]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
Automatic Copyright Year update after running gdb/copyright.py
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
4a94e368 3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
328d42d8
SM
431 if (target_auxv_search (current_inferior ()->top_target (),
432 AT_PHDR, &at_phdr) <= 0)
17658d46 433 return {};
328d42d8
SM
434 if (target_auxv_search (current_inferior ()->top_target (),
435 AT_PHENT, &at_phent) <= 0)
17658d46 436 return {};
328d42d8
SM
437 if (target_auxv_search (current_inferior ()->top_target (),
438 AT_PHNUM, &at_phnum) <= 0)
17658d46 439 return {};
97ec2c2f 440 if (!at_phdr || !at_phnum)
17658d46 441 return {};
97ec2c2f
UW
442
443 /* Determine ELF architecture type. */
444 if (at_phent == sizeof (Elf32_External_Phdr))
445 arch_size = 32;
446 else if (at_phent == sizeof (Elf64_External_Phdr))
447 arch_size = 64;
448 else
17658d46 449 return {};
97ec2c2f 450
09919ac2
JK
451 /* Find the requested segment. */
452 if (type == -1)
453 {
454 sect_addr = at_phdr;
455 sect_size = at_phent * at_phnum;
456 }
457 else if (arch_size == 32)
97ec2c2f
UW
458 {
459 Elf32_External_Phdr phdr;
460 int i;
461
462 /* Search for requested PHDR. */
463 for (i = 0; i < at_phnum; i++)
464 {
43136979
AR
465 int p_type;
466
97ec2c2f
UW
467 if (target_read_memory (at_phdr + i * sizeof (phdr),
468 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 469 return {};
97ec2c2f 470
43136979
AR
471 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
472 4, byte_order);
473
474 if (p_type == PT_PHDR)
475 {
476 pt_phdr_p = 1;
477 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
478 4, byte_order);
479 }
480
481 if (p_type == type)
97ec2c2f
UW
482 break;
483 }
484
485 if (i == at_phnum)
17658d46 486 return {};
97ec2c2f
UW
487
488 /* Retrieve address and size. */
e17a4113
UW
489 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
490 4, byte_order);
491 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
492 4, byte_order);
97ec2c2f
UW
493 }
494 else
495 {
496 Elf64_External_Phdr phdr;
497 int i;
498
499 /* Search for requested PHDR. */
500 for (i = 0; i < at_phnum; i++)
501 {
43136979
AR
502 int p_type;
503
97ec2c2f
UW
504 if (target_read_memory (at_phdr + i * sizeof (phdr),
505 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 506 return {};
97ec2c2f 507
43136979
AR
508 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
509 4, byte_order);
510
511 if (p_type == PT_PHDR)
512 {
513 pt_phdr_p = 1;
514 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
515 8, byte_order);
516 }
517
518 if (p_type == type)
97ec2c2f
UW
519 break;
520 }
521
522 if (i == at_phnum)
17658d46 523 return {};
97ec2c2f
UW
524
525 /* Retrieve address and size. */
e17a4113
UW
526 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
527 8, byte_order);
528 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
529 8, byte_order);
97ec2c2f
UW
530 }
531
43136979
AR
532 /* PT_PHDR is optional, but we really need it
533 for PIE to make this work in general. */
534
535 if (pt_phdr_p)
536 {
537 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
538 Relocation offset is the difference between the two. */
539 sect_addr = sect_addr + (at_phdr - pt_phdr);
540 }
541
97ec2c2f 542 /* Read in requested program header. */
17658d46
SM
543 gdb::byte_vector buf (sect_size);
544 if (target_read_memory (sect_addr, buf.data (), sect_size))
545 return {};
97ec2c2f
UW
546
547 if (p_arch_size)
548 *p_arch_size = arch_size;
a738da3a
MF
549 if (base_addr)
550 *base_addr = sect_addr;
97ec2c2f
UW
551
552 return buf;
553}
554
555
556/* Return program interpreter string. */
17658d46 557static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
558find_program_interpreter (void)
559{
7e10abd1
TT
560 /* If we have a current exec_bfd, use its section table. */
561 if (current_program_space->exec_bfd ()
562 && (bfd_get_flavour (current_program_space->exec_bfd ())
563 == bfd_target_elf_flavour))
97ec2c2f
UW
564 {
565 struct bfd_section *interp_sect;
566
7e10abd1
TT
567 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
568 ".interp");
97ec2c2f
UW
569 if (interp_sect != NULL)
570 {
fd361982 571 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 572
17658d46 573 gdb::byte_vector buf (sect_size);
7e10abd1
TT
574 bfd_get_section_contents (current_program_space->exec_bfd (),
575 interp_sect, buf.data (), 0, sect_size);
17658d46 576 return buf;
97ec2c2f
UW
577 }
578 }
579
17658d46
SM
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
582}
583
584
b6d7a4bf
SM
585/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
586 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
587 is returned and the corresponding PTR is set. */
97ec2c2f
UW
588
589static int
a738da3a
MF
590scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
591 CORE_ADDR *ptr_addr)
97ec2c2f 592{
f5656ead 593 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 594 int arch_size, step;
b6d7a4bf 595 long current_dyntag;
97ec2c2f 596 CORE_ADDR dyn_ptr;
a738da3a 597 CORE_ADDR base_addr;
97ec2c2f
UW
598
599 /* Read in .dynamic section. */
17658d46
SM
600 gdb::optional<gdb::byte_vector> ph_data
601 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
602 if (!ph_data)
97ec2c2f
UW
603 return 0;
604
605 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
606 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
607 : sizeof (Elf64_External_Dyn);
17658d46
SM
608 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
609 buf < bufend; buf += step)
97ec2c2f
UW
610 {
611 if (arch_size == 32)
612 {
613 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 614
b6d7a4bf 615 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
616 4, byte_order);
617 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
618 4, byte_order);
97ec2c2f
UW
619 }
620 else
621 {
622 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 623
b6d7a4bf 624 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
625 8, byte_order);
626 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
627 8, byte_order);
97ec2c2f 628 }
b6d7a4bf 629 if (current_dyntag == DT_NULL)
97ec2c2f
UW
630 break;
631
b6d7a4bf 632 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
633 {
634 if (ptr)
635 *ptr = dyn_ptr;
636
a738da3a 637 if (ptr_addr)
17658d46 638 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 639
97ec2c2f
UW
640 return 1;
641 }
642 }
643
97ec2c2f
UW
644 return 0;
645}
646
7f86f058
PA
647/* Locate the base address of dynamic linker structs for SVR4 elf
648 targets.
13437d4b
KB
649
650 For SVR4 elf targets the address of the dynamic linker's runtime
651 structure is contained within the dynamic info section in the
652 executable file. The dynamic section is also mapped into the
653 inferior address space. Because the runtime loader fills in the
654 real address before starting the inferior, we have to read in the
655 dynamic info section from the inferior address space.
656 If there are any errors while trying to find the address, we
7f86f058 657 silently return 0, otherwise the found address is returned. */
13437d4b
KB
658
659static CORE_ADDR
660elf_locate_base (void)
661{
3b7344d5 662 struct bound_minimal_symbol msymbol;
a738da3a 663 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 664
65728c26
DJ
665 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
666 instead of DT_DEBUG, although they sometimes contain an unused
667 DT_DEBUG. */
8ddf4645
AM
668 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP,
669 current_program_space->exec_bfd (),
670 &dyn_ptr, NULL)
a738da3a 671 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 672 {
f5656ead 673 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 674 gdb_byte *pbuf;
b6da22b0 675 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 676
224c3ddb 677 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
678 /* DT_MIPS_RLD_MAP contains a pointer to the address
679 of the dynamic link structure. */
680 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 681 return 0;
b6da22b0 682 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
683 }
684
a738da3a
MF
685 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
686 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
687 in non-PIE. */
8ddf4645
AM
688 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL,
689 current_program_space->exec_bfd (),
690 &dyn_ptr, &dyn_ptr_addr)
a738da3a
MF
691 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
692 {
693 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
694 gdb_byte *pbuf;
695 int pbuf_size = TYPE_LENGTH (ptr_type);
696
224c3ddb 697 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
698 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
699 DT slot to the address of the dynamic link structure. */
700 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
701 return 0;
702 return extract_typed_address (pbuf, ptr_type);
703 }
704
65728c26 705 /* Find DT_DEBUG. */
8ddf4645
AM
706 if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (),
707 &dyn_ptr, NULL)
a738da3a 708 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
709 return dyn_ptr;
710
3a40aaa0
UW
711 /* This may be a static executable. Look for the symbol
712 conventionally named _r_debug, as a last resort. */
a42d7dd8
TT
713 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
714 current_program_space->symfile_object_file);
3b7344d5 715 if (msymbol.minsym != NULL)
77e371c0 716 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
717
718 /* DT_DEBUG entry not found. */
719 return 0;
720}
721
7f86f058 722/* Locate the base address of dynamic linker structs.
13437d4b
KB
723
724 For both the SunOS and SVR4 shared library implementations, if the
725 inferior executable has been linked dynamically, there is a single
726 address somewhere in the inferior's data space which is the key to
727 locating all of the dynamic linker's runtime structures. This
728 address is the value of the debug base symbol. The job of this
729 function is to find and return that address, or to return 0 if there
730 is no such address (the executable is statically linked for example).
731
732 For SunOS, the job is almost trivial, since the dynamic linker and
733 all of it's structures are statically linked to the executable at
734 link time. Thus the symbol for the address we are looking for has
735 already been added to the minimal symbol table for the executable's
736 objfile at the time the symbol file's symbols were read, and all we
737 have to do is look it up there. Note that we explicitly do NOT want
738 to find the copies in the shared library.
739
740 The SVR4 version is a bit more complicated because the address
741 is contained somewhere in the dynamic info section. We have to go
742 to a lot more work to discover the address of the debug base symbol.
743 Because of this complexity, we cache the value we find and return that
744 value on subsequent invocations. Note there is no copy in the
7f86f058 745 executable symbol tables. */
13437d4b
KB
746
747static CORE_ADDR
1a816a87 748locate_base (struct svr4_info *info)
13437d4b 749{
13437d4b
KB
750 /* Check to see if we have a currently valid address, and if so, avoid
751 doing all this work again and just return the cached address. If
752 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
753 section for ELF executables. There's no point in doing any of this
754 though if we don't have some link map offsets to work with. */
13437d4b 755
1a816a87 756 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 757 info->debug_base = elf_locate_base ();
1a816a87 758 return info->debug_base;
13437d4b
KB
759}
760
e4cd0d6a 761/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
762 return its address in the inferior. Return zero if the address
763 could not be determined.
