 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
943 {
87f84c9d
JB
944 /* On ABI's that use function descriptors, there are usually
945 two linker symbols associated with each C function: one
946 pointing at the actual entry point of the machine code,
947 and one pointing at the function's descriptor. The
948 latter symbol has the same name as the C function.
949
950 What we're looking for here is the machine code entry
951 point, so we are only interested in symbols in code
952 sections. */
953 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
13437d4b
KB
954 if (sym_addr != 0)
955 break;
956 }
957
2f4950cd
AC
958 /* We're done with both the temporary bfd and target. Remember,
959 closing the target closes the underlying bfd. */
960 target_close (tmp_bfd_target, 0);
13437d4b
KB
961
962 if (sym_addr != 0)
963 {
964 create_solib_event_breakpoint (load_addr + sym_addr);
965 return 1;
966 }
967
968 /* For whatever reason we couldn't set a breakpoint in the dynamic
969 linker. Warn and drop into the old code. */
970 bkpt_at_symbol:
8a3fe4f8 971 warning (_("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code."));
13437d4b 972 }
13437d4b
KB
973
974 /* Scan through the list of symbols, trying to look up the symbol and
975 set a breakpoint there. Terminate loop when we/if we succeed. */
976
977 breakpoint_addr = 0;
978 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
979 {
980 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
981 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
982 {
983 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
984 return 1;
985 }
986 }
987
988 /* Nothing good happened. */
989 success = 0;
990
991#endif /* BKPT_AT_SYMBOL */
992
13437d4b
KB
993 return (success);
994}
995
996/*
997
998 LOCAL FUNCTION
999
1000 special_symbol_handling -- additional shared library symbol handling
1001
1002 SYNOPSIS
1003
1004 void special_symbol_handling ()
1005
1006 DESCRIPTION
1007
1008 Once the symbols from a shared object have been loaded in the usual
1009 way, we are called to do any system specific symbol handling that
1010 is needed.
1011
ab31aa69 1012 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1013 linkers structures to find symbol definitions for "common" symbols
1014 and adding them to the minimal symbol table for the runtime common
1015 objfile.
1016
ab31aa69
KB
1017 However, for SVR4, there's nothing to do.
1018
13437d4b
KB
1019 */
1020
1021static void
1022svr4_special_symbol_handling (void)
1023{
13437d4b
KB
1024}
1025
e2a44558
KB
1026/* Relocate the main executable. This function should be called upon
1027 stopping the inferior process at the entry point to the program.
1028 The entry point from BFD is compared to the PC and if they are
1029 different, the main executable is relocated by the proper amount.
1030
1031 As written it will only attempt to relocate executables which
1032 lack interpreter sections. It seems likely that only dynamic
1033 linker executables will get relocated, though it should work
1034 properly for a position-independent static executable as well. */
1035
1036static void
1037svr4_relocate_main_executable (void)
1038{
1039 asection *interp_sect;
1040 CORE_ADDR pc = read_pc ();
1041
1042 /* Decide if the objfile needs to be relocated. As indicated above,
1043 we will only be here when execution is stopped at the beginning
1044 of the program. Relocation is necessary if the address at which
1045 we are presently stopped differs from the start address stored in
1046 the executable AND there's no interpreter section. The condition
1047 regarding the interpreter section is very important because if
1048 there *is* an interpreter section, execution will begin there
1049 instead. When there is an interpreter section, the start address
1050 is (presumably) used by the interpreter at some point to start
1051 execution of the program.
1052
1053 If there is an interpreter, it is normal for it to be set to an
1054 arbitrary address at the outset. The job of finding it is
1055 handled in enable_break().
1056
1057 So, to summarize, relocations are necessary when there is no
1058 interpreter section and the start address obtained from the
1059 executable is different from the address at which GDB is
1060 currently stopped.
