]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
3666a048 3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
8b88a78e 431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 432 return {};
8b88a78e 433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 434 return {};
8b88a78e 435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 436 return {};
97ec2c2f 437 if (!at_phdr || !at_phnum)
17658d46 438 return {};
97ec2c2f
UW
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
17658d46 446 return {};
97ec2c2f 447
09919ac2
JK
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
97ec2c2f
UW
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
43136979
AR
462 int p_type;
463
97ec2c2f
UW
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 466 return {};
97ec2c2f 467
43136979
AR
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
97ec2c2f
UW
479 break;
480 }
481
482 if (i == at_phnum)
17658d46 483 return {};
97ec2c2f
UW
484
485 /* Retrieve address and size. */
e17a4113
UW
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
97ec2c2f
UW
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
43136979
AR
499 int p_type;
500
97ec2c2f
UW
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 503 return {};
97ec2c2f 504
43136979
AR
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
97ec2c2f
UW
516 break;
517 }
518
519 if (i == at_phnum)
17658d46 520 return {};
97ec2c2f
UW
521
522 /* Retrieve address and size. */
e17a4113
UW
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
97ec2c2f
UW
527 }
528
43136979
AR
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
97ec2c2f 539 /* Read in requested program header. */
17658d46
SM
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
97ec2c2f
UW
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
a738da3a
MF
546 if (base_addr)
547 *base_addr = sect_addr;
97ec2c2f
UW
548
549 return buf;
550}
551
552
553/* Return program interpreter string. */
17658d46 554static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
555find_program_interpreter (void)
556{
7e10abd1
TT
557 /* If we have a current exec_bfd, use its section table. */
558 if (current_program_space->exec_bfd ()
559 && (bfd_get_flavour (current_program_space->exec_bfd ())
560 == bfd_target_elf_flavour))
97ec2c2f
UW
561 {
562 struct bfd_section *interp_sect;
563
7e10abd1
TT
564 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
565 ".interp");
97ec2c2f
UW
566 if (interp_sect != NULL)
567 {
fd361982 568 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 569
17658d46 570 gdb::byte_vector buf (sect_size);
7e10abd1
TT
571 bfd_get_section_contents (current_program_space->exec_bfd (),
572 interp_sect, buf.data (), 0, sect_size);
17658d46 573 return buf;
97ec2c2f
UW
574 }
575 }
576
17658d46
SM
577 /* If we didn't find it, use the target auxiliary vector. */
578 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
579}
580
581
b6d7a4bf
SM
582/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
583 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
584
585static int
a738da3a
MF
586scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
587 CORE_ADDR *ptr_addr)
3a40aaa0
UW
588{
589 int arch_size, step, sect_size;
b6d7a4bf 590 long current_dyntag;
b381ea14 591 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 592 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
593 Elf32_External_Dyn *x_dynp_32;
594 Elf64_External_Dyn *x_dynp_64;
595 struct bfd_section *sect;
596
597 if (abfd == NULL)
598 return 0;
0763ab81
PA
599
600 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
601 return 0;
602
3a40aaa0
UW
603 arch_size = bfd_get_arch_size (abfd);
604 if (arch_size == -1)
0763ab81 605 return 0;
3a40aaa0
UW
606
607 /* Find the start address of the .dynamic section. */
608 sect = bfd_get_section_by_name (abfd, ".dynamic");
609 if (sect == NULL)
610 return 0;
61f0d762 611
bb2a6777 612 bool found = false;
b55221ab 613 for (target_section &target_section : current_program_space->target_sections)
bb2a6777
TT
614 if (sect == target_section.the_bfd_section)
615 {
616 dyn_addr = target_section.addr;
617 found = true;
618 break;
619 }
620 if (!found)
b381ea14
JK
621 {
622 /* ABFD may come from OBJFILE acting only as a symbol file without being
623 loaded into the target (see add_symbol_file_command). This case is
624 such fallback to the file VMA address without the possibility of
625 having the section relocated to its actual in-memory address. */
626
fd361982 627 dyn_addr = bfd_section_vma (sect);
b381ea14 628 }
3a40aaa0 629
65728c26
DJ
630 /* Read in .dynamic from the BFD. We will get the actual value
631 from memory later. */
fd361982 632 sect_size = bfd_section_size (sect);
224c3ddb 633 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
634 if (!bfd_get_section_contents (abfd, sect,
635 buf, 0, sect_size))
636 return 0;
3a40aaa0
UW
637
638 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
639 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
640 : sizeof (Elf64_External_Dyn);
641 for (bufend = buf + sect_size;
642 buf < bufend;
643 buf += step)
644 {
645 if (arch_size == 32)
646 {
647 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 648 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
649 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
650 }
65728c26 651 else
3a40aaa0
UW
652 {
653 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 654 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
655 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
656 }
b6d7a4bf 657 if (current_dyntag == DT_NULL)
3a40aaa0 658 return 0;
b6d7a4bf 659 if (current_dyntag == desired_dyntag)
3a40aaa0 660 {
65728c26
DJ
661 /* If requested, try to read the runtime value of this .dynamic
662 entry. */
3a40aaa0 663 if (ptr)
65728c26 664 {
b6da22b0 665 struct type *ptr_type;
65728c26 666 gdb_byte ptr_buf[8];
a738da3a 667 CORE_ADDR ptr_addr_1;
65728c26 668
f5656ead 669 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
670 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
671 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 672 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 673 *ptr = dyn_ptr;
a738da3a
MF
674 if (ptr_addr)
675 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
676 }
677 return 1;
3a40aaa0
UW
678 }
679 }
680
681 return 0;
682}
683
b6d7a4bf
SM
684/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
685 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
686 is returned and the corresponding PTR is set. */
97ec2c2f
UW
687
688static int
a738da3a
MF
689scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
690 CORE_ADDR *ptr_addr)
97ec2c2f 691{
f5656ead 692 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 693 int arch_size, step;
b6d7a4bf 694 long current_dyntag;
97ec2c2f 695 CORE_ADDR dyn_ptr;
a738da3a 696 CORE_ADDR base_addr;
97ec2c2f
UW
697
698 /* Read in .dynamic section. */
17658d46
SM
699 gdb::optional<gdb::byte_vector> ph_data
700 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
701 if (!ph_data)
97ec2c2f
UW
702 return 0;
703
704 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
705 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
706 : sizeof (Elf64_External_Dyn);
17658d46
SM
707 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
708 buf < bufend; buf += step)
97ec2c2f
UW
709 {
710 if (arch_size == 32)
711 {
712 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 713
b6d7a4bf 714 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
715 4, byte_order);
716 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
717 4, byte_order);
97ec2c2f
UW
718 }
719 else
720 {
721 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 722
b6d7a4bf 723 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
724 8, byte_order);
725 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
726 8, byte_order);
97ec2c2f 727 }
b6d7a4bf 728 if (current_dyntag == DT_NULL)
97ec2c2f
UW
729 break;
730
b6d7a4bf 731 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
732 {
733 if (ptr)
734 *ptr = dyn_ptr;
735
a738da3a 736 if (ptr_addr)
17658d46 737 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 738
97ec2c2f
UW
739 return 1;
740 }
741 }
742
97ec2c2f
UW
743 return 0;
744}
745
7f86f058
PA
746/* Locate the base address of dynamic linker structs for SVR4 elf
747 targets.
13437d4b
KB
748
749 For SVR4 elf targets the address of the dynamic linker's runtime
750 structure is contained within the dynamic info section in the
751 executable file. The dynamic section is also mapped into the
752 inferior address space. Because the runtime loader fills in the
753 real address before starting the inferior, we have to read in the
754 dynamic info section from the inferior address space.
755 If there are any errors while trying to find the address, we
7f86f058 756 silently return 0, otherwise the found address is returned. */
13437d4b
KB
757
758static CORE_ADDR
759elf_locate_base (void)
760{
3b7344d5 761 struct bound_minimal_symbol msymbol;
a738da3a 762 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 763
65728c26
DJ
764 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
765 instead of DT_DEBUG, although they sometimes contain an unused
766 DT_DEBUG. */
7e10abd1
TT
767 if (scan_dyntag (DT_MIPS_RLD_MAP, current_program_space->exec_bfd (),
768 &dyn_ptr, NULL)
a738da3a 769 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 770 {
f5656ead 771 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 772 gdb_byte *pbuf;
b6da22b0 773 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 774
224c3ddb 775 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
776 /* DT_MIPS_RLD_MAP contains a pointer to the address
777 of the dynamic link structure. */
778 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 779 return 0;
b6da22b0 780 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
781 }
782
a738da3a
MF
783 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
784 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
785 in non-PIE. */
7e10abd1
TT
786 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, current_program_space->exec_bfd (),
787 &dyn_ptr, &dyn_ptr_addr)
a738da3a
MF
788 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
789 {
790 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
791 gdb_byte *pbuf;
792 int pbuf_size = TYPE_LENGTH (ptr_type);
793
224c3ddb 794 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
795 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
796 DT slot to the address of the dynamic link structure. */
797 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
798 return 0;
799 return extract_typed_address (pbuf, ptr_type);
800 }
801
65728c26 802 /* Find DT_DEBUG. */
7e10abd1 803 if (scan_dyntag (DT_DEBUG, current_program_space->exec_bfd (), &dyn_ptr, NULL)
a738da3a 804 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
805 return dyn_ptr;
806
3a40aaa0
UW
807 /* This may be a static executable. Look for the symbol
808 conventionally named _r_debug, as a last resort. */
a42d7dd8
TT
809 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
810 current_program_space->symfile_object_file);
3b7344d5 811 if (msymbol.minsym != NULL)
77e371c0 812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816}
817
7f86f058 818/* Locate the base address of dynamic linker structs.
13437d4b
KB
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
7f86f058 841 executable symbol tables. */
13437d4b
KB
842
843static CORE_ADDR
1a816a87 844locate_base (struct svr4_info *info)
13437d4b 845{
13437d4b
KB
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
13437d4b 851
1a816a87 852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 853 info->debug_base = elf_locate_base ();
1a816a87 854 return info->debug_base;
13437d4b
KB
855}
856
e4cd0d6a 857/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
858 return its address in the inferior. Return zero if the address
859 could not be determined.
