]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
* gdb.python/py-infthread.exp: Load gdb-python.exp.
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
13437d4b
KB
55/* Link map info to include in an allocated so_list entry */
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
13437d4b
KB
143/* link map access functions */
144
145static CORE_ADDR
cc10cae3 146LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
2c0b251b 156HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
164LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
174LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3
AO
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
4e1fc9c9
JK
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
242 {
243 l_addr = l_dynaddr - dynaddr;
79d4c408 244
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408
DJ
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262}
263
13437d4b
KB
264static CORE_ADDR
265LM_NEXT (struct so_list *so)
266{
4b188b9f 267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 269
cfaefc65 270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 271 ptr_type);
13437d4b
KB
272}
273
492928e4
JK
274static CORE_ADDR
275LM_PREV (struct so_list *so)
276{
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282}
283
13437d4b
KB
284static CORE_ADDR
285LM_NAME (struct so_list *so)
286{
4b188b9f 287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 289
cfaefc65 290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 291 ptr_type);
13437d4b
KB
292}
293
13437d4b
KB
294static int
295IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296{
e499d0f1
DJ
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
0763ab81 299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
300 return 0;
301
492928e4 302 return LM_PREV (so) == 0;
13437d4b
KB
303}
304
6c95b8df 305/* Per pspace SVR4 specific data. */
13437d4b 306
1a816a87
PA
307struct svr4_info
308{
1a816a87
PA
309 CORE_ADDR debug_base; /* Base of dynamic linker structures */
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
1a816a87 322
6c95b8df
PA
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327};
1a816a87 328
6c95b8df
PA
329/* Per-program-space data key. */
330static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 331
6c95b8df
PA
332static void
333svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 334{
6c95b8df 335 struct svr4_info *info;
1a816a87 336
6c95b8df
PA
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
1a816a87
PA
339}
340
6c95b8df
PA
341/* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
34439770 343
6c95b8df
PA
344static struct svr4_info *
345get_svr4_info (void)
1a816a87 346{
6c95b8df 347 struct svr4_info *info;
1a816a87 348
6c95b8df
PA
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
34439770 352
6c95b8df
PA
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
1a816a87 356}
93a57060 357
13437d4b
KB
358/* Local function prototypes */
359
bc043ef3 360static int match_main (const char *);
13437d4b
KB
361
362/*
363
364 LOCAL FUNCTION
365
366 bfd_lookup_symbol -- lookup the value for a specific symbol
367
368 SYNOPSIS
369
2bbe3cc1 370 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
371
372 DESCRIPTION
373
374 An expensive way to lookup the value of a single symbol for
375 bfd's that are only temporary anyway. This is used by the
376 shared library support to find the address of the debugger
2bbe3cc1 377 notification routine in the shared library.
13437d4b 378
2bbe3cc1
DJ
379 The returned symbol may be in a code or data section; functions
380 will normally be in a code section, but may be in a data section
381 if this architecture uses function descriptors.
87f84c9d 382
13437d4b
KB
383 Note that 0 is specifically allowed as an error return (no
384 such symbol).
385 */
386
387static CORE_ADDR
bc043ef3 388bfd_lookup_symbol (bfd *abfd, const char *symname)
13437d4b 389{
435b259c 390 long storage_needed;
13437d4b
KB
391 asymbol *sym;
392 asymbol **symbol_table;
393 unsigned int number_of_symbols;
394 unsigned int i;
395 struct cleanup *back_to;
396 CORE_ADDR symaddr = 0;
397
398 storage_needed = bfd_get_symtab_upper_bound (abfd);
399
400 if (storage_needed > 0)
401 {
402 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 403 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
404 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
405
406 for (i = 0; i < number_of_symbols; i++)
407 {
408 sym = *symbol_table++;
6314a349 409 if (strcmp (sym->name, symname) == 0
2bbe3cc1 410 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 411 {
2bbe3cc1 412 /* BFD symbols are section relative. */
13437d4b
KB
413 symaddr = sym->value + sym->section->vma;
414 break;
415 }
416 }
417 do_cleanups (back_to);
418 }
419
420 if (symaddr)
421 return symaddr;
422
423 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
424 have to check the dynamic string table too. */
425
426 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
427
428 if (storage_needed > 0)
429 {
430 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 431 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
432 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
433
434 for (i = 0; i < number_of_symbols; i++)
435 {
436 sym = *symbol_table++;
87f84c9d 437
6314a349 438 if (strcmp (sym->name, symname) == 0
2bbe3cc1 439 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 440 {
2bbe3cc1 441 /* BFD symbols are section relative. */
13437d4b
KB
442 symaddr = sym->value + sym->section->vma;
443 break;
444 }
445 }
446 do_cleanups (back_to);
447 }
448
449 return symaddr;
450}
451
97ec2c2f
UW
452
453/* Read program header TYPE from inferior memory. The header is found
454 by scanning the OS auxillary vector.
455
09919ac2
JK
456 If TYPE == -1, return the program headers instead of the contents of
457 one program header.
458
97ec2c2f
UW
459 Return a pointer to allocated memory holding the program header contents,
460 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
461 size of those contents is returned to P_SECT_SIZE. Likewise, the target
462 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
463
464static gdb_byte *
465read_program_header (int type, int *p_sect_size, int *p_arch_size)
466{
e17a4113 467 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
468 CORE_ADDR at_phdr, at_phent, at_phnum;
469 int arch_size, sect_size;
470 CORE_ADDR sect_addr;
471 gdb_byte *buf;
472
473 /* Get required auxv elements from target. */
474 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475 return 0;
476 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479 return 0;
480 if (!at_phdr || !at_phnum)
481 return 0;
482
483 /* Determine ELF architecture type. */
484 if (at_phent == sizeof (Elf32_External_Phdr))
485 arch_size = 32;
486 else if (at_phent == sizeof (Elf64_External_Phdr))
487 arch_size = 64;
488 else
489 return 0;
490
09919ac2
JK
491 /* Find the requested segment. */
492 if (type == -1)
493 {
494 sect_addr = at_phdr;
495 sect_size = at_phent * at_phnum;
496 }
497 else if (arch_size == 32)
97ec2c2f
UW
498 {
499 Elf32_External_Phdr phdr;
500 int i;
501
502 /* Search for requested PHDR. */
503 for (i = 0; i < at_phnum; i++)
504 {
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
e17a4113
UW
509 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
510 4, byte_order) == type)
97ec2c2f
UW
511 break;
512 }
513
514 if (i == at_phnum)
515 return 0;
516
517 /* Retrieve address and size. */
e17a4113
UW
518 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
519 4, byte_order);
520 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
521 4, byte_order);
97ec2c2f
UW
522 }
523 else
524 {
525 Elf64_External_Phdr phdr;
526 int i;
527
528 /* Search for requested PHDR. */
529 for (i = 0; i < at_phnum; i++)
530 {
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
e17a4113
UW
535 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
536 4, byte_order) == type)
97ec2c2f
UW
537 break;
538 }
539
540 if (i == at_phnum)
541 return 0;
542
543 /* Retrieve address and size. */
e17a4113
UW
544 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
545 8, byte_order);
546 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
547 8, byte_order);
97ec2c2f
UW
548 }
549
550 /* Read in requested program header. */
551 buf = xmalloc (sect_size);
552 if (target_read_memory (sect_addr, buf, sect_size))
553 {
554 xfree (buf);
555 return NULL;
556 }
557
558 if (p_arch_size)
559 *p_arch_size = arch_size;
560 if (p_sect_size)
561 *p_sect_size = sect_size;
562
563 return buf;
564}
565
566
567/* Return program interpreter string. */
568static gdb_byte *
569find_program_interpreter (void)
570{
571 gdb_byte *buf = NULL;
572