13437d4b 764
e4cd0d6a
MK
765 FIXME: Perhaps we should validate the info somehow, perhaps by
766 checking r_version for a known version number, or r_state for
767 RT_CONSISTENT. */
13437d4b
KB
768
769static CORE_ADDR
1a816a87 770solib_svr4_r_map (struct svr4_info *info)
13437d4b 771{
4b188b9f 772 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 774 CORE_ADDR addr = 0;
13437d4b 775
a70b8144 776 try
08597104
JB
777 {
778 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
dda83cd7 779 ptr_type);
08597104 780 }
230d2906 781 catch (const gdb_exception_error &ex)
492d29ea
PA
782 {
783 exception_print (gdb_stderr, ex);
784 }
492d29ea 785
08597104 786 return addr;
e4cd0d6a 787}
13437d4b 788
7cd25cfc
DJ
789/* Find r_brk from the inferior's debug base. */
790
791static CORE_ADDR
1a816a87 792solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
793{
794 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 795 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 796
1a816a87
PA
797 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
798 ptr_type);
7cd25cfc
DJ
799}
800
e4cd0d6a
MK
801/* Find the link map for the dynamic linker (if it is not in the
802 normal list of loaded shared objects). */
13437d4b 803
e4cd0d6a 804static CORE_ADDR
1a816a87 805solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
806{
807 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 808 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 809 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
810 ULONGEST version = 0;
811
a70b8144 812 try
416f679e
SDJ
813 {
814 /* Check version, and return zero if `struct r_debug' doesn't have
815 the r_ldsomap member. */
816 version
817 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
818 lmo->r_version_size, byte_order);
819 }
230d2906 820 catch (const gdb_exception_error &ex)
416f679e
SDJ
821 {
822 exception_print (gdb_stderr, ex);
823 }
13437d4b 824
e4cd0d6a
MK
825 if (version < 2 || lmo->r_ldsomap_offset == -1)
826 return 0;
13437d4b 827
1a816a87 828 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 829 ptr_type);
13437d4b
KB
830}
831
de18c1d8
JM
832/* On Solaris systems with some versions of the dynamic linker,
833 ld.so's l_name pointer points to the SONAME in the string table
834 rather than into writable memory. So that GDB can find shared
835 libraries when loading a core file generated by gcore, ensure that
836 memory areas containing the l_name string are saved in the core
837 file. */
838
839static int
840svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
841{
842 struct svr4_info *info;
843 CORE_ADDR ldsomap;
74de0234 844 CORE_ADDR name_lm;
de18c1d8 845
d70cc3ba 846 info = get_svr4_info (current_program_space);
de18c1d8
JM
847
848 info->debug_base = 0;
849 locate_base (info);
850 if (!info->debug_base)
851 return 0;
852
853 ldsomap = solib_svr4_r_ldsomap (info);
854 if (!ldsomap)
855 return 0;
856
a7961323 857 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 858 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 859
74de0234 860 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
861}
862
bf469271 863/* See solist.h. */
13437d4b
KB
864
865static int
bf469271 866open_symbol_file_object (int from_tty)
13437d4b
KB
867{
868 CORE_ADDR lm, l_name;
4b188b9f 869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 870 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 871 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 872 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 873 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
874 symfile_add_flags add_flags = 0;
875
876 if (from_tty)
877 add_flags |= SYMFILE_VERBOSE;
13437d4b 878
a42d7dd8 879 if (current_program_space->symfile_object_file)
9e2f0ad4 880 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 881 return 0;
13437d4b 882
7cd25cfc 883 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
884 info->debug_base = 0;
885 if (locate_base (info) == 0)
a7961323 886 return 0; /* failed somehow... */
13437d4b
KB
887
888 /* First link map member should be the executable. */
1a816a87 889 lm = solib_svr4_r_map (info);
e4cd0d6a 890 if (lm == 0)
a7961323 891 return 0; /* failed somehow... */
13437d4b
KB
892
893 /* Read address of name from target memory to GDB. */
a7961323 894 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 895
cfaefc65 896 /* Convert the address to host format. */
a7961323 897 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 898
13437d4b 899 if (l_name == 0)
a7961323 900 return 0; /* No filename. */
13437d4b
KB
901
902 /* Now fetch the filename from target memory. */
66920317
TT
903 gdb::unique_xmalloc_ptr<char> filename
904 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
13437d4b 905
66920317 906 if (filename == nullptr)
13437d4b 907 {
66920317 908 warning (_("failed to read exec filename from attached file"));
13437d4b
KB
909 return 0;
910 }
911
13437d4b 912 /* Have a pathname: read the symbol file. */
e83e4e24 913 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
914
915 return 1;
916}
13437d4b 917
2268b414
JK
918/* Data exchange structure for the XML parser as returned by
919 svr4_current_sos_via_xfer_libraries. */
920
921struct svr4_library_list
922{
923 struct so_list *head, **tailp;
924
925 /* Inferior address of struct link_map used for the main executable. It is
926 NULL if not known. */
927 CORE_ADDR main_lm;
928};
929
7905fc35
PA
930/* This module's 'free_objfile' observer. */
931
932static void
933svr4_free_objfile_observer (struct objfile *objfile)
934{
935 probes_table_remove_objfile_probes (objfile);
936}
937
93f2a35e
JK
938/* Implementation for target_so_ops.free_so. */
939
940static void
941svr4_free_so (struct so_list *so)
942{
76e75227
SM
943 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
944
945 delete li;
93f2a35e
JK
946}
947
0892cb63
DE
948/* Implement target_so_ops.clear_so. */
949
950static void
951svr4_clear_so (struct so_list *so)
952{
d0e449a1
SM
953 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
954
955 if (li != NULL)
956 li->l_addr_p = 0;
0892cb63
DE
957}
958
93f2a35e
JK
959/* Free so_list built so far (called via cleanup). */
960
961static void
962svr4_free_library_list (void *p_list)
963{
964 struct so_list *list = *(struct so_list **) p_list;
965
966 while (list != NULL)
967 {
968 struct so_list *next = list->next;
969
3756ef7e 970 free_so (list);
93f2a35e
JK
971 list = next;
972 }
973}
974
f9e14852
GB
975/* Copy library list. */
976
977static struct so_list *
978svr4_copy_library_list (struct so_list *src)
979{
980 struct so_list *dst = NULL;
981 struct so_list **link = &dst;
982
983 while (src != NULL)
984 {
fe978cb0 985 struct so_list *newobj;
f9e14852 986
8d749320 987 newobj = XNEW (struct so_list);
fe978cb0 988 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 989
76e75227
SM
990 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
991 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 992
fe978cb0
PA
993 newobj->next = NULL;
994 *link = newobj;
995 link = &newobj->next;
f9e14852
GB
996
997 src = src->next;
998 }
999
1000 return dst;
1001}
1002
2268b414
JK
1003#ifdef HAVE_LIBEXPAT
1004
1005#include "xml-support.h"
1006
1007/* Handle the start of a <library> element. Note: new elements are added
1008 at the tail of the list, keeping the list in order. */
1009
1010static void
1011library_list_start_library (struct gdb_xml_parser *parser,
1012 const struct gdb_xml_element *element,
4d0fdd9b
SM
1013 void *user_data,
1014 std::vector<gdb_xml_value> &attributes)
2268b414 1015{
19ba03f4
SM
1016 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1017 const char *name
4d0fdd9b 1018 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1019 ULONGEST *lmp
4d0fdd9b 1020 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1021 ULONGEST *l_addrp
4d0fdd9b 1022 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1023 ULONGEST *l_ldp
4d0fdd9b 1024 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1025 struct so_list *new_elem;
1026
41bf6aca 1027 new_elem = XCNEW (struct so_list);
76e75227 1028 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1029 new_elem->lm_info = li;
1030 li->lm_addr = *lmp;
1031 li->l_addr_inferior = *l_addrp;
1032 li->l_ld = *l_ldp;
2268b414
JK
1033
1034 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1035 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1036 strcpy (new_elem->so_original_name, new_elem->so_name);
1037
1038 *list->tailp = new_elem;
1039 list->tailp = &new_elem->next;
1040}
1041
1042/* Handle the start of a <library-list-svr4> element. */
1043
1044static void
1045svr4_library_list_start_list (struct gdb_xml_parser *parser,
1046 const struct gdb_xml_element *element,
4d0fdd9b
SM
1047 void *user_data,
1048 std::vector<gdb_xml_value> &attributes)
2268b414 1049{
19ba03f4
SM
1050 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1051 const char *version
4d0fdd9b 1052 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1053 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1054
1055 if (strcmp (version, "1.0") != 0)
1056 gdb_xml_error (parser,
1057 _("SVR4 Library list has unsupported version \"%s\""),
1058 version);
1059
1060 if (main_lm)
4d0fdd9b 1061 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1062}
1063
1064/* The allowed elements and attributes for an XML library list.
1065 The root element is a <library-list>. */
1066
1067static const struct gdb_xml_attribute svr4_library_attributes[] =
1068{
1069 { "name", GDB_XML_AF_NONE, NULL, NULL },
1070 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1071 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1072 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1073 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1074};
1075
1076static const struct gdb_xml_element svr4_library_list_children[] =
1077{
1078 {
1079 "library", svr4_library_attributes, NULL,
1080 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1081 library_list_start_library, NULL
1082 },
1083 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1084};
1085
1086static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1087{
1088 { "version", GDB_XML_AF_NONE, NULL, NULL },
1089 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1090 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1091};
1092
1093static const struct gdb_xml_element svr4_library_list_elements[] =
1094{
1095 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1096 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1097 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1098};
1099
2268b414
JK
1100/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1101
1102 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1103 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1104 empty, caller is responsible for freeing all its entries. */
1105
1106static int
1107svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1108{
2b6ff1c0
TT
1109 auto cleanup = make_scope_exit ([&] ()
1110 {
1111 svr4_free_library_list (&list->head);
1112 });
2268b414
JK
1113
1114 memset (list, 0, sizeof (*list));
1115 list->tailp = &list->head;
2eca4a8d 1116 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1117 svr4_library_list_elements, document, list) == 0)
1118 {
1119 /* Parsed successfully, keep the result. */
2b6ff1c0 1120 cleanup.release ();
2268b414
JK
1121 return 1;
1122 }
1123
2268b414
JK
1124 return 0;
1125}
1126
f9e14852 1127/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1128
1129 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1130 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1131 empty, caller is responsible for freeing all its entries.
1132
1133 Note that ANNEX must be NULL if the remote does not explicitly allow
1134 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1135 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1136
1137static int
f9e14852
GB
1138svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1139 const char *annex)
2268b414 1140{
f9e14852
GB
1141 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1142
2268b414 1143 /* Fetch the list of shared libraries. */
9018be22 1144 gdb::optional<gdb::char_vector> svr4_library_document
328d42d8
SM
1145 = target_read_stralloc (current_inferior ()->top_target (),
1146 TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1147 annex);
9018be22 1148 if (!svr4_library_document)
2268b414
JK
1149 return 0;
1150
9018be22 1151 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1152}
1153
1154#else
1155
1156static int
f9e14852
GB
1157svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1158 const char *annex)
2268b414
JK
1159{
1160 return 0;
1161}
1162
1163#endif
1164
34439770
DJ
1165/* If no shared library information is available from the dynamic
1166 linker, build a fallback list from other sources. */
1167
1168static struct so_list *
d70cc3ba 1169svr4_default_sos (svr4_info *info)
34439770 1170{
fe978cb0 1171 struct so_list *newobj;
1a816a87 1172
8e5c319d
JK
1173 if (!info->debug_loader_offset_p)
1174 return NULL;
34439770 1175
fe978cb0 1176 newobj = XCNEW (struct so_list);
76e75227 1177 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1178 newobj->lm_info = li;
34439770 1179
3957565a 1180 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1181 li->l_addr = info->debug_loader_offset;
1182 li->l_addr_p = 1;
34439770 1183
fe978cb0
PA
1184 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1185 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1186 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1187
fe978cb0 1188 return newobj;
34439770
DJ
1189}
1190
f9e14852
GB
1191/* Read the whole inferior libraries chain starting at address LM.