13437d4b 860
e4cd0d6a
MK
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
13437d4b
KB
864
865static CORE_ADDR
1a816a87 866solib_svr4_r_map (struct svr4_info *info)
13437d4b 867{
4b188b9f 868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 870 CORE_ADDR addr = 0;
13437d4b 871
a70b8144 872 try
08597104
JB
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
dda83cd7 875 ptr_type);
08597104 876 }
230d2906 877 catch (const gdb_exception_error &ex)
492d29ea
PA
878 {
879 exception_print (gdb_stderr, ex);
880 }
492d29ea 881
08597104 882 return addr;
e4cd0d6a 883}
13437d4b 884
7cd25cfc
DJ
885/* Find r_brk from the inferior's debug base. */
886
887static CORE_ADDR
1a816a87 888solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
889{
890 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 891 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 892
1a816a87
PA
893 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
894 ptr_type);
7cd25cfc
DJ
895}
896
e4cd0d6a
MK
897/* Find the link map for the dynamic linker (if it is not in the
898 normal list of loaded shared objects). */
13437d4b 899
e4cd0d6a 900static CORE_ADDR
1a816a87 901solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
902{
903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 904 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 905 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
906 ULONGEST version = 0;
907
a70b8144 908 try
416f679e
SDJ
909 {
910 /* Check version, and return zero if `struct r_debug' doesn't have
911 the r_ldsomap member. */
912 version
913 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
914 lmo->r_version_size, byte_order);
915 }
230d2906 916 catch (const gdb_exception_error &ex)
416f679e
SDJ
917 {
918 exception_print (gdb_stderr, ex);
919 }
13437d4b 920
e4cd0d6a
MK
921 if (version < 2 || lmo->r_ldsomap_offset == -1)
922 return 0;
13437d4b 923
1a816a87 924 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 925 ptr_type);
13437d4b
KB
926}
927
de18c1d8
JM
928/* On Solaris systems with some versions of the dynamic linker,
929 ld.so's l_name pointer points to the SONAME in the string table
930 rather than into writable memory. So that GDB can find shared
931 libraries when loading a core file generated by gcore, ensure that
932 memory areas containing the l_name string are saved in the core
933 file. */
934
935static int
936svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
937{
938 struct svr4_info *info;
939 CORE_ADDR ldsomap;
74de0234 940 CORE_ADDR name_lm;
de18c1d8 941
d70cc3ba 942 info = get_svr4_info (current_program_space);
de18c1d8
JM
943
944 info->debug_base = 0;
945 locate_base (info);
946 if (!info->debug_base)
947 return 0;
948
949 ldsomap = solib_svr4_r_ldsomap (info);
950 if (!ldsomap)
951 return 0;
952
a7961323 953 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 954 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 955
74de0234 956 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
957}
958
bf469271 959/* See solist.h. */
13437d4b
KB
960
961static int
bf469271 962open_symbol_file_object (int from_tty)
13437d4b
KB
963{
964 CORE_ADDR lm, l_name;
4b188b9f 965 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 966 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 967 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 968 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 969 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
970 symfile_add_flags add_flags = 0;
971
972 if (from_tty)
973 add_flags |= SYMFILE_VERBOSE;
13437d4b 974
a42d7dd8 975 if (current_program_space->symfile_object_file)
9e2f0ad4 976 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 977 return 0;
13437d4b 978
7cd25cfc 979 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
980 info->debug_base = 0;
981 if (locate_base (info) == 0)
a7961323 982 return 0; /* failed somehow... */
13437d4b
KB
983
984 /* First link map member should be the executable. */
1a816a87 985 lm = solib_svr4_r_map (info);
e4cd0d6a 986 if (lm == 0)
a7961323 987 return 0; /* failed somehow... */
13437d4b
KB
988
989 /* Read address of name from target memory to GDB. */
a7961323 990 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 991
cfaefc65 992 /* Convert the address to host format. */
a7961323 993 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 994
13437d4b 995 if (l_name == 0)
a7961323 996 return 0; /* No filename. */
13437d4b
KB
997
998 /* Now fetch the filename from target memory. */
66920317
TT
999 gdb::unique_xmalloc_ptr<char> filename
1000 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
13437d4b 1001
66920317 1002 if (filename == nullptr)
13437d4b 1003 {
66920317 1004 warning (_("failed to read exec filename from attached file"));
13437d4b
KB
1005 return 0;
1006 }
1007
13437d4b 1008 /* Have a pathname: read the symbol file. */
e83e4e24 1009 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1010
1011 return 1;
1012}
13437d4b 1013
2268b414
JK
1014/* Data exchange structure for the XML parser as returned by
1015 svr4_current_sos_via_xfer_libraries. */
1016
1017struct svr4_library_list
1018{
1019 struct so_list *head, **tailp;
1020
1021 /* Inferior address of struct link_map used for the main executable. It is
1022 NULL if not known. */
1023 CORE_ADDR main_lm;
1024};
1025
7905fc35
PA
1026/* This module's 'free_objfile' observer. */
1027
1028static void
1029svr4_free_objfile_observer (struct objfile *objfile)
1030{
1031 probes_table_remove_objfile_probes (objfile);
1032}
1033
93f2a35e
JK
1034/* Implementation for target_so_ops.free_so. */
1035
1036static void
1037svr4_free_so (struct so_list *so)
1038{
76e75227
SM
1039 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1040
1041 delete li;
93f2a35e
JK
1042}
1043
0892cb63
DE
1044/* Implement target_so_ops.clear_so. */
1045
1046static void
1047svr4_clear_so (struct so_list *so)
1048{
d0e449a1
SM
1049 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1050
1051 if (li != NULL)
1052 li->l_addr_p = 0;
0892cb63
DE
1053}
1054
93f2a35e
JK
1055/* Free so_list built so far (called via cleanup). */
1056
1057static void
1058svr4_free_library_list (void *p_list)
1059{
1060 struct so_list *list = *(struct so_list **) p_list;
1061
1062 while (list != NULL)
1063 {
1064 struct so_list *next = list->next;
1065
3756ef7e 1066 free_so (list);
93f2a35e
JK
1067 list = next;
1068 }
1069}
1070
f9e14852
GB
1071/* Copy library list. */
1072
1073static struct so_list *
1074svr4_copy_library_list (struct so_list *src)
1075{
1076 struct so_list *dst = NULL;
1077 struct so_list **link = &dst;
1078
1079 while (src != NULL)
1080 {
fe978cb0 1081 struct so_list *newobj;
f9e14852 1082
8d749320 1083 newobj = XNEW (struct so_list);
fe978cb0 1084 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1085
76e75227
SM
1086 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1087 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1088
fe978cb0
PA
1089 newobj->next = NULL;
1090 *link = newobj;
1091 link = &newobj->next;
f9e14852
GB
1092
1093 src = src->next;
1094 }
1095
1096 return dst;
1097}
1098
2268b414
JK
1099#ifdef HAVE_LIBEXPAT
1100
1101#include "xml-support.h"
1102
1103/* Handle the start of a <library> element. Note: new elements are added
1104 at the tail of the list, keeping the list in order. */
1105
1106static void
1107library_list_start_library (struct gdb_xml_parser *parser,
1108 const struct gdb_xml_element *element,
4d0fdd9b
SM
1109 void *user_data,
1110 std::vector<gdb_xml_value> &attributes)
2268b414 1111{
19ba03f4
SM
1112 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1113 const char *name
4d0fdd9b 1114 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1115 ULONGEST *lmp
4d0fdd9b 1116 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1117 ULONGEST *l_addrp
4d0fdd9b 1118 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1119 ULONGEST *l_ldp
4d0fdd9b 1120 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1121 struct so_list *new_elem;
1122
41bf6aca 1123 new_elem = XCNEW (struct so_list);
76e75227 1124 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1125 new_elem->lm_info = li;
1126 li->lm_addr = *lmp;
1127 li->l_addr_inferior = *l_addrp;
1128 li->l_ld = *l_ldp;
2268b414
JK
1129
1130 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1131 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1132 strcpy (new_elem->so_original_name, new_elem->so_name);
1133
1134 *list->tailp = new_elem;
1135 list->tailp = &new_elem->next;
1136}
1137
1138/* Handle the start of a <library-list-svr4> element. */
1139
1140static void
1141svr4_library_list_start_list (struct gdb_xml_parser *parser,
1142 const struct gdb_xml_element *element,
4d0fdd9b
SM
1143 void *user_data,
1144 std::vector<gdb_xml_value> &attributes)
2268b414 1145{
19ba03f4
SM
1146 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1147 const char *version
4d0fdd9b 1148 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1149 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1150
1151 if (strcmp (version, "1.0") != 0)
1152 gdb_xml_error (parser,
1153 _("SVR4 Library list has unsupported version \"%s\""),
1154 version);
1155
1156 if (main_lm)
4d0fdd9b 1157 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1158}
1159
1160/* The allowed elements and attributes for an XML library list.
1161 The root element is a <library-list>. */
1162
1163static const struct gdb_xml_attribute svr4_library_attributes[] =
1164{
1165 { "name", GDB_XML_AF_NONE, NULL, NULL },
1166 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1167 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1168 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1169 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1170};
1171
1172static const struct gdb_xml_element svr4_library_list_children[] =
1173{
1174 {
1175 "library", svr4_library_attributes, NULL,
1176 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1177 library_list_start_library, NULL
1178 },
1179 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1180};
1181
1182static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1183{
1184 { "version", GDB_XML_AF_NONE, NULL, NULL },
1185 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1186 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1187};
1188
1189static const struct gdb_xml_element svr4_library_list_elements[] =
1190{
1191 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1192 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1193 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1194};
1195
2268b414
JK
1196/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1197
1198 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1199 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1200 empty, caller is responsible for freeing all its entries. */
1201
1202static int
1203svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1204{
2b6ff1c0
TT
1205 auto cleanup = make_scope_exit ([&] ()
1206 {
1207 svr4_free_library_list (&list->head);
1208 });
2268b414
JK
1209
1210 memset (list, 0, sizeof (*list));
1211 list->tailp = &list->head;
2eca4a8d 1212 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1213 svr4_library_list_elements, document, list) == 0)
1214 {
1215 /* Parsed successfully, keep the result. */
2b6ff1c0 1216 cleanup.release ();
2268b414
JK
1217 return 1;
1218 }
1219
2268b414
JK
1220 return 0;
1221}
1222
f9e14852 1223/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1224
1225 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1226 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1227 empty, caller is responsible for freeing all its entries.
1228
1229 Note that ANNEX must be NULL if the remote does not explicitly allow
1230 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1231 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1232
1233static int
f9e14852
GB
1234svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1235 const char *annex)
2268b414 1236{
f9e14852
GB
1237 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1238
2268b414 1239 /* Fetch the list of shared libraries. */
9018be22 1240 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1241 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1242 annex);
9018be22 1243 if (!svr4_library_document)
2268b414
JK
1244 return 0;
1245
9018be22 1246 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1247}
1248
1249#else
1250
1251static int
f9e14852
GB
1252svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1253 const char *annex)
2268b414
JK
1254{
1255 return 0;
1256}
1257
1258#endif
1259
34439770
DJ
1260/* If no shared library information is available from the dynamic
1261 linker, build a fallback list from other sources. */
1262
1263static struct so_list *
d70cc3ba 1264svr4_default_sos (svr4_info *info)
34439770 1265{
fe978cb0 1266 struct so_list *newobj;
1a816a87 1267
8e5c319d
JK
1268 if (!info->debug_loader_offset_p)
1269 return NULL;
34439770 1270
fe978cb0 1271 newobj = XCNEW (struct so_list);
76e75227 1272 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1273 newobj->lm_info = li;
34439770 1274
3957565a 1275 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1276 li->l_addr = info->debug_loader_offset;
1277 li->l_addr_p = 1;
34439770 1278
fe978cb0
PA
1279 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1280 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1281 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1282
fe978cb0 1283 return newobj;
34439770
DJ
1284}
1285
f9e14852
GB
1286/* Read the whole inferior libraries chain starting at address LM.