573 /* If we have an exec_bfd, use its section table. */
574 if (exec_bfd
575 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
576 {
577 struct bfd_section *interp_sect;
578
579 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
580 if (interp_sect != NULL)
581 {
97ec2c2f
UW
582 int sect_size = bfd_section_size (exec_bfd, interp_sect);
583
584 buf = xmalloc (sect_size);
585 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
586 }
587 }
588
589 /* If we didn't find it, use the target auxillary vector. */
590 if (!buf)
591 buf = read_program_header (PT_INTERP, NULL, NULL);
592
593 return buf;
594}
595
596
3a40aaa0
UW
597/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
598 returned and the corresponding PTR is set. */
599
600static int
601scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
602{
603 int arch_size, step, sect_size;
604 long dyn_tag;
b381ea14 605 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 606 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
607 Elf32_External_Dyn *x_dynp_32;
608 Elf64_External_Dyn *x_dynp_64;
609 struct bfd_section *sect;
61f0d762 610 struct target_section *target_section;
3a40aaa0
UW
611
612 if (abfd == NULL)
613 return 0;
0763ab81
PA
614
615 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
616 return 0;
617
3a40aaa0
UW
618 arch_size = bfd_get_arch_size (abfd);
619 if (arch_size == -1)
0763ab81 620 return 0;
3a40aaa0
UW
621
622 /* Find the start address of the .dynamic section. */
623 sect = bfd_get_section_by_name (abfd, ".dynamic");
624 if (sect == NULL)
625 return 0;
61f0d762
JK
626
627 for (target_section = current_target_sections->sections;
628 target_section < current_target_sections->sections_end;
629 target_section++)
630 if (sect == target_section->the_bfd_section)
631 break;
b381ea14
JK
632 if (target_section < current_target_sections->sections_end)
633 dyn_addr = target_section->addr;
634 else
635 {
636 /* ABFD may come from OBJFILE acting only as a symbol file without being
637 loaded into the target (see add_symbol_file_command). This case is
638 such fallback to the file VMA address without the possibility of
639 having the section relocated to its actual in-memory address. */
640
641 dyn_addr = bfd_section_vma (abfd, sect);
642 }
3a40aaa0 643
65728c26
DJ
644 /* Read in .dynamic from the BFD. We will get the actual value
645 from memory later. */
3a40aaa0 646 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
647 buf = bufstart = alloca (sect_size);
648 if (!bfd_get_section_contents (abfd, sect,
649 buf, 0, sect_size))
650 return 0;
3a40aaa0
UW
651
652 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
653 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
654 : sizeof (Elf64_External_Dyn);
655 for (bufend = buf + sect_size;
656 buf < bufend;
657 buf += step)
658 {
659 if (arch_size == 32)
660 {
661 x_dynp_32 = (Elf32_External_Dyn *) buf;
662 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
663 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
664 }
65728c26 665 else
3a40aaa0
UW
666 {
667 x_dynp_64 = (Elf64_External_Dyn *) buf;
668 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
669 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
670 }
671 if (dyn_tag == DT_NULL)
672 return 0;
673 if (dyn_tag == dyntag)
674 {
65728c26
DJ
675 /* If requested, try to read the runtime value of this .dynamic
676 entry. */
3a40aaa0 677 if (ptr)
65728c26 678 {
b6da22b0 679 struct type *ptr_type;
65728c26
DJ
680 gdb_byte ptr_buf[8];
681 CORE_ADDR ptr_addr;
682
b6da22b0 683 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 684 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 685 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 686 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
687 *ptr = dyn_ptr;
688 }
689 return 1;
3a40aaa0
UW
690 }
691 }
692
693 return 0;
694}
695
97ec2c2f
UW
696/* Scan for DYNTAG in .dynamic section of the target's main executable,
697 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
698 returned and the corresponding PTR is set. */
699
700static int
701scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
702{
e17a4113 703 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
704 int sect_size, arch_size, step;
705 long dyn_tag;
706 CORE_ADDR dyn_ptr;
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
711 if (!buf)
712 return 0;
713
714 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
715 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
716 : sizeof (Elf64_External_Dyn);
717 for (bufend = buf + sect_size;
718 buf < bufend;
719 buf += step)
720 {
721 if (arch_size == 32)
722 {
723 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 724
e17a4113
UW
725 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
726 4, byte_order);
727 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
728 4, byte_order);
97ec2c2f
UW
729 }
730 else
731 {
732 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 733
e17a4113
UW
734 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 8, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 8, byte_order);
97ec2c2f
UW
738 }
739 if (dyn_tag == DT_NULL)
740 break;
741
742 if (dyn_tag == dyntag)
743 {
744 if (ptr)
745 *ptr = dyn_ptr;
746
747 xfree (bufstart);
748 return 1;
749 }
750 }
751
752 xfree (bufstart);
753 return 0;
754}
755
3a40aaa0 756
13437d4b
KB
757/*
758
759 LOCAL FUNCTION
760
761 elf_locate_base -- locate the base address of dynamic linker structs
762 for SVR4 elf targets.
763
764 SYNOPSIS
765
766 CORE_ADDR elf_locate_base (void)
767
768 DESCRIPTION
769
770 For SVR4 elf targets the address of the dynamic linker's runtime
771 structure is contained within the dynamic info section in the
772 executable file. The dynamic section is also mapped into the
773 inferior address space. Because the runtime loader fills in the
774 real address before starting the inferior, we have to read in the
775 dynamic info section from the inferior address space.
776 If there are any errors while trying to find the address, we
777 silently return 0, otherwise the found address is returned.
778
779 */
780
781static CORE_ADDR
782elf_locate_base (void)
783{
3a40aaa0
UW
784 struct minimal_symbol *msymbol;
785 CORE_ADDR dyn_ptr;
13437d4b 786
65728c26
DJ
787 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
788 instead of DT_DEBUG, although they sometimes contain an unused
789 DT_DEBUG. */
97ec2c2f
UW
790 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
791 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 792 {
b6da22b0 793 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 794 gdb_byte *pbuf;
b6da22b0 795 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 796
3a40aaa0
UW
797 pbuf = alloca (pbuf_size);
798 /* DT_MIPS_RLD_MAP contains a pointer to the address
799 of the dynamic link structure. */
800 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 801 return 0;
b6da22b0 802 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
803 }
804
65728c26 805 /* Find DT_DEBUG. */
97ec2c2f
UW
806 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
807 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
808 return dyn_ptr;
809
3a40aaa0
UW
810 /* This may be a static executable. Look for the symbol
811 conventionally named _r_debug, as a last resort. */
812 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
813 if (msymbol != NULL)
814 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
815
816 /* DT_DEBUG entry not found. */
817 return 0;
818}
819
13437d4b
KB
820/*
821
822 LOCAL FUNCTION
823
824 locate_base -- locate the base address of dynamic linker structs
825
826 SYNOPSIS
827
1a816a87 828 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
829
830 DESCRIPTION
831
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
839
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
847
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables.
854
855 */
856
857static CORE_ADDR
1a816a87 858locate_base (struct svr4_info *info)
13437d4b 859{
13437d4b
KB
860 /* Check to see if we have a currently valid address, and if so, avoid
861 doing all this work again and just return the cached address. If
862 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
863 section for ELF executables. There's no point in doing any of this
864 though if we don't have some link map offsets to work with. */
13437d4b 865
1a816a87 866 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 867 info->debug_base = elf_locate_base ();
1a816a87 868 return info->debug_base;
13437d4b
KB
869}
870
e4cd0d6a 871/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
872 return its address in the inferior. Return zero if the address
873 could not be determined.
