]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
* solib-svr4.c (legacy_svr4_fetch_link_map_offsets_hook): Remove.
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
13437d4b
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 20
13437d4b
KB
21#include "defs.h"
22
13437d4b 23#include "elf/external.h"
21479ded 24#include "elf/common.h"
f7856c8f 25#include "elf/mips.h"
13437d4b
KB
26
27#include "symtab.h"
28#include "bfd.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcore.h"
13437d4b 32#include "target.h"
13437d4b 33#include "inferior.h"
13437d4b 34
4b188b9f
MK
35#include "gdb_assert.h"
36
13437d4b 37#include "solist.h"
bba93f6c 38#include "solib.h"
13437d4b
KB
39#include "solib-svr4.h"
40
2f4950cd 41#include "bfd-target.h"
cc10cae3 42#include "elf-bfd.h"
2f4950cd 43#include "exec.h"
8d4e36ba 44#include "auxv.h"
2f4950cd 45
e5e2b9ff 46static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 47static int svr4_have_link_map_offsets (void);
1c4dcb57 48
13437d4b
KB
49/* Link map info to include in an allocated so_list entry */
50
51struct lm_info
52 {
53 /* Pointer to copy of link map from inferior. The type is char *
54 rather than void *, so that we may use byte offsets to find the
55 various fields without the need for a cast. */
4066fc10 56 gdb_byte *lm;
cc10cae3
AO
57
58 /* Amount by which addresses in the binary should be relocated to
59 match the inferior. This could most often be taken directly
60 from lm, but when prelinking is involved and the prelink base
61 address changes, we may need a different offset, we want to
62 warn about the difference and compute it only once. */
63 CORE_ADDR l_addr;
13437d4b
KB
64 };
65
66/* On SVR4 systems, a list of symbols in the dynamic linker where
67 GDB can try to place a breakpoint to monitor shared library
68 events.
69
70 If none of these symbols are found, or other errors occur, then
71 SVR4 systems will fall back to using a symbol as the "startup
72 mapping complete" breakpoint address. */
73
13437d4b
KB
74static char *solib_break_names[] =
75{
76 "r_debug_state",
77 "_r_debug_state",
78 "_dl_debug_state",
79 "rtld_db_dlactivity",
1f72e589 80 "_rtld_debug_state",
4c0122c8 81
13437d4b
KB
82 NULL
83};
13437d4b
KB
84
85#define BKPT_AT_SYMBOL 1
86
ab31aa69 87#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
88static char *bkpt_names[] =
89{
90#ifdef SOLIB_BKPT_NAME
91 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
92#endif
93 "_start",
ad3dcc5c 94 "__start",
13437d4b
KB
95 "main",
96 NULL
97};
98#endif
99
13437d4b
KB
100static char *main_name_list[] =
101{
102 "main_$main",
103 NULL
104};
105
13437d4b
KB
106/* link map access functions */
107
108static CORE_ADDR
cc10cae3 109LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 110{
4b188b9f 111 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 112
cfaefc65
AS
113 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
114 builtin_type_void_data_ptr);
13437d4b
KB
115}
116
cc10cae3
AO
117static int
118HAS_LM_DYNAMIC_FROM_LINK_MAP ()
119{
120 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
121
cfaefc65 122 return lmo->l_ld_offset >= 0;
cc10cae3
AO
123}
124
125static CORE_ADDR
126LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
127{
128 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
129
cfaefc65
AS
130 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
131 builtin_type_void_data_ptr);
cc10cae3
AO
132}
133
134static CORE_ADDR
135LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
136{
137 if (so->lm_info->l_addr == (CORE_ADDR)-1)
138 {
139 struct bfd_section *dyninfo_sect;
140 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
141
142 l_addr = LM_ADDR_FROM_LINK_MAP (so);
143
144 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
145 goto set_addr;
146
147 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
148
149 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
150 if (dyninfo_sect == NULL)
151 goto set_addr;
152
153 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
154
155 if (dynaddr + l_addr != l_dynaddr)
156 {
cc10cae3
AO
157 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
158 {
159 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
160 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
161 int i;
162
163 align = 1;
164
165 for (i = 0; i < ehdr->e_phnum; i++)
166 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
167 align = phdr[i].p_align;
168 }
169
170 /* Turn it into a mask. */
171 align--;
172
173 /* If the changes match the alignment requirements, we
174 assume we're using a core file that was generated by the
175 same binary, just prelinked with a different base offset.