1287 Expect the first entry in the chain's previous entry to be PREV_LM.
1288 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1289 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1290 to it. Returns nonzero upon success. If zero is returned the
1291 entries stored to LINK_PTR_PTR are still valid although they may
1292 represent only part of the inferior library list. */
13437d4b 1293
f9e14852 1294static int
d70cc3ba 1295svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1296 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1297{
c725e7b6 1298 CORE_ADDR first_l_name = 0;
f9e14852 1299 CORE_ADDR next_lm;
13437d4b 1300
cb08cc53 1301 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1302 {
b3bc8453 1303 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1304
a7961323 1305 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1306 newobj->lm_info = li;
1307 if (li == NULL)
b3bc8453 1308 return 0;
13437d4b 1309
d0e449a1 1310 next_lm = li->l_next;
492928e4 1311
d0e449a1 1312 if (li->l_prev != prev_lm)
492928e4 1313 {
2268b414 1314 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1315 paddress (target_gdbarch (), prev_lm),
d0e449a1 1316 paddress (target_gdbarch (), li->l_prev));
f9e14852 1317 return 0;
492928e4 1318 }
13437d4b
KB
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
dda83cd7
SM
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
1324 decide when to ignore it. */
d0e449a1 1325 if (ignore_first && li->l_prev == 0)
93a57060 1326 {
d0e449a1
SM
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
cb08cc53 1329 continue;
93a57060 1330 }
13437d4b 1331
cb08cc53 1332 /* Extract this shared object's name. */
66920317
TT
1333 gdb::unique_xmalloc_ptr<char> buffer
1334 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1335 if (buffer == nullptr)
cb08cc53 1336 {
7d760051
UW
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
d0e449a1 1341 if (first_l_name == 0 || li->l_name != first_l_name)
66920317 1342 warning (_("Can't read pathname for load map."));
cb08cc53 1343 continue;
13437d4b
KB
1344 }
1345
e83e4e24 1346 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1347 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1348 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1349
cb08cc53
JK
1350 /* If this entry has no name, or its name matches the name
1351 for the main executable, don't include it in the list. */
fe978cb0 1352 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1353 continue;
e4cd0d6a 1354
fe978cb0 1355 newobj->next = 0;
b3bc8453
TT
1356 /* Don't free it now. */
1357 **link_ptr_ptr = newobj.release ();
1358 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1359 }
f9e14852
GB
1360
1361 return 1;
cb08cc53
JK
1362}
1363
f9e14852
GB
1364/* Read the full list of currently loaded shared objects directly
1365 from the inferior, without referring to any libraries read and
1366 stored by the probes interface. Handle special cases relating
1367 to the first elements of the list. */
cb08cc53
JK
1368
1369static struct so_list *
f9e14852 1370svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1371{
1372 CORE_ADDR lm;
1373 struct so_list *head = NULL;
1374 struct so_list **link_ptr = &head;
cb08cc53 1375 int ignore_first;
2268b414
JK
1376 struct svr4_library_list library_list;
1377
0c5bf5a9
JK
1378 /* Fall back to manual examination of the target if the packet is not
1379 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1380 tests a case where gdbserver cannot find the shared libraries list while
1381 GDB itself is able to find it via SYMFILE_OBJFILE.
1382
1383 Unfortunately statically linked inferiors will also fall back through this
1384 suboptimal code path. */
1385
f9e14852
GB
1386 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1387 NULL);
1388 if (info->using_xfer)
2268b414
JK
1389 {
1390 if (library_list.main_lm)
f9e14852 1391 info->main_lm_addr = library_list.main_lm;
2268b414 1392
d70cc3ba 1393 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1394 }
cb08cc53 1395
cb08cc53
JK
1396 /* Always locate the debug struct, in case it has moved. */
1397 info->debug_base = 0;
1398 locate_base (info);
1399
1400 /* If we can't find the dynamic linker's base structure, this
1401 must not be a dynamically linked executable. Hmm. */
1402 if (! info->debug_base)
d70cc3ba 1403 return svr4_default_sos (info);
cb08cc53
JK
1404
1405 /* Assume that everything is a library if the dynamic loader was loaded
1406 late by a static executable. */
7e10abd1
TT
1407 if (current_program_space->exec_bfd ()
1408 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1409 ".dynamic") == NULL)
cb08cc53
JK
1410 ignore_first = 0;
1411 else
1412 ignore_first = 1;
1413
2b6ff1c0
TT
1414 auto cleanup = make_scope_exit ([&] ()
1415 {
1416 svr4_free_library_list (&head);
1417 });
cb08cc53
JK
1418
1419 /* Walk the inferior's link map list, and build our list of
1420 `struct so_list' nodes. */
1421 lm = solib_svr4_r_map (info);
1422 if (lm)
d70cc3ba 1423 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1424
1425 /* On Solaris, the dynamic linker is not in the normal list of
1426 shared objects, so make sure we pick it up too. Having
1427 symbol information for the dynamic linker is quite crucial
1428 for skipping dynamic linker resolver code. */
1429 lm = solib_svr4_r_ldsomap (info);
1430 if (lm)
d70cc3ba 1431 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1432
2b6ff1c0 1433 cleanup.release ();
13437d4b 1434
34439770 1435 if (head == NULL)
d70cc3ba 1436 return svr4_default_sos (info);
34439770 1437
13437d4b
KB
1438 return head;
1439}
1440
8b9a549d
PA
1441/* Implement the main part of the "current_sos" target_so_ops
1442 method. */
f9e14852
GB
1443
1444static struct so_list *
d70cc3ba 1445svr4_current_sos_1 (svr4_info *info)
f9e14852 1446{
f9e14852
GB
1447 /* If the solib list has been read and stored by the probes
1448 interface then we return a copy of the stored list. */
1449 if (info->solib_list != NULL)
1450 return svr4_copy_library_list (info->solib_list);
1451
1452 /* Otherwise obtain the solib list directly from the inferior. */
1453 return svr4_current_sos_direct (info);
1454}
1455
8b9a549d
PA
1456/* Implement the "current_sos" target_so_ops method. */
1457
1458static struct so_list *
1459svr4_current_sos (void)
1460{
d70cc3ba
SM
1461 svr4_info *info = get_svr4_info (current_program_space);
1462 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1463 struct mem_range vsyscall_range;
1464
1465 /* Filter out the vDSO module, if present. Its symbol file would
1466 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1467 managed by symfile-mem.c:add_vsyscall_page. */
1468 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1469 && vsyscall_range.length != 0)
1470 {
1471 struct so_list **sop;
1472
1473 sop = &so_head;
1474 while (*sop != NULL)
1475 {
1476 struct so_list *so = *sop;
1477
1478 /* We can't simply match the vDSO by starting address alone,
1479 because lm_info->l_addr_inferior (and also l_addr) do not
1480 necessarily represent the real starting address of the
1481 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1482 field (the ".dynamic" section of the shared object)
1483 always points at the absolute/resolved address though.
1484 So check whether that address is inside the vDSO's
1485 mapping instead.
1486
1487 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1488 0-based ELF, and we see:
1489
1490 (gdb) info auxv
1491 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1492 (gdb) p/x *_r_debug.r_map.l_next
1493 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1494
1495 And on Linux 2.6.32 (x86_64) we see:
1496
1497 (gdb) info auxv
1498 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1499 (gdb) p/x *_r_debug.r_map.l_next
1500 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1501
1502 Dumping that vDSO shows:
1503
1504 (gdb) info proc mappings
1505 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1506 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1507 # readelf -Wa vdso.bin
1508 [...]
1509 Entry point address: 0xffffffffff700700
1510 [...]
1511 Section Headers:
1512 [Nr] Name Type Address Off Size
1513 [ 0] NULL 0000000000000000 000000 000000
1514 [ 1] .hash HASH ffffffffff700120 000120 000038
1515 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1516 [...]
1517 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1518 */
d0e449a1
SM
1519
1520 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1521
1522 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1523 {
1524 *sop = so->next;
1525 free_so (so);
1526 break;
1527 }
1528
1529 sop = &so->next;
1530 }
1531 }
1532
1533 return so_head;
1534}
1535
93a57060 1536/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1537
1538CORE_ADDR
1539svr4_fetch_objfile_link_map (struct objfile *objfile)
1540{
d70cc3ba 1541 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1542
93a57060 1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1544 if (info->main_lm_addr == 0)
e696b3ad 1545 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1546
93a57060 1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
a42d7dd8 1548 if (objfile == current_program_space->symfile_object_file)
1a816a87 1549 return info->main_lm_addr;
93a57060 1550
df22c1e5
JB
1551 /* If OBJFILE is a separate debug object file, look for the
1552 original object file. */
1553 if (objfile->separate_debug_objfile_backlink != NULL)
1554 objfile = objfile->separate_debug_objfile_backlink;
1555
93a57060
DJ
1556 /* The other link map addresses may be found by examining the list
1557 of shared libraries. */
a1fd1ac9 1558 for (struct so_list *so : current_program_space->solibs ())
93a57060 1559 if (so->objfile == objfile)
d0e449a1
SM
1560 {
1561 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1562
1563 return li->lm_addr;
1564 }
93a57060
DJ
1565
1566 /* Not found! */
bc4a16ae
EZ
1567 return 0;
1568}
13437d4b
KB
1569
1570/* On some systems, the only way to recognize the link map entry for
1571 the main executable file is by looking at its name. Return
1572 non-zero iff SONAME matches one of the known main executable names. */
1573
1574static int
bc043ef3 1575match_main (const char *soname)
13437d4b 1576{
bc043ef3 1577 const char * const *mainp;
13437d4b
KB
1578
1579 for (mainp = main_name_list; *mainp != NULL; mainp++)
1580 {
1581 if (strcmp (soname, *mainp) == 0)
1582 return (1);
1583 }
1584
1585 return (0);
1586}
1587
13437d4b
KB
1588/* Return 1 if PC lies in the dynamic symbol resolution code of the
1589 SVR4 run time loader. */
13437d4b 1590
7d522c90 1591int
d7fa2ae2 1592svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1593{
d70cc3ba 1594 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1595
1596 return ((pc >= info->interp_text_sect_low
1597 && pc < info->interp_text_sect_high)
1598 || (pc >= info->interp_plt_sect_low
1599 && pc < info->interp_plt_sect_high)
3e5d3a5a 1600 || in_plt_section (pc)
0875794a 1601 || in_gnu_ifunc_stub (pc));
13437d4b 1602}
13437d4b 1603
2f4950cd
AC
1604/* Given an executable's ABFD and target, compute the entry-point
1605 address. */
1606
1607static CORE_ADDR
1608exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1609{
8c2b9656
YQ
1610 CORE_ADDR addr;
1611
2f4950cd
AC
1612 /* KevinB wrote ... for most targets, the address returned by
1613 bfd_get_start_address() is the entry point for the start
1614 function. But, for some targets, bfd_get_start_address() returns
1615 the address of a function descriptor from which the entry point
1616 address may be extracted. This address is extracted by
1617 gdbarch_convert_from_func_ptr_addr(). The method
1618 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1619 function for targets which don't use function descriptors. */
8c2b9656 1620 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1621 bfd_get_start_address (abfd),
1622 targ);
8c2b9656 1623 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1624}
13437d4b 1625
f9e14852
GB
1626/* A probe and its associated action. */
1627
1628struct probe_and_action
1629{
1630 /* The probe. */
935676c9 1631 probe *prob;
f9e14852 1632
729662a5
TT
1633 /* The relocated address of the probe. */
1634 CORE_ADDR address;
1635
f9e14852
GB
1636 /* The action. */
1637 enum probe_action action;
7905fc35
PA
1638
1639 /* The objfile where this probe was found. */
1640 struct objfile *objfile;
f9e14852
GB
1641};
1642
1643/* Returns a hash code for the probe_and_action referenced by p. */
1644
1645static hashval_t
1646hash_probe_and_action (const void *p)
1647{
19ba03f4 1648 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1649
729662a5 1650 return (hashval_t) pa->address;
f9e14852
GB
1651}
1652
1653/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1654 are equal. */