1192 Expect the first entry in the chain's previous entry to be PREV_LM.
1193 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1194 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1195 to it. Returns nonzero upon success. If zero is returned the
1196 entries stored to LINK_PTR_PTR are still valid although they may
1197 represent only part of the inferior library list. */
13437d4b 1198
f9e14852 1199static int
d70cc3ba 1200svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1201 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1202{
c725e7b6 1203 CORE_ADDR first_l_name = 0;
f9e14852 1204 CORE_ADDR next_lm;
13437d4b 1205
cb08cc53 1206 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1207 {
b3bc8453 1208 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1209
a7961323 1210 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1211 newobj->lm_info = li;
1212 if (li == NULL)
b3bc8453 1213 return 0;
13437d4b 1214
d0e449a1 1215 next_lm = li->l_next;
492928e4 1216
d0e449a1 1217 if (li->l_prev != prev_lm)
492928e4 1218 {
2268b414 1219 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1220 paddress (target_gdbarch (), prev_lm),
d0e449a1 1221 paddress (target_gdbarch (), li->l_prev));
f9e14852 1222 return 0;
492928e4 1223 }
13437d4b
KB
1224
1225 /* For SVR4 versions, the first entry in the link map is for the
dda83cd7
SM
1226 inferior executable, so we must ignore it. For some versions of
1227 SVR4, it has no name. For others (Solaris 2.3 for example), it
1228 does have a name, so we can no longer use a missing name to
1229 decide when to ignore it. */
d0e449a1 1230 if (ignore_first && li->l_prev == 0)
93a57060 1231 {
d0e449a1
SM
1232 first_l_name = li->l_name;
1233 info->main_lm_addr = li->lm_addr;
cb08cc53 1234 continue;
93a57060 1235 }
13437d4b 1236
cb08cc53 1237 /* Extract this shared object's name. */
66920317
TT
1238 gdb::unique_xmalloc_ptr<char> buffer
1239 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1240 if (buffer == nullptr)
cb08cc53 1241 {
7d760051
UW
1242 /* If this entry's l_name address matches that of the
1243 inferior executable, then this is not a normal shared
1244 object, but (most likely) a vDSO. In this case, silently
1245 skip it; otherwise emit a warning. */
d0e449a1 1246 if (first_l_name == 0 || li->l_name != first_l_name)
66920317 1247 warning (_("Can't read pathname for load map."));
cb08cc53 1248 continue;
13437d4b
KB
1249 }
1250
e83e4e24 1251 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1252 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1253 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1254
cb08cc53
JK
1255 /* If this entry has no name, or its name matches the name
1256 for the main executable, don't include it in the list. */
fe978cb0 1257 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1258 continue;
e4cd0d6a 1259
fe978cb0 1260 newobj->next = 0;
b3bc8453
TT
1261 /* Don't free it now. */
1262 **link_ptr_ptr = newobj.release ();
1263 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1264 }
f9e14852
GB
1265
1266 return 1;
cb08cc53
JK
1267}
1268
f9e14852
GB
1269/* Read the full list of currently loaded shared objects directly
1270 from the inferior, without referring to any libraries read and
1271 stored by the probes interface. Handle special cases relating
1272 to the first elements of the list. */
cb08cc53
JK
1273
1274static struct so_list *
f9e14852 1275svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1276{
1277 CORE_ADDR lm;
1278 struct so_list *head = NULL;
1279 struct so_list **link_ptr = &head;
cb08cc53 1280 int ignore_first;
2268b414
JK
1281 struct svr4_library_list library_list;
1282
0c5bf5a9
JK
1283 /* Fall back to manual examination of the target if the packet is not
1284 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1285 tests a case where gdbserver cannot find the shared libraries list while
1286 GDB itself is able to find it via SYMFILE_OBJFILE.
1287
1288 Unfortunately statically linked inferiors will also fall back through this
1289 suboptimal code path. */
1290
f9e14852
GB
1291 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1292 NULL);
1293 if (info->using_xfer)
2268b414
JK
1294 {
1295 if (library_list.main_lm)
f9e14852 1296 info->main_lm_addr = library_list.main_lm;
2268b414 1297
d70cc3ba 1298 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1299 }
cb08cc53 1300
cb08cc53
JK
1301 /* Always locate the debug struct, in case it has moved. */
1302 info->debug_base = 0;
1303 locate_base (info);
1304
1305 /* If we can't find the dynamic linker's base structure, this
1306 must not be a dynamically linked executable. Hmm. */
1307 if (! info->debug_base)
d70cc3ba 1308 return svr4_default_sos (info);
cb08cc53
JK
1309
1310 /* Assume that everything is a library if the dynamic loader was loaded
1311 late by a static executable. */
7e10abd1
TT
1312 if (current_program_space->exec_bfd ()
1313 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1314 ".dynamic") == NULL)
cb08cc53
JK
1315 ignore_first = 0;
1316 else
1317 ignore_first = 1;
1318
2b6ff1c0
TT
1319 auto cleanup = make_scope_exit ([&] ()
1320 {
1321 svr4_free_library_list (&head);
1322 });
cb08cc53
JK
1323
1324 /* Walk the inferior's link map list, and build our list of
1325 `struct so_list' nodes. */
1326 lm = solib_svr4_r_map (info);
1327 if (lm)
d70cc3ba 1328 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1329
1330 /* On Solaris, the dynamic linker is not in the normal list of
1331 shared objects, so make sure we pick it up too. Having
1332 symbol information for the dynamic linker is quite crucial
1333 for skipping dynamic linker resolver code. */
1334 lm = solib_svr4_r_ldsomap (info);
1335 if (lm)
d70cc3ba 1336 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1337
2b6ff1c0 1338 cleanup.release ();
13437d4b 1339
34439770 1340 if (head == NULL)
d70cc3ba 1341 return svr4_default_sos (info);
34439770 1342
13437d4b
KB
1343 return head;
1344}
1345
8b9a549d
PA
1346/* Implement the main part of the "current_sos" target_so_ops
1347 method. */
f9e14852
GB
1348
1349static struct so_list *
d70cc3ba 1350svr4_current_sos_1 (svr4_info *info)
f9e14852 1351{
f9e14852
GB
1352 /* If the solib list has been read and stored by the probes
1353 interface then we return a copy of the stored list. */
1354 if (info->solib_list != NULL)
1355 return svr4_copy_library_list (info->solib_list);
1356
1357 /* Otherwise obtain the solib list directly from the inferior. */
1358 return svr4_current_sos_direct (info);
1359}
1360
8b9a549d
PA
1361/* Implement the "current_sos" target_so_ops method. */
1362
1363static struct so_list *
1364svr4_current_sos (void)
1365{
d70cc3ba
SM
1366 svr4_info *info = get_svr4_info (current_program_space);
1367 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1368 struct mem_range vsyscall_range;
1369
1370 /* Filter out the vDSO module, if present. Its symbol file would
1371 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1372 managed by symfile-mem.c:add_vsyscall_page. */
1373 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1374 && vsyscall_range.length != 0)
1375 {
1376 struct so_list **sop;
1377
1378 sop = &so_head;
1379 while (*sop != NULL)
1380 {
1381 struct so_list *so = *sop;
1382
1383 /* We can't simply match the vDSO by starting address alone,
1384 because lm_info->l_addr_inferior (and also l_addr) do not
1385 necessarily represent the real starting address of the
1386 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1387 field (the ".dynamic" section of the shared object)
1388 always points at the absolute/resolved address though.
1389 So check whether that address is inside the vDSO's
1390 mapping instead.
1391
1392 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1393 0-based ELF, and we see:
1394
1395 (gdb) info auxv
1396 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1397 (gdb) p/x *_r_debug.r_map.l_next
1398 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1399
1400 And on Linux 2.6.32 (x86_64) we see:
1401
1402 (gdb) info auxv
1403 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1404 (gdb) p/x *_r_debug.r_map.l_next
1405 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1406
1407 Dumping that vDSO shows:
1408
1409 (gdb) info proc mappings
1410 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1411 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1412 # readelf -Wa vdso.bin
1413 [...]
1414 Entry point address: 0xffffffffff700700
1415 [...]
1416 Section Headers:
1417 [Nr] Name Type Address Off Size
1418 [ 0] NULL 0000000000000000 000000 000000
1419 [ 1] .hash HASH ffffffffff700120 000120 000038
1420 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1421 [...]
