]>
Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd | 2 | |
4a94e368 | 3 | Copyright (C) 1990-2022 Free Software Foundation, Inc. |
13437d4b KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
13437d4b KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
13437d4b | 19 | |
13437d4b KB |
20 | #include "defs.h" |
21 | ||
13437d4b | 22 | #include "elf/external.h" |
21479ded | 23 | #include "elf/common.h" |
f7856c8f | 24 | #include "elf/mips.h" |
13437d4b KB |
25 | |
26 | #include "symtab.h" | |
27 | #include "bfd.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
30 | #include "gdbcore.h" | |
13437d4b | 31 | #include "target.h" |
13437d4b | 32 | #include "inferior.h" |
45741a9c | 33 | #include "infrun.h" |
fb14de7b | 34 | #include "regcache.h" |
2020b7ab | 35 | #include "gdbthread.h" |
76727919 | 36 | #include "observable.h" |
13437d4b KB |
37 | |
38 | #include "solist.h" | |
bba93f6c | 39 | #include "solib.h" |
13437d4b KB |
40 | #include "solib-svr4.h" |
41 | ||
2f4950cd | 42 | #include "bfd-target.h" |
cc10cae3 | 43 | #include "elf-bfd.h" |
2f4950cd | 44 | #include "exec.h" |
8d4e36ba | 45 | #include "auxv.h" |
695c3173 | 46 | #include "gdb_bfd.h" |
f9e14852 | 47 | #include "probe.h" |
2f4950cd | 48 | |
e5e2b9ff | 49 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 50 | static int svr4_have_link_map_offsets (void); |
9f2982ff | 51 | static void svr4_relocate_main_executable (void); |
f9e14852 | 52 | static void svr4_free_library_list (void *p_list); |
7905fc35 | 53 | static void probes_table_remove_objfile_probes (struct objfile *objfile); |
626ca2c0 CB |
54 | static void svr4_iterate_over_objfiles_in_search_order ( |
55 | struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb, | |
56 | void *cb_data, struct objfile *objfile); | |
57 | ||
1c4dcb57 | 58 | |
13437d4b KB |
59 | /* On SVR4 systems, a list of symbols in the dynamic linker where |
60 | GDB can try to place a breakpoint to monitor shared library | |
61 | events. | |
62 | ||
63 | If none of these symbols are found, or other errors occur, then | |
64 | SVR4 systems will fall back to using a symbol as the "startup | |
65 | mapping complete" breakpoint address. */ | |
66 | ||
bc043ef3 | 67 | static const char * const solib_break_names[] = |
13437d4b KB |
68 | { |
69 | "r_debug_state", | |
70 | "_r_debug_state", | |
71 | "_dl_debug_state", | |
72 | "rtld_db_dlactivity", | |
4c7dcb84 | 73 | "__dl_rtld_db_dlactivity", |
1f72e589 | 74 | "_rtld_debug_state", |
4c0122c8 | 75 | |
13437d4b KB |
76 | NULL |
77 | }; | |
13437d4b | 78 | |
bc043ef3 | 79 | static const char * const bkpt_names[] = |
13437d4b | 80 | { |
13437d4b | 81 | "_start", |
ad3dcc5c | 82 | "__start", |
13437d4b KB |
83 | "main", |
84 | NULL | |
85 | }; | |
13437d4b | 86 | |
bc043ef3 | 87 | static const char * const main_name_list[] = |
13437d4b KB |
88 | { |
89 | "main_$main", | |
90 | NULL | |
91 | }; | |
92 | ||
f9e14852 GB |
93 | /* What to do when a probe stop occurs. */ |
94 | ||
95 | enum probe_action | |
96 | { | |
97 | /* Something went seriously wrong. Stop using probes and | |
98 | revert to using the older interface. */ | |
99 | PROBES_INTERFACE_FAILED, | |
100 | ||
101 | /* No action is required. The shared object list is still | |
102 | valid. */ | |
103 | DO_NOTHING, | |
104 | ||
105 | /* The shared object list should be reloaded entirely. */ | |
106 | FULL_RELOAD, | |
107 | ||
108 | /* Attempt to incrementally update the shared object list. If | |
109 | the update fails or is not possible, fall back to reloading | |
110 | the list in full. */ | |
111 | UPDATE_OR_RELOAD, | |
112 | }; | |
113 | ||
114 | /* A probe's name and its associated action. */ | |
115 | ||
116 | struct probe_info | |
117 | { | |
118 | /* The name of the probe. */ | |
119 | const char *name; | |
120 | ||
121 | /* What to do when a probe stop occurs. */ | |
122 | enum probe_action action; | |
123 | }; | |
124 | ||
125 | /* A list of named probes and their associated actions. If all | |
126 | probes are present in the dynamic linker then the probes-based | |
127 | interface will be used. */ | |
128 | ||
129 | static const struct probe_info probe_info[] = | |
130 | { | |
131 | { "init_start", DO_NOTHING }, | |
132 | { "init_complete", FULL_RELOAD }, | |
133 | { "map_start", DO_NOTHING }, | |
134 | { "map_failed", DO_NOTHING }, | |
135 | { "reloc_complete", UPDATE_OR_RELOAD }, | |
136 | { "unmap_start", DO_NOTHING }, | |
137 | { "unmap_complete", FULL_RELOAD }, | |
138 | }; | |
139 | ||
140 | #define NUM_PROBES ARRAY_SIZE (probe_info) | |
141 | ||
4d7b2d5b JB |
142 | /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent |
143 | the same shared library. */ | |
144 | ||
145 | static int | |
146 | svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) | |
147 | { | |
148 | if (strcmp (gdb_so_name, inferior_so_name) == 0) | |
149 | return 1; | |
150 | ||
151 | /* On Solaris, when starting inferior we think that dynamic linker is | |
d989b283 PP |
152 | /usr/lib/ld.so.1, but later on, the table of loaded shared libraries |
153 | contains /lib/ld.so.1. Sometimes one file is a link to another, but | |
4d7b2d5b JB |
154 | sometimes they have identical content, but are not linked to each |
155 | other. We don't restrict this check for Solaris, but the chances | |
156 | of running into this situation elsewhere are very low. */ | |
157 | if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 | |
158 | && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) | |
159 | return 1; | |
160 | ||
7307a73a | 161 | /* Similarly, we observed the same issue with amd64 and sparcv9, but with |
4d7b2d5b | 162 | different locations. */ |
7307a73a RO |
163 | if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0 |
164 | && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0) | |
165 | return 1; | |
166 | ||
4d7b2d5b JB |
167 | if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 |
168 | && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) | |
169 | return 1; | |
170 | ||
171 | return 0; | |
172 | } | |
173 | ||
174 | static int | |
175 | svr4_same (struct so_list *gdb, struct so_list *inferior) | |
176 | { | |
177 | return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); | |
178 | } | |
179 | ||
a7961323 | 180 | static std::unique_ptr<lm_info_svr4> |
3957565a | 181 | lm_info_read (CORE_ADDR lm_addr) |
13437d4b | 182 | { |
4b188b9f | 183 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
a7961323 | 184 | std::unique_ptr<lm_info_svr4> lm_info; |
3957565a | 185 | |
a7961323 | 186 | gdb::byte_vector lm (lmo->link_map_size); |
3957565a | 187 | |
a7961323 TT |
188 | if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0) |
189 | warning (_("Error reading shared library list entry at %s"), | |
190 | paddress (target_gdbarch (), lm_addr)); | |
3957565a JK |
191 | else |
192 | { | |
f5656ead | 193 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
13437d4b | 194 | |
a7961323 | 195 | lm_info.reset (new lm_info_svr4); |
3957565a JK |
196 | lm_info->lm_addr = lm_addr; |
197 | ||
198 | lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset], | |
199 | ptr_type); | |
200 | lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type); | |
201 | lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset], | |
202 | ptr_type); | |
203 | lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset], | |
204 | ptr_type); | |
205 | lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset], | |
206 | ptr_type); | |
207 | } | |
208 | ||
3957565a | 209 | return lm_info; |
13437d4b KB |
210 | } |
211 | ||
cc10cae3 | 212 | static int |
b23518f0 | 213 | has_lm_dynamic_from_link_map (void) |
cc10cae3 AO |
214 | { |
215 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
216 | ||
cfaefc65 | 217 | return lmo->l_ld_offset >= 0; |
cc10cae3 AO |
218 | } |
219 | ||
cc10cae3 | 220 | static CORE_ADDR |
f65ce5fb | 221 | lm_addr_check (const struct so_list *so, bfd *abfd) |
cc10cae3 | 222 | { |
d0e449a1 SM |
223 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
224 | ||
225 | if (!li->l_addr_p) | |
cc10cae3 AO |
226 | { |
227 | struct bfd_section *dyninfo_sect; | |
28f34a8f | 228 | CORE_ADDR l_addr, l_dynaddr, dynaddr; |
cc10cae3 | 229 | |
d0e449a1 | 230 | l_addr = li->l_addr_inferior; |
cc10cae3 | 231 | |
b23518f0 | 232 | if (! abfd || ! has_lm_dynamic_from_link_map ()) |
cc10cae3 AO |
233 | goto set_addr; |
234 | ||
d0e449a1 | 235 | l_dynaddr = li->l_ld; |
cc10cae3 AO |
236 | |
237 | dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
238 | if (dyninfo_sect == NULL) | |
239 | goto set_addr; | |
240 | ||
fd361982 | 241 | dynaddr = bfd_section_vma (dyninfo_sect); |
cc10cae3 AO |
242 | |
243 | if (dynaddr + l_addr != l_dynaddr) | |
244 | { | |
28f34a8f | 245 | CORE_ADDR align = 0x1000; |
4e1fc9c9 | 246 | CORE_ADDR minpagesize = align; |
28f34a8f | 247 | |
cc10cae3 AO |
248 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
249 | { | |
250 | Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | |
251 | Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | |
252 | int i; | |
253 | ||
254 | align = 1; | |
255 | ||
256 | for (i = 0; i < ehdr->e_phnum; i++) | |
257 | if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | |
258 | align = phdr[i].p_align; | |
4e1fc9c9 JK |
259 | |
260 | minpagesize = get_elf_backend_data (abfd)->minpagesize; | |
cc10cae3 AO |
261 | } |
262 | ||
263 | /* Turn it into a mask. */ | |
264 | align--; | |
265 | ||
266 | /* If the changes match the alignment requirements, we | |
267 | assume we're using a core file that was generated by the | |
268 | same binary, just prelinked with a different base offset. | |
269 | If it doesn't match, we may have a different binary, the | |
270 | same binary with the dynamic table loaded at an unrelated | |
271 | location, or anything, really. To avoid regressions, | |
272 | don't adjust the base offset in the latter case, although | |
273 | odds are that, if things really changed, debugging won't | |
5c0d192f JK |
274 | quite work. |
275 | ||
276 | One could expect more the condition | |
277 | ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) | |
278 | but the one below is relaxed for PPC. The PPC kernel supports | |
279 | either 4k or 64k page sizes. To be prepared for 64k pages, | |
280 | PPC ELF files are built using an alignment requirement of 64k. | |
281 | However, when running on a kernel supporting 4k pages, the memory | |
282 | mapping of the library may not actually happen on a 64k boundary! | |
283 | ||
284 | (In the usual case where (l_addr & align) == 0, this check is | |
4e1fc9c9 JK |
285 | equivalent to the possibly expected check above.) |
286 | ||
287 | Even on PPC it must be zero-aligned at least for MINPAGESIZE. */ | |
5c0d192f | 288 | |
02835898 JK |
289 | l_addr = l_dynaddr - dynaddr; |
290 | ||
4e1fc9c9 JK |
291 | if ((l_addr & (minpagesize - 1)) == 0 |
292 | && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) | |
cc10cae3 | 293 | { |
701ed6dc | 294 | if (info_verbose) |
ccf26247 JK |
295 | printf_unfiltered (_("Using PIC (Position Independent Code) " |
296 | "prelink displacement %s for \"%s\".\n"), | |
f5656ead | 297 | paddress (target_gdbarch (), l_addr), |
ccf26247 | 298 | so->so_name); |
cc10cae3 | 299 | } |
79d4c408 | 300 | else |
02835898 JK |
301 | { |
302 | /* There is no way to verify the library file matches. prelink | |
303 | can during prelinking of an unprelinked file (or unprelinking | |
304 | of a prelinked file) shift the DYNAMIC segment by arbitrary | |
305 | offset without any page size alignment. There is no way to | |
306 | find out the ELF header and/or Program Headers for a limited | |
307 | verification if it they match. One could do a verification | |
308 | of the DYNAMIC segment. Still the found address is the best | |
309 | one GDB could find. */ | |
310 | ||
311 | warning (_(".dynamic section for \"%s\" " | |
312 | "is not at the expected address " | |
313 | "(wrong library or version mismatch?)"), so->so_name); | |
314 | } | |
cc10cae3 AO |
315 | } |
316 | ||
317 | set_addr: | |
d0e449a1 SM |
318 | li->l_addr = l_addr; |
319 | li->l_addr_p = 1; | |
cc10cae3 AO |
320 | } |
321 | ||
d0e449a1 | 322 | return li->l_addr; |
cc10cae3 AO |
323 | } |
324 | ||
6c95b8df | 325 | /* Per pspace SVR4 specific data. */ |
13437d4b | 326 | |
1a816a87 PA |
327 | struct svr4_info |
328 | { | |
09232438 TT |
329 | svr4_info () = default; |
330 | ~svr4_info (); | |
331 | ||
332 | /* Base of dynamic linker structures. */ | |
333 | CORE_ADDR debug_base = 0; | |
1a816a87 PA |
334 | |
335 | /* Validity flag for debug_loader_offset. */ | |
09232438 | 336 | int debug_loader_offset_p = 0; |
1a816a87 PA |
337 | |
338 | /* Load address for the dynamic linker, inferred. */ | |
09232438 | 339 | CORE_ADDR debug_loader_offset = 0; |
1a816a87 PA |
340 | |
341 | /* Name of the dynamic linker, valid if debug_loader_offset_p. */ | |
09232438 | 342 | char *debug_loader_name = nullptr; |
1a816a87 PA |
343 | |
344 | /* Load map address for the main executable. */ | |
09232438 | 345 | CORE_ADDR main_lm_addr = 0; |
1a816a87 | 346 | |
09232438 TT |
347 | CORE_ADDR interp_text_sect_low = 0; |
348 | CORE_ADDR interp_text_sect_high = 0; | |
349 | CORE_ADDR interp_plt_sect_low = 0; | |
350 | CORE_ADDR interp_plt_sect_high = 0; | |
f9e14852 GB |
351 | |
352 | /* Nonzero if the list of objects was last obtained from the target | |
353 | via qXfer:libraries-svr4:read. */ | |
09232438 | 354 | int using_xfer = 0; |
f9e14852 GB |
355 | |
356 | /* Table of struct probe_and_action instances, used by the | |
357 | probes-based interface to map breakpoint addresses to probes | |
358 | and their associated actions. Lookup is performed using | |
935676c9 | 359 | probe_and_action->prob->address. */ |
09232438 | 360 | htab_up probes_table; |
f9e14852 GB |
361 | |
362 | /* List of objects loaded into the inferior, used by the probes- | |
363 | based interface. */ | |
09232438 | 364 | struct so_list *solib_list = nullptr; |
6c95b8df | 365 | }; |
1a816a87 | 366 | |
6c95b8df | 367 | /* Per-program-space data key. */ |
09232438 | 368 | static const struct program_space_key<svr4_info> solib_svr4_pspace_data; |
1a816a87 | 369 | |
f9e14852 GB |
370 | /* Free the probes table. */ |
371 | ||
372 | static void | |
373 | free_probes_table (struct svr4_info *info) | |
374 | { | |
09232438 | 375 | info->probes_table.reset (nullptr); |
f9e14852 GB |
376 | } |
377 | ||
378 | /* Free the solib list. */ | |
379 | ||
380 | static void | |
381 | free_solib_list (struct svr4_info *info) | |
382 | { | |
383 | svr4_free_library_list (&info->solib_list); | |
384 | info->solib_list = NULL; | |
385 | } | |
386 | ||
09232438 | 387 | svr4_info::~svr4_info () |
1a816a87 | 388 | { |
09232438 | 389 | free_solib_list (this); |
1a816a87 PA |
390 | } |
391 | ||
d70cc3ba SM |
392 | /* Get the svr4 data for program space PSPACE. If none is found yet, add it now. |
393 | This function always returns a valid object. */ | |
34439770 | 394 | |
6c95b8df | 395 | static struct svr4_info * |
d70cc3ba | 396 | get_svr4_info (program_space *pspace) |
1a816a87 | 397 | { |
09232438 | 398 | struct svr4_info *info = solib_svr4_pspace_data.get (pspace); |
1a816a87 | 399 | |
09232438 TT |
400 | if (info == NULL) |
401 | info = solib_svr4_pspace_data.emplace (pspace); | |
34439770 | 402 | |
6c95b8df | 403 | return info; |
1a816a87 | 404 | } |
93a57060 | 405 | |
13437d4b KB |
406 | /* Local function prototypes */ |
407 | ||
bc043ef3 | 408 | static int match_main (const char *); |
13437d4b | 409 | |
97ec2c2f | 410 | /* Read program header TYPE from inferior memory. The header is found |
17658d46 | 411 | by scanning the OS auxiliary vector. |
97ec2c2f | 412 | |
09919ac2 JK |
413 | If TYPE == -1, return the program headers instead of the contents of |
414 | one program header. | |
415 | ||
17658d46 SM |
416 | Return vector of bytes holding the program header contents, or an empty |
417 | optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target | |
418 | architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise, | |
419 | the base address of the section is returned in *BASE_ADDR. */ | |
97ec2c2f | 420 | |
17658d46 SM |
421 | static gdb::optional<gdb::byte_vector> |
422 | read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr) | |
97ec2c2f | 423 | { |
f5656ead | 424 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
43136979 | 425 | CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0; |
97ec2c2f UW |
426 | int arch_size, sect_size; |
427 | CORE_ADDR sect_addr; | |
43136979 | 428 | int pt_phdr_p = 0; |
97ec2c2f UW |
429 | |
430 | /* Get required auxv elements from target. */ | |
328d42d8 SM |
431 | if (target_auxv_search (current_inferior ()->top_target (), |
432 | AT_PHDR, &at_phdr) <= 0) | |
17658d46 | 433 | return {}; |
328d42d8 SM |