1061
1062 [ The astute reader will note that we also test to make sure that
1063 the executable in question has the DYNAMIC flag set. It is my
1064 opinion that this test is unnecessary (undesirable even). It
1065 was added to avoid inadvertent relocation of an executable
1066 whose e_type member in the ELF header is not ET_DYN. There may
1067 be a time in the future when it is desirable to do relocations
1068 on other types of files as well in which case this condition
1069 should either be removed or modified to accomodate the new file
1070 type. (E.g, an ET_EXEC executable which has been built to be
1071 position-independent could safely be relocated by the OS if
1072 desired. It is true that this violates the ABI, but the ABI
1073 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1074 */
1075
1076 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1077 if (interp_sect == NULL
1078 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1079 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1080 {
1081 struct cleanup *old_chain;
1082 struct section_offsets *new_offsets;
1083 int i, changed;
1084 CORE_ADDR displacement;
1085
1086 /* It is necessary to relocate the objfile. The amount to
1087 relocate by is simply the address at which we are stopped
1088 minus the starting address from the executable.
1089
1090 We relocate all of the sections by the same amount. This
1091 behavior is mandated by recent editions of the System V ABI.
1092 According to the System V Application Binary Interface,
1093 Edition 4.1, page 5-5:
1094
1095 ... Though the system chooses virtual addresses for
1096 individual processes, it maintains the segments' relative
1097 positions. Because position-independent code uses relative
1098 addressesing between segments, the difference between
1099 virtual addresses in memory must match the difference
1100 between virtual addresses in the file. The difference
1101 between the virtual address of any segment in memory and
1102 the corresponding virtual address in the file is thus a
1103 single constant value for any one executable or shared
1104 object in a given process. This difference is the base
1105 address. One use of the base address is to relocate the
1106 memory image of the program during dynamic linking.
1107
1108 The same language also appears in Edition 4.0 of the System V
1109 ABI and is left unspecified in some of the earlier editions. */
1110
2f4950cd 1111 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1112 changed = 0;
1113
13fc0c2f
KB
1114 new_offsets = xcalloc (symfile_objfile->num_sections,
1115 sizeof (struct section_offsets));
b8c9b27d 1116 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1117
1118 for (i = 0; i < symfile_objfile->num_sections; i++)
1119 {
1120 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1121 changed = 1;
1122 new_offsets->offsets[i] = displacement;
1123 }
1124
1125 if (changed)
1126 objfile_relocate (symfile_objfile, new_offsets);
1127
1128 do_cleanups (old_chain);
1129 }
1130}
1131
13437d4b
KB
1132/*
1133
1134 GLOBAL FUNCTION
1135
1136 svr4_solib_create_inferior_hook -- shared library startup support
1137
1138 SYNOPSIS
1139
7095b863 1140 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1141
1142 DESCRIPTION
1143
1144 When gdb starts up the inferior, it nurses it along (through the
1145 shell) until it is ready to execute it's first instruction. At this
1146 point, this function gets called via expansion of the macro
1147 SOLIB_CREATE_INFERIOR_HOOK.
1148
1149 For SunOS executables, this first instruction is typically the
1150 one at "_start", or a similar text label, regardless of whether
1151 the executable is statically or dynamically linked. The runtime
1152 startup code takes care of dynamically linking in any shared
1153 libraries, once gdb allows the inferior to continue.
1154
1155 For SVR4 executables, this first instruction is either the first
1156 instruction in the dynamic linker (for dynamically linked
1157 executables) or the instruction at "start" for statically linked
1158 executables. For dynamically linked executables, the system
1159 first exec's /lib/libc.so.N, which contains the dynamic linker,
1160 and starts it running. The dynamic linker maps in any needed
1161 shared libraries, maps in the actual user executable, and then
1162 jumps to "start" in the user executable.
1163
1164 For both SunOS shared libraries, and SVR4 shared libraries, we
1165 can arrange to cooperate with the dynamic linker to discover the
1166 names of shared libraries that are dynamically linked, and the
1167 base addresses to which they are linked.
1168
1169 This function is responsible for discovering those names and
1170 addresses, and saving sufficient information about them to allow
1171 their symbols to be read at a later time.