176 If it doesn't match, we may have a different binary, the
177 same binary with the dynamic table loaded at an unrelated
178 location, or anything, really. To avoid regressions,
179 don't adjust the base offset in the latter case, although
180 odds are that, if things really changed, debugging won't
181 quite work. */
f1e55806 182 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
183 {
184 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
185
186 warning (_(".dynamic section for \"%s\" "
187 "is not at the expected address"), so->so_name);
cc10cae3
AO
188 warning (_("difference appears to be caused by prelink, "
189 "adjusting expectations"));
190 }
79d4c408
DJ
191 else
192 warning (_(".dynamic section for \"%s\" "
193 "is not at the expected address "
194 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
195 }
196
197 set_addr:
198 so->lm_info->l_addr = l_addr;
199 }
200
201 return so->lm_info->l_addr;
202}
203
13437d4b
KB
204static CORE_ADDR
205LM_NEXT (struct so_list *so)
206{
4b188b9f 207 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 208
cfaefc65
AS
209 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
210 builtin_type_void_data_ptr);
13437d4b
KB
211}
212
213static CORE_ADDR
214LM_NAME (struct so_list *so)
215{
4b188b9f 216 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 217
cfaefc65
AS
218 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
219 builtin_type_void_data_ptr);
13437d4b
KB
220}
221
13437d4b
KB
222static int
223IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
224{
4b188b9f 225 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 226
e499d0f1
DJ
227 /* Assume that everything is a library if the dynamic loader was loaded
228 late by a static executable. */
229 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
230 return 0;
231
cfaefc65
AS
232 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
233 builtin_type_void_data_ptr) == 0;
13437d4b
KB
234}
235
13437d4b 236static CORE_ADDR debug_base; /* Base of dynamic linker structures */
13437d4b 237
34439770
DJ
238/* Validity flag for debug_loader_offset. */
239static int debug_loader_offset_p;
240
241/* Load address for the dynamic linker, inferred. */
242static CORE_ADDR debug_loader_offset;
243
244/* Name of the dynamic linker, valid if debug_loader_offset_p. */
245static char *debug_loader_name;
246
13437d4b
KB
247/* Local function prototypes */
248
249static int match_main (char *);
250
2bbe3cc1 251static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
252
253/*
254
255 LOCAL FUNCTION
256
257 bfd_lookup_symbol -- lookup the value for a specific symbol
258
259 SYNOPSIS
260
2bbe3cc1 261 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
262
263 DESCRIPTION
264
265 An expensive way to lookup the value of a single symbol for
266 bfd's that are only temporary anyway. This is used by the
267 shared library support to find the address of the debugger
2bbe3cc1 268 notification routine in the shared library.
13437d4b 269
2bbe3cc1
DJ
270 The returned symbol may be in a code or data section; functions
271 will normally be in a code section, but may be in a data section
272 if this architecture uses function descriptors.
87f84c9d 273
13437d4b
KB
274 Note that 0 is specifically allowed as an error return (no
275 such symbol).
276 */
277
278static CORE_ADDR
2bbe3cc1 279bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 280{
435b259c 281 long storage_needed;
13437d4b
KB
282 asymbol *sym;
283 asymbol **symbol_table;
284 unsigned int number_of_symbols;
285 unsigned int i;
286 struct cleanup *back_to;
287 CORE_ADDR symaddr = 0;
288
289 storage_needed = bfd_get_symtab_upper_bound (abfd);
290
291 if (storage_needed > 0)
292 {
293 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 294 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
295 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
296
297 for (i = 0; i < number_of_symbols; i++)
298 {
299 sym = *symbol_table++;
6314a349 300 if (strcmp (sym->name, symname) == 0
2bbe3cc1 301 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 302 {
2bbe3cc1 303 /* BFD symbols are section relative. */
13437d4b
KB
304 symaddr = sym->value + sym->section->vma;
305 break;
306 }
307 }
308 do_cleanups (back_to);
309 }
310
311 if (symaddr)
312 return symaddr;
313
314 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
315 have to check the dynamic string table too. */
316
317 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
318
319 if (storage_needed > 0)
320 {
321 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 322 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
323 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
324
325 for (i = 0; i < number_of_symbols; i++)
326 {
327 sym = *symbol_table++;
87f84c9d 328
6314a349 329 if (strcmp (sym->name, symname) == 0
2bbe3cc1 330 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 331 {
2bbe3cc1 332 /* BFD symbols are section relative. */
13437d4b
KB
333 symaddr = sym->value + sym->section->vma;
334 break;