434 | if (target_auxv_search (current_inferior ()->top_target (), |
435 | AT_PHENT, &at_phent) <= 0) | |
17658d46 | 436 | return {}; |
328d42d8 SM |
437 | if (target_auxv_search (current_inferior ()->top_target (), |
438 | AT_PHNUM, &at_phnum) <= 0) | |
17658d46 | 439 | return {}; |
97ec2c2f | 440 | if (!at_phdr || !at_phnum) |
17658d46 | 441 | return {}; |
97ec2c2f UW |
442 | |
443 | /* Determine ELF architecture type. */ | |
444 | if (at_phent == sizeof (Elf32_External_Phdr)) | |
445 | arch_size = 32; | |
446 | else if (at_phent == sizeof (Elf64_External_Phdr)) | |
447 | arch_size = 64; | |
448 | else | |
17658d46 | 449 | return {}; |
97ec2c2f | 450 | |
09919ac2 JK |
451 | /* Find the requested segment. */ |
452 | if (type == -1) | |
453 | { | |
454 | sect_addr = at_phdr; | |
455 | sect_size = at_phent * at_phnum; | |
456 | } | |
457 | else if (arch_size == 32) | |
97ec2c2f UW |
458 | { |
459 | Elf32_External_Phdr phdr; | |
460 | int i; | |
461 | ||
462 | /* Search for requested PHDR. */ | |
463 | for (i = 0; i < at_phnum; i++) | |
464 | { | |
43136979 AR |
465 | int p_type; |
466 | ||
97ec2c2f UW |
467 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
468 | (gdb_byte *)&phdr, sizeof (phdr))) | |
17658d46 | 469 | return {}; |
97ec2c2f | 470 | |
43136979 AR |
471 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
472 | 4, byte_order); | |
473 | ||
474 | if (p_type == PT_PHDR) | |
475 | { | |
476 | pt_phdr_p = 1; | |
477 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
478 | 4, byte_order); | |
479 | } | |
480 | ||
481 | if (p_type == type) | |
97ec2c2f UW |
482 | break; |
483 | } | |
484 | ||
485 | if (i == at_phnum) | |
17658d46 | 486 | return {}; |
97ec2c2f UW |
487 | |
488 | /* Retrieve address and size. */ | |
e17a4113 UW |
489 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
490 | 4, byte_order); | |
491 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
492 | 4, byte_order); | |
97ec2c2f UW |
493 | } |
494 | else | |
495 | { | |
496 | Elf64_External_Phdr phdr; | |
497 | int i; | |
498 | ||
499 | /* Search for requested PHDR. */ | |
500 | for (i = 0; i < at_phnum; i++) | |
501 | { | |
43136979 AR |
502 | int p_type; |
503 | ||
97ec2c2f UW |
504 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
505 | (gdb_byte *)&phdr, sizeof (phdr))) | |
17658d46 | 506 | return {}; |
97ec2c2f | 507 | |
43136979 AR |
508 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
509 | 4, byte_order); | |
510 | ||
511 | if (p_type == PT_PHDR) | |
512 | { | |
513 | pt_phdr_p = 1; | |
514 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
515 | 8, byte_order); | |
516 | } | |
517 | ||
518 | if (p_type == type) | |
97ec2c2f UW |
519 | break; |
520 | } | |
521 | ||
522 | if (i == at_phnum) | |
17658d46 | 523 | return {}; |
97ec2c2f UW |
524 | |
525 | /* Retrieve address and size. */ | |
e17a4113 UW |
526 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
527 | 8, byte_order); | |
528 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
529 | 8, byte_order); | |
97ec2c2f UW |
530 | } |
531 | ||
43136979 AR |
532 | /* PT_PHDR is optional, but we really need it |
533 | for PIE to make this work in general. */ | |
534 | ||
535 | if (pt_phdr_p) | |
536 | { | |
537 | /* at_phdr is real address in memory. pt_phdr is what pheader says it is. | |
538 | Relocation offset is the difference between the two. */ | |
539 | sect_addr = sect_addr + (at_phdr - pt_phdr); | |
540 | } | |
541 | ||
97ec2c2f | 542 | /* Read in requested program header. */ |
17658d46 SM |
543 | gdb::byte_vector buf (sect_size); |
544 | if (target_read_memory (sect_addr, buf.data (), sect_size)) | |
545 | return {}; | |
97ec2c2f UW |
546 | |
547 | if (p_arch_size) | |
548 | *p_arch_size = arch_size; | |
a738da3a MF |
549 | if (base_addr) |
550 | *base_addr = sect_addr; | |
97ec2c2f UW |
551 | |
552 | return buf; | |
553 | } | |
554 | ||
555 | ||
556 | /* Return program interpreter string. */ | |
17658d46 | 557 | static gdb::optional<gdb::byte_vector> |
97ec2c2f UW |
558 | find_program_interpreter (void) |
559 | { | |
7e10abd1 TT |
560 | /* If we have a current exec_bfd, use its section table. */ |
561 | if (current_program_space->exec_bfd () | |
562 | && (bfd_get_flavour (current_program_space->exec_bfd ()) | |
563 | == bfd_target_elf_flavour)) | |
97ec2c2f UW |
564 | { |
565 | struct bfd_section *interp_sect; | |
566 | ||
7e10abd1 TT |
567 | interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (), |
568 | ".interp"); | |
97ec2c2f UW |
569 | if (interp_sect != NULL) |
570 | { | |
fd361982 | 571 | int sect_size = bfd_section_size (interp_sect); |
97ec2c2f | 572 | |
17658d46 | 573 | gdb::byte_vector buf (sect_size); |
7e10abd1 TT |
574 | bfd_get_section_contents (current_program_space->exec_bfd (), |
575 | interp_sect, buf.data (), 0, sect_size); | |
17658d46 | 576 | return buf; |
97ec2c2f UW |
577 | } |
578 | } | |
579 | ||
17658d46 SM |
580 | /* If we didn't find it, use the target auxiliary vector. */ |
581 | return read_program_header (PT_INTERP, NULL, NULL); | |
97ec2c2f UW |
582 | } |
583 | ||
584 | ||
b6d7a4bf SM |
585 | /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable, |
586 | found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1 | |
587 | is returned and the corresponding PTR is set. */ | |
97ec2c2f UW |
588 | |
589 | static int | |
a738da3a MF |
590 | scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr, |
591 | CORE_ADDR *ptr_addr) | |
97ec2c2f | 592 | { |
f5656ead | 593 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
17658d46 | 594 | int arch_size, step; |
b6d7a4bf | 595 | long current_dyntag; |
97ec2c2f | 596 | CORE_ADDR dyn_ptr; |
a738da3a | 597 | CORE_ADDR base_addr; |
97ec2c2f UW |
598 | |
599 | /* Read in .dynamic section. */ | |
17658d46 SM |
600 | gdb::optional<gdb::byte_vector> ph_data |
601 | = read_program_header (PT_DYNAMIC, &arch_size, &base_addr); | |
602 | if (!ph_data) | |
97ec2c2f UW |
603 | return 0; |
604 | ||
605 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
606 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
607 | : sizeof (Elf64_External_Dyn); | |
17658d46 SM |
608 | for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size (); |
609 | buf < bufend; buf += step) | |
97ec2c2f UW |
610 | { |
611 | if (arch_size == 32) | |
612 | { | |
613 | Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; | |
433759f7 | 614 | |
b6d7a4bf | 615 | current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
e17a4113 UW |
616 | 4, byte_order); |
617 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
618 | 4, byte_order); | |
97ec2c2f UW |
619 | } |
620 | else | |
621 | { | |
622 | Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; | |
433759f7 | 623 | |
b6d7a4bf | 624 | current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
e17a4113 UW |
625 | 8, byte_order); |
626 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
627 | 8, byte_order); | |
97ec2c2f | 628 | } |
b6d7a4bf | 629 | if (current_dyntag == DT_NULL) |
97ec2c2f UW |
630 | break; |
631 | ||
b6d7a4bf | 632 | if (current_dyntag == desired_dyntag) |
97ec2c2f UW |
633 | { |
634 | if (ptr) | |
635 | *ptr = dyn_ptr; | |
636 | ||
a738da3a | 637 | if (ptr_addr) |
17658d46 | 638 | *ptr_addr = base_addr + buf - ph_data->data (); |
a738da3a | 639 | |
97ec2c2f UW |
640 | return 1; |
641 | } | |
642 | } | |
643 | ||
97ec2c2f UW |
644 | return 0; |
645 | } | |
646 | ||
7f86f058 PA |
647 | /* Locate the base address of dynamic linker structs for SVR4 elf |
648 | targets. | |
13437d4b KB |
649 | |
650 | For SVR4 elf targets the address of the dynamic linker's runtime | |
651 | structure is contained within the dynamic info section in the | |
652 | executable file. The dynamic section is also mapped into the | |
653 | inferior address space. Because the runtime loader fills in the | |
654 | real address before starting the inferior, we have to read in the | |
655 | dynamic info section from the inferior address space. | |
656 | If there are any errors while trying to find the address, we | |
7f86f058 | 657 | silently return 0, otherwise the found address is returned. */ |
13437d4b KB |
658 | |
659 | static CORE_ADDR | |
660 | elf_locate_base (void) | |
661 | { | |
3b7344d5 | 662 | struct bound_minimal_symbol msymbol; |
a738da3a | 663 | CORE_ADDR dyn_ptr, dyn_ptr_addr; |
13437d4b | 664 | |
65728c26 DJ |
665 | /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this |
666 | instead of DT_DEBUG, although they sometimes contain an unused | |
667 | DT_DEBUG. */ | |
8ddf4645 AM |
668 | if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP, |
669 | current_program_space->exec_bfd (), | |
670 | &dyn_ptr, NULL) | |
a738da3a | 671 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL)) |
3a40aaa0 | 672 | { |
f5656ead | 673 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
3a40aaa0 | 674 | gdb_byte *pbuf; |
b6da22b0 | 675 | int pbuf_size = TYPE_LENGTH (ptr_type); |
433759f7 | 676 | |
224c3ddb | 677 | pbuf = (gdb_byte *) alloca (pbuf_size); |
3a40aaa0 UW |
678 | /* DT_MIPS_RLD_MAP contains a pointer to the address |
679 | of the dynamic link structure. */ | |
680 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
e499d0f1 | 681 | return 0; |
b6da22b0 | 682 | return extract_typed_address (pbuf, ptr_type); |
e499d0f1 DJ |
683 | } |
684 | ||
a738da3a MF |
685 | /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form |
686 | because of needing to support PIE. DT_MIPS_RLD_MAP will also exist | |
687 | in non-PIE. */ | |
8ddf4645 AM |
688 | if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL, |
689 | current_program_space->exec_bfd (), | |
690 | &dyn_ptr, &dyn_ptr_addr) | |
a738da3a MF |
691 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr)) |
692 | { | |
693 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
694 | gdb_byte *pbuf; | |
695 | int pbuf_size = TYPE_LENGTH (ptr_type); | |
696 | ||
224c3ddb | 697 | pbuf = (gdb_byte *) alloca (pbuf_size); |
a738da3a MF |
698 | /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the |
699 | DT slot to the address of the dynamic link structure. */ | |
700 | if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size)) | |
701 | return 0; | |
702 | return extract_typed_address (pbuf, ptr_type); | |
703 | } | |
704 | ||
65728c26 | 705 | /* Find DT_DEBUG. */ |
8ddf4645 AM |
706 | if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (), |
707 | &dyn_ptr, NULL) | |
a738da3a | 708 | || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL)) |
65728c26 DJ |
709 | return dyn_ptr; |
710 | ||
3a40aaa0 UW |
711 | /* This may be a static executable. Look for the symbol |
712 | conventionally named _r_debug, as a last resort. */ | |
a42d7dd8 TT |
713 | msymbol = lookup_minimal_symbol ("_r_debug", NULL, |
714 | current_program_space->symfile_object_file); | |
3b7344d5 | 715 | if (msymbol.minsym != NULL) |
77e371c0 | 716 | return BMSYMBOL_VALUE_ADDRESS (msymbol); |
13437d4b KB |
717 | |
718 | /* DT_DEBUG entry not found. */ | |
719 | return 0; | |
720 | } | |
721 | ||
7f86f058 | 722 | /* Locate the base address of dynamic linker structs. |
13437d4b KB |
723 | |
724 | For both the SunOS and SVR4 shared library implementations, if the | |
725 | inferior executable has been linked dynamically, there is a single | |
726 | address somewhere in the inferior's data space which is the key to | |
727 | locating all of the dynamic linker's runtime structures. This | |
728 | address is the value of the debug base symbol. The job of this | |
729 | function is to find and return that address, or to return 0 if there | |
730 | is no such address (the executable is statically linked for example). | |
731 | ||
732 | For SunOS, the job is almost trivial, since the dynamic linker and | |
733 | all of it's structures are statically linked to the executable at | |
734 | link time. Thus the symbol for the address we are looking for has | |
735 | already been added to the minimal symbol table for the executable's | |
736 | objfile at the time the symbol file's symbols were read, and all we | |
737 | have to do is look it up there. Note that we explicitly do NOT want | |
738 | to find the copies in the shared library. | |
739 | ||
740 | The SVR4 version is a bit more complicated because the address | |
741 | is contained somewhere in the dynamic info section. We have to go | |
742 | to a lot more work to discover the address of the debug base symbol. | |
743 | Because of this complexity, we cache the value we find and return that | |
744 | value on subsequent invocations. Note there is no copy in the | |
7f86f058 | 745 | executable symbol tables. */ |
13437d4b KB |
746 | |
747 | static CORE_ADDR | |
1a816a87 | 748 | locate_base (struct svr4_info *info) |
13437d4b | 749 | { |
13437d4b KB |
750 | /* Check to see if we have a currently valid address, and if so, avoid |
751 | doing all this work again and just return the cached address. If | |
752 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
753 | section for ELF executables. There's no point in doing any of this |
754 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 755 | |
1a816a87 | 756 | if (info->debug_base == 0 && svr4_have_link_map_offsets ()) |
0763ab81 | 757 | info->debug_base = elf_locate_base (); |
1a816a87 | 758 | return info->debug_base; |
13437d4b KB |
759 | } |
760 | ||
e4cd0d6a | 761 | /* Find the first element in the inferior's dynamic link map, and |
6f992fbf JB |
762 | return its address in the inferior. Return zero if the address |
763 | could not be determined. | |
13437d4b | 764 | |
e4cd0d6a MK |
765 | FIXME: Perhaps we should validate the info somehow, perhaps by |
766 | checking r_version for a known version number, or r_state for | |
767 | RT_CONSISTENT. */ | |
13437d4b KB |
768 | |
769 | static CORE_ADDR | |
1a816a87 | 770 | solib_svr4_r_map (struct svr4_info *info) |
13437d4b | 771 | { |
4b188b9f | 772 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f5656ead | 773 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
08597104 | 774 | CORE_ADDR addr = 0; |
13437d4b | 775 | |
a70b8144 | 776 | try |
08597104 JB |
777 | { |
778 | addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, | |
dda83cd7 | 779 | ptr_type); |
08597104 | 780 | } |
230d2906 | 781 | catch (const gdb_exception_error &ex) |
492d29ea PA |
782 | { |
783 | exception_print (gdb_stderr, ex); | |
784 | } | |
492d29ea | 785 | |
08597104 | 786 | return addr; |
e4cd0d6a | 787 | } |
13437d4b | 788 | |
7cd25cfc DJ |
789 | /* Find r_brk from the inferior's debug base. */ |
790 | ||
791 | static CORE_ADDR | |
1a816a87 | 792 | solib_svr4_r_brk (struct svr4_info *info) |
7cd25cfc DJ |
793 | { |
794 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
f5656ead | 795 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
7cd25cfc | 796 | |
1a816a87 PA |
797 | return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, |
798 | ptr_type); | |
7cd25cfc DJ |
799 | } |
800 | ||
e4cd0d6a MK |
801 | /* Find the link map for the dynamic linker (if it is not in the |
802 | normal list of loaded shared objects). */ | |
13437d4b | 803 | |
e4cd0d6a | 804 | static CORE_ADDR |
1a816a87 | 805 | solib_svr4_r_ldsomap (struct svr4_info *info) |
e4cd0d6a MK |
806 | { |
807 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
f5656ead | 808 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
34877895 | 809 | enum bfd_endian byte_order = type_byte_order (ptr_type); |
416f679e SDJ |
810 | ULONGEST version = 0; |
811 | ||
a70b8144 | 812 | try |
416f679e SDJ |
813 | { |
814 | /* Check version, and return zero if `struct r_debug' doesn't have | |
815 | the r_ldsomap member. */ | |
816 | version | |
817 | = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, | |
818 | lmo->r_version_size, byte_order); | |
819 | } | |
230d2906 | 820 | catch (const gdb_exception_error &ex) |
416f679e SDJ |
821 | { |
822 | exception_print (gdb_stderr, ex); | |
823 | } | |
13437d4b | 824 | |
e4cd0d6a MK |
825 | if (version < 2 || lmo->r_ldsomap_offset == -1) |
826 | return 0; | |
13437d4b | 827 | |
1a816a87 | 828 | return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, |
b6da22b0 | 829 | ptr_type); |
13437d4b KB |
830 | } |
831 | ||
de18c1d8 JM |
832 | /* On Solaris systems with some versions of the dynamic linker, |
833 | ld.so's l_name pointer points to the SONAME in the string table | |
834 | rather than into writable memory. So that GDB can find shared | |
835 | libraries when loading a core file generated by gcore, ensure that | |
836 | memory areas containing the l_name string are saved in the core | |
837 | file. */ | |
838 | ||
839 | static int | |
840 | svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) | |
841 | { | |
842 | struct svr4_info *info; | |
843 | CORE_ADDR ldsomap; | |
74de0234 | 844 | CORE_ADDR name_lm; |