1655
1656static int
1657equal_probe_and_action (const void *p1, const void *p2)
1658{
19ba03f4
SM
1659 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1660 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1661
729662a5 1662 return pa1->address == pa2->address;
f9e14852
GB
1663}
1664
7905fc35
PA
1665/* Traversal function for probes_table_remove_objfile_probes. */
1666
1667static int
1668probes_table_htab_remove_objfile_probes (void **slot, void *info)
1669{
1670 probe_and_action *pa = (probe_and_action *) *slot;
1671 struct objfile *objfile = (struct objfile *) info;
1672
1673 if (pa->objfile == objfile)
09232438
TT
1674 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1675 slot);
7905fc35
PA
1676
1677 return 1;
1678}
1679
1680/* Remove all probes that belong to OBJFILE from the probes table. */
1681
1682static void
1683probes_table_remove_objfile_probes (struct objfile *objfile)
1684{
d70cc3ba 1685 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1686 if (info->probes_table != nullptr)
09232438 1687 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1688 probes_table_htab_remove_objfile_probes, objfile);
1689}
1690
f9e14852
GB
1691/* Register a solib event probe and its associated action in the
1692 probes table. */
1693
1694static void
d70cc3ba 1695register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1696 probe *prob, CORE_ADDR address,
729662a5 1697 enum probe_action action)
f9e14852 1698{
f9e14852
GB
1699 struct probe_and_action lookup, *pa;
1700 void **slot;
1701
1702 /* Create the probes table, if necessary. */
1703 if (info->probes_table == NULL)
09232438
TT
1704 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1705 equal_probe_and_action,
1706 xfree, xcalloc, xfree));
f9e14852 1707
729662a5 1708 lookup.address = address;
09232438 1709 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1710 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1711
1712 pa = XCNEW (struct probe_and_action);
935676c9 1713 pa->prob = prob;
729662a5 1714 pa->address = address;
f9e14852 1715 pa->action = action;
7905fc35 1716 pa->objfile = objfile;
f9e14852
GB
1717
1718 *slot = pa;
1719}
1720
1721/* Get the solib event probe at the specified location, and the
1722 action associated with it. Returns NULL if no solib event probe
1723 was found. */
1724
1725static struct probe_and_action *
1726solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1727{
f9e14852
GB
1728 struct probe_and_action lookup;
1729 void **slot;
1730
729662a5 1731 lookup.address = address;
09232438 1732 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1733
1734 if (slot == NULL)
1735 return NULL;
1736
1737 return (struct probe_and_action *) *slot;
1738}
1739
1740/* Decide what action to take when the specified solib event probe is
1741 hit. */
1742
1743static enum probe_action
1744solib_event_probe_action (struct probe_and_action *pa)
1745{
1746 enum probe_action action;
73c6b475 1747 unsigned probe_argc = 0;
08a6411c 1748 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1749
1750 action = pa->action;
1751 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1752 return action;
1753
1754 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1755
1756 /* Check that an appropriate number of arguments has been supplied.
1757 We expect:
1758 arg0: Lmid_t lmid (mandatory)
1759 arg1: struct r_debug *debug_base (mandatory)
1760 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1761 try
3bd7e5b7 1762 {
fe01123e 1763 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1764 }
230d2906 1765 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1766 {
1767 exception_print (gdb_stderr, ex);
1768 probe_argc = 0;
1769 }
3bd7e5b7 1770
935676c9
SDJ
1771 /* If get_argument_count throws an exception, probe_argc will be set
1772 to zero. However, if pa->prob does not have arguments, then
1773 get_argument_count will succeed but probe_argc will also be zero.
1774 Both cases happen because of different things, but they are
1775 treated equally here: action will be set to
3bd7e5b7 1776 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1777 if (probe_argc == 2)
1778 action = FULL_RELOAD;
1779 else if (probe_argc < 2)
1780 action = PROBES_INTERFACE_FAILED;
1781
1782 return action;
1783}
1784
1785/* Populate the shared object list by reading the entire list of
1786 shared objects from the inferior. Handle special cases relating
1787 to the first elements of the list. Returns nonzero on success. */
1788
1789static int
1790solist_update_full (struct svr4_info *info)
1791{
1792 free_solib_list (info);
1793 info->solib_list = svr4_current_sos_direct (info);
1794
1795 return 1;
1796}
1797
1798/* Update the shared object list starting from the link-map entry
1799 passed by the linker in the probe's third argument. Returns
1800 nonzero if the list was successfully updated, or zero to indicate
1801 failure. */
1802
1803static int
1804solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1805{
1806 struct so_list *tail;
1807 CORE_ADDR prev_lm;
1808
1809 /* svr4_current_sos_direct contains logic to handle a number of
1810 special cases relating to the first elements of the list. To
1811 avoid duplicating this logic we defer to solist_update_full
1812 if the list is empty. */
1813 if (info->solib_list == NULL)
1814 return 0;
1815
1816 /* Fall back to a full update if we are using a remote target
1817 that does not support incremental transfers. */
1818 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1819 return 0;
1820
1821 /* Walk to the end of the list. */
1822 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1823 /* Nothing. */;
d0e449a1
SM
1824
1825 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1826 prev_lm = li->lm_addr;
f9e14852
GB
1827
1828 /* Read the new objects. */
1829 if (info->using_xfer)
1830 {
1831 struct svr4_library_list library_list;
1832 char annex[64];
1833
1834 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1835 phex_nz (lm, sizeof (lm)),
1836 phex_nz (prev_lm, sizeof (prev_lm)));
1837 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1838 return 0;
1839
1840 tail->next = library_list.head;
1841 }
1842 else
1843 {
1844 struct so_list **link = &tail->next;
1845
1846 /* IGNORE_FIRST may safely be set to zero here because the
1847 above check and deferral to solist_update_full ensures
1848 that this call to svr4_read_so_list will never see the
1849 first element. */
d70cc3ba 1850 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1851 return 0;
1852 }
1853
1854 return 1;
1855}
1856
1857/* Disable the probes-based linker interface and revert to the
1858 original interface. We don't reset the breakpoints as the
1859 ones set up for the probes-based interface are adequate. */
1860
1861static void
d70cc3ba 1862disable_probes_interface (svr4_info *info)
f9e14852 1863{
f9e14852 1864 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1865 "Reverting to original interface."));
f9e14852
GB
1866
1867 free_probes_table (info);
1868 free_solib_list (info);
1869}
1870
1871/* Update the solib list as appropriate when using the
1872 probes-based linker interface. Do nothing if using the
1873 standard interface. */
1874
1875static void
1876svr4_handle_solib_event (void)
1877{
d70cc3ba 1878 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1879 struct probe_and_action *pa;
1880 enum probe_action action;
ad1c917a 1881 struct value *val = NULL;
f9e14852 1882 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1883 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1884
1885 /* Do nothing if not using the probes interface. */
1886 if (info->probes_table == NULL)
1887 return;
1888
1889 /* If anything goes wrong we revert to the original linker
1890 interface. */
d70cc3ba
SM
1891 auto cleanup = make_scope_exit ([info] ()
1892 {
1893 disable_probes_interface (info);
1894 });
f9e14852
GB
1895
1896 pc = regcache_read_pc (get_current_regcache ());
1897 pa = solib_event_probe_at (info, pc);
1898 if (pa == NULL)
d01c5877 1899 return;
f9e14852
GB
1900
1901 action = solib_event_probe_action (pa);
1902 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1903 return;
f9e14852
GB
1904
1905 if (action == DO_NOTHING)
1906 {
d01c5877 1907 cleanup.release ();
f9e14852
GB
1908 return;
1909 }
1910
935676c9 1911 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1912 using find_pc_section. find_pc_section is accelerated by a cache
1913 called the section map. The section map is invalidated every
1914 time a shared library is loaded or unloaded, and if the inferior
1915 is generating a lot of shared library events then the section map
1916 will be updated every time svr4_handle_solib_event is called.
1917 We called find_pc_section in svr4_create_solib_event_breakpoints,
1918 so we can guarantee that the dynamic linker's sections are in the
1919 section map. We can therefore inhibit section map updates across
935676c9 1920 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1921 {
1922 scoped_restore inhibit_updates
1923 = inhibit_section_map_updates (current_program_space);
f9e14852 1924
a70b8144 1925 try
06424eac
TT
1926 {
1927 val = pa->prob->evaluate_argument (1, frame);
1928 }
230d2906 1929 catch (const gdb_exception_error &ex)
06424eac
TT
1930 {
1931 exception_print (gdb_stderr, ex);
1932 val = NULL;
1933 }
f9e14852 1934
06424eac 1935 if (val == NULL)
d01c5877 1936 return;
f9e14852 1937
06424eac
TT
1938 debug_base = value_as_address (val);
1939 if (debug_base == 0)
d01c5877 1940 return;
f9e14852 1941
06424eac
TT
1942 /* Always locate the debug struct, in case it moved. */
1943 info->debug_base = 0;
1944 if (locate_base (info) == 0)
cb736441
GB
1945 {
1946 /* It's possible for the reloc_complete probe to be triggered before
1947 the linker has set the DT_DEBUG pointer (for example, when the
1948 linker has finished relocating an LD_AUDIT library or its
1949 dependencies). Since we can't yet handle libraries from other link
1950 namespaces, we don't lose anything by ignoring them here. */
1951 struct value *link_map_id_val;
1952 try
1953 {
1954 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1955 }
1956 catch (const gdb_exception_error)
1957 {
1958 link_map_id_val = NULL;
1959 }
1960 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1961 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1962 action = DO_NOTHING;
1963 else
1964 return;
1965 }
3bd7e5b7 1966
06424eac
TT
1967 /* GDB does not currently support libraries loaded via dlmopen
1968 into namespaces other than the initial one. We must ignore
1969 any namespace other than the initial namespace here until
1970 support for this is added to GDB. */
1971 if (debug_base != info->debug_base)
1972 action = DO_NOTHING;
f9e14852 1973
06424eac
TT
1974 if (action == UPDATE_OR_RELOAD)
1975 {
a70b8144 1976 try
06424eac
TT
1977 {
1978 val = pa->prob->evaluate_argument (2, frame);
1979 }
230d2906 1980 catch (const gdb_exception_error &ex)
06424eac
TT
1981 {
1982 exception_print (gdb_stderr, ex);
06424eac
TT
1983 return;
1984 }
06424eac
TT
1985
1986 if (val != NULL)
1987 lm = value_as_address (val);
1988
1989 if (lm == 0)
1990 action = FULL_RELOAD;
1991 }
f9e14852 1992
06424eac
TT
1993 /* Resume section map updates. Closing the scope is
1994 sufficient. */
1995 }
f9e14852
GB
1996
1997 if (action == UPDATE_OR_RELOAD)
1998 {
1999 if (!solist_update_incremental (info, lm))
2000 action = FULL_RELOAD;
2001 }
2002
2003 if (action == FULL_RELOAD)
2004 {
2005 if (!solist_update_full (info))
d01c5877 2006 return;
f9e14852
GB
2007 }
2008
d01c5877 2009 cleanup.release ();
f9e14852
GB
2010}
2011
2012/* Helper function for svr4_update_solib_event_breakpoints. */
2013
95da600f
CB
2014static bool
2015svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852
GB
2016{
2017 struct bp_location *loc;
2018
2019 if (b->type != bp_shlib_event)
2020 {
2021 /* Continue iterating. */
95da600f 2022 return false;
f9e14852
GB
2023 }
2024
2025 for (loc = b->loc; loc != NULL; loc = loc->next)
2026 {
2027 struct svr4_info *info;
2028 struct probe_and_action *pa;
2029
09232438 2030 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2031 if (info == NULL || info->probes_table == NULL)
2032 continue;
2033
2034 pa = solib_event_probe_at (info, loc->address);
2035 if (pa == NULL)
2036 continue;
2037
2038 if (pa->action == DO_NOTHING)
2039 {
2040 if (b->enable_state == bp_disabled && stop_on_solib_events)
2041 enable_breakpoint (b);
2042 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2043 disable_breakpoint (b);
2044 }
2045
2046 break;
2047 }
2048
2049 /* Continue iterating. */
95da600f 2050 return false;
f9e14852
GB
2051}
2052
2053/* Enable or disable optional solib event breakpoints as appropriate.