1422 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1423 */
d0e449a1
SM
1424
1425 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1426
1427 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1428 {
1429 *sop = so->next;
1430 free_so (so);
1431 break;
1432 }
1433
1434 sop = &so->next;
1435 }
1436 }
1437
1438 return so_head;
1439}
1440
93a57060 1441/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1442
1443CORE_ADDR
1444svr4_fetch_objfile_link_map (struct objfile *objfile)
1445{
d70cc3ba 1446 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1447
93a57060 1448 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1449 if (info->main_lm_addr == 0)
e696b3ad 1450 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1451
93a57060 1452 /* svr4_current_sos() will set main_lm_addr for the main executable. */
a42d7dd8 1453 if (objfile == current_program_space->symfile_object_file)
1a816a87 1454 return info->main_lm_addr;
93a57060 1455
df22c1e5
JB
1456 /* If OBJFILE is a separate debug object file, look for the
1457 original object file. */
1458 if (objfile->separate_debug_objfile_backlink != NULL)
1459 objfile = objfile->separate_debug_objfile_backlink;
1460
93a57060
DJ
1461 /* The other link map addresses may be found by examining the list
1462 of shared libraries. */
a1fd1ac9 1463 for (struct so_list *so : current_program_space->solibs ())
93a57060 1464 if (so->objfile == objfile)
d0e449a1
SM
1465 {
1466 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1467
1468 return li->lm_addr;
1469 }
93a57060
DJ
1470
1471 /* Not found! */
bc4a16ae
EZ
1472 return 0;
1473}
13437d4b
KB
1474
1475/* On some systems, the only way to recognize the link map entry for
1476 the main executable file is by looking at its name. Return
1477 non-zero iff SONAME matches one of the known main executable names. */
1478
1479static int
bc043ef3 1480match_main (const char *soname)
13437d4b 1481{
bc043ef3 1482 const char * const *mainp;
13437d4b
KB
1483
1484 for (mainp = main_name_list; *mainp != NULL; mainp++)
1485 {
1486 if (strcmp (soname, *mainp) == 0)
1487 return (1);
1488 }
1489
1490 return (0);
1491}
1492
13437d4b
KB
1493/* Return 1 if PC lies in the dynamic symbol resolution code of the
1494 SVR4 run time loader. */
13437d4b 1495
7d522c90 1496int
d7fa2ae2 1497svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1498{
d70cc3ba 1499 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1500
1501 return ((pc >= info->interp_text_sect_low
1502 && pc < info->interp_text_sect_high)
1503 || (pc >= info->interp_plt_sect_low
1504 && pc < info->interp_plt_sect_high)
3e5d3a5a 1505 || in_plt_section (pc)
0875794a 1506 || in_gnu_ifunc_stub (pc));
13437d4b 1507}
13437d4b 1508
2f4950cd
AC
1509/* Given an executable's ABFD and target, compute the entry-point
1510 address. */
1511
1512static CORE_ADDR
1513exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1514{
8c2b9656
YQ
1515 CORE_ADDR addr;
1516
2f4950cd
AC
1517 /* KevinB wrote ... for most targets, the address returned by
1518 bfd_get_start_address() is the entry point for the start
1519 function. But, for some targets, bfd_get_start_address() returns
1520 the address of a function descriptor from which the entry point
1521 address may be extracted. This address is extracted by
1522 gdbarch_convert_from_func_ptr_addr(). The method
1523 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1524 function for targets which don't use function descriptors. */
8c2b9656 1525 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1526 bfd_get_start_address (abfd),
1527 targ);
8c2b9656 1528 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1529}
13437d4b 1530
f9e14852
GB
1531/* A probe and its associated action. */
1532
1533struct probe_and_action
1534{
1535 /* The probe. */
935676c9 1536 probe *prob;
f9e14852 1537
729662a5
TT
1538 /* The relocated address of the probe. */
1539 CORE_ADDR address;
1540
f9e14852
GB
1541 /* The action. */
1542 enum probe_action action;
7905fc35
PA
1543
1544 /* The objfile where this probe was found. */
1545 struct objfile *objfile;
f9e14852
GB
1546};
1547
1548/* Returns a hash code for the probe_and_action referenced by p. */
1549
1550static hashval_t
1551hash_probe_and_action (const void *p)
1552{
19ba03f4 1553 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1554
729662a5 1555 return (hashval_t) pa->address;
f9e14852
GB
1556}
1557
1558/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1559 are equal. */
1560
1561static int
1562equal_probe_and_action (const void *p1, const void *p2)
1563{
19ba03f4
SM
1564 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1565 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1566
729662a5 1567 return pa1->address == pa2->address;
f9e14852
GB
1568}
1569
7905fc35
PA
1570/* Traversal function for probes_table_remove_objfile_probes. */
1571
1572static int
1573probes_table_htab_remove_objfile_probes (void **slot, void *info)
1574{
1575 probe_and_action *pa = (probe_and_action *) *slot;
1576 struct objfile *objfile = (struct objfile *) info;
1577
1578 if (pa->objfile == objfile)
09232438
TT
1579 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1580 slot);
7905fc35
PA
1581
1582 return 1;
1583}
1584
1585/* Remove all probes that belong to OBJFILE from the probes table. */
1586
1587static void
1588probes_table_remove_objfile_probes (struct objfile *objfile)
1589{
d70cc3ba 1590 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1591 if (info->probes_table != nullptr)
09232438 1592 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1593 probes_table_htab_remove_objfile_probes, objfile);
1594}
1595
f9e14852
GB
1596/* Register a solib event probe and its associated action in the
1597 probes table. */
1598
1599static void
d70cc3ba 1600register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1601 probe *prob, CORE_ADDR address,
729662a5 1602 enum probe_action action)
f9e14852 1603{
f9e14852
GB
1604 struct probe_and_action lookup, *pa;
1605 void **slot;
1606
1607 /* Create the probes table, if necessary. */
1608 if (info->probes_table == NULL)
09232438
TT
1609 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1610 equal_probe_and_action,
1611 xfree, xcalloc, xfree));
f9e14852 1612
729662a5 1613 lookup.address = address;
09232438 1614 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1615 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1616
1617 pa = XCNEW (struct probe_and_action);
935676c9 1618 pa->prob = prob;
729662a5 1619 pa->address = address;
f9e14852 1620 pa->action = action;
7905fc35 1621 pa->objfile = objfile;
f9e14852
GB
1622
1623 *slot = pa;
1624}
1625
1626/* Get the solib event probe at the specified location, and the
1627 action associated with it. Returns NULL if no solib event probe
1628 was found. */
1629
1630static struct probe_and_action *
1631solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1632{
f9e14852
GB
1633 struct probe_and_action lookup;
1634 void **slot;
1635
729662a5 1636 lookup.address = address;
09232438 1637 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1638
1639 if (slot == NULL)
1640 return NULL;
1641
1642 return (struct probe_and_action *) *slot;
1643}
1644
1645/* Decide what action to take when the specified solib event probe is
1646 hit. */
1647
1648static enum probe_action
1649solib_event_probe_action (struct probe_and_action *pa)
1650{
1651 enum probe_action action;
73c6b475 1652 unsigned probe_argc = 0;
08a6411c 1653 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1654
1655 action = pa->action;
1656 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1657 return action;
1658
1659 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1660
1661 /* Check that an appropriate number of arguments has been supplied.
1662 We expect:
1663 arg0: Lmid_t lmid (mandatory)
1664 arg1: struct r_debug *debug_base (mandatory)
1665 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1666 try
3bd7e5b7 1667 {
fe01123e 1668 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1669 }
230d2906 1670 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1671 {
1672 exception_print (gdb_stderr, ex);
1673 probe_argc = 0;
1674 }
3bd7e5b7 1675
935676c9
SDJ
1676 /* If get_argument_count throws an exception, probe_argc will be set
1677 to zero. However, if pa->prob does not have arguments, then
1678 get_argument_count will succeed but probe_argc will also be zero.
1679 Both cases happen because of different things, but they are
1680 treated equally here: action will be set to
3bd7e5b7 1681 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1682 if (probe_argc == 2)
1683 action = FULL_RELOAD;
1684 else if (probe_argc < 2)
1685 action = PROBES_INTERFACE_FAILED;
1686
1687 return action;
1688}
1689
1690/* Populate the shared object list by reading the entire list of
1691 shared objects from the inferior. Handle special cases relating
1692 to the first elements of the list. Returns nonzero on success. */
1693
1694static int
1695solist_update_full (struct svr4_info *info)
1696{
1697 free_solib_list (info);
1698 info->solib_list = svr4_current_sos_direct (info);
1699
1700 return 1;
1701}
1702
1703/* Update the shared object list starting from the link-map entry
1704 passed by the linker in the probe's third argument. Returns
1705 nonzero if the list was successfully updated, or zero to indicate
1706 failure. */
1707
1708static int
1709solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1710{
1711 struct so_list *tail;
1712 CORE_ADDR prev_lm;
1713
1714 /* svr4_current_sos_direct contains logic to handle a number of
1715 special cases relating to the first elements of the list. To
1716 avoid duplicating this logic we defer to solist_update_full
1717 if the list is empty. */
1718 if (info->solib_list == NULL)
1719 return 0;
1720
1721 /* Fall back to a full update if we are using a remote target
1722 that does not support incremental transfers. */
1723 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1724 return 0;
1725
1726 /* Walk to the end of the list. */
1727 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1728 /* Nothing. */;
d0e449a1
SM
1729
1730 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1731 prev_lm = li->lm_addr;
f9e14852
GB
1732
1733 /* Read the new objects. */
1734 if (info->using_xfer)
1735 {
1736 struct svr4_library_list library_list;
1737 char annex[64];
1738
1739 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1740 phex_nz (lm, sizeof (lm)),
1741 phex_nz (prev_lm, sizeof (prev_lm)));
1742 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1743 return 0;
1744
1745 tail->next = library_list.head;
1746 }
1747 else
1748 {
1749 struct so_list **link = &tail->next;
1750
1751 /* IGNORE_FIRST may safely be set to zero here because the
1752 above check and deferral to solist_update_full ensures
1753 that this call to svr4_read_so_list will never see the
1754 first element. */
d70cc3ba 1755 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1756 return 0;
1757 }
1758
1759 return 1;
1760}
1761
1762/* Disable the probes-based linker interface and revert to the
1763 original interface. We don't reset the breakpoints as the
1764 ones set up for the probes-based interface are adequate. */
1765
1766static void
d70cc3ba 1767disable_probes_interface (svr4_info *info)
f9e14852 1768{
f9e14852 1769 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1770 "Reverting to original interface."));
f9e14852
GB
1771
1772 free_probes_table (info);
1773 free_solib_list (info);
1774}
1775
1776/* Update the solib list as appropriate when using the
1777 probes-based linker interface. Do nothing if using the
1778 standard interface. */
1779
1780static void
1781svr4_handle_solib_event (void)
1782{
d70cc3ba 1783 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1784 struct probe_and_action *pa;
1785 enum probe_action action;
ad1c917a 1786 struct value *val = NULL;
f9e14852 1787 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1788 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1789
1790 /* Do nothing if not using the probes interface. */
1791 if (info->probes_table == NULL)
1792 return;
1793
1794 /* If anything goes wrong we revert to the original linker
1795 interface. */
d70cc3ba
SM
1796 auto cleanup = make_scope_exit ([info] ()
1797 {
1798 disable_probes_interface (info);
1799 });
f9e14852
GB
1800
1801 pc = regcache_read_pc (get_current_regcache ());
1802 pa = solib_event_probe_at (info, pc);
1803 if (pa == NULL)
d01c5877 1804 return;
f9e14852
GB
1805
1806 action = solib_event_probe_action (pa);
1807 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1808 return;
f9e14852
GB
1809
1810 if (action == DO_NOTHING)
1811 {
d01c5877 1812 cleanup.release ();
f9e14852
GB
1813 return;
1814 }
1815
935676c9 1816 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1817 using find_pc_section. find_pc_section is accelerated by a cache
1818 called the section map. The section map is invalidated every
1819 time a shared library is loaded or unloaded, and if the inferior
1820 is generating a lot of shared library events then the section map
1821 will be updated every time svr4_handle_solib_event is called.
1822 We called find_pc_section in svr4_create_solib_event_breakpoints,
1823 so we can guarantee that the dynamic linker's sections are in the
1824 section map. We can therefore inhibit section map updates across
935676c9 1825 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1826 {
1827 scoped_restore inhibit_updates
1828 = inhibit_section_map_updates (current_program_space);
f9e14852 1829
a70b8144 1830 try
06424eac
TT
1831 {
1832 val = pa->prob->evaluate_argument (1, frame);
1833 }
230d2906 1834 catch (const gdb_exception_error &ex)
06424eac
TT
1835 {
1836 exception_print (gdb_stderr, ex);
1837 val = NULL;
1838 }
f9e14852 1839
06424eac 1840 if (val == NULL)
d01c5877 1841 return;
f9e14852 1842
06424eac
TT
1843 debug_base = value_as_address (val);
1844 if (debug_base == 0)
d01c5877 1845 return;
f9e14852 1846
06424eac
TT
1847 /* Always locate the debug struct, in case it moved. */
1848 info->debug_base = 0;
1849 if (locate_base (info) == 0)
cb736441
GB
1850 {
1851 /* It's possible for the reloc_complete probe to be triggered before
1852 the linker has set the DT_DEBUG pointer (for example, when the
1853 linker has finished relocating an LD_AUDIT library or its
1854 dependencies). Since we can't yet handle libraries from other link
1855 namespaces, we don't lose anything by ignoring them here. */
1856 struct value *link_map_id_val;
1857 try
1858 {
1859 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1860 }
1861 catch (const gdb_exception_error)
1862 {
1863 link_map_id_val = NULL;
1864 }
1865 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1866 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1867 action = DO_NOTHING;
1868 else
1869 return;
1870 }
3bd7e5b7 1871
06424eac
TT
1872 /* GDB does not currently support libraries loaded via dlmopen
1873 into namespaces other than the initial one. We must ignore
1874 any namespace other than the initial namespace here until
1875 support for this is added to GDB. */
1876 if (debug_base != info->debug_base)
1877 action = DO_NOTHING;
f9e14852 1878
06424eac
TT
1879 if (action == UPDATE_OR_RELOAD)
1880 {
a70b8144 1881 try
06424eac
TT
1882 {
1883 val = pa->prob->evaluate_argument (2, frame);
1884 }
230d2906 1885 catch (const gdb_exception_error &ex)
06424eac
TT
1886 {
1887 exception_print (gdb_stderr, ex);
06424eac
TT
1888 return;
1889 }
06424eac
TT
1890
1891 if (val != NULL)
1892 lm = value_as_address (val);
1893
1894 if (lm == 0)
1895 action = FULL_RELOAD;
1896 }
f9e14852 1897
06424eac
TT
1898 /* Resume section map updates. Closing the scope is
1899 sufficient. */
1900 }
f9e14852
GB
1901
1902 if (action == UPDATE_OR_RELOAD)
1903 {
1904 if (!solist_update_incremental (info, lm))
1905 action = FULL_RELOAD;
1906 }
1907
1908 if (action == FULL_RELOAD)
1909 {
1910 if (!solist_update_full (info))
d01c5877 1911 return;
f9e14852
GB
1912 }
1913
d01c5877 1914 cleanup.release ();
f9e14852
GB
1915}
1916
1917/* Helper function for svr4_update_solib_event_breakpoints. */
1918
95da600f
CB
1919static bool
1920svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852 1921{
f9e14852
GB
1922 if (b->type != bp_shlib_event)
1923 {
1924 /* Continue iterating. */
95da600f 1925 return false;
f9e14852
GB
1926 }
1927
40cb8ca5 1928 for (bp_location *loc : b->locations ())
f9e14852
GB
1929 {
1930 struct svr4_info *info;
1931 struct probe_and_action *pa;
1932
09232438 1933 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
1934 if (info == NULL || info->probes_table == NULL)
1935 continue;
1936
1937 pa = solib_event_probe_at (info, loc->address);
1938 if (pa == NULL)
1939 continue;
1940
1941 if (pa->action == DO_NOTHING)
1942 {
1943 if (b->enable_state == bp_disabled && stop_on_solib_events)
1944 enable_breakpoint (b);
1945 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1946 disable_breakpoint (b);
1947 }
1948
1949 break;
1950 }
1951
1952 /* Continue iterating. */
95da600f 1953 return false;
f9e14852
GB
1954}
1955
1956/* Enable or disable optional solib event breakpoints as appropriate.