1172
1173 FIXME
1174
1175 Between enable_break() and disable_break(), this code does not
1176 properly handle hitting breakpoints which the user might have
1177 set in the startup code or in the dynamic linker itself. Proper
1178 handling will probably have to wait until the implementation is
1179 changed to use the "breakpoint handler function" method.
1180
1181 Also, what if child has exit()ed? Must exit loop somehow.
1182 */
1183
e2a44558 1184static void
13437d4b
KB
1185svr4_solib_create_inferior_hook (void)
1186{
e2a44558
KB
1187 /* Relocate the main executable if necessary. */
1188 svr4_relocate_main_executable ();
1189
d5a921c9
KB
1190 if (!svr4_have_link_map_offsets ())
1191 {
8a3fe4f8 1192 warning (_("no shared library support for this OS / ABI"));
d5a921c9
KB
1193 return;
1194
1195 }
1196
13437d4b
KB
1197 if (!enable_break ())
1198 {
8a3fe4f8 1199 warning (_("shared library handler failed to enable breakpoint"));
13437d4b
KB
1200 return;
1201 }
1202
ab31aa69
KB
1203#if defined(_SCO_DS)
1204 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1205 special shared library breakpoints and the shared library breakpoint
1206 service routine.
1207
1208 Now run the target. It will eventually hit the breakpoint, at
1209 which point all of the libraries will have been mapped in and we
1210 can go groveling around in the dynamic linker structures to find
1211 out what we need to know about them. */
1212
1213 clear_proceed_status ();
c0236d92 1214 stop_soon = STOP_QUIETLY;
13437d4b
KB
1215 stop_signal = TARGET_SIGNAL_0;
1216 do
1217 {
39f77062 1218 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1219 wait_for_inferior ();
1220 }
1221 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1222 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1223#endif /* defined(_SCO_DS) */
13437d4b
KB
1224}
1225
1226static void
1227svr4_clear_solib (void)
1228{
1229 debug_base = 0;
1230}
1231
1232static void
1233svr4_free_so (struct so_list *so)
1234{
b8c9b27d
KB
1235 xfree (so->lm_info->lm);
1236 xfree (so->lm_info);
13437d4b
KB
1237}
1238
6bb7be43
JB
1239
1240/* Clear any bits of ADDR that wouldn't fit in a target-format
1241 data pointer. "Data pointer" here refers to whatever sort of
1242 address the dynamic linker uses to manage its sections. At the
1243 moment, we don't support shared libraries on any processors where
1244 code and data pointers are different sizes.
1245
1246 This isn't really the right solution. What we really need here is
1247 a way to do arithmetic on CORE_ADDR values that respects the
1248 natural pointer/address correspondence. (For example, on the MIPS,
1249 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1250 sign-extend the value. There, simply truncating the bits above
1251 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1252 be a new gdbarch method or something. */
1253static CORE_ADDR
1254svr4_truncate_ptr (CORE_ADDR addr)
1255{
1256 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1257 /* We don't need to truncate anything, and the bit twiddling below
1258 will fail due to overflow problems. */
1259 return addr;
1260 else
1261 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1262}
1263
1264
749499cb
KB
1265static void
1266svr4_relocate_section_addresses (struct so_list *so,
1267 struct section_table *sec)
1268{
6bb7be43
JB
1269 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1270 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
749499cb 1271}
4b188b9f 1272\f
749499cb 1273
4b188b9f 1274/* Architecture-specific operations. */
6bb7be43 1275
4b188b9f
MK
1276/* Per-architecture data key. */
1277static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1278
4b188b9f 1279struct solib_svr4_ops
e5e2b9ff 1280{
4b188b9f
MK
1281 /* Return a description of the layout of `struct link_map'. */
1282 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1283};
e5e2b9ff 1284
4b188b9f 1285/* Return a default for the architecture-specific operations. */
e5e2b9ff 1286
4b188b9f
MK
1287static void *