2054 Called whenever stop_on_solib_events is changed. */
2055
2056static void
2057svr4_update_solib_event_breakpoints (void)
2058{
95da600f 2059 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
f9e14852
GB
2060}
2061
2062/* Create and register solib event breakpoints. PROBES is an array
2063 of NUM_PROBES elements, each of which is vector of probes. A
2064 solib event breakpoint will be created and registered for each
2065 probe. */
2066
2067static void
d70cc3ba 2068svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2069 const std::vector<probe *> *probes,
729662a5 2070 struct objfile *objfile)
f9e14852 2071{
45461e0d 2072 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2073 {
2074 enum probe_action action = probe_info[i].action;
f9e14852 2075
45461e0d 2076 for (probe *p : probes[i])
f9e14852 2077 {
935676c9 2078 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2079
2080 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2081 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2082 }
2083 }
2084
2085 svr4_update_solib_event_breakpoints ();
2086}
2087
e661ef01
AH
2088/* Find all the glibc named probes. Only if all of the probes are found, then
2089 create them and return true. Otherwise return false. If WITH_PREFIX is set
2090 then add "rtld" to the front of the probe names. */
2091static bool
2092svr4_find_and_create_probe_breakpoints (svr4_info *info,
2093 struct gdbarch *gdbarch,
2094 struct obj_section *os,
2095 bool with_prefix)
2096{
2097 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2098
2099 for (int i = 0; i < NUM_PROBES; i++)
2100 {
2101 const char *name = probe_info[i].name;
2102 char buf[32];
2103
2104 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2105 version of the probes code in which the probes' names were prefixed
2106 with "rtld_" and the "map_failed" probe did not exist. The locations
2107 of the probes are otherwise the same, so we check for probes with
2108 prefixed names if probes with unprefixed names are not present. */
2109 if (with_prefix)
2110 {
2111 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2112 name = buf;
2113 }
2114
2115 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2116
2117 /* The "map_failed" probe did not exist in early
2118 versions of the probes code in which the probes'
2119 names were prefixed with "rtld_". */
2120 if (with_prefix && streq (name, "rtld_map_failed"))
2121 continue;
2122
2123 /* Ensure at least one probe for the current name was found. */
2124 if (probes[i].empty ())
2125 return false;
2126
2127 /* Ensure probe arguments can be evaluated. */
d90b8f26 2128 for (probe *p : probes[i])
e661ef01 2129 {
e661ef01
AH
2130 if (!p->can_evaluate_arguments ())
2131 return false;
d90b8f26
AH
2132 /* This will fail if the probe is invalid. This has been seen on Arm
2133 due to references to symbols that have been resolved away. */
2134 try
2135 {
2136 p->get_argument_count (gdbarch);
2137 }
2138 catch (const gdb_exception_error &ex)
2139 {
2140 exception_print (gdb_stderr, ex);
2141 warning (_("Initializing probes-based dynamic linker interface "
2142 "failed.\nReverting to original interface."));
2143 return false;
2144 }
e661ef01
AH
2145 }
2146 }
2147
2148 /* All probes found. Now create them. */
2149 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2150 return true;
2151}
2152
f9e14852
GB
2153/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2154 before and after mapping and unmapping shared libraries. The sole
2155 purpose of this method is to allow debuggers to set a breakpoint so
2156 they can track these changes.
2157
2158 Some versions of the glibc dynamic linker contain named probes
2159 to allow more fine grained stopping. Given the address of the
2160 original marker function, this function attempts to find these
2161 probes, and if found, sets breakpoints on those instead. If the
2162 probes aren't found, a single breakpoint is set on the original
2163 marker function. */
2164
2165static void
d70cc3ba 2166svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2167 CORE_ADDR address)
2168{
e661ef01 2169 struct obj_section *os = find_pc_section (address);
f9e14852 2170
e661ef01
AH
2171 if (os == nullptr
2172 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2173 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2174 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2175}
2176
cb457ae2
YQ
2177/* Helper function for gdb_bfd_lookup_symbol. */
2178
2179static int
3953f15c 2180cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2181{
2182 return (strcmp (sym->name, (const char *) data) == 0
2183 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2184}
7f86f058 2185/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2186
2187 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2188 debugger interface, support for arranging for the inferior to hit
2189 a breakpoint after mapping in the shared libraries. This function
2190 enables that breakpoint.
2191
2192 For SunOS, there is a special flag location (in_debugger) which we
2193 set to 1. When the dynamic linker sees this flag set, it will set
2194 a breakpoint at a location known only to itself, after saving the
2195 original contents of that place and the breakpoint address itself,
2196 in it's own internal structures. When we resume the inferior, it
2197 will eventually take a SIGTRAP when it runs into the breakpoint.
2198 We handle this (in a different place) by restoring the contents of
2199 the breakpointed location (which is only known after it stops),
2200 chasing around to locate the shared libraries that have been
2201 loaded, then resuming.
2202
2203 For SVR4, the debugger interface structure contains a member (r_brk)
2204 which is statically initialized at the time the shared library is
2205 built, to the offset of a function (_r_debug_state) which is guaran-
2206 teed to be called once before mapping in a library, and again when
2207 the mapping is complete. At the time we are examining this member,
2208 it contains only the unrelocated offset of the function, so we have
2209 to do our own relocation. Later, when the dynamic linker actually
2210 runs, it relocates r_brk to be the actual address of _r_debug_state().
2211
2212 The debugger interface structure also contains an enumeration which
2213 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2214 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2215 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2216
2217static int
268a4a75 2218enable_break (struct svr4_info *info, int from_tty)
13437d4b 2219{
3b7344d5 2220 struct bound_minimal_symbol msymbol;
bc043ef3 2221 const char * const *bkpt_namep;
13437d4b 2222 asection *interp_sect;
7cd25cfc 2223 CORE_ADDR sym_addr;
13437d4b 2224
6c95b8df
PA
2225 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2226 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2227
7cd25cfc
DJ
2228 /* If we already have a shared library list in the target, and
2229 r_debug contains r_brk, set the breakpoint there - this should
2230 mean r_brk has already been relocated. Assume the dynamic linker
2231 is the object containing r_brk. */
2232
e696b3ad 2233 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2234 sym_addr = 0;
1a816a87
PA
2235 if (info->debug_base && solib_svr4_r_map (info) != 0)
2236 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2237
2238 if (sym_addr != 0)
2239 {
2240 struct obj_section *os;
2241
b36ec657 2242 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2243 (target_gdbarch (),
2244 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2245 sym_addr,
2246 current_top_target ()));
b36ec657 2247
48379de6
DE
2248 /* On at least some versions of Solaris there's a dynamic relocation
2249 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2250 we get control before the dynamic linker has self-relocated.
2251 Check if SYM_ADDR is in a known section, if it is assume we can
2252 trust its value. This is just a heuristic though, it could go away
2253 or be replaced if it's getting in the way.
2254
2255 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2256 however it's spelled in your particular system) is ARM or Thumb.
2257 That knowledge is encoded in the address, if it's Thumb the low bit
2258 is 1. However, we've stripped that info above and it's not clear
2259 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2260 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2261 find_pc_section verifies we know about the address and have some
2262 hope of computing the right kind of breakpoint to use (via
2263 symbol info). It does mean that GDB needs to be pointed at a
2264 non-stripped version of the dynamic linker in order to obtain
2265 information it already knows about. Sigh. */
2266
7cd25cfc
DJ
2267 os = find_pc_section (sym_addr);
2268 if (os != NULL)
2269 {
2270 /* Record the relocated start and end address of the dynamic linker
2271 text and plt section for svr4_in_dynsym_resolve_code. */
2272 bfd *tmp_bfd;
2273 CORE_ADDR load_addr;
2274
2275 tmp_bfd = os->objfile->obfd;
b3b3bada 2276 load_addr = os->objfile->text_section_offset ();
7cd25cfc
DJ
2277
2278 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2279 if (interp_sect)
2280 {
fd361982
AM
2281 info->interp_text_sect_low
2282 = bfd_section_vma (interp_sect) + load_addr;
2283 info->interp_text_sect_high
2284 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2285 }
2286 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2287 if (interp_sect)
2288 {
fd361982
AM
2289 info->interp_plt_sect_low
2290 = bfd_section_vma (interp_sect) + load_addr;
2291 info->interp_plt_sect_high
2292 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2293 }
2294
d70cc3ba 2295 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2296 return 1;
2297 }
2298 }
2299
97ec2c2f 2300 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2301 into the old breakpoint at symbol code. */
17658d46
SM
2302 gdb::optional<gdb::byte_vector> interp_name_holder
2303 = find_program_interpreter ();
2304 if (interp_name_holder)
13437d4b 2305 {
17658d46 2306 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2307 CORE_ADDR load_addr = 0;
2308 int load_addr_found = 0;
2ec9a4f8 2309 int loader_found_in_list = 0;
2f4950cd 2310 struct target_ops *tmp_bfd_target;
13437d4b 2311
7cd25cfc 2312 sym_addr = 0;
13437d4b
KB
2313
2314 /* Now we need to figure out where the dynamic linker was
dda83cd7
SM
2315 loaded so that we can load its symbols and place a breakpoint
2316 in the dynamic linker itself.