335 }
336 }
337 do_cleanups (back_to);
338 }
339
340 return symaddr;
341}
342
3a40aaa0
UW
343/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
344 returned and the corresponding PTR is set. */
345
346static int
347scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
348{
349 int arch_size, step, sect_size;
350 long dyn_tag;
351 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 352 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
353 Elf32_External_Dyn *x_dynp_32;
354 Elf64_External_Dyn *x_dynp_64;
355 struct bfd_section *sect;
356
357 if (abfd == NULL)
358 return 0;
359 arch_size = bfd_get_arch_size (abfd);
360 if (arch_size == -1)
361 return 0;
362
363 /* Find the start address of the .dynamic section. */
364 sect = bfd_get_section_by_name (abfd, ".dynamic");
365 if (sect == NULL)
366 return 0;
367 dyn_addr = bfd_section_vma (abfd, sect);
368
65728c26
DJ
369 /* Read in .dynamic from the BFD. We will get the actual value
370 from memory later. */
3a40aaa0 371 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
372 buf = bufstart = alloca (sect_size);
373 if (!bfd_get_section_contents (abfd, sect,
374 buf, 0, sect_size))
375 return 0;
3a40aaa0
UW
376
377 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
378 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
379 : sizeof (Elf64_External_Dyn);
380 for (bufend = buf + sect_size;
381 buf < bufend;
382 buf += step)
383 {
384 if (arch_size == 32)
385 {
386 x_dynp_32 = (Elf32_External_Dyn *) buf;
387 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
388 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
389 }
65728c26 390 else
3a40aaa0
UW
391 {
392 x_dynp_64 = (Elf64_External_Dyn *) buf;
393 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
394 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
395 }
396 if (dyn_tag == DT_NULL)
397 return 0;
398 if (dyn_tag == dyntag)
399 {
65728c26
DJ
400 /* If requested, try to read the runtime value of this .dynamic
401 entry. */
3a40aaa0 402 if (ptr)
65728c26
DJ
403 {
404 gdb_byte ptr_buf[8];
405 CORE_ADDR ptr_addr;
406
407 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
408 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
409 dyn_ptr = extract_typed_address (ptr_buf,
410 builtin_type_void_data_ptr);
411 *ptr = dyn_ptr;
412 }
413 return 1;
3a40aaa0
UW
414 }
415 }
416
417 return 0;
418}
419
420
13437d4b
KB
421/*
422
423 LOCAL FUNCTION
424
425 elf_locate_base -- locate the base address of dynamic linker structs
426 for SVR4 elf targets.
427
428 SYNOPSIS
429
430 CORE_ADDR elf_locate_base (void)
431
432 DESCRIPTION
433
434 For SVR4 elf targets the address of the dynamic linker's runtime
435 structure is contained within the dynamic info section in the
436 executable file. The dynamic section is also mapped into the
437 inferior address space. Because the runtime loader fills in the
438 real address before starting the inferior, we have to read in the
439 dynamic info section from the inferior address space.
440 If there are any errors while trying to find the address, we
441 silently return 0, otherwise the found address is returned.
442
443 */
444
445static CORE_ADDR
446elf_locate_base (void)
447{
3a40aaa0
UW
448 struct minimal_symbol *msymbol;
449 CORE_ADDR dyn_ptr;
13437d4b 450
65728c26
DJ
451 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
452 instead of DT_DEBUG, although they sometimes contain an unused
453 DT_DEBUG. */
3a40aaa0
UW
454 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
455 {
456 gdb_byte *pbuf;
457 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
458 pbuf = alloca (pbuf_size);
459 /* DT_MIPS_RLD_MAP contains a pointer to the address
460 of the dynamic link structure. */
461 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 462 return 0;
3a40aaa0 463 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
e499d0f1
DJ
464 }
465
65728c26
DJ
466 /* Find DT_DEBUG. */
467 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
468 return dyn_ptr;
469
3a40aaa0
UW
470 /* This may be a static executable. Look for the symbol
471 conventionally named _r_debug, as a last resort. */
472 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
473 if (msymbol != NULL)
474 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
475
476 /* DT_DEBUG entry not found. */
477 return 0;
478}
479
13437d4b
KB
480/*
481
482 LOCAL FUNCTION
483
484 locate_base -- locate the base address of dynamic linker structs
485
486 SYNOPSIS
487
488 CORE_ADDR locate_base (void)
489
490 DESCRIPTION
491
492 For both the SunOS and SVR4 shared library implementations, if the
493 inferior executable has been linked dynamically, there is a single
494 address somewhere in the inferior's data space which is the key to
495 locating all of the dynamic linker's runtime structures. This
496 address is the value of the debug base symbol. The job of this
497 function is to find and return that address, or to return 0 if there
498 is no such address (the executable is statically linked for example).