13437d4b 874
e4cd0d6a
MK
875 FIXME: Perhaps we should validate the info somehow, perhaps by
876 checking r_version for a known version number, or r_state for
877 RT_CONSISTENT. */
13437d4b
KB
878
879static CORE_ADDR
1a816a87 880solib_svr4_r_map (struct svr4_info *info)
13437d4b 881{
4b188b9f 882 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 883 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
884 CORE_ADDR addr = 0;
885 volatile struct gdb_exception ex;
13437d4b 886
08597104
JB
887 TRY_CATCH (ex, RETURN_MASK_ERROR)
888 {
889 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
890 ptr_type);
891 }
892 exception_print (gdb_stderr, ex);
893 return addr;
e4cd0d6a 894}
13437d4b 895
7cd25cfc
DJ
896/* Find r_brk from the inferior's debug base. */
897
898static CORE_ADDR
1a816a87 899solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
900{
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 903
1a816a87
PA
904 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
905 ptr_type);
7cd25cfc
DJ
906}
907
e4cd0d6a
MK
908/* Find the link map for the dynamic linker (if it is not in the
909 normal list of loaded shared objects). */
13437d4b 910
e4cd0d6a 911static CORE_ADDR
1a816a87 912solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
913{
914 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 915 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 916 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 917 ULONGEST version;
13437d4b 918
e4cd0d6a
MK
919 /* Check version, and return zero if `struct r_debug' doesn't have
920 the r_ldsomap member. */
1a816a87
PA
921 version
922 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 923 lmo->r_version_size, byte_order);
e4cd0d6a
MK
924 if (version < 2 || lmo->r_ldsomap_offset == -1)
925 return 0;
13437d4b 926
1a816a87 927 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 928 ptr_type);
13437d4b
KB
929}
930
de18c1d8
JM
931/* On Solaris systems with some versions of the dynamic linker,
932 ld.so's l_name pointer points to the SONAME in the string table
933 rather than into writable memory. So that GDB can find shared
934 libraries when loading a core file generated by gcore, ensure that
935 memory areas containing the l_name string are saved in the core
936 file. */
937
938static int
939svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
940{
941 struct svr4_info *info;
942 CORE_ADDR ldsomap;
943 struct so_list *new;
944 struct cleanup *old_chain;
945 struct link_map_offsets *lmo;
946 CORE_ADDR lm_name;
947
948 info = get_svr4_info ();
949
950 info->debug_base = 0;
951 locate_base (info);
952 if (!info->debug_base)
953 return 0;
954
955 ldsomap = solib_svr4_r_ldsomap (info);
956 if (!ldsomap)
957 return 0;
958
959 lmo = svr4_fetch_link_map_offsets ();
960 new = XZALLOC (struct so_list);
961 old_chain = make_cleanup (xfree, new);
962 new->lm_info = xmalloc (sizeof (struct lm_info));
963 make_cleanup (xfree, new->lm_info);
964 new->lm_info->l_addr = (CORE_ADDR)-1;
965 new->lm_info->lm_addr = ldsomap;
966 new->lm_info->lm = xzalloc (lmo->link_map_size);
967 make_cleanup (xfree, new->lm_info->lm);
968 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
969 lm_name = LM_NAME (new);
970 do_cleanups (old_chain);
971
972 return (lm_name >= vaddr && lm_name < vaddr + size);
973}
974
13437d4b
KB
975/*
976
977 LOCAL FUNCTION
978
979 open_symbol_file_object
980
981 SYNOPSIS
982
983 void open_symbol_file_object (void *from_tty)
984
985 DESCRIPTION
986
987 If no open symbol file, attempt to locate and open the main symbol
988 file. On SVR4 systems, this is the first link map entry. If its
989 name is here, we can open it. Useful when attaching to a process
990 without first loading its symbol file.
991
992 If FROM_TTYP dereferences to a non-zero integer, allow messages to
993 be printed. This parameter is a pointer rather than an int because
994 open_symbol_file_object() is called via catch_errors() and
995 catch_errors() requires a pointer argument. */
996
997static int
998open_symbol_file_object (void *from_ttyp)
999{
1000 CORE_ADDR lm, l_name;
1001 char *filename;
1002 int errcode;
1003 int from_tty = *(int *)from_ttyp;
4b188b9f 1004 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
1005 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1006 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 1007 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 1008 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1009 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1010
1011 if (symfile_objfile)
9e2f0ad4 1012 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
1013 return 0;
1014
7cd25cfc 1015 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1016 info->debug_base = 0;
1017 if (locate_base (info) == 0)
13437d4b
KB
1018 return 0; /* failed somehow... */
1019
1020 /* First link map member should be the executable. */
1a816a87 1021 lm = solib_svr4_r_map (info);
e4cd0d6a 1022 if (lm == 0)
13437d4b
KB
1023 return 0; /* failed somehow... */
1024
1025 /* Read address of name from target memory to GDB. */
cfaefc65 1026 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1027
cfaefc65 1028 /* Convert the address to host format. */
b6da22b0 1029 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
1030
1031 /* Free l_name_buf. */
1032 do_cleanups (cleanups);
1033
1034 if (l_name == 0)
1035 return 0; /* No filename. */
1036
1037 /* Now fetch the filename from target memory. */
1038 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1039 make_cleanup (xfree, filename);
13437d4b
KB
1040
1041 if (errcode)
1042 {
8a3fe4f8 1043 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1044 safe_strerror (errcode));
1045 return 0;
1046 }
1047
13437d4b 1048 /* Have a pathname: read the symbol file. */
1adeb98a 1049 symbol_file_add_main (filename, from_tty);
13437d4b
KB
1050
1051 return 1;
1052}
13437d4b 1053
34439770
DJ
1054/* If no shared library information is available from the dynamic
1055 linker, build a fallback list from other sources. */
1056
1057static struct so_list *
1058svr4_default_sos (void)
1059{
6c95b8df 1060 struct svr4_info *info = get_svr4_info ();
1a816a87 1061
34439770
DJ
1062 struct so_list *head = NULL;
1063 struct so_list **link_ptr = &head;
1064
1a816a87 1065 if (info->debug_loader_offset_p)
34439770
DJ
1066 {
1067 struct so_list *new = XZALLOC (struct so_list);
1068
1069 new->lm_info = xmalloc (sizeof (struct lm_info));
1070
1071 /* Nothing will ever check the cached copy of the link
1072 map if we set l_addr. */
1a816a87 1073 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1074 new->lm_info->lm_addr = 0;
34439770
DJ
1075 new->lm_info->lm = NULL;
1076
1a816a87
PA
1077 strncpy (new->so_name, info->debug_loader_name,
1078 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1079 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1080 strcpy (new->so_original_name, new->so_name);
1081
1082 *link_ptr = new;
1083 link_ptr = &new->next;
1084 }
1085
1086 return head;
1087}
1088
13437d4b
KB
1089/* LOCAL FUNCTION
1090
1091 current_sos -- build a list of currently loaded shared objects
1092
1093 SYNOPSIS
1094
1095 struct so_list *current_sos ()
1096
1097 DESCRIPTION
1098
1099 Build a list of `struct so_list' objects describing the shared
1100 objects currently loaded in the inferior. This list does not
1101 include an entry for the main executable file.