de18c1d8 | 845 | |
d70cc3ba | 846 | info = get_svr4_info (current_program_space); |
de18c1d8 JM |
847 | |
848 | info->debug_base = 0; | |
849 | locate_base (info); | |
850 | if (!info->debug_base) | |
851 | return 0; | |
852 | ||
853 | ldsomap = solib_svr4_r_ldsomap (info); | |
854 | if (!ldsomap) | |
855 | return 0; | |
856 | ||
a7961323 | 857 | std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap); |
d0e449a1 | 858 | name_lm = li != NULL ? li->l_name : 0; |
de18c1d8 | 859 | |
74de0234 | 860 | return (name_lm >= vaddr && name_lm < vaddr + size); |
de18c1d8 JM |
861 | } |
862 | ||
bf469271 | 863 | /* See solist.h. */ |
13437d4b KB |
864 | |
865 | static int | |
bf469271 | 866 | open_symbol_file_object (int from_tty) |
13437d4b KB |
867 | { |
868 | CORE_ADDR lm, l_name; | |
4b188b9f | 869 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f5656ead | 870 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
b6da22b0 | 871 | int l_name_size = TYPE_LENGTH (ptr_type); |
a7961323 | 872 | gdb::byte_vector l_name_buf (l_name_size); |
d70cc3ba | 873 | struct svr4_info *info = get_svr4_info (current_program_space); |
ecf45d2c SL |
874 | symfile_add_flags add_flags = 0; |
875 | ||
876 | if (from_tty) | |
877 | add_flags |= SYMFILE_VERBOSE; | |
13437d4b | 878 | |
a42d7dd8 | 879 | if (current_program_space->symfile_object_file) |
9e2f0ad4 | 880 | if (!query (_("Attempt to reload symbols from process? "))) |
a7961323 | 881 | return 0; |
13437d4b | 882 | |
7cd25cfc | 883 | /* Always locate the debug struct, in case it has moved. */ |
1a816a87 PA |
884 | info->debug_base = 0; |
885 | if (locate_base (info) == 0) | |
a7961323 | 886 | return 0; /* failed somehow... */ |
13437d4b KB |
887 | |
888 | /* First link map member should be the executable. */ | |
1a816a87 | 889 | lm = solib_svr4_r_map (info); |
e4cd0d6a | 890 | if (lm == 0) |
a7961323 | 891 | return 0; /* failed somehow... */ |
13437d4b KB |
892 | |
893 | /* Read address of name from target memory to GDB. */ | |
a7961323 | 894 | read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size); |
13437d4b | 895 | |
cfaefc65 | 896 | /* Convert the address to host format. */ |
a7961323 | 897 | l_name = extract_typed_address (l_name_buf.data (), ptr_type); |
13437d4b | 898 | |
13437d4b | 899 | if (l_name == 0) |
a7961323 | 900 | return 0; /* No filename. */ |
13437d4b KB |
901 | |
902 | /* Now fetch the filename from target memory. */ | |
66920317 TT |
903 | gdb::unique_xmalloc_ptr<char> filename |
904 | = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1); | |
13437d4b | 905 | |
66920317 | 906 | if (filename == nullptr) |
13437d4b | 907 | { |
66920317 | 908 | warning (_("failed to read exec filename from attached file")); |
13437d4b KB |
909 | return 0; |
910 | } | |
911 | ||
13437d4b | 912 | /* Have a pathname: read the symbol file. */ |
e83e4e24 | 913 | symbol_file_add_main (filename.get (), add_flags); |
13437d4b KB |
914 | |
915 | return 1; | |
916 | } | |
13437d4b | 917 | |
2268b414 JK |
918 | /* Data exchange structure for the XML parser as returned by |
919 | svr4_current_sos_via_xfer_libraries. */ | |
920 | ||
921 | struct svr4_library_list | |
922 | { | |
923 | struct so_list *head, **tailp; | |
924 | ||
925 | /* Inferior address of struct link_map used for the main executable. It is | |
926 | NULL if not known. */ | |
927 | CORE_ADDR main_lm; | |
928 | }; | |
929 | ||
7905fc35 PA |
930 | /* This module's 'free_objfile' observer. */ |
931 | ||
932 | static void | |
933 | svr4_free_objfile_observer (struct objfile *objfile) | |
934 | { | |
935 | probes_table_remove_objfile_probes (objfile); | |
936 | } | |
937 | ||
93f2a35e JK |
938 | /* Implementation for target_so_ops.free_so. */ |
939 | ||
940 | static void | |
941 | svr4_free_so (struct so_list *so) | |
942 | { | |
76e75227 SM |
943 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
944 | ||
945 | delete li; | |
93f2a35e JK |
946 | } |
947 | ||
0892cb63 DE |
948 | /* Implement target_so_ops.clear_so. */ |
949 | ||
950 | static void | |
951 | svr4_clear_so (struct so_list *so) | |
952 | { | |
d0e449a1 SM |
953 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
954 | ||
955 | if (li != NULL) | |
956 | li->l_addr_p = 0; | |
0892cb63 DE |
957 | } |
958 | ||
93f2a35e JK |
959 | /* Free so_list built so far (called via cleanup). */ |
960 | ||
961 | static void | |
962 | svr4_free_library_list (void *p_list) | |
963 | { | |
964 | struct so_list *list = *(struct so_list **) p_list; | |
965 | ||
966 | while (list != NULL) | |
967 | { | |
968 | struct so_list *next = list->next; | |
969 | ||
3756ef7e | 970 | free_so (list); |
93f2a35e JK |
971 | list = next; |
972 | } | |
973 | } | |
974 | ||
f9e14852 GB |
975 | /* Copy library list. */ |
976 | ||
977 | static struct so_list * | |
978 | svr4_copy_library_list (struct so_list *src) | |
979 | { | |
980 | struct so_list *dst = NULL; | |
981 | struct so_list **link = &dst; | |
982 | ||
983 | while (src != NULL) | |
984 | { | |
fe978cb0 | 985 | struct so_list *newobj; |
f9e14852 | 986 | |
8d749320 | 987 | newobj = XNEW (struct so_list); |
fe978cb0 | 988 | memcpy (newobj, src, sizeof (struct so_list)); |
f9e14852 | 989 | |
76e75227 SM |
990 | lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info; |
991 | newobj->lm_info = new lm_info_svr4 (*src_li); | |
f9e14852 | 992 | |
fe978cb0 PA |
993 | newobj->next = NULL; |
994 | *link = newobj; | |
995 | link = &newobj->next; | |
f9e14852 GB |
996 | |
997 | src = src->next; | |
998 | } | |
999 | ||
1000 | return dst; | |
1001 | } | |
1002 | ||
2268b414 JK |
1003 | #ifdef HAVE_LIBEXPAT |
1004 | ||
1005 | #include "xml-support.h" | |
1006 | ||
1007 | /* Handle the start of a <library> element. Note: new elements are added | |
1008 | at the tail of the list, keeping the list in order. */ | |
1009 | ||
1010 | static void | |
1011 | library_list_start_library (struct gdb_xml_parser *parser, | |
1012 | const struct gdb_xml_element *element, | |
4d0fdd9b SM |
1013 | void *user_data, |
1014 | std::vector<gdb_xml_value> &attributes) | |
2268b414 | 1015 | { |
19ba03f4 SM |
1016 | struct svr4_library_list *list = (struct svr4_library_list *) user_data; |
1017 | const char *name | |
4d0fdd9b | 1018 | = (const char *) xml_find_attribute (attributes, "name")->value.get (); |
19ba03f4 | 1019 | ULONGEST *lmp |
4d0fdd9b | 1020 | = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get (); |
19ba03f4 | 1021 | ULONGEST *l_addrp |
4d0fdd9b | 1022 | = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get (); |
19ba03f4 | 1023 | ULONGEST *l_ldp |
4d0fdd9b | 1024 | = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get (); |
2268b414 JK |
1025 | struct so_list *new_elem; |
1026 | ||
41bf6aca | 1027 | new_elem = XCNEW (struct so_list); |
76e75227 | 1028 | lm_info_svr4 *li = new lm_info_svr4; |
d0e449a1 SM |
1029 | new_elem->lm_info = li; |
1030 | li->lm_addr = *lmp; | |
1031 | li->l_addr_inferior = *l_addrp; | |
1032 | li->l_ld = *l_ldp; | |
2268b414 JK |
1033 | |
1034 | strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1); | |
1035 | new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0; | |
1036 | strcpy (new_elem->so_original_name, new_elem->so_name); | |
1037 | ||
1038 | *list->tailp = new_elem; | |
1039 | list->tailp = &new_elem->next; | |
1040 | } | |
1041 | ||
1042 | /* Handle the start of a <library-list-svr4> element. */ | |
1043 | ||
1044 | static void | |
1045 | svr4_library_list_start_list (struct gdb_xml_parser *parser, | |
1046 | const struct gdb_xml_element *element, | |
4d0fdd9b SM |
1047 | void *user_data, |
1048 | std::vector<gdb_xml_value> &attributes) | |
2268b414 | 1049 | { |
19ba03f4 SM |
1050 | struct svr4_library_list *list = (struct svr4_library_list *) user_data; |
1051 | const char *version | |
4d0fdd9b | 1052 | = (const char *) xml_find_attribute (attributes, "version")->value.get (); |
2268b414 JK |
1053 | struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm"); |
1054 | ||
1055 | if (strcmp (version, "1.0") != 0) | |
1056 | gdb_xml_error (parser, | |
1057 | _("SVR4 Library list has unsupported version \"%s\""), | |
1058 | version); | |
1059 | ||
1060 | if (main_lm) | |
4d0fdd9b | 1061 | list->main_lm = *(ULONGEST *) main_lm->value.get (); |
2268b414 JK |
1062 | } |
1063 | ||
1064 | /* The allowed elements and attributes for an XML library list. | |
1065 | The root element is a <library-list>. */ | |
1066 | ||
1067 | static const struct gdb_xml_attribute svr4_library_attributes[] = | |
1068 | { | |
1069 | { "name", GDB_XML_AF_NONE, NULL, NULL }, | |
1070 | { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1071 | { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1072 | { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1073 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1074 | }; | |
1075 | ||
1076 | static const struct gdb_xml_element svr4_library_list_children[] = | |
1077 | { | |
1078 | { | |
1079 | "library", svr4_library_attributes, NULL, | |
1080 | GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, | |
1081 | library_list_start_library, NULL | |
1082 | }, | |
1083 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1084 | }; | |
1085 | ||
1086 | static const struct gdb_xml_attribute svr4_library_list_attributes[] = | |
1087 | { | |
1088 | { "version", GDB_XML_AF_NONE, NULL, NULL }, | |
1089 | { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, | |
1090 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1091 | }; | |
1092 | ||
1093 | static const struct gdb_xml_element svr4_library_list_elements[] = | |
1094 | { | |
1095 | { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children, | |
1096 | GDB_XML_EF_NONE, svr4_library_list_start_list, NULL }, | |
1097 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1098 | }; | |
1099 | ||
2268b414 JK |
1100 | /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if |
1101 | ||
1102 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1103 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
1104 | empty, caller is responsible for freeing all its entries. */ | |
1105 | ||
1106 | static int | |
1107 | svr4_parse_libraries (const char *document, struct svr4_library_list *list) | |
1108 | { | |
2b6ff1c0 TT |
1109 | auto cleanup = make_scope_exit ([&] () |
1110 | { | |
1111 | svr4_free_library_list (&list->head); | |
1112 | }); | |
2268b414 JK |
1113 | |
1114 | memset (list, 0, sizeof (*list)); | |
1115 | list->tailp = &list->head; | |
2eca4a8d | 1116 | if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd", |
2268b414 JK |
1117 | svr4_library_list_elements, document, list) == 0) |
1118 | { | |
1119 | /* Parsed successfully, keep the result. */ | |
2b6ff1c0 | 1120 | cleanup.release (); |
2268b414 JK |
1121 | return 1; |
1122 | } | |
1123 | ||
2268b414 JK |
1124 | return 0; |
1125 | } | |
1126 | ||
f9e14852 | 1127 | /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet. |
2268b414 JK |
1128 | |
1129 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1130 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
f9e14852 GB |
1131 | empty, caller is responsible for freeing all its entries. |
1132 | ||
1133 | Note that ANNEX must be NULL if the remote does not explicitly allow | |
1134 | qXfer:libraries-svr4:read packets with non-empty annexes. Support for | |
1135 | this can be checked using target_augmented_libraries_svr4_read (). */ | |
2268b414 JK |
1136 | |
1137 | static int | |
f9e14852 GB |
1138 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, |
1139 | const char *annex) | |
2268b414 | 1140 | { |
f9e14852 GB |
1141 | gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ()); |
1142 | ||
2268b414 | 1143 | /* Fetch the list of shared libraries. */ |
9018be22 | 1144 | gdb::optional<gdb::char_vector> svr4_library_document |
328d42d8 SM |
1145 | = target_read_stralloc (current_inferior ()->top_target (), |
1146 | TARGET_OBJECT_LIBRARIES_SVR4, | |
b7b030ad | 1147 | annex); |
9018be22 | 1148 | if (!svr4_library_document) |
2268b414 JK |
1149 | return 0; |
1150 | ||
9018be22 | 1151 | return svr4_parse_libraries (svr4_library_document->data (), list); |
2268b414 JK |
1152 | } |
1153 | ||
1154 | #else | |
1155 | ||
1156 | static int | |
f9e14852 GB |
1157 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, |
1158 | const char *annex) | |
2268b414 JK |
1159 | { |
1160 | return 0; | |
1161 | } | |
1162 | ||
1163 | #endif | |
1164 | ||
34439770 DJ |
1165 | /* If no shared library information is available from the dynamic |
1166 | linker, build a fallback list from other sources. */ | |
1167 | ||
1168 | static struct so_list * | |
d70cc3ba | 1169 | svr4_default_sos (svr4_info *info) |
34439770 | 1170 | { |
fe978cb0 | 1171 | struct so_list *newobj; |
1a816a87 | 1172 | |
8e5c319d JK |
1173 | if (!info->debug_loader_offset_p) |
1174 | return NULL; | |
34439770 | 1175 | |
fe978cb0 | 1176 | newobj = XCNEW (struct so_list); |
76e75227 | 1177 | lm_info_svr4 *li = new lm_info_svr4; |
d0e449a1 | 1178 | newobj->lm_info = li; |
34439770 | 1179 | |
3957565a | 1180 | /* Nothing will ever check the other fields if we set l_addr_p. */ |
d0e449a1 SM |
1181 | li->l_addr = info->debug_loader_offset; |
1182 | li->l_addr_p = 1; | |
34439770 | 1183 | |
fe978cb0 PA |
1184 | strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); |
1185 | newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
1186 | strcpy (newobj->so_original_name, newobj->so_name); | |
34439770 | 1187 | |
fe978cb0 | 1188 | return newobj; |
34439770 DJ |
1189 | } |
1190 | ||
f9e14852 GB |
1191 | /* Read the whole inferior libraries chain starting at address LM. |
1192 | Expect the first entry in the chain's previous entry to be PREV_LM. | |
1193 | Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the | |
1194 | first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according | |
1195 | to it. Returns nonzero upon success. If zero is returned the | |
1196 | entries stored to LINK_PTR_PTR are still valid although they may | |
1197 | represent only part of the inferior library list. */ | |
13437d4b | 1198 | |
f9e14852 | 1199 | static int |
d70cc3ba | 1200 | svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm, |
f9e14852 | 1201 | struct so_list ***link_ptr_ptr, int ignore_first) |
13437d4b | 1202 | { |
c725e7b6 | 1203 | CORE_ADDR first_l_name = 0; |
f9e14852 | 1204 | CORE_ADDR next_lm; |
13437d4b | 1205 | |
cb08cc53 | 1206 | for (; lm != 0; prev_lm = lm, lm = next_lm) |
13437d4b | 1207 | { |
b3bc8453 | 1208 | so_list_up newobj (XCNEW (struct so_list)); |
13437d4b | 1209 | |
a7961323 | 1210 | lm_info_svr4 *li = lm_info_read (lm).release (); |
d0e449a1 SM |
1211 | newobj->lm_info = li; |
1212 | if (li == NULL) | |
b3bc8453 | 1213 | return 0; |
13437d4b | 1214 | |
d0e449a1 | 1215 | next_lm = li->l_next; |
492928e4 | 1216 | |
d0e449a1 | 1217 | if (li->l_prev != prev_lm) |
492928e4 | 1218 | { |
2268b414 | 1219 | warning (_("Corrupted shared library list: %s != %s"), |
f5656ead | 1220 | paddress (target_gdbarch (), prev_lm), |
d0e449a1 | 1221 | paddress (target_gdbarch (), li->l_prev)); |
f9e14852 | 1222 | return 0; |
492928e4 | 1223 | } |
13437d4b KB |
1224 | |
1225 | /* For SVR4 versions, the first entry in the link map is for the | |
dda83cd7 SM |
1226 | inferior executable, so we must ignore it. For some versions of |
1227 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
1228 | does have a name, so we can no longer use a missing name to | |
1229 | decide when to ignore it. */ | |
d0e449a1 | 1230 | if (ignore_first && li->l_prev == 0) |
93a57060 | 1231 | { |
d0e449a1 SM |
1232 | first_l_name = li->l_name; |
1233 | info->main_lm_addr = li->lm_addr; | |
cb08cc53 | 1234 | continue; |
93a57060 | 1235 | } |
13437d4b | 1236 | |
cb08cc53 | 1237 | /* Extract this shared object's name. */ |
66920317 TT |
1238 | gdb::unique_xmalloc_ptr<char> buffer |
1239 | = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1); | |
1240 | if (buffer == nullptr) | |
cb08cc53 | 1241 | { |
7d760051 UW |
1242 | /* If this entry's l_name address matches that of the |
1243 | inferior executable, then this is not a normal shared | |
1244 | object, but (most likely) a vDSO. In this case, silently | |
1245 | skip it; otherwise emit a warning. */ | |
d0e449a1 | 1246 | if (first_l_name == 0 || li->l_name != first_l_name) |
66920317 | 1247 | warning (_("Can't read pathname for load map.")); |
cb08cc53 | 1248 | continue; |
13437d4b KB |
1249 | } |
1250 | ||
e83e4e24 | 1251 | strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1); |
fe978cb0 PA |
1252 | newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; |
1253 | strcpy (newobj->so_original_name, newobj->so_name); | |
492928e4 | 1254 | |
cb08cc53 JK |
1255 | /* If this entry has no name, or its name matches the name |
1256 | for the main executable, don't include it in the list. */ | |