499
500 For SunOS, the job is almost trivial, since the dynamic linker and
501 all of it's structures are statically linked to the executable at
502 link time. Thus the symbol for the address we are looking for has
503 already been added to the minimal symbol table for the executable's
504 objfile at the time the symbol file's symbols were read, and all we
505 have to do is look it up there. Note that we explicitly do NOT want
506 to find the copies in the shared library.
507
508 The SVR4 version is a bit more complicated because the address
509 is contained somewhere in the dynamic info section. We have to go
510 to a lot more work to discover the address of the debug base symbol.
511 Because of this complexity, we cache the value we find and return that
512 value on subsequent invocations. Note there is no copy in the
513 executable symbol tables.
514
515 */
516
517static CORE_ADDR
518locate_base (void)
519{
13437d4b
KB
520 /* Check to see if we have a currently valid address, and if so, avoid
521 doing all this work again and just return the cached address. If
522 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
523 section for ELF executables. There's no point in doing any of this
524 though if we don't have some link map offsets to work with. */
13437d4b 525
d5a921c9 526 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
527 {
528 if (exec_bfd != NULL
529 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
530 debug_base = elf_locate_base ();
13437d4b
KB
531 }
532 return (debug_base);
13437d4b
KB
533}
534
e4cd0d6a
MK
535/* Find the first element in the inferior's dynamic link map, and
536 return its address in the inferior.
13437d4b 537
e4cd0d6a
MK
538 FIXME: Perhaps we should validate the info somehow, perhaps by
539 checking r_version for a known version number, or r_state for
540 RT_CONSISTENT. */
13437d4b
KB
541
542static CORE_ADDR
e4cd0d6a 543solib_svr4_r_map (void)
13437d4b 544{
4b188b9f 545 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 546
e4cd0d6a
MK
547 return read_memory_typed_address (debug_base + lmo->r_map_offset,
548 builtin_type_void_data_ptr);
549}
13437d4b 550
e4cd0d6a
MK
551/* Find the link map for the dynamic linker (if it is not in the
552 normal list of loaded shared objects). */
13437d4b 553
e4cd0d6a
MK
554static CORE_ADDR
555solib_svr4_r_ldsomap (void)
556{
557 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
558 ULONGEST version;
13437d4b 559
e4cd0d6a
MK
560 /* Check version, and return zero if `struct r_debug' doesn't have
561 the r_ldsomap member. */
562 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
563 lmo->r_version_size);
564 if (version < 2 || lmo->r_ldsomap_offset == -1)
565 return 0;
13437d4b 566
e4cd0d6a
MK
567 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
568 builtin_type_void_data_ptr);
13437d4b
KB
569}
570
13437d4b
KB
571/*
572
573 LOCAL FUNCTION
574
575 open_symbol_file_object
576
577 SYNOPSIS
578
579 void open_symbol_file_object (void *from_tty)
580
581 DESCRIPTION
582
583 If no open symbol file, attempt to locate and open the main symbol
584 file. On SVR4 systems, this is the first link map entry. If its
585 name is here, we can open it. Useful when attaching to a process
586 without first loading its symbol file.
587
588 If FROM_TTYP dereferences to a non-zero integer, allow messages to
589 be printed. This parameter is a pointer rather than an int because
590 open_symbol_file_object() is called via catch_errors() and
591 catch_errors() requires a pointer argument. */
592
593static int
594open_symbol_file_object (void *from_ttyp)
595{
596 CORE_ADDR lm, l_name;
597 char *filename;
598 int errcode;
599 int from_tty = *(int *)from_ttyp;
4b188b9f 600 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cfaefc65
AS
601 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
602 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 603 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
604
605 if (symfile_objfile)
606 if (!query ("Attempt to reload symbols from process? "))
607 return 0;
608
609 if ((debug_base = locate_base ()) == 0)
610 return 0; /* failed somehow... */
611
612 /* First link map member should be the executable. */
e4cd0d6a
MK
613 lm = solib_svr4_r_map ();
614 if (lm == 0)
13437d4b
KB
615 return 0; /* failed somehow... */
616
617 /* Read address of name from target memory to GDB. */
cfaefc65 618 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 619
cfaefc65
AS
620 /* Convert the address to host format. */
621 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
13437d4b
KB
622
623 /* Free l_name_buf. */
624 do_cleanups (cleanups);
625
626 if (l_name == 0)
627 return 0; /* No filename. */
628
629 /* Now fetch the filename from target memory. */
630 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 631 make_cleanup (xfree, filename);
13437d4b
KB
632
633 if (errcode)
634 {
8a3fe4f8 635 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
636 safe_strerror (errcode));
637 return 0;
638 }
639
13437d4b 640 /* Have a pathname: read the symbol file. */
1adeb98a 641 symbol_file_add_main (filename, from_tty);
13437d4b
KB
642
643 return 1;
644}
13437d4b 645
34439770
DJ
646/* If no shared library information is available from the dynamic
647 linker, build a fallback list from other sources. */
648
649static struct so_list *
650svr4_default_sos (void)
651{
652 struct so_list *head = NULL;
653 struct so_list **link_ptr = &head;
654
655 if (debug_loader_offset_p)
656 {
657 struct so_list *new = XZALLOC (struct so_list);
658
659 new->lm_info = xmalloc (sizeof (struct lm_info));
660
661 /* Nothing will ever check the cached copy of the link
662 map if we set l_addr. */
663 new->lm_info->l_addr = debug_loader_offset;
664 new->lm_info->lm = NULL;
665
666 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
667 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
668 strcpy (new->so_original_name, new->so_name);
669
670 *link_ptr = new;
671 link_ptr = &new->next;
672 }
673
674 return head;
675}
676
13437d4b
KB
677/* LOCAL FUNCTION
678
679 current_sos -- build a list of currently loaded shared objects
680
681 SYNOPSIS
682
683 struct so_list *current_sos ()
684
685 DESCRIPTION
686
687 Build a list of `struct so_list' objects describing the shared
688 objects currently loaded in the inferior. This list does not
689 include an entry for the main executable file.