1102
1103 Note that we only gather information directly available from the
1104 inferior --- we don't examine any of the shared library files
1105 themselves. The declaration of `struct so_list' says which fields
1106 we provide values for. */
1107
1108static struct so_list *
1109svr4_current_sos (void)
1110{
492928e4 1111 CORE_ADDR lm, prev_lm;
13437d4b
KB
1112 struct so_list *head = 0;
1113 struct so_list **link_ptr = &head;
e4cd0d6a 1114 CORE_ADDR ldsomap = 0;
1a816a87
PA
1115 struct svr4_info *info;
1116
6c95b8df 1117 info = get_svr4_info ();
13437d4b 1118
7cd25cfc 1119 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1120 info->debug_base = 0;
1121 locate_base (info);
13437d4b 1122
7cd25cfc
DJ
1123 /* If we can't find the dynamic linker's base structure, this
1124 must not be a dynamically linked executable. Hmm. */
1a816a87 1125 if (! info->debug_base)
7cd25cfc 1126 return svr4_default_sos ();
13437d4b
KB
1127
1128 /* Walk the inferior's link map list, and build our list of
1129 `struct so_list' nodes. */
492928e4 1130 prev_lm = 0;
1a816a87 1131 lm = solib_svr4_r_map (info);
34439770 1132
13437d4b
KB
1133 while (lm)
1134 {
4b188b9f 1135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1136 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1137 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1138 CORE_ADDR next_lm;
13437d4b 1139
13437d4b 1140 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1141 make_cleanup (xfree, new->lm_info);
13437d4b 1142
831004b7 1143 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1144 new->lm_info->lm_addr = lm;
f4456994 1145 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1146 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1147
1148 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1149
492928e4
JK
1150 next_lm = LM_NEXT (new);
1151
1152 if (LM_PREV (new) != prev_lm)
1153 {
1154 warning (_("Corrupted shared library list"));
1155 free_so (new);
1156 next_lm = 0;
1157 }
13437d4b
KB
1158
1159 /* For SVR4 versions, the first entry in the link map is for the
1160 inferior executable, so we must ignore it. For some versions of
1161 SVR4, it has no name. For others (Solaris 2.3 for example), it
1162 does have a name, so we can no longer use a missing name to
1163 decide when to ignore it. */
492928e4 1164 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1165 {
1a816a87 1166 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1167 free_so (new);
1168 }
13437d4b
KB
1169 else
1170 {
1171 int errcode;
1172 char *buffer;
1173
1174 /* Extract this shared object's name. */
1175 target_read_string (LM_NAME (new), &buffer,
1176 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1177 if (errcode != 0)
8a3fe4f8
AC
1178 warning (_("Can't read pathname for load map: %s."),
1179 safe_strerror (errcode));
13437d4b
KB
1180 else
1181 {
1182 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1183 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1184 strcpy (new->so_original_name, new->so_name);
1185 }
ea5bf0a1 1186 xfree (buffer);
13437d4b
KB
1187
1188 /* If this entry has no name, or its name matches the name
1189 for the main executable, don't include it in the list. */
1190 if (! new->so_name[0]
1191 || match_main (new->so_name))
1192 free_so (new);
1193 else
1194 {
1195 new->next = 0;
1196 *link_ptr = new;
1197 link_ptr = &new->next;
1198 }
1199 }
1200
492928e4
JK
1201 prev_lm = lm;
1202 lm = next_lm;
1203
e4cd0d6a
MK
1204 /* On Solaris, the dynamic linker is not in the normal list of
1205 shared objects, so make sure we pick it up too. Having
1206 symbol information for the dynamic linker is quite crucial
1207 for skipping dynamic linker resolver code. */
1208 if (lm == 0 && ldsomap == 0)
492928e4
JK
1209 {
1210 lm = ldsomap = solib_svr4_r_ldsomap (info);
1211 prev_lm = 0;
1212 }
e4cd0d6a 1213
13437d4b
KB
1214 discard_cleanups (old_chain);
1215 }
1216
34439770
DJ
1217 if (head == NULL)
1218 return svr4_default_sos ();
1219
13437d4b
KB
1220 return head;
1221}
1222
93a57060 1223/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1224
1225CORE_ADDR
1226svr4_fetch_objfile_link_map (struct objfile *objfile)
1227{
93a57060 1228 struct so_list *so;
6c95b8df 1229 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1230
93a57060 1231 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1232 if (info->main_lm_addr == 0)
93a57060 1233 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1234
93a57060
DJ
1235 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1236 if (objfile == symfile_objfile)
1a816a87 1237 return info->main_lm_addr;
93a57060
DJ
1238
1239 /* The other link map addresses may be found by examining the list
1240 of shared libraries. */
1241 for (so = master_so_list (); so; so = so->next)
1242 if (so->objfile == objfile)
1243 return so->lm_info->lm_addr;
1244
1245 /* Not found! */
bc4a16ae
EZ
1246 return 0;
1247}
13437d4b
KB
1248
1249/* On some systems, the only way to recognize the link map entry for
1250 the main executable file is by looking at its name. Return
1251 non-zero iff SONAME matches one of the known main executable names. */
1252
1253static int
bc043ef3 1254match_main (const char *soname)
13437d4b 1255{
bc043ef3 1256 const char * const *mainp;
13437d4b
KB
1257
1258 for (mainp = main_name_list; *mainp != NULL; mainp++)
1259 {
1260 if (strcmp (soname, *mainp) == 0)
1261 return (1);
1262 }
1263
1264 return (0);
1265}
1266
13437d4b
KB
1267/* Return 1 if PC lies in the dynamic symbol resolution code of the
1268 SVR4 run time loader. */
13437d4b 1269
7d522c90 1270int
d7fa2ae2 1271svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1272{
6c95b8df
PA
1273 struct svr4_info *info = get_svr4_info ();
1274
1275 return ((pc >= info->interp_text_sect_low
1276 && pc < info->interp_text_sect_high)
1277 || (pc >= info->interp_plt_sect_low
1278 && pc < info->interp_plt_sect_high)
13437d4b
KB
1279 || in_plt_section (pc, NULL));
1280}
13437d4b 1281
2f4950cd
AC
1282/* Given an executable's ABFD and target, compute the entry-point
1283 address. */
1284
1285static CORE_ADDR
1286exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1287{
1288 /* KevinB wrote ... for most targets, the address returned by
1289 bfd_get_start_address() is the entry point for the start
1290 function. But, for some targets, bfd_get_start_address() returns
1291 the address of a function descriptor from which the entry point
1292 address may be extracted. This address is extracted by
1293 gdbarch_convert_from_func_ptr_addr(). The method
1294 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1295 function for targets which don't use function descriptors. */
1cf3db46 1296 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1297 bfd_get_start_address (abfd),
1298 targ);
1299}
13437d4b
KB
1300
1301/*
1302
1303 LOCAL FUNCTION
1304
1305 enable_break -- arrange for dynamic linker to hit breakpoint
1306
1307 SYNOPSIS
1308
1309 int enable_break (void)
1310
1311 DESCRIPTION
1312
1313 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1314 debugger interface, support for arranging for the inferior to hit
1315 a breakpoint after mapping in the shared libraries. This function
1316 enables that breakpoint.
1317
1318 For SunOS, there is a special flag location (in_debugger) which we
1319 set to 1. When the dynamic linker sees this flag set, it will set
1320 a breakpoint at a location known only to itself, after saving the
1321 original contents of that place and the breakpoint address itself,
1322 in it's own internal structures. When we resume the inferior, it
1323 will eventually take a SIGTRAP when it runs into the breakpoint.
1324 We handle this (in a different place) by restoring the contents of
1325 the breakpointed location (which is only known after it stops),
1326 chasing around to locate the shared libraries that have been
1327 loaded, then resuming.
1328
1329 For SVR4, the debugger interface structure contains a member (r_brk)
1330 which is statically initialized at the time the shared library is
1331 built, to the offset of a function (_r_debug_state) which is guaran-
1332 teed to be called once before mapping in a library, and again when
1333 the mapping is complete. At the time we are examining this member,
1334 it contains only the unrelocated offset of the function, so we have
1335 to do our own relocation. Later, when the dynamic linker actually
1336 runs, it relocates r_brk to be the actual address of _r_debug_state().
1337
1338 The debugger interface structure also contains an enumeration which
1339 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1340 depending upon whether or not the library is being mapped or unmapped,
1341 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1342 */
1343
1344static int
268a4a75 1345enable_break (struct svr4_info *info, int from_tty)
13437d4b 1346{
13437d4b 1347 struct minimal_symbol *msymbol;
bc043ef3 1348 const char * const *bkpt_namep;
13437d4b 1349 asection *interp_sect;
97ec2c2f 1350 gdb_byte *interp_name;
7cd25cfc 1351 CORE_ADDR sym_addr;
13437d4b 1352
6c95b8df
PA
1353 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1354 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1355
7cd25cfc
DJ
1356 /* If we already have a shared library list in the target, and
1357 r_debug contains r_brk, set the breakpoint there - this should
1358 mean r_brk has already been relocated. Assume the dynamic linker
1359 is the object containing r_brk. */
1360
268a4a75 1361 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1362 sym_addr = 0;
1a816a87
PA
1363 if (info->debug_base && solib_svr4_r_map (info) != 0)
1364 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1365
1366 if (sym_addr != 0)
1367 {
1368 struct obj_section *os;
1369
b36ec657 1370 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1371 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1372 sym_addr,
1373 &current_target));
b36ec657 1374
48379de6
DE
1375 /* On at least some versions of Solaris there's a dynamic relocation
1376 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1377 we get control before the dynamic linker has self-relocated.
1378 Check if SYM_ADDR is in a known section, if it is assume we can
1379 trust its value. This is just a heuristic though, it could go away
1380 or be replaced if it's getting in the way.
1381
1382 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1383 however it's spelled in your particular system) is ARM or Thumb.