1957 Called whenever stop_on_solib_events is changed. */
1958
1959static void
1960svr4_update_solib_event_breakpoints (void)
1961{
240edef6
SM
1962 for (breakpoint *bp : all_breakpoints_safe ())
1963 svr4_update_solib_event_breakpoint (bp);
f9e14852
GB
1964}
1965
1966/* Create and register solib event breakpoints. PROBES is an array
1967 of NUM_PROBES elements, each of which is vector of probes. A
1968 solib event breakpoint will be created and registered for each
1969 probe. */
1970
1971static void
d70cc3ba 1972svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 1973 const std::vector<probe *> *probes,
729662a5 1974 struct objfile *objfile)
f9e14852 1975{
45461e0d 1976 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
1977 {
1978 enum probe_action action = probe_info[i].action;
f9e14852 1979
45461e0d 1980 for (probe *p : probes[i])
f9e14852 1981 {
935676c9 1982 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
1983
1984 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 1985 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
1986 }
1987 }
1988
1989 svr4_update_solib_event_breakpoints ();
1990}
1991
e661ef01
AH
1992/* Find all the glibc named probes. Only if all of the probes are found, then
1993 create them and return true. Otherwise return false. If WITH_PREFIX is set
1994 then add "rtld" to the front of the probe names. */
1995static bool
1996svr4_find_and_create_probe_breakpoints (svr4_info *info,
1997 struct gdbarch *gdbarch,
1998 struct obj_section *os,
1999 bool with_prefix)
2000{
2001 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2002
2003 for (int i = 0; i < NUM_PROBES; i++)
2004 {
2005 const char *name = probe_info[i].name;
2006 char buf[32];
2007
2008 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2009 version of the probes code in which the probes' names were prefixed
2010 with "rtld_" and the "map_failed" probe did not exist. The locations
2011 of the probes are otherwise the same, so we check for probes with
2012 prefixed names if probes with unprefixed names are not present. */
2013 if (with_prefix)
2014 {
2015 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2016 name = buf;
2017 }
2018
2019 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2020
2021 /* The "map_failed" probe did not exist in early
2022 versions of the probes code in which the probes'
2023 names were prefixed with "rtld_". */
2024 if (with_prefix && streq (name, "rtld_map_failed"))
2025 continue;
2026
2027 /* Ensure at least one probe for the current name was found. */
2028 if (probes[i].empty ())
2029 return false;
2030
2031 /* Ensure probe arguments can be evaluated. */
d90b8f26 2032 for (probe *p : probes[i])
e661ef01 2033 {
e661ef01
AH
2034 if (!p->can_evaluate_arguments ())
2035 return false;
d90b8f26
AH
2036 /* This will fail if the probe is invalid. This has been seen on Arm
2037 due to references to symbols that have been resolved away. */
2038 try
2039 {
2040 p->get_argument_count (gdbarch);
2041 }
2042 catch (const gdb_exception_error &ex)
2043 {
2044 exception_print (gdb_stderr, ex);
2045 warning (_("Initializing probes-based dynamic linker interface "
2046 "failed.\nReverting to original interface."));
2047 return false;
2048 }
e661ef01
AH
2049 }
2050 }
2051
2052 /* All probes found. Now create them. */
2053 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2054 return true;
2055}
2056
f9e14852
GB
2057/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2058 before and after mapping and unmapping shared libraries. The sole
2059 purpose of this method is to allow debuggers to set a breakpoint so
2060 they can track these changes.
2061
2062 Some versions of the glibc dynamic linker contain named probes
2063 to allow more fine grained stopping. Given the address of the
2064 original marker function, this function attempts to find these
2065 probes, and if found, sets breakpoints on those instead. If the
2066 probes aren't found, a single breakpoint is set on the original
2067 marker function. */
2068
2069static void
d70cc3ba 2070svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2071 CORE_ADDR address)
2072{
e661ef01 2073 struct obj_section *os = find_pc_section (address);
f9e14852 2074
e661ef01
AH
2075 if (os == nullptr
2076 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2077 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2078 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2079}
2080
cb457ae2
YQ
2081/* Helper function for gdb_bfd_lookup_symbol. */
2082
2083static int
3953f15c 2084cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2085{
2086 return (strcmp (sym->name, (const char *) data) == 0
2087 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2088}
7f86f058 2089/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2090
2091 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2092 debugger interface, support for arranging for the inferior to hit
2093 a breakpoint after mapping in the shared libraries. This function
2094 enables that breakpoint.
2095
2096 For SunOS, there is a special flag location (in_debugger) which we
2097 set to 1. When the dynamic linker sees this flag set, it will set
2098 a breakpoint at a location known only to itself, after saving the
2099 original contents of that place and the breakpoint address itself,
2100 in it's own internal structures. When we resume the inferior, it
2101 will eventually take a SIGTRAP when it runs into the breakpoint.
2102 We handle this (in a different place) by restoring the contents of
2103 the breakpointed location (which is only known after it stops),
2104 chasing around to locate the shared libraries that have been
2105 loaded, then resuming.
2106
2107 For SVR4, the debugger interface structure contains a member (r_brk)
2108 which is statically initialized at the time the shared library is
2109 built, to the offset of a function (_r_debug_state) which is guaran-
2110 teed to be called once before mapping in a library, and again when
2111 the mapping is complete. At the time we are examining this member,
2112 it contains only the unrelocated offset of the function, so we have
2113 to do our own relocation. Later, when the dynamic linker actually
2114 runs, it relocates r_brk to be the actual address of _r_debug_state().
2115
2116 The debugger interface structure also contains an enumeration which
2117 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2118 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2119 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2120
2121static int
268a4a75 2122enable_break (struct svr4_info *info, int from_tty)
13437d4b 2123{
3b7344d5 2124 struct bound_minimal_symbol msymbol;
bc043ef3 2125 const char * const *bkpt_namep;
13437d4b 2126 asection *interp_sect;
7cd25cfc 2127 CORE_ADDR sym_addr;
13437d4b 2128
6c95b8df
PA
2129 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2130 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2131
7cd25cfc
DJ
2132 /* If we already have a shared library list in the target, and
2133 r_debug contains r_brk, set the breakpoint there - this should
2134 mean r_brk has already been relocated. Assume the dynamic linker
2135 is the object containing r_brk. */
2136
e696b3ad 2137 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2138 sym_addr = 0;
1a816a87
PA
2139 if (info->debug_base && solib_svr4_r_map (info) != 0)
2140 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2141
2142 if (sym_addr != 0)
2143 {
2144 struct obj_section *os;
2145
b36ec657 2146 sym_addr = gdbarch_addr_bits_remove
8b88a78e 2147 (target_gdbarch (),
328d42d8
SM
2148 gdbarch_convert_from_func_ptr_addr
2149 (target_gdbarch (), sym_addr, current_inferior ()->top_target ()));
b36ec657 2150
48379de6
DE
2151 /* On at least some versions of Solaris there's a dynamic relocation
2152 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2153 we get control before the dynamic linker has self-relocated.
2154 Check if SYM_ADDR is in a known section, if it is assume we can
2155 trust its value. This is just a heuristic though, it could go away
2156 or be replaced if it's getting in the way.
2157
2158 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2159 however it's spelled in your particular system) is ARM or Thumb.
2160 That knowledge is encoded in the address, if it's Thumb the low bit
2161 is 1. However, we've stripped that info above and it's not clear
2162 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2163 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2164 find_pc_section verifies we know about the address and have some
2165 hope of computing the right kind of breakpoint to use (via
2166 symbol info). It does mean that GDB needs to be pointed at a
2167 non-stripped version of the dynamic linker in order to obtain
2168 information it already knows about. Sigh. */
2169
7cd25cfc
DJ
2170 os = find_pc_section (sym_addr);
2171 if (os != NULL)
2172 {
2173 /* Record the relocated start and end address of the dynamic linker
2174 text and plt section for svr4_in_dynsym_resolve_code. */
2175 bfd *tmp_bfd;
2176 CORE_ADDR load_addr;
2177
2178 tmp_bfd = os->objfile->obfd;
b3b3bada 2179 load_addr = os->objfile->text_section_offset ();
7cd25cfc
DJ
2180
2181 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2182 if (interp_sect)
2183 {
fd361982
AM
2184 info->interp_text_sect_low
2185 = bfd_section_vma (interp_sect) + load_addr;
2186 info->interp_text_sect_high
2187 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2188 }
2189 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2190 if (interp_sect)
2191 {
fd361982
AM
2192 info->interp_plt_sect_low
2193 = bfd_section_vma (interp_sect) + load_addr;
2194 info->interp_plt_sect_high
2195 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2196 }
2197
d70cc3ba 2198 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2199 return 1;
2200 }
2201 }
2202
97ec2c2f 2203 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2204 into the old breakpoint at symbol code. */
17658d46
SM
2205 gdb::optional<gdb::byte_vector> interp_name_holder
2206 = find_program_interpreter ();
2207 if (interp_name_holder)
13437d4b 2208 {
17658d46 2209 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2210 CORE_ADDR load_addr = 0;
2211 int load_addr_found = 0;
2ec9a4f8 2212 int loader_found_in_list = 0;
2f4950cd 2213 struct target_ops *tmp_bfd_target;
13437d4b 2214
7cd25cfc 2215 sym_addr = 0;
13437d4b
KB
2216
2217 /* Now we need to figure out where the dynamic linker was
dda83cd7
SM
2218 loaded so that we can load its symbols and place a breakpoint
2219 in the dynamic linker itself.