fe978cb0 | 1257 | if (! newobj->so_name[0] || match_main (newobj->so_name)) |
b3bc8453 | 1258 | continue; |
e4cd0d6a | 1259 | |
fe978cb0 | 1260 | newobj->next = 0; |
b3bc8453 TT |
1261 | /* Don't free it now. */ |
1262 | **link_ptr_ptr = newobj.release (); | |
1263 | *link_ptr_ptr = &(**link_ptr_ptr)->next; | |
13437d4b | 1264 | } |
f9e14852 GB |
1265 | |
1266 | return 1; | |
cb08cc53 JK |
1267 | } |
1268 | ||
f9e14852 GB |
1269 | /* Read the full list of currently loaded shared objects directly |
1270 | from the inferior, without referring to any libraries read and | |
1271 | stored by the probes interface. Handle special cases relating | |
1272 | to the first elements of the list. */ | |
cb08cc53 JK |
1273 | |
1274 | static struct so_list * | |
f9e14852 | 1275 | svr4_current_sos_direct (struct svr4_info *info) |
cb08cc53 JK |
1276 | { |
1277 | CORE_ADDR lm; | |
1278 | struct so_list *head = NULL; | |
1279 | struct so_list **link_ptr = &head; | |
cb08cc53 | 1280 | int ignore_first; |
2268b414 JK |
1281 | struct svr4_library_list library_list; |
1282 | ||
0c5bf5a9 JK |
1283 | /* Fall back to manual examination of the target if the packet is not |
1284 | supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp | |
1285 | tests a case where gdbserver cannot find the shared libraries list while | |
1286 | GDB itself is able to find it via SYMFILE_OBJFILE. | |
1287 | ||
1288 | Unfortunately statically linked inferiors will also fall back through this | |
1289 | suboptimal code path. */ | |
1290 | ||
f9e14852 GB |
1291 | info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list, |
1292 | NULL); | |
1293 | if (info->using_xfer) | |
2268b414 JK |
1294 | { |
1295 | if (library_list.main_lm) | |
f9e14852 | 1296 | info->main_lm_addr = library_list.main_lm; |
2268b414 | 1297 | |
d70cc3ba | 1298 | return library_list.head ? library_list.head : svr4_default_sos (info); |
2268b414 | 1299 | } |
cb08cc53 | 1300 | |
cb08cc53 JK |
1301 | /* Always locate the debug struct, in case it has moved. */ |
1302 | info->debug_base = 0; | |
1303 | locate_base (info); | |
1304 | ||
1305 | /* If we can't find the dynamic linker's base structure, this | |
1306 | must not be a dynamically linked executable. Hmm. */ | |
1307 | if (! info->debug_base) | |
d70cc3ba | 1308 | return svr4_default_sos (info); |
cb08cc53 JK |
1309 | |
1310 | /* Assume that everything is a library if the dynamic loader was loaded | |
1311 | late by a static executable. */ | |
7e10abd1 TT |
1312 | if (current_program_space->exec_bfd () |
1313 | && bfd_get_section_by_name (current_program_space->exec_bfd (), | |
1314 | ".dynamic") == NULL) | |
cb08cc53 JK |
1315 | ignore_first = 0; |
1316 | else | |
1317 | ignore_first = 1; | |
1318 | ||
2b6ff1c0 TT |
1319 | auto cleanup = make_scope_exit ([&] () |
1320 | { | |
1321 | svr4_free_library_list (&head); | |
1322 | }); | |
cb08cc53 JK |
1323 | |
1324 | /* Walk the inferior's link map list, and build our list of | |
1325 | `struct so_list' nodes. */ | |
1326 | lm = solib_svr4_r_map (info); | |
1327 | if (lm) | |
d70cc3ba | 1328 | svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first); |
cb08cc53 JK |
1329 | |
1330 | /* On Solaris, the dynamic linker is not in the normal list of | |
1331 | shared objects, so make sure we pick it up too. Having | |
1332 | symbol information for the dynamic linker is quite crucial | |
1333 | for skipping dynamic linker resolver code. */ | |
1334 | lm = solib_svr4_r_ldsomap (info); | |
1335 | if (lm) | |
d70cc3ba | 1336 | svr4_read_so_list (info, lm, 0, &link_ptr, 0); |
cb08cc53 | 1337 | |
2b6ff1c0 | 1338 | cleanup.release (); |
13437d4b | 1339 | |
34439770 | 1340 | if (head == NULL) |
d70cc3ba | 1341 | return svr4_default_sos (info); |
34439770 | 1342 | |
13437d4b KB |
1343 | return head; |
1344 | } | |
1345 | ||
8b9a549d PA |
1346 | /* Implement the main part of the "current_sos" target_so_ops |
1347 | method. */ | |
f9e14852 GB |
1348 | |
1349 | static struct so_list * | |
d70cc3ba | 1350 | svr4_current_sos_1 (svr4_info *info) |
f9e14852 | 1351 | { |
f9e14852 GB |
1352 | /* If the solib list has been read and stored by the probes |
1353 | interface then we return a copy of the stored list. */ | |
1354 | if (info->solib_list != NULL) | |
1355 | return svr4_copy_library_list (info->solib_list); | |
1356 | ||
1357 | /* Otherwise obtain the solib list directly from the inferior. */ | |
1358 | return svr4_current_sos_direct (info); | |
1359 | } | |
1360 | ||
8b9a549d PA |
1361 | /* Implement the "current_sos" target_so_ops method. */ |
1362 | ||
1363 | static struct so_list * | |
1364 | svr4_current_sos (void) | |
1365 | { | |
d70cc3ba SM |
1366 | svr4_info *info = get_svr4_info (current_program_space); |
1367 | struct so_list *so_head = svr4_current_sos_1 (info); | |
8b9a549d PA |
1368 | struct mem_range vsyscall_range; |
1369 | ||
1370 | /* Filter out the vDSO module, if present. Its symbol file would | |
1371 | not be found on disk. The vDSO/vsyscall's OBJFILE is instead | |
1372 | managed by symfile-mem.c:add_vsyscall_page. */ | |
1373 | if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range) | |
1374 | && vsyscall_range.length != 0) | |
1375 | { | |
1376 | struct so_list **sop; | |
1377 | ||
1378 | sop = &so_head; | |
1379 | while (*sop != NULL) | |
1380 | { | |
1381 | struct so_list *so = *sop; | |
1382 | ||
1383 | /* We can't simply match the vDSO by starting address alone, | |
1384 | because lm_info->l_addr_inferior (and also l_addr) do not | |
1385 | necessarily represent the real starting address of the | |
1386 | ELF if the vDSO's ELF itself is "prelinked". The l_ld | |
1387 | field (the ".dynamic" section of the shared object) | |
1388 | always points at the absolute/resolved address though. | |
1389 | So check whether that address is inside the vDSO's | |
1390 | mapping instead. | |
1391 | ||
1392 | E.g., on Linux 3.16 (x86_64) the vDSO is a regular | |
1393 | 0-based ELF, and we see: | |
1394 | ||
1395 | (gdb) info auxv | |
1396 | 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000 | |
1397 | (gdb) p/x *_r_debug.r_map.l_next | |
1398 | $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...} | |
1399 | ||
1400 | And on Linux 2.6.32 (x86_64) we see: | |
1401 | ||
1402 | (gdb) info auxv | |
1403 | 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000 | |
1404 | (gdb) p/x *_r_debug.r_map.l_next | |
1405 | $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... } | |
1406 | ||
1407 | Dumping that vDSO shows: | |
1408 | ||
1409 | (gdb) info proc mappings | |
1410 | 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso] | |
1411 | (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000 | |
1412 | # readelf -Wa vdso.bin | |
1413 | [...] | |
1414 | Entry point address: 0xffffffffff700700 | |
1415 | [...] | |
1416 | Section Headers: | |
1417 | [Nr] Name Type Address Off Size | |
1418 | [ 0] NULL 0000000000000000 000000 000000 | |
1419 | [ 1] .hash HASH ffffffffff700120 000120 000038 | |
1420 | [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8 | |
1421 | [...] | |
1422 | [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0 | |
1423 | */ | |
d0e449a1 SM |
1424 | |
1425 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | |
1426 | ||
1427 | if (address_in_mem_range (li->l_ld, &vsyscall_range)) | |
8b9a549d PA |
1428 | { |
1429 | *sop = so->next; | |
1430 | free_so (so); | |
1431 | break; | |
1432 | } | |
1433 | ||
1434 | sop = &so->next; | |
1435 | } | |
1436 | } | |
1437 | ||
1438 | return so_head; | |
1439 | } | |
1440 | ||
93a57060 | 1441 | /* Get the address of the link_map for a given OBJFILE. */ |
bc4a16ae EZ |
1442 | |
1443 | CORE_ADDR | |
1444 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
1445 | { | |
d70cc3ba | 1446 | struct svr4_info *info = get_svr4_info (objfile->pspace); |
bc4a16ae | 1447 | |
93a57060 | 1448 | /* Cause svr4_current_sos() to be run if it hasn't been already. */ |
1a816a87 | 1449 | if (info->main_lm_addr == 0) |
e696b3ad | 1450 | solib_add (NULL, 0, auto_solib_add); |
bc4a16ae | 1451 | |
93a57060 | 1452 | /* svr4_current_sos() will set main_lm_addr for the main executable. */ |
a42d7dd8 | 1453 | if (objfile == current_program_space->symfile_object_file) |
1a816a87 | 1454 | return info->main_lm_addr; |
93a57060 | 1455 | |
df22c1e5 JB |
1456 | /* If OBJFILE is a separate debug object file, look for the |
1457 | original object file. */ | |
1458 | if (objfile->separate_debug_objfile_backlink != NULL) | |
1459 | objfile = objfile->separate_debug_objfile_backlink; | |
1460 | ||
93a57060 DJ |
1461 | /* The other link map addresses may be found by examining the list |
1462 | of shared libraries. */ | |
a1fd1ac9 | 1463 | for (struct so_list *so : current_program_space->solibs ()) |
93a57060 | 1464 | if (so->objfile == objfile) |
d0e449a1 SM |
1465 | { |
1466 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | |
1467 | ||
1468 | return li->lm_addr; | |
1469 | } | |
93a57060 DJ |
1470 | |
1471 | /* Not found! */ | |
bc4a16ae EZ |
1472 | return 0; |
1473 | } | |
13437d4b KB |
1474 | |
1475 | /* On some systems, the only way to recognize the link map entry for | |
1476 | the main executable file is by looking at its name. Return | |
1477 | non-zero iff SONAME matches one of the known main executable names. */ | |
1478 | ||
1479 | static int | |
bc043ef3 | 1480 | match_main (const char *soname) |
13437d4b | 1481 | { |
bc043ef3 | 1482 | const char * const *mainp; |
13437d4b KB |
1483 | |
1484 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
1485 | { | |
1486 | if (strcmp (soname, *mainp) == 0) | |
1487 | return (1); | |
1488 | } | |
1489 | ||
1490 | return (0); | |
1491 | } | |
1492 | ||
13437d4b KB |
1493 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
1494 | SVR4 run time loader. */ | |
13437d4b | 1495 | |
7d522c90 | 1496 | int |
d7fa2ae2 | 1497 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) |
13437d4b | 1498 | { |
d70cc3ba | 1499 | struct svr4_info *info = get_svr4_info (current_program_space); |
6c95b8df PA |
1500 | |
1501 | return ((pc >= info->interp_text_sect_low | |
1502 | && pc < info->interp_text_sect_high) | |
1503 | || (pc >= info->interp_plt_sect_low | |
1504 | && pc < info->interp_plt_sect_high) | |
3e5d3a5a | 1505 | || in_plt_section (pc) |
0875794a | 1506 | || in_gnu_ifunc_stub (pc)); |
13437d4b | 1507 | } |
13437d4b | 1508 | |
2f4950cd AC |
1509 | /* Given an executable's ABFD and target, compute the entry-point |
1510 | address. */ | |
1511 | ||
1512 | static CORE_ADDR | |
1513 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
1514 | { | |
8c2b9656 YQ |
1515 | CORE_ADDR addr; |
1516 | ||
2f4950cd AC |
1517 | /* KevinB wrote ... for most targets, the address returned by |
1518 | bfd_get_start_address() is the entry point for the start | |
1519 | function. But, for some targets, bfd_get_start_address() returns | |
1520 | the address of a function descriptor from which the entry point | |
1521 | address may be extracted. This address is extracted by | |
1522 | gdbarch_convert_from_func_ptr_addr(). The method | |
1523 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
1524 | function for targets which don't use function descriptors. */ | |
8c2b9656 | 1525 | addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
2f4950cd AC |
1526 | bfd_get_start_address (abfd), |
1527 | targ); | |
8c2b9656 | 1528 | return gdbarch_addr_bits_remove (target_gdbarch (), addr); |
2f4950cd | 1529 | } |
13437d4b | 1530 | |
f9e14852 GB |
1531 | /* A probe and its associated action. */ |
1532 | ||
1533 | struct probe_and_action | |
1534 | { | |
1535 | /* The probe. */ | |
935676c9 | 1536 | probe *prob; |
f9e14852 | 1537 | |
729662a5 TT |
1538 | /* The relocated address of the probe. */ |
1539 | CORE_ADDR address; | |
1540 | ||
f9e14852 GB |
1541 | /* The action. */ |
1542 | enum probe_action action; | |
7905fc35 PA |
1543 | |
1544 | /* The objfile where this probe was found. */ | |
1545 | struct objfile *objfile; | |
f9e14852 GB |
1546 | }; |
1547 | ||
1548 | /* Returns a hash code for the probe_and_action referenced by p. */ | |
1549 | ||
1550 | static hashval_t | |
1551 | hash_probe_and_action (const void *p) | |
1552 | { | |
19ba03f4 | 1553 | const struct probe_and_action *pa = (const struct probe_and_action *) p; |
f9e14852 | 1554 | |
729662a5 | 1555 | return (hashval_t) pa->address; |
f9e14852 GB |
1556 | } |
1557 | ||
1558 | /* Returns non-zero if the probe_and_actions referenced by p1 and p2 | |
1559 | are equal. */ | |
1560 | ||
1561 | static int | |
1562 | equal_probe_and_action (const void *p1, const void *p2) | |
1563 | { | |
19ba03f4 SM |
1564 | const struct probe_and_action *pa1 = (const struct probe_and_action *) p1; |
1565 | const struct probe_and_action *pa2 = (const struct probe_and_action *) p2; | |
f9e14852 | 1566 | |
729662a5 | 1567 | return pa1->address == pa2->address; |
f9e14852 GB |
1568 | } |
1569 | ||
7905fc35 PA |
1570 | /* Traversal function for probes_table_remove_objfile_probes. */ |
1571 | ||
1572 | static int | |
1573 | probes_table_htab_remove_objfile_probes (void **slot, void *info) | |
1574 | { | |
1575 | probe_and_action *pa = (probe_and_action *) *slot; | |
1576 | struct objfile *objfile = (struct objfile *) info; | |
1577 | ||
1578 | if (pa->objfile == objfile) | |
09232438 TT |
1579 | htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (), |
1580 | slot); | |
7905fc35 PA |
1581 | |
1582 | return 1; | |
1583 | } | |
1584 | ||
1585 | /* Remove all probes that belong to OBJFILE from the probes table. */ | |
1586 | ||
1587 | static void | |
1588 | probes_table_remove_objfile_probes (struct objfile *objfile) | |
1589 | { | |
d70cc3ba | 1590 | svr4_info *info = get_svr4_info (objfile->pspace); |
7905fc35 | 1591 | if (info->probes_table != nullptr) |
09232438 | 1592 | htab_traverse_noresize (info->probes_table.get (), |
7905fc35 PA |
1593 | probes_table_htab_remove_objfile_probes, objfile); |
1594 | } | |
1595 | ||
f9e14852 GB |
1596 | /* Register a solib event probe and its associated action in the |
1597 | probes table. */ | |
1598 | ||
1599 | static void | |
d70cc3ba | 1600 | register_solib_event_probe (svr4_info *info, struct objfile *objfile, |
7905fc35 | 1601 | probe *prob, CORE_ADDR address, |
729662a5 | 1602 | enum probe_action action) |
f9e14852 | 1603 | { |
f9e14852 GB |
1604 | struct probe_and_action lookup, *pa; |
1605 | void **slot; | |
1606 | ||
1607 | /* Create the probes table, if necessary. */ | |
1608 | if (info->probes_table == NULL) | |
09232438 TT |
1609 | info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action, |
1610 | equal_probe_and_action, | |
1611 | xfree, xcalloc, xfree)); | |
f9e14852 | 1612 | |
729662a5 | 1613 | lookup.address = address; |
09232438 | 1614 | slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT); |
f9e14852 GB |
1615 | gdb_assert (*slot == HTAB_EMPTY_ENTRY); |
1616 | ||
1617 | pa = XCNEW (struct probe_and_action); | |
935676c9 | 1618 | pa->prob = prob; |
729662a5 | 1619 | pa->address = address; |
f9e14852 | 1620 | pa->action = action; |
7905fc35 | 1621 | pa->objfile = objfile; |
f9e14852 GB |
1622 | |
1623 | *slot = pa; | |
1624 | } | |
1625 | ||
1626 | /* Get the solib event probe at the specified location, and the | |
1627 | action associated with it. Returns NULL if no solib event probe | |
1628 | was found. */ | |
1629 | ||
1630 | static struct probe_and_action * | |
1631 | solib_event_probe_at (struct svr4_info *info, CORE_ADDR address) | |
1632 | { | |
f9e14852 GB |
1633 | struct probe_and_action lookup; |
1634 | void **slot; | |
1635 | ||
729662a5 | 1636 | lookup.address = address; |
09232438 | 1637 | slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT); |
f9e14852 GB |
1638 | |
1639 | if (slot == NULL) | |
1640 | return NULL; | |
1641 | ||
1642 | return (struct probe_and_action *) *slot; | |
1643 | } | |
1644 | ||
1645 | /* Decide what action to take when the specified solib event probe is | |
1646 | hit. */ | |
1647 | ||
1648 | static enum probe_action | |
1649 | solib_event_probe_action (struct probe_and_action *pa) | |
1650 | { | |
1651 | enum probe_action action; | |
73c6b475 | 1652 | unsigned probe_argc = 0; |
08a6411c | 1653 | struct frame_info *frame = get_current_frame (); |
f9e14852 GB |
1654 | |
1655 | action = pa->action; | |
1656 | if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED) | |
1657 | return action; | |
1658 | ||
1659 | gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD); | |
1660 | ||
1661 | /* Check that an appropriate number of arguments has been supplied. | |
1662 | We expect: | |
1663 | arg0: Lmid_t lmid (mandatory) | |
1664 | arg1: struct r_debug *debug_base (mandatory) | |
1665 | arg2: struct link_map *new (optional, for incremental updates) */ | |
a70b8144 | 1666 | try |