13437d4b 2317
dda83cd7
SM
2318 This address is stored on the stack. However, I've been unable
2319 to find any magic formula to find it for Solaris (appears to
2320 be trivial on GNU/Linux). Therefore, we have to try an alternate
2321 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2322
192b62ce 2323 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2324 try
dda83cd7 2325 {
97ec2c2f 2326 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2327 }
230d2906 2328 catch (const gdb_exception &ex)
492d29ea
PA
2329 {
2330 }
492d29ea 2331
13437d4b
KB
2332 if (tmp_bfd == NULL)
2333 goto bkpt_at_symbol;
2334
2f4950cd 2335 /* Now convert the TMP_BFD into a target. That way target, as
dda83cd7
SM
2336 well as BFD operations can be used. target_bfd_reopen
2337 acquires its own reference. */
192b62ce 2338 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2339
f8766ec1 2340 /* On a running target, we can get the dynamic linker's base
dda83cd7 2341 address from the shared library table. */
a1fd1ac9 2342 for (struct so_list *so : current_program_space->solibs ())
8ad2fcde 2343 {
97ec2c2f 2344 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2345 {
2346 load_addr_found = 1;
2ec9a4f8 2347 loader_found_in_list = 1;
192b62ce 2348 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2349 break;
2350 }
8ad2fcde
KB
2351 }
2352
8d4e36ba 2353 /* If we were not able to find the base address of the loader
dda83cd7 2354 from our so_list, then try using the AT_BASE auxilliary entry. */
8d4e36ba 2355 if (!load_addr_found)
8b88a78e 2356 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2357 {
f5656ead 2358 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2359
2360 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2361 that `+ load_addr' will overflow CORE_ADDR width not creating
2362 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2363 GDB. */
2364
d182d057 2365 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2366 {
d182d057 2367 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2368 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2369 tmp_bfd_target);
2370
2371 gdb_assert (load_addr < space_size);
2372
2373 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2374 64bit ld.so with 32bit executable, it should not happen. */
2375
2376 if (tmp_entry_point < space_size
2377 && tmp_entry_point + load_addr >= space_size)
2378 load_addr -= space_size;
2379 }
2380
2381 load_addr_found = 1;
2382 }
8d4e36ba 2383
8ad2fcde
KB
2384 /* Otherwise we find the dynamic linker's base address by examining
2385 the current pc (which should point at the entry point for the
8d4e36ba
JB
2386 dynamic linker) and subtracting the offset of the entry point.
2387
dda83cd7
SM
2388 This is more fragile than the previous approaches, but is a good
2389 fallback method because it has actually been working well in
2390 most cases. */
8ad2fcde 2391 if (!load_addr_found)
fb14de7b 2392 {
c2250ad1 2393 struct regcache *regcache
5b6d1e4f
PA
2394 = get_thread_arch_regcache (current_inferior ()->process_target (),
2395 inferior_ptid, target_gdbarch ());
433759f7 2396
fb14de7b 2397 load_addr = (regcache_read_pc (regcache)
192b62ce 2398 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2399 }
2ec9a4f8
DJ
2400
2401 if (!loader_found_in_list)
34439770 2402 {
1a816a87
PA
2403 info->debug_loader_name = xstrdup (interp_name);
2404 info->debug_loader_offset_p = 1;
2405 info->debug_loader_offset = load_addr;
e696b3ad 2406 solib_add (NULL, from_tty, auto_solib_add);
34439770 2407 }
13437d4b
KB
2408
2409 /* Record the relocated start and end address of the dynamic linker
dda83cd7 2410 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2411 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2412 if (interp_sect)
2413 {
fd361982
AM
2414 info->interp_text_sect_low
2415 = bfd_section_vma (interp_sect) + load_addr;
2416 info->interp_text_sect_high
2417 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2418 }
192b62ce 2419 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2420 if (interp_sect)
2421 {
fd361982
AM
2422 info->interp_plt_sect_low
2423 = bfd_section_vma (interp_sect) + load_addr;
2424 info->interp_plt_sect_high
2425 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2426 }
2427
2428 /* Now try to set a breakpoint in the dynamic linker. */
2429 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2430 {
192b62ce
TT
2431 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2432 cmp_name_and_sec_flags,
3953f15c 2433 *bkpt_namep);
13437d4b
KB
2434 if (sym_addr != 0)
2435 break;
2436 }
2437
2bbe3cc1
DJ
2438 if (sym_addr != 0)
2439 /* Convert 'sym_addr' from a function pointer to an address.
2440 Because we pass tmp_bfd_target instead of the current
2441 target, this will always produce an unrelocated value. */
f5656ead 2442 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2443 sym_addr,
2444 tmp_bfd_target);
2445
695c3173 2446 /* We're done with both the temporary bfd and target. Closing
dda83cd7
SM
2447 the target closes the underlying bfd, because it holds the
2448 only remaining reference. */
460014f5 2449 target_close (tmp_bfd_target);
13437d4b
KB
2450
2451 if (sym_addr != 0)
2452 {
d70cc3ba 2453 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2454 load_addr + sym_addr);
13437d4b
KB
2455 return 1;
2456 }
2457
2458 /* For whatever reason we couldn't set a breakpoint in the dynamic
dda83cd7 2459 linker. Warn and drop into the old code. */
13437d4b 2460 bkpt_at_symbol:
82d03102 2461 warning (_("Unable to find dynamic linker breakpoint function.\n"
dda83cd7
SM
2462 "GDB will be unable to debug shared library initializers\n"
2463 "and track explicitly loaded dynamic code."));
13437d4b 2464 }
13437d4b 2465
e499d0f1
DJ
2466 /* Scan through the lists of symbols, trying to look up the symbol and
2467 set a breakpoint there. Terminate loop when we/if we succeed. */
2468
a42d7dd8 2469 objfile *objf = current_program_space->symfile_object_file;
e499d0f1
DJ
2470 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2471 {
a42d7dd8 2472 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2473 if ((msymbol.minsym != NULL)
77e371c0 2474 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2475 {
77e371c0 2476 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2478 sym_addr,
8b88a78e 2479 current_top_target ());
d70cc3ba
SM
2480 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2481 sym_addr);
e499d0f1
DJ
2482 return 1;
2483 }
2484 }
13437d4b 2485
17658d46 2486 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2487 {
c6490bf2 2488 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2489 {
a42d7dd8 2490 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2491 if ((msymbol.minsym != NULL)
77e371c0 2492 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2493 {
77e371c0 2494 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2495 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2496 sym_addr,
8b88a78e 2497 current_top_target ());
d70cc3ba
SM
2498 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2499 sym_addr);
c6490bf2
KB
2500 return 1;
2501 }
13437d4b
KB
2502 }
2503 }
542c95c2 2504 return 0;
13437d4b
KB
2505}
2506
d1012b8e 2507/* Read the ELF program headers from ABFD. */
e2a44558 2508
d1012b8e
SM
2509static gdb::optional<gdb::byte_vector>
2510read_program_headers_from_bfd (bfd *abfd)
e2a44558 2511{
d1012b8e
SM
2512 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2513 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2514 if (phdrs_size == 0)
2515 return {};
09919ac2 2516
d1012b8e 2517 gdb::byte_vector buf (phdrs_size);
09919ac2 2518 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2519 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2520 return {};
09919ac2
JK
2521
2522 return buf;
b8040f19
JK
2523}
2524
01c30d6e
JK
2525/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2526 exec_bfd. Otherwise return 0.
2527
2528 We relocate all of the sections by the same amount. This
c378eb4e 2529 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2530 According to the System V Application Binary Interface,
2531 Edition 4.1, page 5-5:
2532
2533 ... Though the system chooses virtual addresses for
2534 individual processes, it maintains the segments' relative
2535 positions. Because position-independent code uses relative
85102364 2536 addressing between segments, the difference between
b8040f19
JK
2537 virtual addresses in memory must match the difference
2538 between virtual addresses in the file. The difference
2539 between the virtual address of any segment in memory and
2540 the corresponding virtual address in the file is thus a
2541 single constant value for any one executable or shared
2542 object in a given process. This difference is the base
2543 address. One use of the base address is to relocate the
2544 memory image of the program during dynamic linking.
2545
2546 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2547 ABI and is left unspecified in some of the earlier editions.
2548
2549 Decide if the objfile needs to be relocated. As indicated above, we will
2550 only be here when execution is stopped. But during attachment PC can be at
2551 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2552 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2553 regcache_read_pc would point to the interpreter and not the main executable.
2554
2555 So, to summarize, relocations are necessary when the start address obtained
2556 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2557
09919ac2
JK
2558 [ The astute reader will note that we also test to make sure that
2559 the executable in question has the DYNAMIC flag set. It is my
2560 opinion that this test is unnecessary (undesirable even). It
2561 was added to avoid inadvertent relocation of an executable
2562 whose e_type member in the ELF header is not ET_DYN. There may
2563 be a time in the future when it is desirable to do relocations
2564 on other types of files as well in which case this condition
2565 should either be removed or modified to accomodate the new file
2566 type. - Kevin, Nov 2000. ] */
b8040f19 2567
01c30d6e
JK
2568static int
2569svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2570{
41752192
JK
2571 /* ENTRY_POINT is a possible function descriptor - before
2572 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2573 CORE_ADDR entry_point, exec_displacement;
b8040f19 2574
7e10abd1 2575 if (current_program_space->exec_bfd () == NULL)
b8040f19
JK
2576 return 0;
2577
09919ac2
JK
2578 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2579 being executed themselves and PIE (Position Independent Executable)
2580 executables are ET_DYN. */
2581
7e10abd1 2582 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
09919ac2
JK
2583 return 0;
2584
8b88a78e 2585 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2586 return 0;
2587
7e10abd1
TT
2588 exec_displacement
2589 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
09919ac2 2590
8f61baf8 2591 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2592 alignment. It is cheaper than the program headers comparison below. */
2593
7e10abd1
TT
2594 if (bfd_get_flavour (current_program_space->exec_bfd ())
2595 == bfd_target_elf_flavour)
09919ac2 2596 {
7e10abd1
TT
2597 const struct elf_backend_data *elf
2598 = get_elf_backend_data (current_program_space->exec_bfd ());
09919ac2
JK
2599
2600 /* p_align of PT_LOAD segments does not specify any alignment but
2601 only congruency of addresses:
2602 p_offset % p_align == p_vaddr % p_align
2603 Kernel is free to load the executable with lower alignment. */
2604
8f61baf8 2605 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2606 return 0;
2607 }
2608
2609 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2610 comparing their program headers. If the program headers in the auxilliary
2611 vector do not match the program headers in the executable, then we are
2612 looking at a different file than the one used by the kernel - for
2613 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2614
7e10abd1
TT
2615 if (bfd_get_flavour (current_program_space->exec_bfd ())
2616 == bfd_target_elf_flavour)
09919ac2 2617 {
d1012b8e 2618 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2619 really do not match. */
0a1e94c7 2620 int arch_size;
09919ac2 2621
17658d46
SM
2622 gdb::optional<gdb::byte_vector> phdrs_target
2623 = read_program_header (-1, &arch_size, NULL);
d1012b8e 2624 gdb::optional<gdb::byte_vector> phdrs_binary
7e10abd1 2625 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
d1012b8e 2626 if (phdrs_target && phdrs_binary)
0a1e94c7 2627 {
f5656ead 2628 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2629
2630 /* We are dealing with three different addresses. EXEC_BFD
2631 represents current address in on-disk file. target memory content
2632 may be different from EXEC_BFD as the file may have been prelinked
2633 to a different address after the executable has been loaded.