1384 That knowledge is encoded in the address, if it's Thumb the low bit
1385 is 1. However, we've stripped that info above and it's not clear
1386 what all the consequences are of passing a non-addr_bits_remove'd
1387 address to create_solib_event_breakpoint. The call to
1388 find_pc_section verifies we know about the address and have some
1389 hope of computing the right kind of breakpoint to use (via
1390 symbol info). It does mean that GDB needs to be pointed at a
1391 non-stripped version of the dynamic linker in order to obtain
1392 information it already knows about. Sigh. */
1393
7cd25cfc
DJ
1394 os = find_pc_section (sym_addr);
1395 if (os != NULL)
1396 {
1397 /* Record the relocated start and end address of the dynamic linker
1398 text and plt section for svr4_in_dynsym_resolve_code. */
1399 bfd *tmp_bfd;
1400 CORE_ADDR load_addr;
1401
1402 tmp_bfd = os->objfile->obfd;
1403 load_addr = ANOFFSET (os->objfile->section_offsets,
1404 os->objfile->sect_index_text);
1405
1406 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1407 if (interp_sect)
1408 {
6c95b8df 1409 info->interp_text_sect_low =
7cd25cfc 1410 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1411 info->interp_text_sect_high =
1412 info->interp_text_sect_low
1413 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1414 }
1415 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1416 if (interp_sect)
1417 {
6c95b8df 1418 info->interp_plt_sect_low =
7cd25cfc 1419 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1420 info->interp_plt_sect_high =
1421 info->interp_plt_sect_low
1422 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1423 }
1424
a6d9a66e 1425 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1426 return 1;
1427 }
1428 }
1429
97ec2c2f 1430 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1431 into the old breakpoint at symbol code. */
97ec2c2f
UW
1432 interp_name = find_program_interpreter ();
1433 if (interp_name)
13437d4b 1434 {
8ad2fcde
KB
1435 CORE_ADDR load_addr = 0;
1436 int load_addr_found = 0;
2ec9a4f8 1437 int loader_found_in_list = 0;
f8766ec1 1438 struct so_list *so;
e4f7b8c8 1439 bfd *tmp_bfd = NULL;
2f4950cd 1440 struct target_ops *tmp_bfd_target;
f1838a98 1441 volatile struct gdb_exception ex;
13437d4b 1442
7cd25cfc 1443 sym_addr = 0;
13437d4b
KB
1444
1445 /* Now we need to figure out where the dynamic linker was
1446 loaded so that we can load its symbols and place a breakpoint
1447 in the dynamic linker itself.
1448
1449 This address is stored on the stack. However, I've been unable
1450 to find any magic formula to find it for Solaris (appears to
1451 be trivial on GNU/Linux). Therefore, we have to try an alternate
1452 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1453
f1838a98
UW
1454 TRY_CATCH (ex, RETURN_MASK_ALL)
1455 {
97ec2c2f 1456 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1457 }
13437d4b
KB
1458 if (tmp_bfd == NULL)
1459 goto bkpt_at_symbol;
1460
2f4950cd
AC
1461 /* Now convert the TMP_BFD into a target. That way target, as
1462 well as BFD operations can be used. Note that closing the
1463 target will also close the underlying bfd. */
1464 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1465
f8766ec1
KB
1466 /* On a running target, we can get the dynamic linker's base
1467 address from the shared library table. */
f8766ec1
KB
1468 so = master_so_list ();
1469 while (so)
8ad2fcde 1470 {
97ec2c2f 1471 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1472 {
1473 load_addr_found = 1;
2ec9a4f8 1474 loader_found_in_list = 1;
cc10cae3 1475 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1476 break;
1477 }
f8766ec1 1478 so = so->next;
8ad2fcde
KB
1479 }
1480
8d4e36ba
JB
1481 /* If we were not able to find the base address of the loader
1482 from our so_list, then try using the AT_BASE auxilliary entry. */
1483 if (!load_addr_found)
1484 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1485 {
1486 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1487
1488 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1489 that `+ load_addr' will overflow CORE_ADDR width not creating
1490 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1491 GDB. */
1492
d182d057 1493 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1494 {
d182d057 1495 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1496 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1497 tmp_bfd_target);
1498
1499 gdb_assert (load_addr < space_size);
1500
1501 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1502 64bit ld.so with 32bit executable, it should not happen. */
1503
1504 if (tmp_entry_point < space_size
1505 && tmp_entry_point + load_addr >= space_size)
1506 load_addr -= space_size;
1507 }
1508
1509 load_addr_found = 1;
1510 }
8d4e36ba 1511
8ad2fcde
KB
1512 /* Otherwise we find the dynamic linker's base address by examining
1513 the current pc (which should point at the entry point for the
8d4e36ba
JB
1514 dynamic linker) and subtracting the offset of the entry point.
1515
1516 This is more fragile than the previous approaches, but is a good
1517 fallback method because it has actually been working well in
1518 most cases. */
8ad2fcde 1519 if (!load_addr_found)
fb14de7b 1520 {
c2250ad1
UW
1521 struct regcache *regcache
1522 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1523
fb14de7b
UW
1524 load_addr = (regcache_read_pc (regcache)
1525 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1526 }
2ec9a4f8
DJ
1527
1528 if (!loader_found_in_list)
34439770 1529 {
1a816a87
PA
1530 info->debug_loader_name = xstrdup (interp_name);
1531 info->debug_loader_offset_p = 1;
1532 info->debug_loader_offset = load_addr;
268a4a75 1533 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1534 }
13437d4b
KB
1535
1536 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1537 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1538 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1539 if (interp_sect)
1540 {
6c95b8df 1541 info->interp_text_sect_low =
13437d4b 1542 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1543 info->interp_text_sect_high =
1544 info->interp_text_sect_low
1545 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1546 }
1547 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1548 if (interp_sect)
1549 {
6c95b8df 1550 info->interp_plt_sect_low =
13437d4b 1551 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1552 info->interp_plt_sect_high =
1553 info->interp_plt_sect_low
1554 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1555 }
1556
1557 /* Now try to set a breakpoint in the dynamic linker. */
1558 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1559 {
2bbe3cc1 1560 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1561 if (sym_addr != 0)
1562 break;
1563 }
1564
2bbe3cc1
DJ
1565 if (sym_addr != 0)
1566 /* Convert 'sym_addr' from a function pointer to an address.
1567 Because we pass tmp_bfd_target instead of the current
1568 target, this will always produce an unrelocated value. */
1cf3db46 1569 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1570 sym_addr,
1571 tmp_bfd_target);
1572
2f4950cd
AC
1573 /* We're done with both the temporary bfd and target. Remember,
1574 closing the target closes the underlying bfd. */
1575 target_close (tmp_bfd_target, 0);
13437d4b
KB
1576
1577 if (sym_addr != 0)
1578 {
a6d9a66e 1579 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1580 xfree (interp_name);
13437d4b
KB
1581 return 1;
1582 }
1583
1584 /* For whatever reason we couldn't set a breakpoint in the dynamic
1585 linker. Warn and drop into the old code. */
1586 bkpt_at_symbol:
97ec2c2f 1587 xfree (interp_name);
82d03102
PG
1588 warning (_("Unable to find dynamic linker breakpoint function.\n"
1589 "GDB will be unable to debug shared library initializers\n"
1590 "and track explicitly loaded dynamic code."));
13437d4b 1591 }
13437d4b 1592
e499d0f1
DJ
1593 /* Scan through the lists of symbols, trying to look up the symbol and
1594 set a breakpoint there. Terminate loop when we/if we succeed. */
1595
1596 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1597 {
1598 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1599 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1600 {
de64a9ac
JM
1601 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1602 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1603 sym_addr,
1604 &current_target);
1605 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1606 return 1;
1607 }
1608 }
13437d4b 1609
c6490bf2 1610 if (!current_inferior ()->attach_flag)
13437d4b 1611 {
c6490bf2 1612 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1613 {
c6490bf2
KB
1614 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1615 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1616 {
1617 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1618 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1619 sym_addr,
1620 &current_target);
1621 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1622 return 1;
1623 }
13437d4b
KB
1624 }
1625 }
542c95c2 1626 return 0;
13437d4b
KB
1627}
1628
1629/*
1630
1631 LOCAL FUNCTION
1632
1633 special_symbol_handling -- additional shared library symbol handling
1634
1635 SYNOPSIS
1636
1637 void special_symbol_handling ()
1638
1639 DESCRIPTION
1640
1641 Once the symbols from a shared object have been loaded in the usual
1642 way, we are called to do any system specific symbol handling that
1643 is needed.
1644
ab31aa69 1645 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1646 linkers structures to find symbol definitions for "common" symbols
1647 and adding them to the minimal symbol table for the runtime common
1648 objfile.