3bd7e5b7 | 1667 | { |
fe01123e | 1668 | probe_argc = pa->prob->get_argument_count (get_frame_arch (frame)); |
3bd7e5b7 | 1669 | } |
230d2906 | 1670 | catch (const gdb_exception_error &ex) |
3bd7e5b7 SDJ |
1671 | { |
1672 | exception_print (gdb_stderr, ex); | |
1673 | probe_argc = 0; | |
1674 | } | |
3bd7e5b7 | 1675 | |
935676c9 SDJ |
1676 | /* If get_argument_count throws an exception, probe_argc will be set |
1677 | to zero. However, if pa->prob does not have arguments, then | |
1678 | get_argument_count will succeed but probe_argc will also be zero. | |
1679 | Both cases happen because of different things, but they are | |
1680 | treated equally here: action will be set to | |
3bd7e5b7 | 1681 | PROBES_INTERFACE_FAILED. */ |
f9e14852 GB |
1682 | if (probe_argc == 2) |
1683 | action = FULL_RELOAD; | |
1684 | else if (probe_argc < 2) | |
1685 | action = PROBES_INTERFACE_FAILED; | |
1686 | ||
1687 | return action; | |
1688 | } | |
1689 | ||
1690 | /* Populate the shared object list by reading the entire list of | |
1691 | shared objects from the inferior. Handle special cases relating | |
1692 | to the first elements of the list. Returns nonzero on success. */ | |
1693 | ||
1694 | static int | |
1695 | solist_update_full (struct svr4_info *info) | |
1696 | { | |
1697 | free_solib_list (info); | |
1698 | info->solib_list = svr4_current_sos_direct (info); | |
1699 | ||
1700 | return 1; | |
1701 | } | |
1702 | ||
1703 | /* Update the shared object list starting from the link-map entry | |
1704 | passed by the linker in the probe's third argument. Returns | |
1705 | nonzero if the list was successfully updated, or zero to indicate | |
1706 | failure. */ | |
1707 | ||
1708 | static int | |
1709 | solist_update_incremental (struct svr4_info *info, CORE_ADDR lm) | |
1710 | { | |
1711 | struct so_list *tail; | |
1712 | CORE_ADDR prev_lm; | |
1713 | ||
1714 | /* svr4_current_sos_direct contains logic to handle a number of | |
1715 | special cases relating to the first elements of the list. To | |
1716 | avoid duplicating this logic we defer to solist_update_full | |
1717 | if the list is empty. */ | |
1718 | if (info->solib_list == NULL) | |
1719 | return 0; | |
1720 | ||
1721 | /* Fall back to a full update if we are using a remote target | |
1722 | that does not support incremental transfers. */ | |
1723 | if (info->using_xfer && !target_augmented_libraries_svr4_read ()) | |
1724 | return 0; | |
1725 | ||
1726 | /* Walk to the end of the list. */ | |
1727 | for (tail = info->solib_list; tail->next != NULL; tail = tail->next) | |
1728 | /* Nothing. */; | |
d0e449a1 SM |
1729 | |
1730 | lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info; | |
1731 | prev_lm = li->lm_addr; | |
f9e14852 GB |
1732 | |
1733 | /* Read the new objects. */ | |
1734 | if (info->using_xfer) | |
1735 | { | |
1736 | struct svr4_library_list library_list; | |
1737 | char annex[64]; | |
1738 | ||
1739 | xsnprintf (annex, sizeof (annex), "start=%s;prev=%s", | |
1740 | phex_nz (lm, sizeof (lm)), | |
1741 | phex_nz (prev_lm, sizeof (prev_lm))); | |
1742 | if (!svr4_current_sos_via_xfer_libraries (&library_list, annex)) | |
1743 | return 0; | |
1744 | ||
1745 | tail->next = library_list.head; | |
1746 | } | |
1747 | else | |
1748 | { | |
1749 | struct so_list **link = &tail->next; | |
1750 | ||
1751 | /* IGNORE_FIRST may safely be set to zero here because the | |
1752 | above check and deferral to solist_update_full ensures | |
1753 | that this call to svr4_read_so_list will never see the | |
1754 | first element. */ | |
d70cc3ba | 1755 | if (!svr4_read_so_list (info, lm, prev_lm, &link, 0)) |
f9e14852 GB |
1756 | return 0; |
1757 | } | |
1758 | ||
1759 | return 1; | |
1760 | } | |
1761 | ||
1762 | /* Disable the probes-based linker interface and revert to the | |
1763 | original interface. We don't reset the breakpoints as the | |
1764 | ones set up for the probes-based interface are adequate. */ | |
1765 | ||
1766 | static void | |
d70cc3ba | 1767 | disable_probes_interface (svr4_info *info) |
f9e14852 | 1768 | { |
f9e14852 | 1769 | warning (_("Probes-based dynamic linker interface failed.\n" |
422186a9 | 1770 | "Reverting to original interface.")); |
f9e14852 GB |
1771 | |
1772 | free_probes_table (info); | |
1773 | free_solib_list (info); | |
1774 | } | |
1775 | ||
1776 | /* Update the solib list as appropriate when using the | |
1777 | probes-based linker interface. Do nothing if using the | |
1778 | standard interface. */ | |
1779 | ||
1780 | static void | |
1781 | svr4_handle_solib_event (void) | |
1782 | { | |
d70cc3ba | 1783 | struct svr4_info *info = get_svr4_info (current_program_space); |
f9e14852 GB |
1784 | struct probe_and_action *pa; |
1785 | enum probe_action action; | |
ad1c917a | 1786 | struct value *val = NULL; |
f9e14852 | 1787 | CORE_ADDR pc, debug_base, lm = 0; |
08a6411c | 1788 | struct frame_info *frame = get_current_frame (); |
f9e14852 GB |
1789 | |
1790 | /* Do nothing if not using the probes interface. */ | |
1791 | if (info->probes_table == NULL) | |
1792 | return; | |
1793 | ||
1794 | /* If anything goes wrong we revert to the original linker | |
1795 | interface. */ | |
d70cc3ba SM |
1796 | auto cleanup = make_scope_exit ([info] () |
1797 | { | |
1798 | disable_probes_interface (info); | |
1799 | }); | |
f9e14852 GB |
1800 | |
1801 | pc = regcache_read_pc (get_current_regcache ()); | |
1802 | pa = solib_event_probe_at (info, pc); | |
1803 | if (pa == NULL) | |
d01c5877 | 1804 | return; |
f9e14852 GB |
1805 | |
1806 | action = solib_event_probe_action (pa); | |
1807 | if (action == PROBES_INTERFACE_FAILED) | |
d01c5877 | 1808 | return; |
f9e14852 GB |
1809 | |
1810 | if (action == DO_NOTHING) | |
1811 | { | |
d01c5877 | 1812 | cleanup.release (); |
f9e14852 GB |
1813 | return; |
1814 | } | |
1815 | ||
935676c9 | 1816 | /* evaluate_argument looks up symbols in the dynamic linker |
f9e14852 GB |
1817 | using find_pc_section. find_pc_section is accelerated by a cache |
1818 | called the section map. The section map is invalidated every | |
1819 | time a shared library is loaded or unloaded, and if the inferior | |
1820 | is generating a lot of shared library events then the section map | |
1821 | will be updated every time svr4_handle_solib_event is called. | |
1822 | We called find_pc_section in svr4_create_solib_event_breakpoints, | |
1823 | so we can guarantee that the dynamic linker's sections are in the | |
1824 | section map. We can therefore inhibit section map updates across | |
935676c9 | 1825 | these calls to evaluate_argument and save a lot of time. */ |
06424eac TT |
1826 | { |
1827 | scoped_restore inhibit_updates | |
1828 | = inhibit_section_map_updates (current_program_space); | |
f9e14852 | 1829 | |
a70b8144 | 1830 | try |
06424eac TT |
1831 | { |
1832 | val = pa->prob->evaluate_argument (1, frame); | |
1833 | } | |
230d2906 | 1834 | catch (const gdb_exception_error &ex) |
06424eac TT |
1835 | { |
1836 | exception_print (gdb_stderr, ex); | |
1837 | val = NULL; | |
1838 | } | |
f9e14852 | 1839 | |
06424eac | 1840 | if (val == NULL) |
d01c5877 | 1841 | return; |
f9e14852 | 1842 | |
06424eac TT |
1843 | debug_base = value_as_address (val); |
1844 | if (debug_base == 0) | |
d01c5877 | 1845 | return; |
f9e14852 | 1846 | |
06424eac TT |
1847 | /* Always locate the debug struct, in case it moved. */ |
1848 | info->debug_base = 0; | |
1849 | if (locate_base (info) == 0) | |
cb736441 GB |
1850 | { |
1851 | /* It's possible for the reloc_complete probe to be triggered before | |
1852 | the linker has set the DT_DEBUG pointer (for example, when the | |
1853 | linker has finished relocating an LD_AUDIT library or its | |
1854 | dependencies). Since we can't yet handle libraries from other link | |
1855 | namespaces, we don't lose anything by ignoring them here. */ | |
1856 | struct value *link_map_id_val; | |
1857 | try | |
1858 | { | |
1859 | link_map_id_val = pa->prob->evaluate_argument (0, frame); | |
1860 | } | |
1861 | catch (const gdb_exception_error) | |
1862 | { | |
1863 | link_map_id_val = NULL; | |
1864 | } | |
1865 | /* glibc and illumos' libc both define LM_ID_BASE as zero. */ | |
1866 | if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0) | |
1867 | action = DO_NOTHING; | |
1868 | else | |
1869 | return; | |
1870 | } | |
3bd7e5b7 | 1871 | |
06424eac TT |
1872 | /* GDB does not currently support libraries loaded via dlmopen |
1873 | into namespaces other than the initial one. We must ignore | |
1874 | any namespace other than the initial namespace here until | |
1875 | support for this is added to GDB. */ | |
1876 | if (debug_base != info->debug_base) | |
1877 | action = DO_NOTHING; | |
f9e14852 | 1878 | |
06424eac TT |
1879 | if (action == UPDATE_OR_RELOAD) |
1880 | { | |
a70b8144 | 1881 | try |
06424eac TT |
1882 | { |
1883 | val = pa->prob->evaluate_argument (2, frame); | |
1884 | } | |
230d2906 | 1885 | catch (const gdb_exception_error &ex) |
06424eac TT |
1886 | { |
1887 | exception_print (gdb_stderr, ex); | |
06424eac TT |
1888 | return; |
1889 | } | |
06424eac TT |
1890 | |
1891 | if (val != NULL) | |
1892 | lm = value_as_address (val); | |
1893 | ||
1894 | if (lm == 0) | |
1895 | action = FULL_RELOAD; | |
1896 | } | |
f9e14852 | 1897 | |
06424eac TT |
1898 | /* Resume section map updates. Closing the scope is |
1899 | sufficient. */ | |
1900 | } | |
f9e14852 GB |
1901 | |
1902 | if (action == UPDATE_OR_RELOAD) | |
1903 | { | |
1904 | if (!solist_update_incremental (info, lm)) | |
1905 | action = FULL_RELOAD; | |
1906 | } | |
1907 | ||
1908 | if (action == FULL_RELOAD) | |
1909 | { | |
1910 | if (!solist_update_full (info)) | |
d01c5877 | 1911 | return; |
f9e14852 GB |
1912 | } |
1913 | ||
d01c5877 | 1914 | cleanup.release (); |
f9e14852 GB |
1915 | } |
1916 | ||
1917 | /* Helper function for svr4_update_solib_event_breakpoints. */ | |
1918 | ||
95da600f CB |
1919 | static bool |
1920 | svr4_update_solib_event_breakpoint (struct breakpoint *b) | |
f9e14852 | 1921 | { |
f9e14852 GB |
1922 | if (b->type != bp_shlib_event) |
1923 | { | |
1924 | /* Continue iterating. */ | |
95da600f | 1925 | return false; |
f9e14852 GB |
1926 | } |
1927 | ||
40cb8ca5 | 1928 | for (bp_location *loc : b->locations ()) |
f9e14852 GB |
1929 | { |
1930 | struct svr4_info *info; | |
1931 | struct probe_and_action *pa; | |
1932 | ||
09232438 | 1933 | info = solib_svr4_pspace_data.get (loc->pspace); |
f9e14852 GB |
1934 | if (info == NULL || info->probes_table == NULL) |
1935 | continue; | |
1936 | ||
1937 | pa = solib_event_probe_at (info, loc->address); | |
1938 | if (pa == NULL) | |
1939 | continue; | |
1940 | ||
1941 | if (pa->action == DO_NOTHING) | |
1942 | { | |
1943 | if (b->enable_state == bp_disabled && stop_on_solib_events) | |
1944 | enable_breakpoint (b); | |
1945 | else if (b->enable_state == bp_enabled && !stop_on_solib_events) | |
1946 | disable_breakpoint (b); | |
1947 | } | |
1948 | ||
1949 | break; | |
1950 | } | |
1951 | ||
1952 | /* Continue iterating. */ | |
95da600f | 1953 | return false; |
f9e14852 GB |
1954 | } |
1955 | ||
1956 | /* Enable or disable optional solib event breakpoints as appropriate. | |
1957 | Called whenever stop_on_solib_events is changed. */ | |
1958 | ||
1959 | static void | |
1960 | svr4_update_solib_event_breakpoints (void) | |
1961 | { | |
240edef6 SM |
1962 | for (breakpoint *bp : all_breakpoints_safe ()) |
1963 | svr4_update_solib_event_breakpoint (bp); | |
f9e14852 GB |
1964 | } |
1965 | ||
1966 | /* Create and register solib event breakpoints. PROBES is an array | |
1967 | of NUM_PROBES elements, each of which is vector of probes. A | |
1968 | solib event breakpoint will be created and registered for each | |
1969 | probe. */ | |
1970 | ||
1971 | static void | |
d70cc3ba | 1972 | svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch, |
45461e0d | 1973 | const std::vector<probe *> *probes, |
729662a5 | 1974 | struct objfile *objfile) |
f9e14852 | 1975 | { |
45461e0d | 1976 | for (int i = 0; i < NUM_PROBES; i++) |
f9e14852 GB |
1977 | { |
1978 | enum probe_action action = probe_info[i].action; | |
f9e14852 | 1979 | |
45461e0d | 1980 | for (probe *p : probes[i]) |
f9e14852 | 1981 | { |
935676c9 | 1982 | CORE_ADDR address = p->get_relocated_address (objfile); |
729662a5 TT |
1983 | |
1984 | create_solib_event_breakpoint (gdbarch, address); | |
d70cc3ba | 1985 | register_solib_event_probe (info, objfile, p, address, action); |
f9e14852 GB |
1986 | } |
1987 | } | |
1988 | ||
1989 | svr4_update_solib_event_breakpoints (); | |
1990 | } | |
1991 | ||
e661ef01 AH |
1992 | /* Find all the glibc named probes. Only if all of the probes are found, then |
1993 | create them and return true. Otherwise return false. If WITH_PREFIX is set | |
1994 | then add "rtld" to the front of the probe names. */ | |
1995 | static bool | |
1996 | svr4_find_and_create_probe_breakpoints (svr4_info *info, | |
1997 | struct gdbarch *gdbarch, | |
1998 | struct obj_section *os, | |
1999 | bool with_prefix) | |
2000 | { | |
2001 | std::vector<probe *> probes[NUM_PROBES]; | |
e661ef01 AH |
2002 | |
2003 | for (int i = 0; i < NUM_PROBES; i++) | |
2004 | { | |
2005 | const char *name = probe_info[i].name; | |
2006 | char buf[32]; | |
2007 | ||
2008 | /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early | |
2009 | version of the probes code in which the probes' names were prefixed | |
2010 | with "rtld_" and the "map_failed" probe did not exist. The locations | |
2011 | of the probes are otherwise the same, so we check for probes with | |
2012 | prefixed names if probes with unprefixed names are not present. */ | |
2013 | if (with_prefix) | |
2014 | { | |
2015 | xsnprintf (buf, sizeof (buf), "rtld_%s", name); | |
2016 | name = buf; | |
2017 | } | |
2018 | ||
2019 | probes[i] = find_probes_in_objfile (os->objfile, "rtld", name); | |
2020 | ||
2021 | /* The "map_failed" probe did not exist in early | |
2022 | versions of the probes code in which the probes' | |
2023 | names were prefixed with "rtld_". */ | |
2024 | if (with_prefix && streq (name, "rtld_map_failed")) | |
2025 | continue; | |
2026 | ||
2027 | /* Ensure at least one probe for the current name was found. */ | |
2028 | if (probes[i].empty ()) | |
2029 | return false; | |
2030 | ||
2031 | /* Ensure probe arguments can be evaluated. */ | |
d90b8f26 | 2032 | for (probe *p : probes[i]) |
e661ef01 | 2033 | { |
e661ef01 AH |
2034 | if (!p->can_evaluate_arguments ()) |
2035 | return false; | |
d90b8f26 AH |
2036 | /* This will fail if the probe is invalid. This has been seen on Arm |
2037 | due to references to symbols that have been resolved away. */ | |
2038 | try | |
2039 | { | |
2040 | p->get_argument_count (gdbarch); | |
2041 | } | |
2042 | catch (const gdb_exception_error &ex) | |
2043 | { | |
2044 | exception_print (gdb_stderr, ex); | |
2045 | warning (_("Initializing probes-based dynamic linker interface " | |
2046 | "failed.\nReverting to original interface.")); | |
2047 | return false; | |
2048 | } | |
e661ef01 AH |
2049 | } |
2050 | } | |
2051 | ||
2052 | /* All probes found. Now create them. */ | |
2053 | svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile); | |
2054 | return true; | |
2055 | } | |
2056 | ||
f9e14852 GB |
2057 | /* Both the SunOS and the SVR4 dynamic linkers call a marker function |
2058 | before and after mapping and unmapping shared libraries. The sole | |
2059 | purpose of this method is to allow debuggers to set a breakpoint so | |
2060 | they can track these changes. | |
2061 | ||
2062 | Some versions of the glibc dynamic linker contain named probes | |
2063 | to allow more fine grained stopping. Given the address of the | |
2064 | original marker function, this function attempts to find these | |
2065 | probes, and if found, sets breakpoints on those instead. If the | |
2066 | probes aren't found, a single breakpoint is set on the original | |
2067 | marker function. */ | |
2068 | ||
2069 | static void | |
d70cc3ba | 2070 | svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch, |
f9e14852 GB |
2071 | CORE_ADDR address) |
2072 | { | |
e661ef01 | 2073 | struct obj_section *os = find_pc_section (address); |
f9e14852 | 2074 | |
e661ef01 AH |
2075 | if (os == nullptr |
2076 | || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false) | |
2077 | && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true))) | |
2078 | create_solib_event_breakpoint (gdbarch, address); | |
f9e14852 GB |
2079 | } |
2080 | ||
cb457ae2 YQ |
2081 | /* Helper function for gdb_bfd_lookup_symbol. */ |
2082 | ||
2083 | static int | |
3953f15c | 2084 | cmp_name_and_sec_flags (const asymbol *sym, const void *data) |
cb457ae2 YQ |
2085 | { |
2086 | return (strcmp (sym->name, (const char *) data) == 0 | |
2087 | && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0); | |
2088 | } | |