2634 Moreover the address of placement in target memory can be
3e43a32a
MS
2635 different from what the program headers in target memory say -
2636 this is the goal of PIE.
0a1e94c7
JK
2637
2638 Detected DISPLACEMENT covers both the offsets of PIE placement and
2639 possible new prelink performed after start of the program. Here
2640 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2641 content offset for the verification purpose. */
2642
d1012b8e 2643 if (phdrs_target->size () != phdrs_binary->size ()
7e10abd1 2644 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
d1012b8e 2645 return 0;
3e43a32a 2646 else if (arch_size == 32
17658d46 2647 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
dda83cd7 2648 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7 2649 {
7e10abd1
TT
2650 Elf_Internal_Ehdr *ehdr2
2651 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2652 Elf_Internal_Phdr *phdr2
2653 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2654 CORE_ADDR displacement = 0;
2655 int i;
2656
2657 /* DISPLACEMENT could be found more easily by the difference of
2658 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2659 already have enough information to compute that displacement
2660 with what we've read. */
2661
2662 for (i = 0; i < ehdr2->e_phnum; i++)
2663 if (phdr2[i].p_type == PT_LOAD)
2664 {
2665 Elf32_External_Phdr *phdrp;
2666 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2667 CORE_ADDR vaddr, paddr;
2668 CORE_ADDR displacement_vaddr = 0;
2669 CORE_ADDR displacement_paddr = 0;
2670
17658d46 2671 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2672 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2673 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2674
2675 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2676 byte_order);
2677 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2678
2679 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2680 byte_order);
2681 displacement_paddr = paddr - phdr2[i].p_paddr;
2682
2683 if (displacement_vaddr == displacement_paddr)
2684 displacement = displacement_vaddr;
2685
2686 break;
2687 }
2688
17658d46 2689 /* Now compare program headers from the target and the binary
dda83cd7 2690 with optional DISPLACEMENT. */
0a1e94c7 2691
17658d46
SM
2692 for (i = 0;
2693 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2694 i++)
0a1e94c7
JK
2695 {
2696 Elf32_External_Phdr *phdrp;
2697 Elf32_External_Phdr *phdr2p;
2698 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2699 CORE_ADDR vaddr, paddr;
43b8e241 2700 asection *plt2_asect;
0a1e94c7 2701
17658d46 2702 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2703 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2704 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2705 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2706
2707 /* PT_GNU_STACK is an exception by being never relocated by
2708 prelink as its addresses are always zero. */
2709
2710 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2711 continue;
2712
2713 /* Check also other adjustment combinations - PR 11786. */
2714
3e43a32a
MS
2715 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2716 byte_order);
0a1e94c7
JK
2717 vaddr -= displacement;
2718 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2719
3e43a32a
MS
2720 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2721 byte_order);
0a1e94c7
JK
2722 paddr -= displacement;
2723 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2724
2725 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2726 continue;
2727
204b5331
DE
2728 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2729 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2730 Strip also modifies memsz of PT_TLS.
204b5331 2731 See PR 11786. */
c44deb73
SM
2732 if (phdr2[i].p_type == PT_GNU_RELRO
2733 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2734 {
2735 Elf32_External_Phdr tmp_phdr = *phdrp;
2736 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2737
2738 memset (tmp_phdr.p_filesz, 0, 4);
2739 memset (tmp_phdr.p_memsz, 0, 4);
2740 memset (tmp_phdr.p_flags, 0, 4);
2741 memset (tmp_phdr.p_align, 0, 4);
2742 memset (tmp_phdr2.p_filesz, 0, 4);
2743 memset (tmp_phdr2.p_memsz, 0, 4);
2744 memset (tmp_phdr2.p_flags, 0, 4);
2745 memset (tmp_phdr2.p_align, 0, 4);
2746
2747 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2748 == 0)
2749 continue;
2750 }
2751
43b8e241 2752 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1 2753 bfd *exec_bfd = current_program_space->exec_bfd ();
43b8e241
JK
2754 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2755 if (plt2_asect)
2756 {
2757 int content2;
2758 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2759 CORE_ADDR filesz;
2760
fd361982 2761 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2762 & SEC_HAS_CONTENTS) != 0;
2763
2764 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2765 byte_order);
2766
2767 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2768 FILESZ is from the in-memory image. */
2769 if (content2)
fd361982 2770 filesz += bfd_section_size (plt2_asect);
43b8e241 2771 else
fd361982 2772 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2773
2774 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2775 filesz);
2776
2777 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2778 continue;
2779 }
2780
d1012b8e 2781 return 0;
0a1e94c7
JK
2782 }
2783 }
3e43a32a 2784 else if (arch_size == 64
17658d46 2785 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
dda83cd7 2786 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7 2787 {
7e10abd1
TT
2788 Elf_Internal_Ehdr *ehdr2
2789 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2790 Elf_Internal_Phdr *phdr2
2791 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2792 CORE_ADDR displacement = 0;
2793 int i;
2794
2795 /* DISPLACEMENT could be found more easily by the difference of
2796 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2797 already have enough information to compute that displacement
2798 with what we've read. */
2799
2800 for (i = 0; i < ehdr2->e_phnum; i++)
2801 if (phdr2[i].p_type == PT_LOAD)
2802 {
2803 Elf64_External_Phdr *phdrp;
2804 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2805 CORE_ADDR vaddr, paddr;
2806 CORE_ADDR displacement_vaddr = 0;
2807 CORE_ADDR displacement_paddr = 0;
2808
17658d46 2809 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2810 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2811 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2812
2813 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2814 byte_order);
2815 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2816
2817 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2818 byte_order);
2819 displacement_paddr = paddr - phdr2[i].p_paddr;
2820
2821 if (displacement_vaddr == displacement_paddr)
2822 displacement = displacement_vaddr;
2823
2824 break;
2825 }
2826
2827 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2828
17658d46
SM
2829 for (i = 0;
2830 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2831 i++)
0a1e94c7
JK
2832 {
2833 Elf64_External_Phdr *phdrp;
2834 Elf64_External_Phdr *phdr2p;
2835 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2836 CORE_ADDR vaddr, paddr;
43b8e241 2837 asection *plt2_asect;
0a1e94c7 2838
17658d46 2839 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2840 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2841 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2842 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2843
2844 /* PT_GNU_STACK is an exception by being never relocated by
2845 prelink as its addresses are always zero. */
2846
2847 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2848 continue;
2849
2850 /* Check also other adjustment combinations - PR 11786. */
2851
3e43a32a
MS
2852 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2853 byte_order);
0a1e94c7
JK
2854 vaddr -= displacement;
2855 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2856
3e43a32a
MS
2857 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2858 byte_order);
0a1e94c7
JK
2859 paddr -= displacement;
2860 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2861
2862 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2863 continue;
2864
204b5331
DE
2865 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2866 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2867 Strip also modifies memsz of PT_TLS.
204b5331 2868 See PR 11786. */
c44deb73
SM
2869 if (phdr2[i].p_type == PT_GNU_RELRO
2870 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2871 {
2872 Elf64_External_Phdr tmp_phdr = *phdrp;
2873 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2874
2875 memset (tmp_phdr.p_filesz, 0, 8);
2876 memset (tmp_phdr.p_memsz, 0, 8);
2877 memset (tmp_phdr.p_flags, 0, 4);
2878 memset (tmp_phdr.p_align, 0, 8);
2879 memset (tmp_phdr2.p_filesz, 0, 8);
2880 memset (tmp_phdr2.p_memsz, 0, 8);
2881 memset (tmp_phdr2.p_flags, 0, 4);
2882 memset (tmp_phdr2.p_align, 0, 8);
2883
2884 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2885 == 0)
2886 continue;
2887 }
2888
43b8e241 2889 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1
TT
2890 plt2_asect
2891 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2892 ".plt");
43b8e241
JK
2893 if (plt2_asect)
2894 {
2895 int content2;
2896 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2897 CORE_ADDR filesz;
2898
fd361982 2899 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2900 & SEC_HAS_CONTENTS) != 0;
2901
2902 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2903 byte_order);
2904
7e10abd1
TT
2905 /* PLT2_ASECT is from on-disk file (current
2906 exec_bfd) while FILESZ is from the in-memory
2907 image. */
43b8e241 2908 if (content2)
fd361982 2909 filesz += bfd_section_size (plt2_asect);
43b8e241 2910 else
fd361982 2911 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2912
2913 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2914 filesz);
2915
2916 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2917 continue;
2918 }
2919
d1012b8e 2920 return 0;
0a1e94c7
JK
2921 }
2922 }
2923 else
d1012b8e 2924 return 0;
0a1e94c7 2925 }
09919ac2 2926 }
b8040f19 2927
ccf26247
JK
2928 if (info_verbose)
2929 {
2930 /* It can be printed repeatedly as there is no easy way to check
2931 the executable symbols/file has been already relocated to
2932 displacement. */
2933
2934 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2935 "displacement %s for \"%s\".\n"),
8f61baf8 2936 paddress (target_gdbarch (), exec_displacement),
7e10abd1 2937 bfd_get_filename (current_program_space->exec_bfd ()));
ccf26247
JK
2938 }
2939
8f61baf8 2940 *displacementp = exec_displacement;
01c30d6e 2941 return 1;
b8040f19
JK
2942}
2943
2944/* Relocate the main executable. This function should be called upon
c378eb4e 2945 stopping the inferior process at the entry point to the program.
b8040f19
JK
2946 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2947 different, the main executable is relocated by the proper amount. */
2948
2949static void
2950svr4_relocate_main_executable (void)
2951{
01c30d6e
JK
2952 CORE_ADDR displacement;
2953
4e5799b6
JK
2954 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2955 probably contains the offsets computed using the PIE displacement
2956 from the previous run, which of course are irrelevant for this run.
2957 So we need to determine the new PIE displacement and recompute the
2958 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2959 already contains pre-computed offsets.
01c30d6e 2960
4e5799b6 2961 If we cannot compute the PIE displacement, either:
01c30d6e 2962
4e5799b6
JK
2963 - The executable is not PIE.
2964
2965 - SYMFILE_OBJFILE does not match the executable started in the target.
2966 This can happen for main executable symbols loaded at the host while
2967 `ld.so --ld-args main-executable' is loaded in the target.
2968
2969 Then we leave the section offsets untouched and use them as is for
2970 this run. Either:
2971
2972 - These section offsets were properly reset earlier, and thus
2973 already contain the correct values. This can happen for instance
2974 when reconnecting via the remote protocol to a target that supports
2975 the `qOffsets' packet.