1649
ab31aa69
KB
1650 However, for SVR4, there's nothing to do.
1651
13437d4b
KB
1652 */
1653
1654static void
1655svr4_special_symbol_handling (void)
1656{
13437d4b
KB
1657}
1658
09919ac2
JK
1659/* Read the ELF program headers from ABFD. Return the contents and
1660 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1661
09919ac2
JK
1662static gdb_byte *
1663read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1664{
09919ac2
JK
1665 Elf_Internal_Ehdr *ehdr;
1666 gdb_byte *buf;
e2a44558 1667
09919ac2 1668 ehdr = elf_elfheader (abfd);
b8040f19 1669
09919ac2
JK
1670 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1671 if (*phdrs_size == 0)
1672 return NULL;
1673
1674 buf = xmalloc (*phdrs_size);
1675 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1676 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1677 {
1678 xfree (buf);
1679 return NULL;
1680 }
1681
1682 return buf;
b8040f19
JK
1683}
1684
01c30d6e
JK
1685/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1686 exec_bfd. Otherwise return 0.
1687
1688 We relocate all of the sections by the same amount. This
b8040f19
JK
1689 behavior is mandated by recent editions of the System V ABI.
1690 According to the System V Application Binary Interface,
1691 Edition 4.1, page 5-5:
1692
1693 ... Though the system chooses virtual addresses for
1694 individual processes, it maintains the segments' relative
1695 positions. Because position-independent code uses relative
1696 addressesing between segments, the difference between
1697 virtual addresses in memory must match the difference
1698 between virtual addresses in the file. The difference
1699 between the virtual address of any segment in memory and
1700 the corresponding virtual address in the file is thus a
1701 single constant value for any one executable or shared
1702 object in a given process. This difference is the base
1703 address. One use of the base address is to relocate the
1704 memory image of the program during dynamic linking.
1705
1706 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1707 ABI and is left unspecified in some of the earlier editions.
1708
1709 Decide if the objfile needs to be relocated. As indicated above, we will
1710 only be here when execution is stopped. But during attachment PC can be at
1711 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1712 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1713 regcache_read_pc would point to the interpreter and not the main executable.
1714
1715 So, to summarize, relocations are necessary when the start address obtained
1716 from the executable is different from the address in auxv AT_ENTRY entry.
1717
1718 [ The astute reader will note that we also test to make sure that
1719 the executable in question has the DYNAMIC flag set. It is my
1720 opinion that this test is unnecessary (undesirable even). It
1721 was added to avoid inadvertent relocation of an executable
1722 whose e_type member in the ELF header is not ET_DYN. There may
1723 be a time in the future when it is desirable to do relocations
1724 on other types of files as well in which case this condition
1725 should either be removed or modified to accomodate the new file
1726 type. - Kevin, Nov 2000. ] */
b8040f19 1727
01c30d6e
JK
1728static int
1729svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1730{
41752192
JK
1731 /* ENTRY_POINT is a possible function descriptor - before
1732 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1733 CORE_ADDR entry_point, displacement;
b8040f19
JK
1734
1735 if (exec_bfd == NULL)
1736 return 0;
1737
09919ac2
JK
1738 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1739 being executed themselves and PIE (Position Independent Executable)
1740 executables are ET_DYN. */
1741
1742 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1743 return 0;
1744
1745 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1746 return 0;
1747
1748 displacement = entry_point - bfd_get_start_address (exec_bfd);
1749
1750 /* Verify the DISPLACEMENT candidate complies with the required page
1751 alignment. It is cheaper than the program headers comparison below. */
1752
1753 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1754 {
1755 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1756
1757 /* p_align of PT_LOAD segments does not specify any alignment but
1758 only congruency of addresses:
1759 p_offset % p_align == p_vaddr % p_align
1760 Kernel is free to load the executable with lower alignment. */
1761
1762 if ((displacement & (elf->minpagesize - 1)) != 0)
1763 return 0;
1764 }
1765
1766 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1767 comparing their program headers. If the program headers in the auxilliary
1768 vector do not match the program headers in the executable, then we are
1769 looking at a different file than the one used by the kernel - for
1770 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1771
1772 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1773 {
1774 /* Be optimistic and clear OK only if GDB was able to verify the headers
1775 really do not match. */
1776 int phdrs_size, phdrs2_size, ok = 1;
1777 gdb_byte *buf, *buf2;
0a1e94c7 1778 int arch_size;
09919ac2 1779
0a1e94c7 1780 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1781 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1782 if (buf != NULL && buf2 != NULL)
1783 {
1784 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1785
1786 /* We are dealing with three different addresses. EXEC_BFD
1787 represents current address in on-disk file. target memory content
1788 may be different from EXEC_BFD as the file may have been prelinked
1789 to a different address after the executable has been loaded.
1790 Moreover the address of placement in target memory can be
3e43a32a
MS
1791 different from what the program headers in target memory say -
1792 this is the goal of PIE.
0a1e94c7
JK
1793
1794 Detected DISPLACEMENT covers both the offsets of PIE placement and
1795 possible new prelink performed after start of the program. Here
1796 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1797 content offset for the verification purpose. */
1798
1799 if (phdrs_size != phdrs2_size
1800 || bfd_get_arch_size (exec_bfd) != arch_size)
1801 ok = 0;
3e43a32a
MS
1802 else if (arch_size == 32
1803 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1804 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1805 {
1806 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1807 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1808 CORE_ADDR displacement = 0;
1809 int i;
1810
1811 /* DISPLACEMENT could be found more easily by the difference of
1812 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1813 already have enough information to compute that displacement
1814 with what we've read. */
1815
1816 for (i = 0; i < ehdr2->e_phnum; i++)
1817 if (phdr2[i].p_type == PT_LOAD)
1818 {
1819 Elf32_External_Phdr *phdrp;
1820 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1821 CORE_ADDR vaddr, paddr;
1822 CORE_ADDR displacement_vaddr = 0;
1823 CORE_ADDR displacement_paddr = 0;
1824
1825 phdrp = &((Elf32_External_Phdr *) buf)[i];
1826 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1827 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1828
1829 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1830 byte_order);
1831 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1832
1833 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1834 byte_order);
1835 displacement_paddr = paddr - phdr2[i].p_paddr;
1836
1837 if (displacement_vaddr == displacement_paddr)
1838 displacement = displacement_vaddr;
1839
1840 break;
1841 }
1842
1843 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1844
1845 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1846 {
1847 Elf32_External_Phdr *phdrp;
1848 Elf32_External_Phdr *phdr2p;
1849 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1850 CORE_ADDR vaddr, paddr;
43b8e241 1851 asection *plt2_asect;
0a1e94c7
JK
1852
1853 phdrp = &((Elf32_External_Phdr *) buf)[i];
1854 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1855 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1856 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1857
1858 /* PT_GNU_STACK is an exception by being never relocated by
1859 prelink as its addresses are always zero. */
1860
1861 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1862 continue;
1863
1864 /* Check also other adjustment combinations - PR 11786. */
1865
3e43a32a
MS
1866 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1867 byte_order);
0a1e94c7
JK
1868 vaddr -= displacement;
1869 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1870
3e43a32a
MS
1871 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1872 byte_order);
0a1e94c7
JK
1873 paddr -= displacement;
1874 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1875
1876 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1877 continue;
1878
43b8e241
JK
1879 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1880 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1881 if (plt2_asect)
1882 {
1883 int content2;
1884 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1885 CORE_ADDR filesz;
1886
1887 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1888 & SEC_HAS_CONTENTS) != 0;
1889
1890 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1891 byte_order);
1892
1893 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1894 FILESZ is from the in-memory image. */
1895 if (content2)
1896 filesz += bfd_get_section_size (plt2_asect);
1897 else
1898 filesz -= bfd_get_section_size (plt2_asect);
1899
1900 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1901 filesz);
1902
1903 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1904 continue;
1905 }
1906
0a1e94c7
JK
1907 ok = 0;
1908 break;
1909 }