13437d4b 2220
dda83cd7
SM
2221 This address is stored on the stack. However, I've been unable
2222 to find any magic formula to find it for Solaris (appears to
2223 be trivial on GNU/Linux). Therefore, we have to try an alternate
2224 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2225
192b62ce 2226 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2227 try
dda83cd7 2228 {
97ec2c2f 2229 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2230 }
230d2906 2231 catch (const gdb_exception &ex)
492d29ea
PA
2232 {
2233 }
492d29ea 2234
13437d4b
KB
2235 if (tmp_bfd == NULL)
2236 goto bkpt_at_symbol;
2237
2f4950cd 2238 /* Now convert the TMP_BFD into a target. That way target, as
15908a11
TT
2239 well as BFD operations can be used. */
2240 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2f4950cd 2241
f8766ec1 2242 /* On a running target, we can get the dynamic linker's base
dda83cd7 2243 address from the shared library table. */
a1fd1ac9 2244 for (struct so_list *so : current_program_space->solibs ())
8ad2fcde 2245 {
97ec2c2f 2246 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2247 {
2248 load_addr_found = 1;
2ec9a4f8 2249 loader_found_in_list = 1;
192b62ce 2250 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2251 break;
2252 }
8ad2fcde
KB
2253 }
2254
8d4e36ba 2255 /* If we were not able to find the base address of the loader
dda83cd7 2256 from our so_list, then try using the AT_BASE auxilliary entry. */
8d4e36ba 2257 if (!load_addr_found)
328d42d8
SM
2258 if (target_auxv_search (current_inferior ()->top_target (),
2259 AT_BASE, &load_addr) > 0)
ad3a0e5b 2260 {
f5656ead 2261 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2262
2263 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2264 that `+ load_addr' will overflow CORE_ADDR width not creating
2265 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2266 GDB. */
2267
d182d057 2268 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2269 {
d182d057 2270 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2271 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2272 tmp_bfd_target);
2273
2274 gdb_assert (load_addr < space_size);
2275
2276 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2277 64bit ld.so with 32bit executable, it should not happen. */
2278
2279 if (tmp_entry_point < space_size
2280 && tmp_entry_point + load_addr >= space_size)
2281 load_addr -= space_size;
2282 }
2283
2284 load_addr_found = 1;
2285 }
8d4e36ba 2286
8ad2fcde
KB
2287 /* Otherwise we find the dynamic linker's base address by examining
2288 the current pc (which should point at the entry point for the
8d4e36ba
JB
2289 dynamic linker) and subtracting the offset of the entry point.
2290
dda83cd7
SM
2291 This is more fragile than the previous approaches, but is a good
2292 fallback method because it has actually been working well in
2293 most cases. */
8ad2fcde 2294 if (!load_addr_found)
fb14de7b 2295 {
c2250ad1 2296 struct regcache *regcache
5b6d1e4f
PA
2297 = get_thread_arch_regcache (current_inferior ()->process_target (),
2298 inferior_ptid, target_gdbarch ());
433759f7 2299
fb14de7b 2300 load_addr = (regcache_read_pc (regcache)
192b62ce 2301 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2302 }
2ec9a4f8
DJ
2303
2304 if (!loader_found_in_list)
34439770 2305 {
1a816a87
PA
2306 info->debug_loader_name = xstrdup (interp_name);
2307 info->debug_loader_offset_p = 1;
2308 info->debug_loader_offset = load_addr;
e696b3ad 2309 solib_add (NULL, from_tty, auto_solib_add);
34439770 2310 }
13437d4b
KB
2311
2312 /* Record the relocated start and end address of the dynamic linker
dda83cd7 2313 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2314 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2315 if (interp_sect)
2316 {
fd361982
AM
2317 info->interp_text_sect_low
2318 = bfd_section_vma (interp_sect) + load_addr;
2319 info->interp_text_sect_high
2320 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2321 }
192b62ce 2322 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2323 if (interp_sect)
2324 {
fd361982
AM
2325 info->interp_plt_sect_low
2326 = bfd_section_vma (interp_sect) + load_addr;
2327 info->interp_plt_sect_high
2328 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2329 }
2330
2331 /* Now try to set a breakpoint in the dynamic linker. */
2332 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2333 {
192b62ce
TT
2334 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2335 cmp_name_and_sec_flags,
3953f15c 2336 *bkpt_namep);
13437d4b
KB
2337 if (sym_addr != 0)
2338 break;
2339 }
2340
2bbe3cc1
DJ
2341 if (sym_addr != 0)
2342 /* Convert 'sym_addr' from a function pointer to an address.
2343 Because we pass tmp_bfd_target instead of the current
2344 target, this will always produce an unrelocated value. */
f5656ead 2345 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2346 sym_addr,
2347 tmp_bfd_target);
2348
695c3173 2349 /* We're done with both the temporary bfd and target. Closing
dda83cd7
SM
2350 the target closes the underlying bfd, because it holds the
2351 only remaining reference. */
460014f5 2352 target_close (tmp_bfd_target);
13437d4b
KB
2353
2354 if (sym_addr != 0)
2355 {
d70cc3ba 2356 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2357 load_addr + sym_addr);
13437d4b
KB
2358 return 1;
2359 }
2360
2361 /* For whatever reason we couldn't set a breakpoint in the dynamic
dda83cd7 2362 linker. Warn and drop into the old code. */
13437d4b 2363 bkpt_at_symbol:
82d03102 2364 warning (_("Unable to find dynamic linker breakpoint function.\n"
dda83cd7
SM
2365 "GDB will be unable to debug shared library initializers\n"
2366 "and track explicitly loaded dynamic code."));
13437d4b 2367 }
13437d4b 2368
e499d0f1
DJ
2369 /* Scan through the lists of symbols, trying to look up the symbol and
2370 set a breakpoint there. Terminate loop when we/if we succeed. */
2371
a42d7dd8 2372 objfile *objf = current_program_space->symfile_object_file;
e499d0f1
DJ
2373 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2374 {
a42d7dd8 2375 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2376 if ((msymbol.minsym != NULL)
77e371c0 2377 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2378 {
77e371c0 2379 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
328d42d8
SM
2380 sym_addr = gdbarch_convert_from_func_ptr_addr
2381 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
d70cc3ba
SM
2382 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2383 sym_addr);
e499d0f1
DJ
2384 return 1;
2385 }
2386 }
13437d4b 2387
17658d46 2388 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2389 {
c6490bf2 2390 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2391 {
a42d7dd8 2392 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2393 if ((msymbol.minsym != NULL)
77e371c0 2394 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2395 {
77e371c0 2396 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
328d42d8
SM
2397 sym_addr = gdbarch_convert_from_func_ptr_addr
2398 (target_gdbarch (), sym_addr,
2399 current_inferior ()->top_target ());
d70cc3ba
SM
2400 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2401 sym_addr);
c6490bf2
KB
2402 return 1;
2403 }
13437d4b
KB
2404 }
2405 }
542c95c2 2406 return 0;
13437d4b
KB
2407}
2408
d1012b8e 2409/* Read the ELF program headers from ABFD. */
e2a44558 2410
d1012b8e
SM
2411static gdb::optional<gdb::byte_vector>
2412read_program_headers_from_bfd (bfd *abfd)
e2a44558 2413{
d1012b8e
SM
2414 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2415 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2416 if (phdrs_size == 0)
2417 return {};
09919ac2 2418
d1012b8e 2419 gdb::byte_vector buf (phdrs_size);
09919ac2 2420 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2421 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2422 return {};
09919ac2
JK
2423
2424 return buf;
b8040f19
JK
2425}
2426
01c30d6e
JK
2427/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2428 exec_bfd. Otherwise return 0.
2429
2430 We relocate all of the sections by the same amount. This
c378eb4e 2431 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2432 According to the System V Application Binary Interface,
2433 Edition 4.1, page 5-5:
2434
2435 ... Though the system chooses virtual addresses for
2436 individual processes, it maintains the segments' relative
2437 positions. Because position-independent code uses relative
85102364 2438 addressing between segments, the difference between
b8040f19
JK
2439 virtual addresses in memory must match the difference
2440 between virtual addresses in the file. The difference
2441 between the virtual address of any segment in memory and
2442 the corresponding virtual address in the file is thus a
2443 single constant value for any one executable or shared
2444 object in a given process. This difference is the base
2445 address. One use of the base address is to relocate the
2446 memory image of the program during dynamic linking.
2447
2448 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2449 ABI and is left unspecified in some of the earlier editions.
2450
2451 Decide if the objfile needs to be relocated. As indicated above, we will
2452 only be here when execution is stopped. But during attachment PC can be at
2453 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2454 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2455 regcache_read_pc would point to the interpreter and not the main executable.
2456
2457 So, to summarize, relocations are necessary when the start address obtained
2458 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2459
09919ac2
JK
2460 [ The astute reader will note that we also test to make sure that
2461 the executable in question has the DYNAMIC flag set. It is my
2462 opinion that this test is unnecessary (undesirable even). It
2463 was added to avoid inadvertent relocation of an executable
2464 whose e_type member in the ELF header is not ET_DYN. There may
2465 be a time in the future when it is desirable to do relocations
2466 on other types of files as well in which case this condition
2467 should either be removed or modified to accomodate the new file
2468 type. - Kevin, Nov 2000. ] */
b8040f19 2469
01c30d6e
JK
2470static int
2471svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2472{
41752192
JK
2473 /* ENTRY_POINT is a possible function descriptor - before
2474 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2475 CORE_ADDR entry_point, exec_displacement;
b8040f19 2476
7e10abd1 2477 if (current_program_space->exec_bfd () == NULL)
b8040f19
JK
2478 return 0;
2479
09919ac2
JK
2480 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2481 being executed themselves and PIE (Position Independent Executable)
2482 executables are ET_DYN. */
2483
7e10abd1 2484 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
09919ac2
JK
2485 return 0;
2486
328d42d8
SM
2487 if (target_auxv_search (current_inferior ()->top_target (),
2488 AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2489 return 0;
2490
7e10abd1
TT
2491 exec_displacement
2492 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
09919ac2 2493
8f61baf8 2494 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2495 alignment. It is cheaper than the program headers comparison below. */
2496
7e10abd1
TT
2497 if (bfd_get_flavour (current_program_space->exec_bfd ())
2498 == bfd_target_elf_flavour)
09919ac2 2499 {
7e10abd1
TT
2500 const struct elf_backend_data *elf
2501 = get_elf_backend_data (current_program_space->exec_bfd ());
09919ac2
JK
2502
2503 /* p_align of PT_LOAD segments does not specify any alignment but
2504 only congruency of addresses:
2505 p_offset % p_align == p_vaddr % p_align
2506 Kernel is free to load the executable with lower alignment. */
2507
8f61baf8 2508 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2509 return 0;
2510 }
2511
2512 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2513 comparing their program headers. If the program headers in the auxilliary
2514 vector do not match the program headers in the executable, then we are
2515 looking at a different file than the one used by the kernel - for
2516 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2517
7e10abd1
TT
2518 if (bfd_get_flavour (current_program_space->exec_bfd ())
2519 == bfd_target_elf_flavour)
09919ac2 2520 {
d1012b8e 2521 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2522 really do not match. */
0a1e94c7 2523 int arch_size;
09919ac2 2524
17658d46
SM
2525 gdb::optional<gdb::byte_vector> phdrs_target
2526 = read_program_header (-1, &arch_size, NULL);
d1012b8e 2527 gdb::optional<gdb::byte_vector> phdrs_binary
7e10abd1 2528 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
d1012b8e 2529 if (phdrs_target && phdrs_binary)
0a1e94c7 2530 {
f5656ead 2531 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2532
2533 /* We are dealing with three different addresses. EXEC_BFD
2534 represents current address in on-disk file. target memory content
2535 may be different from EXEC_BFD as the file may have been prelinked
2536 to a different address after the executable has been loaded.