7f86f058 | 2089 | /* Arrange for dynamic linker to hit breakpoint. |
13437d4b KB |
2090 | |
2091 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
2092 | debugger interface, support for arranging for the inferior to hit | |
2093 | a breakpoint after mapping in the shared libraries. This function | |
2094 | enables that breakpoint. | |
2095 | ||
2096 | For SunOS, there is a special flag location (in_debugger) which we | |
2097 | set to 1. When the dynamic linker sees this flag set, it will set | |
2098 | a breakpoint at a location known only to itself, after saving the | |
2099 | original contents of that place and the breakpoint address itself, | |
2100 | in it's own internal structures. When we resume the inferior, it | |
2101 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
2102 | We handle this (in a different place) by restoring the contents of | |
2103 | the breakpointed location (which is only known after it stops), | |
2104 | chasing around to locate the shared libraries that have been | |
2105 | loaded, then resuming. | |
2106 | ||
2107 | For SVR4, the debugger interface structure contains a member (r_brk) | |
2108 | which is statically initialized at the time the shared library is | |
2109 | built, to the offset of a function (_r_debug_state) which is guaran- | |
2110 | teed to be called once before mapping in a library, and again when | |
2111 | the mapping is complete. At the time we are examining this member, | |
2112 | it contains only the unrelocated offset of the function, so we have | |
2113 | to do our own relocation. Later, when the dynamic linker actually | |
2114 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
2115 | ||
2116 | The debugger interface structure also contains an enumeration which | |
2117 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
2118 | depending upon whether or not the library is being mapped or unmapped, | |
7f86f058 | 2119 | and then set to RT_CONSISTENT after the library is mapped/unmapped. */ |
13437d4b KB |
2120 | |
2121 | static int | |
268a4a75 | 2122 | enable_break (struct svr4_info *info, int from_tty) |
13437d4b | 2123 | { |
3b7344d5 | 2124 | struct bound_minimal_symbol msymbol; |
bc043ef3 | 2125 | const char * const *bkpt_namep; |
13437d4b | 2126 | asection *interp_sect; |
7cd25cfc | 2127 | CORE_ADDR sym_addr; |
13437d4b | 2128 | |
6c95b8df PA |
2129 | info->interp_text_sect_low = info->interp_text_sect_high = 0; |
2130 | info->interp_plt_sect_low = info->interp_plt_sect_high = 0; | |
13437d4b | 2131 | |
7cd25cfc DJ |
2132 | /* If we already have a shared library list in the target, and |
2133 | r_debug contains r_brk, set the breakpoint there - this should | |
2134 | mean r_brk has already been relocated. Assume the dynamic linker | |
2135 | is the object containing r_brk. */ | |
2136 | ||
e696b3ad | 2137 | solib_add (NULL, from_tty, auto_solib_add); |
7cd25cfc | 2138 | sym_addr = 0; |
1a816a87 PA |
2139 | if (info->debug_base && solib_svr4_r_map (info) != 0) |
2140 | sym_addr = solib_svr4_r_brk (info); | |
7cd25cfc DJ |
2141 | |
2142 | if (sym_addr != 0) | |
2143 | { | |
2144 | struct obj_section *os; | |
2145 | ||
b36ec657 | 2146 | sym_addr = gdbarch_addr_bits_remove |
8b88a78e | 2147 | (target_gdbarch (), |
328d42d8 SM |
2148 | gdbarch_convert_from_func_ptr_addr |
2149 | (target_gdbarch (), sym_addr, current_inferior ()->top_target ())); | |
b36ec657 | 2150 | |
48379de6 DE |
2151 | /* On at least some versions of Solaris there's a dynamic relocation |
2152 | on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if | |
2153 | we get control before the dynamic linker has self-relocated. | |
2154 | Check if SYM_ADDR is in a known section, if it is assume we can | |
2155 | trust its value. This is just a heuristic though, it could go away | |
2156 | or be replaced if it's getting in the way. | |
2157 | ||
2158 | On ARM we need to know whether the ISA of rtld_db_dlactivity (or | |
2159 | however it's spelled in your particular system) is ARM or Thumb. | |
2160 | That knowledge is encoded in the address, if it's Thumb the low bit | |
2161 | is 1. However, we've stripped that info above and it's not clear | |
2162 | what all the consequences are of passing a non-addr_bits_remove'd | |
f9e14852 | 2163 | address to svr4_create_solib_event_breakpoints. The call to |
48379de6 DE |
2164 | find_pc_section verifies we know about the address and have some |
2165 | hope of computing the right kind of breakpoint to use (via | |
2166 | symbol info). It does mean that GDB needs to be pointed at a | |
2167 | non-stripped version of the dynamic linker in order to obtain | |
2168 | information it already knows about. Sigh. */ | |
2169 | ||
7cd25cfc DJ |
2170 | os = find_pc_section (sym_addr); |
2171 | if (os != NULL) | |
2172 | { | |
2173 | /* Record the relocated start and end address of the dynamic linker | |
2174 | text and plt section for svr4_in_dynsym_resolve_code. */ | |
2175 | bfd *tmp_bfd; | |
2176 | CORE_ADDR load_addr; | |
2177 | ||
2178 | tmp_bfd = os->objfile->obfd; | |
b3b3bada | 2179 | load_addr = os->objfile->text_section_offset (); |
7cd25cfc DJ |
2180 | |
2181 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
2182 | if (interp_sect) | |
2183 | { | |
fd361982 AM |
2184 | info->interp_text_sect_low |
2185 | = bfd_section_vma (interp_sect) + load_addr; | |
2186 | info->interp_text_sect_high | |
2187 | = info->interp_text_sect_low + bfd_section_size (interp_sect); | |
7cd25cfc DJ |
2188 | } |
2189 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
2190 | if (interp_sect) | |
2191 | { | |
fd361982 AM |
2192 | info->interp_plt_sect_low |
2193 | = bfd_section_vma (interp_sect) + load_addr; | |
2194 | info->interp_plt_sect_high | |
2195 | = info->interp_plt_sect_low + bfd_section_size (interp_sect); | |
7cd25cfc DJ |
2196 | } |
2197 | ||
d70cc3ba | 2198 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr); |
7cd25cfc DJ |
2199 | return 1; |
2200 | } | |
2201 | } | |
2202 | ||
97ec2c2f | 2203 | /* Find the program interpreter; if not found, warn the user and drop |
13437d4b | 2204 | into the old breakpoint at symbol code. */ |
17658d46 SM |
2205 | gdb::optional<gdb::byte_vector> interp_name_holder |
2206 | = find_program_interpreter (); | |
2207 | if (interp_name_holder) | |
13437d4b | 2208 | { |
17658d46 | 2209 | const char *interp_name = (const char *) interp_name_holder->data (); |
8ad2fcde KB |
2210 | CORE_ADDR load_addr = 0; |
2211 | int load_addr_found = 0; | |
2ec9a4f8 | 2212 | int loader_found_in_list = 0; |
2f4950cd | 2213 | struct target_ops *tmp_bfd_target; |
13437d4b | 2214 | |
7cd25cfc | 2215 | sym_addr = 0; |
13437d4b KB |
2216 | |
2217 | /* Now we need to figure out where the dynamic linker was | |
dda83cd7 SM |
2218 | loaded so that we can load its symbols and place a breakpoint |
2219 | in the dynamic linker itself. | |
13437d4b | 2220 | |
dda83cd7 SM |
2221 | This address is stored on the stack. However, I've been unable |
2222 | to find any magic formula to find it for Solaris (appears to | |
2223 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
2224 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 | 2225 | |
192b62ce | 2226 | gdb_bfd_ref_ptr tmp_bfd; |
a70b8144 | 2227 | try |
dda83cd7 | 2228 | { |
97ec2c2f | 2229 | tmp_bfd = solib_bfd_open (interp_name); |
f1838a98 | 2230 | } |
230d2906 | 2231 | catch (const gdb_exception &ex) |
492d29ea PA |
2232 | { |
2233 | } | |
492d29ea | 2234 | |
13437d4b KB |
2235 | if (tmp_bfd == NULL) |
2236 | goto bkpt_at_symbol; | |
2237 | ||
2f4950cd | 2238 | /* Now convert the TMP_BFD into a target. That way target, as |
15908a11 TT |
2239 | well as BFD operations can be used. */ |
2240 | tmp_bfd_target = target_bfd_reopen (tmp_bfd); | |
2f4950cd | 2241 | |
f8766ec1 | 2242 | /* On a running target, we can get the dynamic linker's base |
dda83cd7 | 2243 | address from the shared library table. */ |
a1fd1ac9 | 2244 | for (struct so_list *so : current_program_space->solibs ()) |
8ad2fcde | 2245 | { |
97ec2c2f | 2246 | if (svr4_same_1 (interp_name, so->so_original_name)) |
8ad2fcde KB |
2247 | { |
2248 | load_addr_found = 1; | |
2ec9a4f8 | 2249 | loader_found_in_list = 1; |
192b62ce | 2250 | load_addr = lm_addr_check (so, tmp_bfd.get ()); |
8ad2fcde KB |
2251 | break; |
2252 | } | |
8ad2fcde KB |
2253 | } |
2254 | ||
8d4e36ba | 2255 | /* If we were not able to find the base address of the loader |
dda83cd7 | 2256 | from our so_list, then try using the AT_BASE auxilliary entry. */ |
8d4e36ba | 2257 | if (!load_addr_found) |
328d42d8 SM |
2258 | if (target_auxv_search (current_inferior ()->top_target (), |
2259 | AT_BASE, &load_addr) > 0) | |
ad3a0e5b | 2260 | { |
f5656ead | 2261 | int addr_bit = gdbarch_addr_bit (target_gdbarch ()); |
ad3a0e5b JK |
2262 | |
2263 | /* Ensure LOAD_ADDR has proper sign in its possible upper bits so | |
2264 | that `+ load_addr' will overflow CORE_ADDR width not creating | |
2265 | invalid addresses like 0x101234567 for 32bit inferiors on 64bit | |
2266 | GDB. */ | |
2267 | ||
d182d057 | 2268 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
ad3a0e5b | 2269 | { |
d182d057 | 2270 | CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; |
192b62ce | 2271 | CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (), |
ad3a0e5b JK |
2272 | tmp_bfd_target); |
2273 | ||
2274 | gdb_assert (load_addr < space_size); | |
2275 | ||
2276 | /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked | |
2277 | 64bit ld.so with 32bit executable, it should not happen. */ | |
2278 | ||
2279 | if (tmp_entry_point < space_size | |
2280 | && tmp_entry_point + load_addr >= space_size) | |
2281 | load_addr -= space_size; | |
2282 | } | |
2283 | ||
2284 | load_addr_found = 1; | |
2285 | } | |
8d4e36ba | 2286 | |
8ad2fcde KB |
2287 | /* Otherwise we find the dynamic linker's base address by examining |
2288 | the current pc (which should point at the entry point for the | |
8d4e36ba JB |
2289 | dynamic linker) and subtracting the offset of the entry point. |
2290 | ||
dda83cd7 SM |
2291 | This is more fragile than the previous approaches, but is a good |
2292 | fallback method because it has actually been working well in | |
2293 | most cases. */ | |
8ad2fcde | 2294 | if (!load_addr_found) |
fb14de7b | 2295 | { |
c2250ad1 | 2296 | struct regcache *regcache |
5b6d1e4f PA |
2297 | = get_thread_arch_regcache (current_inferior ()->process_target (), |
2298 | inferior_ptid, target_gdbarch ()); | |
433759f7 | 2299 | |
fb14de7b | 2300 | load_addr = (regcache_read_pc (regcache) |
192b62ce | 2301 | - exec_entry_point (tmp_bfd.get (), tmp_bfd_target)); |
fb14de7b | 2302 | } |
2ec9a4f8 DJ |
2303 | |
2304 | if (!loader_found_in_list) | |
34439770 | 2305 | { |
1a816a87 PA |
2306 | info->debug_loader_name = xstrdup (interp_name); |
2307 | info->debug_loader_offset_p = 1; | |
2308 | info->debug_loader_offset = load_addr; | |
e696b3ad | 2309 | solib_add (NULL, from_tty, auto_solib_add); |
34439770 | 2310 | } |
13437d4b KB |
2311 | |
2312 | /* Record the relocated start and end address of the dynamic linker | |
dda83cd7 | 2313 | text and plt section for svr4_in_dynsym_resolve_code. */ |
192b62ce | 2314 | interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); |
13437d4b KB |
2315 | if (interp_sect) |
2316 | { | |
fd361982 AM |
2317 | info->interp_text_sect_low |
2318 | = bfd_section_vma (interp_sect) + load_addr; | |
2319 | info->interp_text_sect_high | |
2320 | = info->interp_text_sect_low + bfd_section_size (interp_sect); | |
13437d4b | 2321 | } |
192b62ce | 2322 | interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); |
13437d4b KB |
2323 | if (interp_sect) |
2324 | { | |
fd361982 AM |
2325 | info->interp_plt_sect_low |
2326 | = bfd_section_vma (interp_sect) + load_addr; | |
2327 | info->interp_plt_sect_high | |
2328 | = info->interp_plt_sect_low + bfd_section_size (interp_sect); | |
13437d4b KB |
2329 | } |
2330 | ||
2331 | /* Now try to set a breakpoint in the dynamic linker. */ | |
2332 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
2333 | { | |
192b62ce TT |
2334 | sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), |
2335 | cmp_name_and_sec_flags, | |
3953f15c | 2336 | *bkpt_namep); |
13437d4b KB |
2337 | if (sym_addr != 0) |
2338 | break; | |
2339 | } | |
2340 | ||
2bbe3cc1 DJ |
2341 | if (sym_addr != 0) |
2342 | /* Convert 'sym_addr' from a function pointer to an address. | |
2343 | Because we pass tmp_bfd_target instead of the current | |
2344 | target, this will always produce an unrelocated value. */ | |
f5656ead | 2345 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
2bbe3cc1 DJ |
2346 | sym_addr, |
2347 | tmp_bfd_target); | |
2348 | ||
695c3173 | 2349 | /* We're done with both the temporary bfd and target. Closing |
dda83cd7 SM |
2350 | the target closes the underlying bfd, because it holds the |
2351 | only remaining reference. */ | |
460014f5 | 2352 | target_close (tmp_bfd_target); |
13437d4b KB |
2353 | |
2354 | if (sym_addr != 0) | |
2355 | { | |
d70cc3ba | 2356 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), |
f9e14852 | 2357 | load_addr + sym_addr); |
13437d4b KB |
2358 | return 1; |
2359 | } | |
2360 | ||
2361 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
dda83cd7 | 2362 | linker. Warn and drop into the old code. */ |
13437d4b | 2363 | bkpt_at_symbol: |
82d03102 | 2364 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
dda83cd7 SM |
2365 | "GDB will be unable to debug shared library initializers\n" |
2366 | "and track explicitly loaded dynamic code.")); | |
13437d4b | 2367 | } |
13437d4b | 2368 | |
e499d0f1 DJ |
2369 | /* Scan through the lists of symbols, trying to look up the symbol and |
2370 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
2371 | ||
a42d7dd8 | 2372 | objfile *objf = current_program_space->symfile_object_file; |
e499d0f1 DJ |
2373 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) |
2374 | { | |
a42d7dd8 | 2375 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf); |
3b7344d5 | 2376 | if ((msymbol.minsym != NULL) |
77e371c0 | 2377 | && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) |
e499d0f1 | 2378 | { |
77e371c0 | 2379 | sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
328d42d8 SM |
2380 | sym_addr = gdbarch_convert_from_func_ptr_addr |
2381 | (target_gdbarch (), sym_addr, current_inferior ()->top_target ()); | |
d70cc3ba SM |
2382 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), |
2383 | sym_addr); | |
e499d0f1 DJ |
2384 | return 1; |
2385 | } | |
2386 | } | |
13437d4b | 2387 | |
17658d46 | 2388 | if (interp_name_holder && !current_inferior ()->attach_flag) |
13437d4b | 2389 | { |
c6490bf2 | 2390 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) |
13437d4b | 2391 | { |
a42d7dd8 | 2392 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf); |
3b7344d5 | 2393 | if ((msymbol.minsym != NULL) |
77e371c0 | 2394 | && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) |
c6490bf2 | 2395 | { |
77e371c0 | 2396 | sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
328d42d8 SM |
2397 | sym_addr = gdbarch_convert_from_func_ptr_addr |
2398 | (target_gdbarch (), sym_addr, | |
2399 | current_inferior ()->top_target ()); | |
d70cc3ba SM |
2400 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), |
2401 | sym_addr); | |
c6490bf2 KB |
2402 | return 1; |
2403 | } | |
13437d4b KB |
2404 | } |
2405 | } | |
542c95c2 | 2406 | return 0; |
13437d4b KB |
2407 | } |
2408 | ||
d1012b8e | 2409 | /* Read the ELF program headers from ABFD. */ |
e2a44558 | 2410 | |
d1012b8e SM |
2411 | static gdb::optional<gdb::byte_vector> |
2412 | read_program_headers_from_bfd (bfd *abfd) | |
e2a44558 | 2413 | { |
d1012b8e SM |
2414 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); |
2415 | int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; | |
2416 | if (phdrs_size == 0) | |
2417 | return {}; | |
09919ac2 | 2418 | |
d1012b8e | 2419 | gdb::byte_vector buf (phdrs_size); |
09919ac2 | 2420 | if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 |
d1012b8e SM |
2421 | || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size) |
2422 | return {}; | |
09919ac2 JK |
2423 | |
2424 | return buf; | |
b8040f19 JK |
2425 | } |
2426 | ||
01c30d6e JK |
2427 | /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior |
2428 | exec_bfd. Otherwise return 0. | |
2429 | ||
2430 | We relocate all of the sections by the same amount. This | |
c378eb4e | 2431 | behavior is mandated by recent editions of the System V ABI. |
b8040f19 JK |
2432 | According to the System V Application Binary Interface, |
2433 | Edition 4.1, page 5-5: | |
2434 | ||
2435 | ... Though the system chooses virtual addresses for | |
2436 | individual processes, it maintains the segments' relative | |
2437 | positions. Because position-independent code uses relative | |