1288solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1289{
4b188b9f 1290 struct solib_svr4_ops *ops;
e5e2b9ff 1291
4b188b9f
MK
1292 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1293 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1294 return ops;
e5e2b9ff
KB
1295}
1296
4b188b9f
MK
1297/* Set the architecture-specific `struct link_map_offsets' fetcher for
1298 GDBARCH to FLMO. */
1c4dcb57 1299
21479ded 1300void
e5e2b9ff
KB
1301set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1302 struct link_map_offsets *(*flmo) (void))
21479ded 1303{
4b188b9f
MK
1304 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1305
1306 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1307}
1308
4b188b9f
MK
1309/* Fetch a link_map_offsets structure using the architecture-specific
1310 `struct link_map_offsets' fetcher. */
1c4dcb57 1311
4b188b9f
MK
1312static struct link_map_offsets *
1313svr4_fetch_link_map_offsets (void)
21479ded 1314{
4b188b9f
MK
1315 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1316
1317 gdb_assert (ops->fetch_link_map_offsets);
1318 return ops->fetch_link_map_offsets ();
21479ded
KB
1319}
1320
4b188b9f
MK
1321/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1322
1323static int
1324svr4_have_link_map_offsets (void)
1325{
1326 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1327 return (ops->fetch_link_map_offsets != NULL);
1328}
1329\f
1330
e4bbbda8
MK
1331/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1332 `struct r_debug' and a `struct link_map' that are binary compatible
1333 with the origional SVR4 implementation. */
1334
1335/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1336 for an ILP32 SVR4 system. */
1337
1338struct link_map_offsets *
1339svr4_ilp32_fetch_link_map_offsets (void)
1340{
1341 static struct link_map_offsets lmo;
1342 static struct link_map_offsets *lmp = NULL;
1343
1344 if (lmp == NULL)
1345 {
1346 lmp = &lmo;
1347
1348 /* Everything we need is in the first 8 bytes. */
1349 lmo.r_debug_size = 8;
1350 lmo.r_map_offset = 4;
1351 lmo.r_map_size = 4;
1352
1353 /* Everything we need is in the first 20 bytes. */
1354 lmo.link_map_size = 20;
1355 lmo.l_addr_offset = 0;
1356 lmo.l_addr_size = 4;
1357 lmo.l_name_offset = 4;
1358 lmo.l_name_size = 4;
1359 lmo.l_next_offset = 12;
1360 lmo.l_next_size = 4;
1361 lmo.l_prev_offset = 16;
1362 lmo.l_prev_size = 4;
1363 }
1364
1365 return lmp;
1366}
1367
1368/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1369 for an LP64 SVR4 system. */
1370
1371struct link_map_offsets *
1372svr4_lp64_fetch_link_map_offsets (void)
1373{
1374 static struct link_map_offsets lmo;
1375 static struct link_map_offsets *lmp = NULL;
1376
1377 if (lmp == NULL)
1378 {
1379 lmp = &lmo;
1380
1381 /* Everything we need is in the first 16 bytes. */
1382 lmo.r_debug_size = 16;
1383 lmo.r_map_offset = 8;
1384 lmo.r_map_size = 8;
1385
1386 /* Everything we need is in the first 40 bytes. */
1387 lmo.link_map_size = 40;
1388 lmo.l_addr_offset = 0;
1389 lmo.l_addr_size = 8;
1390 lmo.l_name_offset = 8;
1391 lmo.l_name_size = 8;
1392 lmo.l_next_offset = 24;
1393 lmo.l_next_size = 8;
1394 lmo.l_prev_offset = 32;
1395 lmo.l_prev_size = 8;
1396 }
1397
1398 return lmp;
1399}
1400\f
1401
13437d4b
KB
1402static struct target_so_ops svr4_so_ops;
1403
a78f21af
AC
1404extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1405
13437d4b
KB
1406void
1407_initialize_svr4_solib (void)
1408{
4b188b9f
MK
1409 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1410
749499cb 1411 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1412 svr4_so_ops.free_so = svr4_free_so;
1413 svr4_so_ops.clear_solib = svr4_clear_solib;
1414 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1415 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1416 svr4_so_ops.current_sos = svr4_current_sos;
1417 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1418 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1419
1420 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1421 current_target_so_ops = &svr4_so_ops;
1422}