2537 Moreover the address of placement in target memory can be
3e43a32a
MS
2538 different from what the program headers in target memory say -
2539 this is the goal of PIE.
0a1e94c7
JK
2540
2541 Detected DISPLACEMENT covers both the offsets of PIE placement and
2542 possible new prelink performed after start of the program. Here
2543 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2544 content offset for the verification purpose. */
2545
d1012b8e 2546 if (phdrs_target->size () != phdrs_binary->size ()
7e10abd1 2547 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
d1012b8e 2548 return 0;
3e43a32a 2549 else if (arch_size == 32
17658d46 2550 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
dda83cd7 2551 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7 2552 {
7e10abd1
TT
2553 Elf_Internal_Ehdr *ehdr2
2554 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2555 Elf_Internal_Phdr *phdr2
2556 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2557 CORE_ADDR displacement = 0;
2558 int i;
2559
2560 /* DISPLACEMENT could be found more easily by the difference of
2561 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2562 already have enough information to compute that displacement
2563 with what we've read. */
2564
2565 for (i = 0; i < ehdr2->e_phnum; i++)
2566 if (phdr2[i].p_type == PT_LOAD)
2567 {
2568 Elf32_External_Phdr *phdrp;
2569 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2570 CORE_ADDR vaddr, paddr;
2571 CORE_ADDR displacement_vaddr = 0;
2572 CORE_ADDR displacement_paddr = 0;
2573
17658d46 2574 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2575 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2576 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2577
2578 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2579 byte_order);
2580 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2581
2582 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2583 byte_order);
2584 displacement_paddr = paddr - phdr2[i].p_paddr;
2585
2586 if (displacement_vaddr == displacement_paddr)
2587 displacement = displacement_vaddr;
2588
2589 break;
2590 }
2591
17658d46 2592 /* Now compare program headers from the target and the binary
dda83cd7 2593 with optional DISPLACEMENT. */
0a1e94c7 2594
17658d46
SM
2595 for (i = 0;
2596 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2597 i++)
0a1e94c7
JK
2598 {
2599 Elf32_External_Phdr *phdrp;
2600 Elf32_External_Phdr *phdr2p;
2601 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2602 CORE_ADDR vaddr, paddr;
43b8e241 2603 asection *plt2_asect;
0a1e94c7 2604
17658d46 2605 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2606 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2607 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2608 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2609
2610 /* PT_GNU_STACK is an exception by being never relocated by
2611 prelink as its addresses are always zero. */
2612
2613 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2614 continue;
2615
2616 /* Check also other adjustment combinations - PR 11786. */
2617
3e43a32a
MS
2618 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2619 byte_order);
0a1e94c7
JK
2620 vaddr -= displacement;
2621 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2622
3e43a32a
MS
2623 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2624 byte_order);
0a1e94c7
JK
2625 paddr -= displacement;
2626 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2627
2628 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2629 continue;
2630
204b5331
DE
2631 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2632 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2633 Strip also modifies memsz of PT_TLS.
204b5331 2634 See PR 11786. */
c44deb73
SM
2635 if (phdr2[i].p_type == PT_GNU_RELRO
2636 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2637 {
2638 Elf32_External_Phdr tmp_phdr = *phdrp;
2639 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2640
2641 memset (tmp_phdr.p_filesz, 0, 4);
2642 memset (tmp_phdr.p_memsz, 0, 4);
2643 memset (tmp_phdr.p_flags, 0, 4);
2644 memset (tmp_phdr.p_align, 0, 4);
2645 memset (tmp_phdr2.p_filesz, 0, 4);
2646 memset (tmp_phdr2.p_memsz, 0, 4);
2647 memset (tmp_phdr2.p_flags, 0, 4);
2648 memset (tmp_phdr2.p_align, 0, 4);
2649
2650 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2651 == 0)
2652 continue;
2653 }
2654
43b8e241 2655 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1 2656 bfd *exec_bfd = current_program_space->exec_bfd ();
43b8e241
JK
2657 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2658 if (plt2_asect)
2659 {
2660 int content2;
2661 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2662 CORE_ADDR filesz;
2663
fd361982 2664 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2665 & SEC_HAS_CONTENTS) != 0;
2666
2667 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2668 byte_order);
2669
2670 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2671 FILESZ is from the in-memory image. */
2672 if (content2)
fd361982 2673 filesz += bfd_section_size (plt2_asect);
43b8e241 2674 else
fd361982 2675 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2676
2677 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2678 filesz);
2679
2680 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2681 continue;
2682 }
2683
d1012b8e 2684 return 0;
0a1e94c7
JK
2685 }
2686 }
3e43a32a 2687 else if (arch_size == 64
17658d46 2688 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
dda83cd7 2689 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7 2690 {
7e10abd1
TT
2691 Elf_Internal_Ehdr *ehdr2
2692 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2693 Elf_Internal_Phdr *phdr2
2694 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2695 CORE_ADDR displacement = 0;
2696 int i;
2697
2698 /* DISPLACEMENT could be found more easily by the difference of
2699 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2700 already have enough information to compute that displacement
2701 with what we've read. */
2702
2703 for (i = 0; i < ehdr2->e_phnum; i++)
2704 if (phdr2[i].p_type == PT_LOAD)
2705 {
2706 Elf64_External_Phdr *phdrp;
2707 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2708 CORE_ADDR vaddr, paddr;
2709 CORE_ADDR displacement_vaddr = 0;
2710 CORE_ADDR displacement_paddr = 0;
2711
17658d46 2712 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2713 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2714 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2715
2716 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2717 byte_order);
2718 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2719
2720 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2721 byte_order);
2722 displacement_paddr = paddr - phdr2[i].p_paddr;
2723
2724 if (displacement_vaddr == displacement_paddr)
2725 displacement = displacement_vaddr;
2726
2727 break;
2728 }
2729
2730 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2731
17658d46
SM
2732 for (i = 0;
2733 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2734 i++)
0a1e94c7
JK
2735 {
2736 Elf64_External_Phdr *phdrp;
2737 Elf64_External_Phdr *phdr2p;
2738 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2739 CORE_ADDR vaddr, paddr;
43b8e241 2740 asection *plt2_asect;
0a1e94c7 2741
17658d46 2742 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2743 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2744 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2745 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2746
2747 /* PT_GNU_STACK is an exception by being never relocated by
2748 prelink as its addresses are always zero. */
2749
2750 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2751 continue;
2752
2753 /* Check also other adjustment combinations - PR 11786. */
2754
3e43a32a
MS
2755 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2756 byte_order);
0a1e94c7
JK
2757 vaddr -= displacement;
2758 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2759
3e43a32a
MS
2760 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2761 byte_order);
0a1e94c7
JK
2762 paddr -= displacement;
2763 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2764
2765 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2766 continue;
2767
204b5331
DE
2768 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2769 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2770 Strip also modifies memsz of PT_TLS.
204b5331 2771 See PR 11786. */
c44deb73
SM
2772 if (phdr2[i].p_type == PT_GNU_RELRO
2773 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2774 {
2775 Elf64_External_Phdr tmp_phdr = *phdrp;
2776 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2777
2778 memset (tmp_phdr.p_filesz, 0, 8);
2779 memset (tmp_phdr.p_memsz, 0, 8);
2780 memset (tmp_phdr.p_flags, 0, 4);
2781 memset (tmp_phdr.p_align, 0, 8);
2782 memset (tmp_phdr2.p_filesz, 0, 8);
2783 memset (tmp_phdr2.p_memsz, 0, 8);
2784 memset (tmp_phdr2.p_flags, 0, 4);
2785 memset (tmp_phdr2.p_align, 0, 8);
2786
2787 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2788 == 0)
2789 continue;
2790 }
2791
43b8e241 2792 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1
TT
2793 plt2_asect
2794 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2795 ".plt");
43b8e241
JK
2796 if (plt2_asect)
2797 {
2798 int content2;
2799 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2800 CORE_ADDR filesz;
2801
fd361982 2802 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2803 & SEC_HAS_CONTENTS) != 0;
2804
2805 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2806 byte_order);
2807
7e10abd1
TT
2808 /* PLT2_ASECT is from on-disk file (current
2809 exec_bfd) while FILESZ is from the in-memory
2810 image. */
43b8e241 2811 if (content2)
fd361982 2812 filesz += bfd_section_size (plt2_asect);
43b8e241 2813 else
fd361982 2814 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2815
2816 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2817 filesz);
2818
2819 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2820 continue;
2821 }
2822
d1012b8e 2823 return 0;
0a1e94c7
JK
2824 }
2825 }
2826 else
d1012b8e 2827 return 0;
0a1e94c7 2828 }
09919ac2 2829 }
b8040f19 2830
ccf26247
JK
2831 if (info_verbose)
2832 {
2833 /* It can be printed repeatedly as there is no easy way to check
2834 the executable symbols/file has been already relocated to
2835 displacement. */
2836
2837 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2838 "displacement %s for \"%s\".\n"),
8f61baf8 2839 paddress (target_gdbarch (), exec_displacement),
7e10abd1 2840 bfd_get_filename (current_program_space->exec_bfd ()));
ccf26247
JK
2841 }
2842
8f61baf8 2843 *displacementp = exec_displacement;
01c30d6e 2844 return 1;
b8040f19
JK
2845}
2846
2847/* Relocate the main executable. This function should be called upon
c378eb4e 2848 stopping the inferior process at the entry point to the program.
b8040f19
JK
2849 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2850 different, the main executable is relocated by the proper amount. */
2851
2852static void
2853svr4_relocate_main_executable (void)
2854{
01c30d6e
JK
2855 CORE_ADDR displacement;
2856
4e5799b6
JK
2857 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2858 probably contains the offsets computed using the PIE displacement
2859 from the previous run, which of course are irrelevant for this run.
2860 So we need to determine the new PIE displacement and recompute the
2861 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2862 already contains pre-computed offsets.
01c30d6e 2863
4e5799b6 2864 If we cannot compute the PIE displacement, either:
01c30d6e 2865
4e5799b6
JK
2866 - The executable is not PIE.
2867
2868 - SYMFILE_OBJFILE does not match the executable started in the target.
2869 This can happen for main executable symbols loaded at the host while
2870 `ld.so --ld-args main-executable' is loaded in the target.
2871
2872 Then we leave the section offsets untouched and use them as is for
2873 this run. Either:
2874
2875 - These section offsets were properly reset earlier, and thus
2876 already contain the correct values. This can happen for instance
2877 when reconnecting via the remote protocol to a target that supports
2878 the `qOffsets' packet.