85102364 | 2438 | addressing between segments, the difference between |
b8040f19 JK |
2439 | virtual addresses in memory must match the difference |
2440 | between virtual addresses in the file. The difference | |
2441 | between the virtual address of any segment in memory and | |
2442 | the corresponding virtual address in the file is thus a | |
2443 | single constant value for any one executable or shared | |
2444 | object in a given process. This difference is the base | |
2445 | address. One use of the base address is to relocate the | |
2446 | memory image of the program during dynamic linking. | |
2447 | ||
2448 | The same language also appears in Edition 4.0 of the System V | |
09919ac2 JK |
2449 | ABI and is left unspecified in some of the earlier editions. |
2450 | ||
2451 | Decide if the objfile needs to be relocated. As indicated above, we will | |
2452 | only be here when execution is stopped. But during attachment PC can be at | |
2453 | arbitrary address therefore regcache_read_pc can be misleading (contrary to | |
2454 | the auxv AT_ENTRY value). Moreover for executable with interpreter section | |
2455 | regcache_read_pc would point to the interpreter and not the main executable. | |
2456 | ||
2457 | So, to summarize, relocations are necessary when the start address obtained | |
2458 | from the executable is different from the address in auxv AT_ENTRY entry. | |
d989b283 | 2459 | |
09919ac2 JK |
2460 | [ The astute reader will note that we also test to make sure that |
2461 | the executable in question has the DYNAMIC flag set. It is my | |
2462 | opinion that this test is unnecessary (undesirable even). It | |
2463 | was added to avoid inadvertent relocation of an executable | |
2464 | whose e_type member in the ELF header is not ET_DYN. There may | |
2465 | be a time in the future when it is desirable to do relocations | |
2466 | on other types of files as well in which case this condition | |
2467 | should either be removed or modified to accomodate the new file | |
2468 | type. - Kevin, Nov 2000. ] */ | |
b8040f19 | 2469 | |
01c30d6e JK |
2470 | static int |
2471 | svr4_exec_displacement (CORE_ADDR *displacementp) | |
b8040f19 | 2472 | { |
41752192 JK |
2473 | /* ENTRY_POINT is a possible function descriptor - before |
2474 | a call to gdbarch_convert_from_func_ptr_addr. */ | |
8f61baf8 | 2475 | CORE_ADDR entry_point, exec_displacement; |
b8040f19 | 2476 | |
7e10abd1 | 2477 | if (current_program_space->exec_bfd () == NULL) |
b8040f19 JK |
2478 | return 0; |
2479 | ||
09919ac2 JK |
2480 | /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries |
2481 | being executed themselves and PIE (Position Independent Executable) | |
2482 | executables are ET_DYN. */ | |
2483 | ||
7e10abd1 | 2484 | if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0) |
09919ac2 JK |
2485 | return 0; |
2486 | ||
328d42d8 SM |
2487 | if (target_auxv_search (current_inferior ()->top_target (), |
2488 | AT_ENTRY, &entry_point) <= 0) | |
09919ac2 JK |
2489 | return 0; |
2490 | ||
7e10abd1 TT |
2491 | exec_displacement |
2492 | = entry_point - bfd_get_start_address (current_program_space->exec_bfd ()); | |
09919ac2 | 2493 | |
8f61baf8 | 2494 | /* Verify the EXEC_DISPLACEMENT candidate complies with the required page |
09919ac2 JK |
2495 | alignment. It is cheaper than the program headers comparison below. */ |
2496 | ||
7e10abd1 TT |
2497 | if (bfd_get_flavour (current_program_space->exec_bfd ()) |
2498 | == bfd_target_elf_flavour) | |
09919ac2 | 2499 | { |
7e10abd1 TT |
2500 | const struct elf_backend_data *elf |
2501 | = get_elf_backend_data (current_program_space->exec_bfd ()); | |
09919ac2 JK |
2502 | |
2503 | /* p_align of PT_LOAD segments does not specify any alignment but | |
2504 | only congruency of addresses: | |
2505 | p_offset % p_align == p_vaddr % p_align | |
2506 | Kernel is free to load the executable with lower alignment. */ | |
2507 | ||
8f61baf8 | 2508 | if ((exec_displacement & (elf->minpagesize - 1)) != 0) |
09919ac2 JK |
2509 | return 0; |
2510 | } | |
2511 | ||
2512 | /* Verify that the auxilliary vector describes the same file as exec_bfd, by | |
2513 | comparing their program headers. If the program headers in the auxilliary | |
2514 | vector do not match the program headers in the executable, then we are | |
2515 | looking at a different file than the one used by the kernel - for | |
2516 | instance, "gdb program" connected to "gdbserver :PORT ld.so program". */ | |
2517 | ||
7e10abd1 TT |
2518 | if (bfd_get_flavour (current_program_space->exec_bfd ()) |
2519 | == bfd_target_elf_flavour) | |
09919ac2 | 2520 | { |
d1012b8e | 2521 | /* Be optimistic and return 0 only if GDB was able to verify the headers |
09919ac2 | 2522 | really do not match. */ |
0a1e94c7 | 2523 | int arch_size; |
09919ac2 | 2524 | |
17658d46 SM |
2525 | gdb::optional<gdb::byte_vector> phdrs_target |
2526 | = read_program_header (-1, &arch_size, NULL); | |
d1012b8e | 2527 | gdb::optional<gdb::byte_vector> phdrs_binary |
7e10abd1 | 2528 | = read_program_headers_from_bfd (current_program_space->exec_bfd ()); |
d1012b8e | 2529 | if (phdrs_target && phdrs_binary) |
0a1e94c7 | 2530 | { |
f5656ead | 2531 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
0a1e94c7 JK |
2532 | |
2533 | /* We are dealing with three different addresses. EXEC_BFD | |
2534 | represents current address in on-disk file. target memory content | |
2535 | may be different from EXEC_BFD as the file may have been prelinked | |
2536 | to a different address after the executable has been loaded. | |
2537 | Moreover the address of placement in target memory can be | |
3e43a32a MS |
2538 | different from what the program headers in target memory say - |
2539 | this is the goal of PIE. | |
0a1e94c7 JK |
2540 | |
2541 | Detected DISPLACEMENT covers both the offsets of PIE placement and | |
2542 | possible new prelink performed after start of the program. Here | |
2543 | relocate BUF and BUF2 just by the EXEC_BFD vs. target memory | |
2544 | content offset for the verification purpose. */ | |
2545 | ||
d1012b8e | 2546 | if (phdrs_target->size () != phdrs_binary->size () |
7e10abd1 | 2547 | || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size) |
d1012b8e | 2548 | return 0; |
3e43a32a | 2549 | else if (arch_size == 32 |
17658d46 | 2550 | && phdrs_target->size () >= sizeof (Elf32_External_Phdr) |
dda83cd7 | 2551 | && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0) |
0a1e94c7 | 2552 | { |
7e10abd1 TT |
2553 | Elf_Internal_Ehdr *ehdr2 |
2554 | = elf_tdata (current_program_space->exec_bfd ())->elf_header; | |
2555 | Elf_Internal_Phdr *phdr2 | |
2556 | = elf_tdata (current_program_space->exec_bfd ())->phdr; | |
0a1e94c7 JK |
2557 | CORE_ADDR displacement = 0; |
2558 | int i; | |
2559 | ||
2560 | /* DISPLACEMENT could be found more easily by the difference of | |
2561 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2562 | already have enough information to compute that displacement | |
2563 | with what we've read. */ | |
2564 | ||
2565 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2566 | if (phdr2[i].p_type == PT_LOAD) | |
2567 | { | |
2568 | Elf32_External_Phdr *phdrp; | |
2569 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2570 | CORE_ADDR vaddr, paddr; | |
2571 | CORE_ADDR displacement_vaddr = 0; | |
2572 | CORE_ADDR displacement_paddr = 0; | |
2573 | ||
17658d46 | 2574 | phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2575 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2576 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2577 | ||
2578 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, | |
2579 | byte_order); | |
2580 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2581 | ||
2582 | paddr = extract_unsigned_integer (buf_paddr_p, 4, | |
2583 | byte_order); | |
2584 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2585 | ||
2586 | if (displacement_vaddr == displacement_paddr) | |
2587 | displacement = displacement_vaddr; | |
2588 | ||
2589 | break; | |
2590 | } | |
2591 | ||
17658d46 | 2592 | /* Now compare program headers from the target and the binary |
dda83cd7 | 2593 | with optional DISPLACEMENT. */ |
0a1e94c7 | 2594 | |
17658d46 SM |
2595 | for (i = 0; |
2596 | i < phdrs_target->size () / sizeof (Elf32_External_Phdr); | |
2597 | i++) | |
0a1e94c7 JK |
2598 | { |
2599 | Elf32_External_Phdr *phdrp; | |
2600 | Elf32_External_Phdr *phdr2p; | |
2601 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2602 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2603 | asection *plt2_asect; |
0a1e94c7 | 2604 | |
17658d46 | 2605 | phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2606 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2607 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
d1012b8e | 2608 | phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i]; |
0a1e94c7 JK |
2609 | |
2610 | /* PT_GNU_STACK is an exception by being never relocated by | |
2611 | prelink as its addresses are always zero. */ | |
2612 | ||
2613 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2614 | continue; | |
2615 | ||
2616 | /* Check also other adjustment combinations - PR 11786. */ | |
2617 | ||
3e43a32a MS |
2618 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, |
2619 | byte_order); | |
0a1e94c7 JK |
2620 | vaddr -= displacement; |
2621 | store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); | |
2622 | ||
3e43a32a MS |
2623 | paddr = extract_unsigned_integer (buf_paddr_p, 4, |
2624 | byte_order); | |
0a1e94c7 JK |
2625 | paddr -= displacement; |
2626 | store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); | |
2627 | ||
2628 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2629 | continue; | |
2630 | ||
204b5331 DE |
2631 | /* Strip modifies the flags and alignment of PT_GNU_RELRO. |
2632 | CentOS-5 has problems with filesz, memsz as well. | |
be2d111a | 2633 | Strip also modifies memsz of PT_TLS. |
204b5331 | 2634 | See PR 11786. */ |
c44deb73 SM |
2635 | if (phdr2[i].p_type == PT_GNU_RELRO |
2636 | || phdr2[i].p_type == PT_TLS) | |
204b5331 DE |
2637 | { |
2638 | Elf32_External_Phdr tmp_phdr = *phdrp; | |
2639 | Elf32_External_Phdr tmp_phdr2 = *phdr2p; | |
2640 | ||
2641 | memset (tmp_phdr.p_filesz, 0, 4); | |
2642 | memset (tmp_phdr.p_memsz, 0, 4); | |
2643 | memset (tmp_phdr.p_flags, 0, 4); | |
2644 | memset (tmp_phdr.p_align, 0, 4); | |
2645 | memset (tmp_phdr2.p_filesz, 0, 4); | |
2646 | memset (tmp_phdr2.p_memsz, 0, 4); | |
2647 | memset (tmp_phdr2.p_flags, 0, 4); | |
2648 | memset (tmp_phdr2.p_align, 0, 4); | |
2649 | ||
2650 | if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | |
2651 | == 0) | |
2652 | continue; | |
2653 | } | |
2654 | ||
43b8e241 | 2655 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
7e10abd1 | 2656 | bfd *exec_bfd = current_program_space->exec_bfd (); |
43b8e241 JK |
2657 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); |
2658 | if (plt2_asect) | |
2659 | { | |
2660 | int content2; | |
2661 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2662 | CORE_ADDR filesz; | |
2663 | ||
fd361982 | 2664 | content2 = (bfd_section_flags (plt2_asect) |
43b8e241 JK |
2665 | & SEC_HAS_CONTENTS) != 0; |
2666 | ||
2667 | filesz = extract_unsigned_integer (buf_filesz_p, 4, | |
2668 | byte_order); | |
2669 | ||
2670 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
2671 | FILESZ is from the in-memory image. */ | |
2672 | if (content2) | |
fd361982 | 2673 | filesz += bfd_section_size (plt2_asect); |
43b8e241 | 2674 | else |
fd361982 | 2675 | filesz -= bfd_section_size (plt2_asect); |
43b8e241 JK |
2676 | |
2677 | store_unsigned_integer (buf_filesz_p, 4, byte_order, | |
2678 | filesz); | |
2679 | ||
2680 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2681 | continue; | |
2682 | } | |
2683 | ||
d1012b8e | 2684 | return 0; |
0a1e94c7 JK |
2685 | } |
2686 | } | |
3e43a32a | 2687 | else if (arch_size == 64 |
17658d46 | 2688 | && phdrs_target->size () >= sizeof (Elf64_External_Phdr) |
dda83cd7 | 2689 | && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0) |
0a1e94c7 | 2690 | { |
7e10abd1 TT |
2691 | Elf_Internal_Ehdr *ehdr2 |
2692 | = elf_tdata (current_program_space->exec_bfd ())->elf_header; | |
2693 | Elf_Internal_Phdr *phdr2 | |
2694 | = elf_tdata (current_program_space->exec_bfd ())->phdr; | |
0a1e94c7 JK |
2695 | CORE_ADDR displacement = 0; |
2696 | int i; | |
2697 | ||
2698 | /* DISPLACEMENT could be found more easily by the difference of | |
2699 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2700 | already have enough information to compute that displacement | |
2701 | with what we've read. */ | |
2702 | ||
2703 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2704 | if (phdr2[i].p_type == PT_LOAD) | |
2705 | { | |
2706 | Elf64_External_Phdr *phdrp; | |
2707 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2708 | CORE_ADDR vaddr, paddr; | |
2709 | CORE_ADDR displacement_vaddr = 0; | |
2710 | CORE_ADDR displacement_paddr = 0; | |
2711 | ||
17658d46 | 2712 | phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2713 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2714 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2715 | ||
2716 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, | |
2717 | byte_order); | |
2718 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2719 | ||
2720 | paddr = extract_unsigned_integer (buf_paddr_p, 8, | |
2721 | byte_order); | |
2722 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2723 | ||
2724 | if (displacement_vaddr == displacement_paddr) | |
2725 | displacement = displacement_vaddr; | |
2726 | ||
2727 | break; | |
2728 | } | |
2729 | ||
2730 | /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ | |
2731 | ||
17658d46 SM |
2732 | for (i = 0; |
2733 | i < phdrs_target->size () / sizeof (Elf64_External_Phdr); | |
2734 | i++) | |
0a1e94c7 JK |
2735 | { |
2736 | Elf64_External_Phdr *phdrp; | |
2737 | Elf64_External_Phdr *phdr2p; | |
2738 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2739 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2740 | asection *plt2_asect; |
0a1e94c7 | 2741 | |
17658d46 | 2742 | phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2743 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2744 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
d1012b8e | 2745 | phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i]; |
0a1e94c7 JK |
2746 | |
2747 | /* PT_GNU_STACK is an exception by being never relocated by | |
2748 | prelink as its addresses are always zero. */ | |
2749 | ||
2750 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2751 | continue; | |
2752 | ||
2753 | /* Check also other adjustment combinations - PR 11786. */ | |
2754 | ||
3e43a32a MS |
2755 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, |
2756 | byte_order); | |
0a1e94c7 JK |
2757 | vaddr -= displacement; |
2758 | store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); | |
2759 | ||
3e43a32a MS |
2760 | paddr = extract_unsigned_integer (buf_paddr_p, 8, |
2761 | byte_order); | |
0a1e94c7 JK |
2762 | paddr -= displacement; |
2763 | store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); | |
2764 | ||
2765 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2766 | continue; | |
2767 | ||
204b5331 DE |
2768 | /* Strip modifies the flags and alignment of PT_GNU_RELRO. |
2769 | CentOS-5 has problems with filesz, memsz as well. | |
be2d111a | 2770 | Strip also modifies memsz of PT_TLS. |
204b5331 | 2771 | See PR 11786. */ |
c44deb73 SM |
2772 | if (phdr2[i].p_type == PT_GNU_RELRO |
2773 | || phdr2[i].p_type == PT_TLS) | |
204b5331 DE |
2774 | { |
2775 | Elf64_External_Phdr tmp_phdr = *phdrp; | |
2776 | Elf64_External_Phdr tmp_phdr2 = *phdr2p; | |
2777 | ||
2778 | memset (tmp_phdr.p_filesz, 0, 8); | |
2779 | memset (tmp_phdr.p_memsz, 0, 8); | |
2780 | memset (tmp_phdr.p_flags, 0, 4); | |
2781 | memset (tmp_phdr.p_align, 0, 8); | |
2782 | memset (tmp_phdr2.p_filesz, 0, 8); | |
2783 | memset (tmp_phdr2.p_memsz, 0, 8); | |
2784 | memset (tmp_phdr2.p_flags, 0, 4); | |
2785 | memset (tmp_phdr2.p_align, 0, 8); | |
2786 | ||
2787 | if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | |
2788 | == 0) | |
2789 | continue; | |
2790 | } | |
2791 | ||
43b8e241 | 2792 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
7e10abd1 TT |
2793 | plt2_asect |
2794 | = bfd_get_section_by_name (current_program_space->exec_bfd (), | |
2795 | ".plt"); | |
43b8e241 JK |
2796 | if (plt2_asect) |
2797 | { | |
2798 | int content2; | |
2799 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2800 | CORE_ADDR filesz; | |
2801 | ||
fd361982 | 2802 | content2 = (bfd_section_flags (plt2_asect) |
43b8e241 JK |
2803 | & SEC_HAS_CONTENTS) != 0; |
2804 | ||
2805 | filesz = extract_unsigned_integer (buf_filesz_p, 8, | |