2976
2977 - The section offsets were not reset earlier, and the best we can
c378eb4e 2978 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2979
2980 if (! svr4_exec_displacement (&displacement))
2981 return;
b8040f19 2982
01c30d6e
JK
2983 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2984 addresses. */
b8040f19 2985
a42d7dd8
TT
2986 objfile *objf = current_program_space->symfile_object_file;
2987 if (objf)
e2a44558 2988 {
a42d7dd8 2989 section_offsets new_offsets (objf->section_offsets.size (),
6a053cb1 2990 displacement);
a42d7dd8 2991 objfile_relocate (objf, new_offsets);
e2a44558 2992 }
7e10abd1 2993 else if (current_program_space->exec_bfd ())
51bee8e9
JK
2994 {
2995 asection *asect;
2996
7e10abd1 2997 bfd *exec_bfd = current_program_space->exec_bfd ();
51bee8e9
JK
2998 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2999 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 3000 bfd_section_vma (asect) + displacement);
51bee8e9 3001 }
e2a44558
KB
3002}
3003
7f86f058 3004/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3005
3006 For SVR4 executables, this first instruction is either the first
3007 instruction in the dynamic linker (for dynamically linked
3008 executables) or the instruction at "start" for statically linked
3009 executables. For dynamically linked executables, the system
3010 first exec's /lib/libc.so.N, which contains the dynamic linker,
3011 and starts it running. The dynamic linker maps in any needed
3012 shared libraries, maps in the actual user executable, and then
3013 jumps to "start" in the user executable.
3014
7f86f058
PA
3015 We can arrange to cooperate with the dynamic linker to discover the
3016 names of shared libraries that are dynamically linked, and the base
3017 addresses to which they are linked.
13437d4b
KB
3018
3019 This function is responsible for discovering those names and
3020 addresses, and saving sufficient information about them to allow
d2e5c99a 3021 their symbols to be read at a later time. */
13437d4b 3022
e2a44558 3023static void
268a4a75 3024svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3025{
1a816a87
PA
3026 struct svr4_info *info;
3027
d70cc3ba 3028 info = get_svr4_info (current_program_space);
2020b7ab 3029
f9e14852
GB
3030 /* Clear the probes-based interface's state. */
3031 free_probes_table (info);
3032 free_solib_list (info);
3033
e2a44558 3034 /* Relocate the main executable if necessary. */
86e4bafc 3035 svr4_relocate_main_executable ();
e2a44558 3036
c91c8c16
PA
3037 /* No point setting a breakpoint in the dynamic linker if we can't
3038 hit it (e.g., a core file, or a trace file). */
55f6301a 3039 if (!target_has_execution ())
c91c8c16
PA
3040 return;
3041
d5a921c9 3042 if (!svr4_have_link_map_offsets ())
513f5903 3043 return;
d5a921c9 3044
268a4a75 3045 if (!enable_break (info, from_tty))
542c95c2 3046 return;
13437d4b
KB
3047}
3048
3049static void
3050svr4_clear_solib (void)
3051{
6c95b8df
PA
3052 struct svr4_info *info;
3053
d70cc3ba 3054 info = get_svr4_info (current_program_space);
6c95b8df
PA
3055 info->debug_base = 0;
3056 info->debug_loader_offset_p = 0;
3057 info->debug_loader_offset = 0;
3058 xfree (info->debug_loader_name);
3059 info->debug_loader_name = NULL;
13437d4b
KB
3060}
3061
6bb7be43
JB
3062/* Clear any bits of ADDR that wouldn't fit in a target-format
3063 data pointer. "Data pointer" here refers to whatever sort of
3064 address the dynamic linker uses to manage its sections. At the
3065 moment, we don't support shared libraries on any processors where
3066 code and data pointers are different sizes.
3067
3068 This isn't really the right solution. What we really need here is
3069 a way to do arithmetic on CORE_ADDR values that respects the
3070 natural pointer/address correspondence. (For example, on the MIPS,
3071 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3072 sign-extend the value. There, simply truncating the bits above
819844ad 3073 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3074 be a new gdbarch method or something. */
3075static CORE_ADDR
3076svr4_truncate_ptr (CORE_ADDR addr)
3077{
f5656ead 3078 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3079 /* We don't need to truncate anything, and the bit twiddling below
3080 will fail due to overflow problems. */
3081 return addr;
3082 else
f5656ead 3083 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3084}
3085
3086
749499cb
KB
3087static void
3088svr4_relocate_section_addresses (struct so_list *so,
dda83cd7 3089 struct target_section *sec)
749499cb 3090{
2b2848e2
DE
3091 bfd *abfd = sec->the_bfd_section->owner;
3092
3093 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3094 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3095}
4b188b9f 3096\f
749499cb 3097
4b188b9f 3098/* Architecture-specific operations. */
6bb7be43 3099
4b188b9f
MK
3100/* Per-architecture data key. */
3101static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3102
4b188b9f 3103struct solib_svr4_ops
e5e2b9ff 3104{
4b188b9f
MK
3105 /* Return a description of the layout of `struct link_map'. */
3106 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3107};
e5e2b9ff 3108
4b188b9f 3109/* Return a default for the architecture-specific operations. */
e5e2b9ff 3110
4b188b9f
MK
3111static void *
3112solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3113{
4b188b9f 3114 struct solib_svr4_ops *ops;
e5e2b9ff 3115
4b188b9f 3116 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3117 ops->fetch_link_map_offsets = NULL;
4b188b9f 3118 return ops;
e5e2b9ff
KB
3119}
3120
4b188b9f 3121/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3122 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3123
21479ded 3124void
e5e2b9ff 3125set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
dda83cd7 3126 struct link_map_offsets *(*flmo) (void))
21479ded 3127{
19ba03f4
SM
3128 struct solib_svr4_ops *ops
3129 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3130
3131 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3132
3133 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3134 set_gdbarch_iterate_over_objfiles_in_search_order
3135 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3136}
3137
4b188b9f
MK
3138/* Fetch a link_map_offsets structure using the architecture-specific
3139 `struct link_map_offsets' fetcher. */
1c4dcb57 3140
4b188b9f
MK
3141static struct link_map_offsets *
3142svr4_fetch_link_map_offsets (void)
21479ded 3143{
19ba03f4
SM
3144 struct solib_svr4_ops *ops
3145 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3146 solib_svr4_data);
4b188b9f
MK
3147
3148 gdb_assert (ops->fetch_link_map_offsets);
3149 return ops->fetch_link_map_offsets ();
21479ded
KB
3150}
3151
4b188b9f
MK
3152/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3153
3154static int
3155svr4_have_link_map_offsets (void)
3156{
19ba03f4
SM
3157 struct solib_svr4_ops *ops
3158 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3159 solib_svr4_data);
433759f7 3160
4b188b9f
MK
3161 return (ops->fetch_link_map_offsets != NULL);
3162}
3163\f
3164
e4bbbda8
MK
3165/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3166 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3167 with the original SVR4 implementation. */
e4bbbda8
MK
3168
3169/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3170 for an ILP32 SVR4 system. */
d989b283 3171
e4bbbda8
MK
3172struct link_map_offsets *
3173svr4_ilp32_fetch_link_map_offsets (void)
3174{
3175 static struct link_map_offsets lmo;
3176 static struct link_map_offsets *lmp = NULL;
3177
3178 if (lmp == NULL)
3179 {
3180 lmp = &lmo;
3181
e4cd0d6a
MK
3182 lmo.r_version_offset = 0;
3183 lmo.r_version_size = 4;
e4bbbda8 3184 lmo.r_map_offset = 4;
7cd25cfc 3185 lmo.r_brk_offset = 8;
e4cd0d6a 3186 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3187
3188 /* Everything we need is in the first 20 bytes. */
3189 lmo.link_map_size = 20;
3190 lmo.l_addr_offset = 0;
e4bbbda8 3191 lmo.l_name_offset = 4;
cc10cae3 3192 lmo.l_ld_offset = 8;
e4bbbda8 3193 lmo.l_next_offset = 12;
e4bbbda8 3194 lmo.l_prev_offset = 16;
e4bbbda8
MK
3195 }
3196
3197 return lmp;
3198}
3199
3200/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3201 for an LP64 SVR4 system. */
d989b283 3202
e4bbbda8
MK
3203struct link_map_offsets *
3204svr4_lp64_fetch_link_map_offsets (void)
3205{
3206 static struct link_map_offsets lmo;
3207 static struct link_map_offsets *lmp = NULL;
3208
3209 if (lmp == NULL)
3210 {
3211 lmp = &lmo;
3212
e4cd0d6a
MK
3213 lmo.r_version_offset = 0;
3214 lmo.r_version_size = 4;
e4bbbda8 3215 lmo.r_map_offset = 8;
7cd25cfc 3216 lmo.r_brk_offset = 16;
e4cd0d6a 3217 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3218
3219 /* Everything we need is in the first 40 bytes. */
3220 lmo.link_map_size = 40;
3221 lmo.l_addr_offset = 0;
e4bbbda8 3222 lmo.l_name_offset = 8;
cc10cae3 3223 lmo.l_ld_offset = 16;
e4bbbda8 3224 lmo.l_next_offset = 24;
e4bbbda8 3225 lmo.l_prev_offset = 32;
e4bbbda8
MK
3226 }
3227
3228 return lmp;
3229}
3230\f
3231
7d522c90 3232struct target_so_ops svr4_so_ops;
13437d4b 3233
626ca2c0 3234/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3235 different rule for symbol lookup. The lookup begins here in the DSO, not in
3236 the main executable. */
3237
626ca2c0
CB
3238static void
3239svr4_iterate_over_objfiles_in_search_order
3240 (struct gdbarch *gdbarch,
3241 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3242 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3243{
626ca2c0
CB
3244 bool checked_current_objfile = false;
3245 if (current_objfile != nullptr)
61f0d762 3246 {
626ca2c0 3247 bfd *abfd;
61f0d762 3248
626ca2c0 3249 if (current_objfile->separate_debug_objfile_backlink != nullptr)
dda83cd7 3250 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3251
a42d7dd8 3252 if (current_objfile == current_program_space->symfile_object_file)
7e10abd1 3253 abfd = current_program_space->exec_bfd ();
626ca2c0
CB
3254 else
3255 abfd = current_objfile->obfd;
3256
7ab78ccb
SM
3257 if (abfd != nullptr
3258 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3259 {
3260 checked_current_objfile = true;
3261 if (cb (current_objfile, cb_data) != 0)
3262 return;
3263 }
3264 }
3a40aaa0 3265
626ca2c0
CB
3266 for (objfile *objfile : current_program_space->objfiles ())
3267 {
3268 if (checked_current_objfile && objfile == current_objfile)
3269 continue;
3270 if (cb (objfile, cb_data) != 0)
3271 return;
3272 }
3a40aaa0
UW
3273}
3274
6c265988 3275void _initialize_svr4_solib ();
13437d4b 3276void
6c265988 3277_initialize_svr4_solib ()
13437d4b 3278{
4b188b9f
MK
3279 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3280
749499cb 3281 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3282 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3283 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3284 svr4_so_ops.clear_solib = svr4_clear_solib;
3285 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3286 svr4_so_ops.current_sos = svr4_current_sos;
3287 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3288 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3289 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3290 svr4_so_ops.same = svr4_same;
de18c1d8 3291 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3292 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3293 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3294
3295 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3296}