1910 }
3e43a32a
MS
1911 else if (arch_size == 64
1912 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1913 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1914 {
1915 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1916 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1917 CORE_ADDR displacement = 0;
1918 int i;
1919
1920 /* DISPLACEMENT could be found more easily by the difference of
1921 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1922 already have enough information to compute that displacement
1923 with what we've read. */
1924
1925 for (i = 0; i < ehdr2->e_phnum; i++)
1926 if (phdr2[i].p_type == PT_LOAD)
1927 {
1928 Elf64_External_Phdr *phdrp;
1929 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1930 CORE_ADDR vaddr, paddr;
1931 CORE_ADDR displacement_vaddr = 0;
1932 CORE_ADDR displacement_paddr = 0;
1933
1934 phdrp = &((Elf64_External_Phdr *) buf)[i];
1935 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1936 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1937
1938 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1939 byte_order);
1940 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1941
1942 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1943 byte_order);
1944 displacement_paddr = paddr - phdr2[i].p_paddr;
1945
1946 if (displacement_vaddr == displacement_paddr)
1947 displacement = displacement_vaddr;
1948
1949 break;
1950 }
1951
1952 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1953
1954 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1955 {
1956 Elf64_External_Phdr *phdrp;
1957 Elf64_External_Phdr *phdr2p;
1958 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1959 CORE_ADDR vaddr, paddr;
43b8e241 1960 asection *plt2_asect;
0a1e94c7
JK
1961
1962 phdrp = &((Elf64_External_Phdr *) buf)[i];
1963 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1964 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1965 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1966
1967 /* PT_GNU_STACK is an exception by being never relocated by
1968 prelink as its addresses are always zero. */
1969
1970 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1971 continue;
1972
1973 /* Check also other adjustment combinations - PR 11786. */
1974
3e43a32a
MS
1975 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1976 byte_order);
0a1e94c7
JK
1977 vaddr -= displacement;
1978 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1979
3e43a32a
MS
1980 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1981 byte_order);
0a1e94c7
JK
1982 paddr -= displacement;
1983 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1984
1985 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1986 continue;
1987
43b8e241
JK
1988 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1989 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1990 if (plt2_asect)
1991 {
1992 int content2;
1993 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1994 CORE_ADDR filesz;
1995
1996 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1997 & SEC_HAS_CONTENTS) != 0;
1998
1999 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2000 byte_order);
2001
2002 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2003 FILESZ is from the in-memory image. */
2004 if (content2)
2005 filesz += bfd_get_section_size (plt2_asect);
2006 else
2007 filesz -= bfd_get_section_size (plt2_asect);
2008
2009 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2010 filesz);
2011
2012 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2013 continue;
2014 }
2015
0a1e94c7
JK
2016 ok = 0;
2017 break;
2018 }
2019 }
2020 else
2021 ok = 0;
2022 }
09919ac2
JK
2023
2024 xfree (buf);
2025 xfree (buf2);
2026
2027 if (!ok)
2028 return 0;
2029 }
b8040f19 2030
ccf26247
JK
2031 if (info_verbose)
2032 {
2033 /* It can be printed repeatedly as there is no easy way to check
2034 the executable symbols/file has been already relocated to
2035 displacement. */
2036
2037 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2038 "displacement %s for \"%s\".\n"),
2039 paddress (target_gdbarch, displacement),
2040 bfd_get_filename (exec_bfd));
2041 }
2042
01c30d6e
JK
2043 *displacementp = displacement;
2044 return 1;
b8040f19
JK
2045}
2046
2047/* Relocate the main executable. This function should be called upon
2048 stopping the inferior process at the entry point to the program.
2049 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2050 different, the main executable is relocated by the proper amount. */
2051
2052static void
2053svr4_relocate_main_executable (void)
2054{
01c30d6e
JK
2055 CORE_ADDR displacement;
2056
4e5799b6
JK
2057 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2058 probably contains the offsets computed using the PIE displacement
2059 from the previous run, which of course are irrelevant for this run.
2060 So we need to determine the new PIE displacement and recompute the
2061 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2062 already contains pre-computed offsets.
01c30d6e 2063
4e5799b6 2064 If we cannot compute the PIE displacement, either:
01c30d6e 2065
4e5799b6
JK
2066 - The executable is not PIE.
2067
2068 - SYMFILE_OBJFILE does not match the executable started in the target.
2069 This can happen for main executable symbols loaded at the host while
2070 `ld.so --ld-args main-executable' is loaded in the target.
2071
2072 Then we leave the section offsets untouched and use them as is for
2073 this run. Either:
2074
2075 - These section offsets were properly reset earlier, and thus
2076 already contain the correct values. This can happen for instance
2077 when reconnecting via the remote protocol to a target that supports
2078 the `qOffsets' packet.
2079
2080 - The section offsets were not reset earlier, and the best we can
2081 hope is that the old offsets are still applicable to the new run.
2082 */
01c30d6e
JK
2083
2084 if (! svr4_exec_displacement (&displacement))
2085 return;
b8040f19 2086
01c30d6e
JK
2087 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2088 addresses. */
b8040f19
JK
2089
2090 if (symfile_objfile)
e2a44558 2091 {
e2a44558 2092 struct section_offsets *new_offsets;
b8040f19 2093 int i;
e2a44558 2094
b8040f19
JK
2095 new_offsets = alloca (symfile_objfile->num_sections
2096 * sizeof (*new_offsets));
e2a44558 2097
b8040f19
JK
2098 for (i = 0; i < symfile_objfile->num_sections; i++)
2099 new_offsets->offsets[i] = displacement;
e2a44558 2100
b8040f19 2101 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2102 }
51bee8e9
JK
2103 else if (exec_bfd)
2104 {
2105 asection *asect;
2106
2107 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2108 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2109 (bfd_section_vma (exec_bfd, asect)
2110 + displacement));
2111 }
e2a44558
KB
2112}
2113
13437d4b
KB
2114/*
2115
2116 GLOBAL FUNCTION
2117
2118 svr4_solib_create_inferior_hook -- shared library startup support
2119
2120 SYNOPSIS
2121
268a4a75 2122 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
2123
2124 DESCRIPTION
2125
2126 When gdb starts up the inferior, it nurses it along (through the
2127 shell) until it is ready to execute it's first instruction. At this
2128 point, this function gets called via expansion of the macro
2129 SOLIB_CREATE_INFERIOR_HOOK.
2130
2131 For SunOS executables, this first instruction is typically the
2132 one at "_start", or a similar text label, regardless of whether
2133 the executable is statically or dynamically linked. The runtime
2134 startup code takes care of dynamically linking in any shared
2135 libraries, once gdb allows the inferior to continue.
2136
2137 For SVR4 executables, this first instruction is either the first
2138 instruction in the dynamic linker (for dynamically linked
2139 executables) or the instruction at "start" for statically linked
2140 executables. For dynamically linked executables, the system
2141 first exec's /lib/libc.so.N, which contains the dynamic linker,
2142 and starts it running. The dynamic linker maps in any needed
2143 shared libraries, maps in the actual user executable, and then
2144 jumps to "start" in the user executable.
2145
2146 For both SunOS shared libraries, and SVR4 shared libraries, we
2147 can arrange to cooperate with the dynamic linker to discover the
2148 names of shared libraries that are dynamically linked, and the
2149 base addresses to which they are linked.
2150
2151 This function is responsible for discovering those names and
2152 addresses, and saving sufficient information about them to allow
2153 their symbols to be read at a later time.
2154
2155 FIXME
2156
2157 Between enable_break() and disable_break(), this code does not
2158 properly handle hitting breakpoints which the user might have
2159 set in the startup code or in the dynamic linker itself. Proper
2160 handling will probably have to wait until the implementation is
2161 changed to use the "breakpoint handler function" method.
2162
2163 Also, what if child has exit()ed? Must exit loop somehow.
2164 */
2165
e2a44558 2166static void
268a4a75 2167svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2168{
1cd337a5 2169#if defined(_SCO_DS)
d6b48e9c 2170 struct inferior *inf;
2020b7ab 2171 struct thread_info *tp;
1cd337a5 2172#endif /* defined(_SCO_DS) */
1a816a87
PA
2173 struct svr4_info *info;
2174
6c95b8df 2175 info = get_svr4_info ();
2020b7ab 2176
e2a44558 2177 /* Relocate the main executable if necessary. */
86e4bafc 2178 svr4_relocate_main_executable ();
e2a44558 2179
d5a921c9 2180 if (!svr4_have_link_map_offsets ())
513f5903 2181 return;
d5a921c9 2182
268a4a75 2183 if (!enable_break (info, from_tty))
542c95c2 2184 return;
13437d4b 2185
ab31aa69
KB
2186#if defined(_SCO_DS)
2187 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2188 special shared library breakpoints and the shared library breakpoint
2189 service routine.