2806 | byte_order); | |
2807 | ||
7e10abd1 TT |
2808 | /* PLT2_ASECT is from on-disk file (current |
2809 | exec_bfd) while FILESZ is from the in-memory | |
2810 | image. */ | |
43b8e241 | 2811 | if (content2) |
fd361982 | 2812 | filesz += bfd_section_size (plt2_asect); |
43b8e241 | 2813 | else |
fd361982 | 2814 | filesz -= bfd_section_size (plt2_asect); |
43b8e241 JK |
2815 | |
2816 | store_unsigned_integer (buf_filesz_p, 8, byte_order, | |
2817 | filesz); | |
2818 | ||
2819 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2820 | continue; | |
2821 | } | |
2822 | ||
d1012b8e | 2823 | return 0; |
0a1e94c7 JK |
2824 | } |
2825 | } | |
2826 | else | |
d1012b8e | 2827 | return 0; |
0a1e94c7 | 2828 | } |
09919ac2 | 2829 | } |
b8040f19 | 2830 | |
ccf26247 JK |
2831 | if (info_verbose) |
2832 | { | |
2833 | /* It can be printed repeatedly as there is no easy way to check | |
2834 | the executable symbols/file has been already relocated to | |
2835 | displacement. */ | |
2836 | ||
2837 | printf_unfiltered (_("Using PIE (Position Independent Executable) " | |
2838 | "displacement %s for \"%s\".\n"), | |
8f61baf8 | 2839 | paddress (target_gdbarch (), exec_displacement), |
7e10abd1 | 2840 | bfd_get_filename (current_program_space->exec_bfd ())); |
ccf26247 JK |
2841 | } |
2842 | ||
8f61baf8 | 2843 | *displacementp = exec_displacement; |
01c30d6e | 2844 | return 1; |
b8040f19 JK |
2845 | } |
2846 | ||
2847 | /* Relocate the main executable. This function should be called upon | |
c378eb4e | 2848 | stopping the inferior process at the entry point to the program. |
b8040f19 JK |
2849 | The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are |
2850 | different, the main executable is relocated by the proper amount. */ | |
2851 | ||
2852 | static void | |
2853 | svr4_relocate_main_executable (void) | |
2854 | { | |
01c30d6e JK |
2855 | CORE_ADDR displacement; |
2856 | ||
4e5799b6 JK |
2857 | /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS |
2858 | probably contains the offsets computed using the PIE displacement | |
2859 | from the previous run, which of course are irrelevant for this run. | |
2860 | So we need to determine the new PIE displacement and recompute the | |
2861 | section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS | |
2862 | already contains pre-computed offsets. | |
01c30d6e | 2863 | |
4e5799b6 | 2864 | If we cannot compute the PIE displacement, either: |
01c30d6e | 2865 | |
4e5799b6 JK |
2866 | - The executable is not PIE. |
2867 | ||
2868 | - SYMFILE_OBJFILE does not match the executable started in the target. | |
2869 | This can happen for main executable symbols loaded at the host while | |
2870 | `ld.so --ld-args main-executable' is loaded in the target. | |
2871 | ||
2872 | Then we leave the section offsets untouched and use them as is for | |
2873 | this run. Either: | |
2874 | ||
2875 | - These section offsets were properly reset earlier, and thus | |
2876 | already contain the correct values. This can happen for instance | |
2877 | when reconnecting via the remote protocol to a target that supports | |
2878 | the `qOffsets' packet. | |
2879 | ||
2880 | - The section offsets were not reset earlier, and the best we can | |
c378eb4e | 2881 | hope is that the old offsets are still applicable to the new run. */ |
01c30d6e JK |
2882 | |
2883 | if (! svr4_exec_displacement (&displacement)) | |
2884 | return; | |
b8040f19 | 2885 | |
01c30d6e JK |
2886 | /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file |
2887 | addresses. */ | |
b8040f19 | 2888 | |
a42d7dd8 TT |
2889 | objfile *objf = current_program_space->symfile_object_file; |
2890 | if (objf) | |
e2a44558 | 2891 | { |
a42d7dd8 | 2892 | section_offsets new_offsets (objf->section_offsets.size (), |
6a053cb1 | 2893 | displacement); |
a42d7dd8 | 2894 | objfile_relocate (objf, new_offsets); |
e2a44558 | 2895 | } |
7e10abd1 | 2896 | else if (current_program_space->exec_bfd ()) |
51bee8e9 JK |
2897 | { |
2898 | asection *asect; | |
2899 | ||
7e10abd1 | 2900 | bfd *exec_bfd = current_program_space->exec_bfd (); |
51bee8e9 JK |
2901 | for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) |
2902 | exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, | |
fd361982 | 2903 | bfd_section_vma (asect) + displacement); |
51bee8e9 | 2904 | } |
e2a44558 KB |
2905 | } |
2906 | ||
7f86f058 | 2907 | /* Implement the "create_inferior_hook" target_solib_ops method. |
13437d4b KB |
2908 | |
2909 | For SVR4 executables, this first instruction is either the first | |
2910 | instruction in the dynamic linker (for dynamically linked | |
2911 | executables) or the instruction at "start" for statically linked | |
2912 | executables. For dynamically linked executables, the system | |
2913 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
2914 | and starts it running. The dynamic linker maps in any needed | |
2915 | shared libraries, maps in the actual user executable, and then | |
2916 | jumps to "start" in the user executable. | |
2917 | ||
7f86f058 PA |
2918 | We can arrange to cooperate with the dynamic linker to discover the |
2919 | names of shared libraries that are dynamically linked, and the base | |
2920 | addresses to which they are linked. | |
13437d4b KB |
2921 | |
2922 | This function is responsible for discovering those names and | |
2923 | addresses, and saving sufficient information about them to allow | |
d2e5c99a | 2924 | their symbols to be read at a later time. */ |
13437d4b | 2925 | |
e2a44558 | 2926 | static void |
268a4a75 | 2927 | svr4_solib_create_inferior_hook (int from_tty) |
13437d4b | 2928 | { |
1a816a87 PA |
2929 | struct svr4_info *info; |
2930 | ||
d70cc3ba | 2931 | info = get_svr4_info (current_program_space); |
2020b7ab | 2932 | |
f9e14852 GB |
2933 | /* Clear the probes-based interface's state. */ |
2934 | free_probes_table (info); | |
2935 | free_solib_list (info); | |
2936 | ||
e2a44558 | 2937 | /* Relocate the main executable if necessary. */ |
86e4bafc | 2938 | svr4_relocate_main_executable (); |
e2a44558 | 2939 | |
c91c8c16 PA |
2940 | /* No point setting a breakpoint in the dynamic linker if we can't |
2941 | hit it (e.g., a core file, or a trace file). */ | |
55f6301a | 2942 | if (!target_has_execution ()) |
c91c8c16 PA |
2943 | return; |
2944 | ||
d5a921c9 | 2945 | if (!svr4_have_link_map_offsets ()) |
513f5903 | 2946 | return; |
d5a921c9 | 2947 | |
268a4a75 | 2948 | if (!enable_break (info, from_tty)) |
542c95c2 | 2949 | return; |
13437d4b KB |
2950 | } |
2951 | ||
2952 | static void | |
2953 | svr4_clear_solib (void) | |
2954 | { | |
6c95b8df PA |
2955 | struct svr4_info *info; |
2956 | ||
d70cc3ba | 2957 | info = get_svr4_info (current_program_space); |
6c95b8df PA |
2958 | info->debug_base = 0; |
2959 | info->debug_loader_offset_p = 0; | |
2960 | info->debug_loader_offset = 0; | |
2961 | xfree (info->debug_loader_name); | |
2962 | info->debug_loader_name = NULL; | |
13437d4b KB |
2963 | } |
2964 | ||
6bb7be43 JB |
2965 | /* Clear any bits of ADDR that wouldn't fit in a target-format |
2966 | data pointer. "Data pointer" here refers to whatever sort of | |
2967 | address the dynamic linker uses to manage its sections. At the | |
2968 | moment, we don't support shared libraries on any processors where | |
2969 | code and data pointers are different sizes. | |
2970 | ||
2971 | This isn't really the right solution. What we really need here is | |
2972 | a way to do arithmetic on CORE_ADDR values that respects the | |
2973 | natural pointer/address correspondence. (For example, on the MIPS, | |
2974 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
2975 | sign-extend the value. There, simply truncating the bits above | |
819844ad | 2976 | gdbarch_ptr_bit, as we do below, is no good.) This should probably |
6bb7be43 JB |
2977 | be a new gdbarch method or something. */ |
2978 | static CORE_ADDR | |
2979 | svr4_truncate_ptr (CORE_ADDR addr) | |
2980 | { | |
f5656ead | 2981 | if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) |
6bb7be43 JB |
2982 | /* We don't need to truncate anything, and the bit twiddling below |
2983 | will fail due to overflow problems. */ | |
2984 | return addr; | |
2985 | else | |
f5656ead | 2986 | return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); |
6bb7be43 JB |
2987 | } |
2988 | ||
2989 | ||
749499cb KB |
2990 | static void |
2991 | svr4_relocate_section_addresses (struct so_list *so, | |
dda83cd7 | 2992 | struct target_section *sec) |
749499cb | 2993 | { |
2b2848e2 DE |
2994 | bfd *abfd = sec->the_bfd_section->owner; |
2995 | ||
2996 | sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd)); | |
2997 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd)); | |
749499cb | 2998 | } |
4b188b9f | 2999 | \f |
749499cb | 3000 | |
4b188b9f | 3001 | /* Architecture-specific operations. */ |
6bb7be43 | 3002 | |
4b188b9f MK |
3003 | /* Per-architecture data key. */ |
3004 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 3005 | |
4b188b9f | 3006 | struct solib_svr4_ops |
e5e2b9ff | 3007 | { |
4b188b9f MK |
3008 | /* Return a description of the layout of `struct link_map'. */ |
3009 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
3010 | }; | |
e5e2b9ff | 3011 | |
4b188b9f | 3012 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 3013 | |
4b188b9f MK |
3014 | static void * |
3015 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 3016 | { |
4b188b9f | 3017 | struct solib_svr4_ops *ops; |
e5e2b9ff | 3018 | |
4b188b9f | 3019 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
8d005789 | 3020 | ops->fetch_link_map_offsets = NULL; |
4b188b9f | 3021 | return ops; |
e5e2b9ff KB |
3022 | } |
3023 | ||
4b188b9f | 3024 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
7e3cb44c | 3025 | GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ |
1c4dcb57 | 3026 | |
21479ded | 3027 | void |
e5e2b9ff | 3028 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
dda83cd7 | 3029 | struct link_map_offsets *(*flmo) (void)) |
21479ded | 3030 | { |
19ba03f4 SM |
3031 | struct solib_svr4_ops *ops |
3032 | = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data); | |
4b188b9f MK |
3033 | |
3034 | ops->fetch_link_map_offsets = flmo; | |
7e3cb44c UW |
3035 | |
3036 | set_solib_ops (gdbarch, &svr4_so_ops); | |
626ca2c0 CB |
3037 | set_gdbarch_iterate_over_objfiles_in_search_order |
3038 | (gdbarch, svr4_iterate_over_objfiles_in_search_order); | |
21479ded KB |
3039 | } |
3040 | ||
4b188b9f MK |
3041 | /* Fetch a link_map_offsets structure using the architecture-specific |
3042 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 3043 | |
4b188b9f MK |
3044 | static struct link_map_offsets * |
3045 | svr4_fetch_link_map_offsets (void) | |
21479ded | 3046 | { |
19ba03f4 SM |
3047 | struct solib_svr4_ops *ops |
3048 | = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | |
3049 | solib_svr4_data); | |
4b188b9f MK |
3050 | |
3051 | gdb_assert (ops->fetch_link_map_offsets); | |
3052 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
3053 | } |
3054 | ||
4b188b9f MK |
3055 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
3056 | ||
3057 | static int | |
3058 | svr4_have_link_map_offsets (void) | |
3059 | { | |
19ba03f4 SM |
3060 | struct solib_svr4_ops *ops |
3061 | = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | |
3062 | solib_svr4_data); | |
433759f7 | 3063 | |
4b188b9f MK |
3064 | return (ops->fetch_link_map_offsets != NULL); |
3065 | } | |
3066 | \f | |
3067 | ||
e4bbbda8 MK |
3068 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
3069 | `struct r_debug' and a `struct link_map' that are binary compatible | |
85102364 | 3070 | with the original SVR4 implementation. */ |
e4bbbda8 MK |
3071 | |
3072 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
3073 | for an ILP32 SVR4 system. */ | |
d989b283 | 3074 | |
e4bbbda8 MK |
3075 | struct link_map_offsets * |
3076 | svr4_ilp32_fetch_link_map_offsets (void) | |
3077 | { | |
3078 | static struct link_map_offsets lmo; | |
3079 | static struct link_map_offsets *lmp = NULL; | |
3080 | ||
3081 | if (lmp == NULL) | |
3082 | { | |
3083 | lmp = &lmo; | |
3084 | ||
e4cd0d6a MK |
3085 | lmo.r_version_offset = 0; |
3086 | lmo.r_version_size = 4; | |
e4bbbda8 | 3087 | lmo.r_map_offset = 4; |
7cd25cfc | 3088 | lmo.r_brk_offset = 8; |
e4cd0d6a | 3089 | lmo.r_ldsomap_offset = 20; |
e4bbbda8 MK |
3090 | |
3091 | /* Everything we need is in the first 20 bytes. */ | |
3092 | lmo.link_map_size = 20; | |
3093 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 3094 | lmo.l_name_offset = 4; |
cc10cae3 | 3095 | lmo.l_ld_offset = 8; |
e4bbbda8 | 3096 | lmo.l_next_offset = 12; |
e4bbbda8 | 3097 | lmo.l_prev_offset = 16; |
e4bbbda8 MK |
3098 | } |
3099 | ||
3100 | return lmp; | |
3101 | } | |
3102 | ||
3103 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
3104 | for an LP64 SVR4 system. */ | |
d989b283 | 3105 | |
e4bbbda8 MK |
3106 | struct link_map_offsets * |
3107 | svr4_lp64_fetch_link_map_offsets (void) | |
3108 | { | |
3109 | static struct link_map_offsets lmo; | |
3110 | static struct link_map_offsets *lmp = NULL; | |
3111 | ||
3112 | if (lmp == NULL) | |
3113 | { | |
3114 | lmp = &lmo; | |
3115 | ||
e4cd0d6a MK |
3116 | lmo.r_version_offset = 0; |
3117 | lmo.r_version_size = 4; | |
e4bbbda8 | 3118 | lmo.r_map_offset = 8; |
7cd25cfc | 3119 | lmo.r_brk_offset = 16; |
e4cd0d6a | 3120 | lmo.r_ldsomap_offset = 40; |
e4bbbda8 MK |
3121 | |
3122 | /* Everything we need is in the first 40 bytes. */ | |
3123 | lmo.link_map_size = 40; | |
3124 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 3125 | lmo.l_name_offset = 8; |
cc10cae3 | 3126 | lmo.l_ld_offset = 16; |
e4bbbda8 | 3127 | lmo.l_next_offset = 24; |
e4bbbda8 | 3128 | lmo.l_prev_offset = 32; |
e4bbbda8 MK |
3129 | } |
3130 | ||
3131 | return lmp; | |
3132 | } | |
3133 | \f | |
3134 | ||
7d522c90 | 3135 | struct target_so_ops svr4_so_ops; |
13437d4b | 3136 | |
626ca2c0 | 3137 | /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a |
3a40aaa0 UW |
3138 | different rule for symbol lookup. The lookup begins here in the DSO, not in |
3139 | the main executable. */ | |
3140 | ||
626ca2c0 CB |
3141 | static void |
3142 | svr4_iterate_over_objfiles_in_search_order | |
3143 | (struct gdbarch *gdbarch, | |
3144 | iterate_over_objfiles_in_search_order_cb_ftype *cb, | |
3145 | void *cb_data, struct objfile *current_objfile) | |
3a40aaa0 | 3146 | { |
626ca2c0 CB |
3147 | bool checked_current_objfile = false; |
3148 | if (current_objfile != nullptr) | |
61f0d762 | 3149 | { |
626ca2c0 | 3150 | bfd *abfd; |
61f0d762 | 3151 | |
626ca2c0 | 3152 | if (current_objfile->separate_debug_objfile_backlink != nullptr) |
dda83cd7 | 3153 | current_objfile = current_objfile->separate_debug_objfile_backlink; |
61f0d762 | 3154 | |
a42d7dd8 | 3155 | if (current_objfile == current_program_space->symfile_object_file) |
7e10abd1 | 3156 | abfd = current_program_space->exec_bfd (); |
626ca2c0 CB |
3157 | else |
3158 | abfd = current_objfile->obfd; | |
3159 | ||
7ab78ccb | 3160 | if (abfd != nullptr |
8ddf4645 | 3161 | && gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1) |
626ca2c0 CB |
3162 | { |
3163 | checked_current_objfile = true; | |
3164 | if (cb (current_objfile, cb_data) != 0) | |
3165 | return; | |
3166 | } | |
3167 | } | |
3a40aaa0 | 3168 | |
626ca2c0 CB |
3169 | for (objfile *objfile : current_program_space->objfiles ()) |
3170 | { | |
3171 | if (checked_current_objfile && objfile == current_objfile) | |
3172 | continue; | |
3173 | if (cb (objfile, cb_data) != 0) | |
3174 | return; | |
3175 | } | |
3a40aaa0 UW |
3176 | } |
3177 | ||
6c265988 | 3178 | void _initialize_svr4_solib (); |
13437d4b | 3179 | void |
6c265988 | 3180 | _initialize_svr4_solib () |
13437d4b | 3181 | { |
4b188b9f MK |
3182 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
3183 | ||
749499cb | 3184 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b | 3185 | svr4_so_ops.free_so = svr4_free_so; |
0892cb63 | 3186 | svr4_so_ops.clear_so = svr4_clear_so; |
13437d4b KB |
3187 | svr4_so_ops.clear_solib = svr4_clear_solib; |
3188 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
13437d4b KB |
3189 | svr4_so_ops.current_sos = svr4_current_sos; |
3190 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 3191 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
831a0c44 | 3192 | svr4_so_ops.bfd_open = solib_bfd_open; |
a7c02bc8 | 3193 | svr4_so_ops.same = svr4_same; |
de18c1d8 | 3194 | svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; |
f9e14852 GB |
3195 | svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints; |
3196 | svr4_so_ops.handle_event = svr4_handle_solib_event; | |
7905fc35 | 3197 | |
c90e7d63 SM |
3198 | gdb::observers::free_objfile.attach (svr4_free_objfile_observer, |
3199 | "solib-svr4"); | |
13437d4b | 3200 | } |