2879
2880 - The section offsets were not reset earlier, and the best we can
c378eb4e 2881 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2882
2883 if (! svr4_exec_displacement (&displacement))
2884 return;
b8040f19 2885
01c30d6e
JK
2886 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2887 addresses. */
b8040f19 2888
a42d7dd8
TT
2889 objfile *objf = current_program_space->symfile_object_file;
2890 if (objf)
e2a44558 2891 {
a42d7dd8 2892 section_offsets new_offsets (objf->section_offsets.size (),
6a053cb1 2893 displacement);
a42d7dd8 2894 objfile_relocate (objf, new_offsets);
e2a44558 2895 }
7e10abd1 2896 else if (current_program_space->exec_bfd ())
51bee8e9
JK
2897 {
2898 asection *asect;
2899
7e10abd1 2900 bfd *exec_bfd = current_program_space->exec_bfd ();
51bee8e9
JK
2901 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2902 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 2903 bfd_section_vma (asect) + displacement);
51bee8e9 2904 }
e2a44558
KB
2905}
2906
7f86f058 2907/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2908
2909 For SVR4 executables, this first instruction is either the first
2910 instruction in the dynamic linker (for dynamically linked
2911 executables) or the instruction at "start" for statically linked
2912 executables. For dynamically linked executables, the system
2913 first exec's /lib/libc.so.N, which contains the dynamic linker,
2914 and starts it running. The dynamic linker maps in any needed
2915 shared libraries, maps in the actual user executable, and then
2916 jumps to "start" in the user executable.
2917
7f86f058
PA
2918 We can arrange to cooperate with the dynamic linker to discover the
2919 names of shared libraries that are dynamically linked, and the base
2920 addresses to which they are linked.
13437d4b
KB
2921
2922 This function is responsible for discovering those names and
2923 addresses, and saving sufficient information about them to allow
d2e5c99a 2924 their symbols to be read at a later time. */
13437d4b 2925
e2a44558 2926static void
268a4a75 2927svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2928{
1a816a87
PA
2929 struct svr4_info *info;
2930
d70cc3ba 2931 info = get_svr4_info (current_program_space);
2020b7ab 2932
f9e14852
GB
2933 /* Clear the probes-based interface's state. */
2934 free_probes_table (info);
2935 free_solib_list (info);
2936
e2a44558 2937 /* Relocate the main executable if necessary. */
86e4bafc 2938 svr4_relocate_main_executable ();
e2a44558 2939
c91c8c16
PA
2940 /* No point setting a breakpoint in the dynamic linker if we can't
2941 hit it (e.g., a core file, or a trace file). */
55f6301a 2942 if (!target_has_execution ())
c91c8c16
PA
2943 return;
2944
d5a921c9 2945 if (!svr4_have_link_map_offsets ())
513f5903 2946 return;
d5a921c9 2947
268a4a75 2948 if (!enable_break (info, from_tty))
542c95c2 2949 return;
13437d4b
KB
2950}
2951
2952static void
2953svr4_clear_solib (void)
2954{
6c95b8df
PA
2955 struct svr4_info *info;
2956
d70cc3ba 2957 info = get_svr4_info (current_program_space);
6c95b8df
PA
2958 info->debug_base = 0;
2959 info->debug_loader_offset_p = 0;
2960 info->debug_loader_offset = 0;
2961 xfree (info->debug_loader_name);
2962 info->debug_loader_name = NULL;
13437d4b
KB
2963}
2964
6bb7be43
JB
2965/* Clear any bits of ADDR that wouldn't fit in a target-format
2966 data pointer. "Data pointer" here refers to whatever sort of
2967 address the dynamic linker uses to manage its sections. At the
2968 moment, we don't support shared libraries on any processors where
2969 code and data pointers are different sizes.
2970
2971 This isn't really the right solution. What we really need here is
2972 a way to do arithmetic on CORE_ADDR values that respects the
2973 natural pointer/address correspondence. (For example, on the MIPS,
2974 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2975 sign-extend the value. There, simply truncating the bits above
819844ad 2976 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2977 be a new gdbarch method or something. */
2978static CORE_ADDR
2979svr4_truncate_ptr (CORE_ADDR addr)
2980{
f5656ead 2981 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2982 /* We don't need to truncate anything, and the bit twiddling below
2983 will fail due to overflow problems. */
2984 return addr;
2985 else
f5656ead 2986 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2987}
2988
2989
749499cb
KB
2990static void
2991svr4_relocate_section_addresses (struct so_list *so,
dda83cd7 2992 struct target_section *sec)
749499cb 2993{
2b2848e2
DE
2994 bfd *abfd = sec->the_bfd_section->owner;
2995
2996 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2997 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 2998}
4b188b9f 2999\f
749499cb 3000
4b188b9f 3001/* Architecture-specific operations. */
6bb7be43 3002
4b188b9f
MK
3003/* Per-architecture data key. */
3004static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3005
4b188b9f 3006struct solib_svr4_ops
e5e2b9ff 3007{
4b188b9f
MK
3008 /* Return a description of the layout of `struct link_map'. */
3009 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3010};
e5e2b9ff 3011
4b188b9f 3012/* Return a default for the architecture-specific operations. */
e5e2b9ff 3013
4b188b9f
MK
3014static void *
3015solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3016{
4b188b9f 3017 struct solib_svr4_ops *ops;
e5e2b9ff 3018
4b188b9f 3019 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3020 ops->fetch_link_map_offsets = NULL;
4b188b9f 3021 return ops;
e5e2b9ff
KB
3022}
3023
4b188b9f 3024/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3025 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3026
21479ded 3027void
e5e2b9ff 3028set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
dda83cd7 3029 struct link_map_offsets *(*flmo) (void))
21479ded 3030{
19ba03f4
SM
3031 struct solib_svr4_ops *ops
3032 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3033
3034 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3035
3036 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3037 set_gdbarch_iterate_over_objfiles_in_search_order
3038 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3039}
3040
4b188b9f
MK
3041/* Fetch a link_map_offsets structure using the architecture-specific
3042 `struct link_map_offsets' fetcher. */
1c4dcb57 3043
4b188b9f
MK
3044static struct link_map_offsets *
3045svr4_fetch_link_map_offsets (void)
21479ded 3046{
19ba03f4
SM
3047 struct solib_svr4_ops *ops
3048 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3049 solib_svr4_data);
4b188b9f
MK
3050
3051 gdb_assert (ops->fetch_link_map_offsets);
3052 return ops->fetch_link_map_offsets ();
21479ded
KB
3053}
3054
4b188b9f
MK
3055/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3056
3057static int
3058svr4_have_link_map_offsets (void)
3059{
19ba03f4
SM
3060 struct solib_svr4_ops *ops
3061 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3062 solib_svr4_data);
433759f7 3063
4b188b9f
MK
3064 return (ops->fetch_link_map_offsets != NULL);
3065}
3066\f
3067
e4bbbda8
MK
3068/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3069 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3070 with the original SVR4 implementation. */
e4bbbda8
MK
3071
3072/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3073 for an ILP32 SVR4 system. */
d989b283 3074
e4bbbda8
MK
3075struct link_map_offsets *
3076svr4_ilp32_fetch_link_map_offsets (void)
3077{
3078 static struct link_map_offsets lmo;
3079 static struct link_map_offsets *lmp = NULL;
3080
3081 if (lmp == NULL)
3082 {
3083 lmp = &lmo;
3084
e4cd0d6a
MK
3085 lmo.r_version_offset = 0;
3086 lmo.r_version_size = 4;
e4bbbda8 3087 lmo.r_map_offset = 4;
7cd25cfc 3088 lmo.r_brk_offset = 8;
e4cd0d6a 3089 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3090
3091 /* Everything we need is in the first 20 bytes. */
3092 lmo.link_map_size = 20;
3093 lmo.l_addr_offset = 0;
e4bbbda8 3094 lmo.l_name_offset = 4;
cc10cae3 3095 lmo.l_ld_offset = 8;
e4bbbda8 3096 lmo.l_next_offset = 12;
e4bbbda8 3097 lmo.l_prev_offset = 16;
e4bbbda8
MK
3098 }
3099
3100 return lmp;
3101}
3102
3103/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3104 for an LP64 SVR4 system. */
d989b283 3105
e4bbbda8
MK
3106struct link_map_offsets *
3107svr4_lp64_fetch_link_map_offsets (void)
3108{
3109 static struct link_map_offsets lmo;
3110 static struct link_map_offsets *lmp = NULL;
3111
3112 if (lmp == NULL)
3113 {
3114 lmp = &lmo;
3115
e4cd0d6a
MK
3116 lmo.r_version_offset = 0;
3117 lmo.r_version_size = 4;
e4bbbda8 3118 lmo.r_map_offset = 8;
7cd25cfc 3119 lmo.r_brk_offset = 16;
e4cd0d6a 3120 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3121
3122 /* Everything we need is in the first 40 bytes. */
3123 lmo.link_map_size = 40;
3124 lmo.l_addr_offset = 0;
e4bbbda8 3125 lmo.l_name_offset = 8;
cc10cae3 3126 lmo.l_ld_offset = 16;
e4bbbda8 3127 lmo.l_next_offset = 24;
e4bbbda8 3128 lmo.l_prev_offset = 32;
e4bbbda8
MK
3129 }
3130
3131 return lmp;
3132}
3133\f
3134
7d522c90 3135struct target_so_ops svr4_so_ops;
13437d4b 3136
626ca2c0 3137/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3138 different rule for symbol lookup. The lookup begins here in the DSO, not in
3139 the main executable. */
3140
626ca2c0
CB
3141static void
3142svr4_iterate_over_objfiles_in_search_order
3143 (struct gdbarch *gdbarch,
3144 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3145 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3146{
626ca2c0
CB
3147 bool checked_current_objfile = false;
3148 if (current_objfile != nullptr)
61f0d762 3149 {
626ca2c0 3150 bfd *abfd;
61f0d762 3151
626ca2c0 3152 if (current_objfile->separate_debug_objfile_backlink != nullptr)
dda83cd7 3153 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3154
a42d7dd8 3155 if (current_objfile == current_program_space->symfile_object_file)
7e10abd1 3156 abfd = current_program_space->exec_bfd ();
626ca2c0
CB
3157 else
3158 abfd = current_objfile->obfd;
3159
7ab78ccb 3160 if (abfd != nullptr
8ddf4645 3161 && gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3162 {
3163 checked_current_objfile = true;
3164 if (cb (current_objfile, cb_data) != 0)
3165 return;
3166 }
3167 }
3a40aaa0 3168
626ca2c0
CB
3169 for (objfile *objfile : current_program_space->objfiles ())
3170 {
3171 if (checked_current_objfile && objfile == current_objfile)
3172 continue;
3173 if (cb (objfile, cb_data) != 0)
3174 return;
3175 }
3a40aaa0
UW
3176}
3177
6c265988 3178void _initialize_svr4_solib ();
13437d4b 3179void
6c265988 3180_initialize_svr4_solib ()
13437d4b 3181{
4b188b9f
MK
3182 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3183
749499cb 3184 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3185 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3186 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3187 svr4_so_ops.clear_solib = svr4_clear_solib;
3188 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3189 svr4_so_ops.current_sos = svr4_current_sos;
3190 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3191 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3192 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3193 svr4_so_ops.same = svr4_same;
de18c1d8 3194 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3195 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3196 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35 3197
c90e7d63
SM
3198 gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
3199 "solib-svr4");
13437d4b 3200}