2190
2191 Now run the target. It will eventually hit the breakpoint, at
2192 which point all of the libraries will have been mapped in and we
2193 can go groveling around in the dynamic linker structures to find
2194 out what we need to know about them. */
2195
d6b48e9c 2196 inf = current_inferior ();
2020b7ab
PA
2197 tp = inferior_thread ();
2198
13437d4b 2199 clear_proceed_status ();
16c381f0
JK
2200 inf->control.stop_soon = STOP_QUIETLY;
2201 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2202 do
2203 {
16c381f0 2204 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
ae123ec6 2205 wait_for_inferior (0);
13437d4b 2206 }
16c381f0
JK
2207 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2208 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2209#endif /* defined(_SCO_DS) */
13437d4b
KB
2210}
2211
2212static void
2213svr4_clear_solib (void)
2214{
6c95b8df
PA
2215 struct svr4_info *info;
2216
2217 info = get_svr4_info ();
2218 info->debug_base = 0;
2219 info->debug_loader_offset_p = 0;
2220 info->debug_loader_offset = 0;
2221 xfree (info->debug_loader_name);
2222 info->debug_loader_name = NULL;
13437d4b
KB
2223}
2224
2225static void
2226svr4_free_so (struct so_list *so)
2227{
b8c9b27d
KB
2228 xfree (so->lm_info->lm);
2229 xfree (so->lm_info);
13437d4b
KB
2230}
2231
6bb7be43
JB
2232
2233/* Clear any bits of ADDR that wouldn't fit in a target-format
2234 data pointer. "Data pointer" here refers to whatever sort of
2235 address the dynamic linker uses to manage its sections. At the
2236 moment, we don't support shared libraries on any processors where
2237 code and data pointers are different sizes.
2238
2239 This isn't really the right solution. What we really need here is
2240 a way to do arithmetic on CORE_ADDR values that respects the
2241 natural pointer/address correspondence. (For example, on the MIPS,
2242 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2243 sign-extend the value. There, simply truncating the bits above
819844ad 2244 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2245 be a new gdbarch method or something. */
2246static CORE_ADDR
2247svr4_truncate_ptr (CORE_ADDR addr)
2248{
1cf3db46 2249 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2250 /* We don't need to truncate anything, and the bit twiddling below
2251 will fail due to overflow problems. */
2252 return addr;
2253 else
1cf3db46 2254 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2255}
2256
2257
749499cb
KB
2258static void
2259svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2260 struct target_section *sec)
749499cb 2261{
cc10cae3
AO
2262 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2263 sec->bfd));
2264 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2265 sec->bfd));
749499cb 2266}
4b188b9f 2267\f
749499cb 2268
4b188b9f 2269/* Architecture-specific operations. */
6bb7be43 2270
4b188b9f
MK
2271/* Per-architecture data key. */
2272static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2273
4b188b9f 2274struct solib_svr4_ops
e5e2b9ff 2275{
4b188b9f
MK
2276 /* Return a description of the layout of `struct link_map'. */
2277 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2278};
e5e2b9ff 2279
4b188b9f 2280/* Return a default for the architecture-specific operations. */
e5e2b9ff 2281
4b188b9f
MK
2282static void *
2283solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2284{
4b188b9f 2285 struct solib_svr4_ops *ops;
e5e2b9ff 2286
4b188b9f 2287 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2288 ops->fetch_link_map_offsets = NULL;
4b188b9f 2289 return ops;
e5e2b9ff
KB
2290}
2291
4b188b9f 2292/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2293 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2294
21479ded 2295void
e5e2b9ff
KB
2296set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2297 struct link_map_offsets *(*flmo) (void))
21479ded 2298{
4b188b9f
MK
2299 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2300
2301 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2302
2303 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2304}
2305
4b188b9f
MK
2306/* Fetch a link_map_offsets structure using the architecture-specific
2307 `struct link_map_offsets' fetcher. */
1c4dcb57 2308
4b188b9f
MK
2309static struct link_map_offsets *
2310svr4_fetch_link_map_offsets (void)
21479ded 2311{
1cf3db46 2312 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2313
2314 gdb_assert (ops->fetch_link_map_offsets);
2315 return ops->fetch_link_map_offsets ();
21479ded
KB
2316}
2317
4b188b9f
MK
2318/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2319
2320static int
2321svr4_have_link_map_offsets (void)
2322{
1cf3db46 2323 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2324
4b188b9f
MK
2325 return (ops->fetch_link_map_offsets != NULL);
2326}
2327\f
2328
e4bbbda8
MK
2329/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2330 `struct r_debug' and a `struct link_map' that are binary compatible
2331 with the origional SVR4 implementation. */
2332
2333/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2334 for an ILP32 SVR4 system. */
2335
2336struct link_map_offsets *
2337svr4_ilp32_fetch_link_map_offsets (void)
2338{
2339 static struct link_map_offsets lmo;
2340 static struct link_map_offsets *lmp = NULL;
2341
2342 if (lmp == NULL)
2343 {
2344 lmp = &lmo;
2345
e4cd0d6a
MK
2346 lmo.r_version_offset = 0;
2347 lmo.r_version_size = 4;
e4bbbda8 2348 lmo.r_map_offset = 4;
7cd25cfc 2349 lmo.r_brk_offset = 8;
e4cd0d6a 2350 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2351
2352 /* Everything we need is in the first 20 bytes. */
2353 lmo.link_map_size = 20;
2354 lmo.l_addr_offset = 0;
e4bbbda8 2355 lmo.l_name_offset = 4;
cc10cae3 2356 lmo.l_ld_offset = 8;
e4bbbda8 2357 lmo.l_next_offset = 12;
e4bbbda8 2358 lmo.l_prev_offset = 16;
e4bbbda8
MK
2359 }
2360
2361 return lmp;
2362}
2363
2364/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2365 for an LP64 SVR4 system. */
2366
2367struct link_map_offsets *
2368svr4_lp64_fetch_link_map_offsets (void)
2369{
2370 static struct link_map_offsets lmo;
2371 static struct link_map_offsets *lmp = NULL;
2372
2373 if (lmp == NULL)
2374 {
2375 lmp = &lmo;
2376
e4cd0d6a
MK
2377 lmo.r_version_offset = 0;
2378 lmo.r_version_size = 4;
e4bbbda8 2379 lmo.r_map_offset = 8;
7cd25cfc 2380 lmo.r_brk_offset = 16;
e4cd0d6a 2381 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2382
2383 /* Everything we need is in the first 40 bytes. */
2384 lmo.link_map_size = 40;
2385 lmo.l_addr_offset = 0;
e4bbbda8 2386 lmo.l_name_offset = 8;
cc10cae3 2387 lmo.l_ld_offset = 16;
e4bbbda8 2388 lmo.l_next_offset = 24;
e4bbbda8 2389 lmo.l_prev_offset = 32;
e4bbbda8
MK
2390 }
2391
2392 return lmp;
2393}
2394\f
2395
7d522c90 2396struct target_so_ops svr4_so_ops;
13437d4b 2397
3a40aaa0
UW
2398/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2399 different rule for symbol lookup. The lookup begins here in the DSO, not in
2400 the main executable. */
2401
2402static struct symbol *
2403elf_lookup_lib_symbol (const struct objfile *objfile,
2404 const char *name,
21b556f4 2405 const domain_enum domain)
3a40aaa0 2406{
61f0d762
JK
2407 bfd *abfd;
2408
2409 if (objfile == symfile_objfile)
2410 abfd = exec_bfd;
2411 else
2412 {
2413 /* OBJFILE should have been passed as the non-debug one. */
2414 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2415
2416 abfd = objfile->obfd;
2417 }
2418
2419 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2420 return NULL;
2421
94af9270 2422 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2423}
2424
a78f21af
AC
2425extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2426
13437d4b
KB
2427void
2428_initialize_svr4_solib (void)
2429{
4b188b9f 2430 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2431 solib_svr4_pspace_data
2432 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2433
749499cb 2434 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2435 svr4_so_ops.free_so = svr4_free_so;
2436 svr4_so_ops.clear_solib = svr4_clear_solib;
2437 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2438 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2439 svr4_so_ops.current_sos = svr4_current_sos;
2440 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2441 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2442 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2443 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2444 svr4_so_ops.same = svr4_same;
de18c1d8 2445 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2446}