690
691 Note that we only gather information directly available from the
692 inferior --- we don't examine any of the shared library files
693 themselves. The declaration of `struct so_list' says which fields
694 we provide values for. */
695
696static struct so_list *
697svr4_current_sos (void)
698{
699 CORE_ADDR lm;
700 struct so_list *head = 0;
701 struct so_list **link_ptr = &head;
e4cd0d6a 702 CORE_ADDR ldsomap = 0;
13437d4b
KB
703
704 /* Make sure we've looked up the inferior's dynamic linker's base
705 structure. */
706 if (! debug_base)
707 {
708 debug_base = locate_base ();
709
710 /* If we can't find the dynamic linker's base structure, this
711 must not be a dynamically linked executable. Hmm. */
712 if (! debug_base)
34439770 713 return svr4_default_sos ();
13437d4b
KB
714 }
715
716 /* Walk the inferior's link map list, and build our list of
717 `struct so_list' nodes. */
e4cd0d6a 718 lm = solib_svr4_r_map ();
34439770 719
13437d4b
KB
720 while (lm)
721 {
4b188b9f 722 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 723 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 724 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 725
13437d4b 726 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 727 make_cleanup (xfree, new->lm_info);
13437d4b 728
831004b7 729 new->lm_info->l_addr = (CORE_ADDR)-1;
f4456994 730 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 731 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
732
733 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
734
735 lm = LM_NEXT (new);
736
737 /* For SVR4 versions, the first entry in the link map is for the
738 inferior executable, so we must ignore it. For some versions of
739 SVR4, it has no name. For others (Solaris 2.3 for example), it
740 does have a name, so we can no longer use a missing name to
741 decide when to ignore it. */
e4cd0d6a 742 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
743 free_so (new);
744 else
745 {
746 int errcode;
747 char *buffer;
748
749 /* Extract this shared object's name. */
750 target_read_string (LM_NAME (new), &buffer,
751 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
752 if (errcode != 0)
8a3fe4f8
AC
753 warning (_("Can't read pathname for load map: %s."),
754 safe_strerror (errcode));
13437d4b
KB
755 else
756 {
757 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
758 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
759 strcpy (new->so_original_name, new->so_name);
760 }
ea5bf0a1 761 xfree (buffer);
13437d4b
KB
762
763 /* If this entry has no name, or its name matches the name
764 for the main executable, don't include it in the list. */
765 if (! new->so_name[0]
766 || match_main (new->so_name))
767 free_so (new);
768 else
769 {
770 new->next = 0;
771 *link_ptr = new;
772 link_ptr = &new->next;
773 }
774 }
775
e4cd0d6a
MK
776 /* On Solaris, the dynamic linker is not in the normal list of
777 shared objects, so make sure we pick it up too. Having
778 symbol information for the dynamic linker is quite crucial
779 for skipping dynamic linker resolver code. */
780 if (lm == 0 && ldsomap == 0)
781 lm = ldsomap = solib_svr4_r_ldsomap ();
782
13437d4b
KB
783 discard_cleanups (old_chain);
784 }
785
34439770
DJ
786 if (head == NULL)
787 return svr4_default_sos ();
788
13437d4b
KB
789 return head;
790}
791
bc4a16ae
EZ
792/* Get the address of the link_map for a given OBJFILE. Loop through
793 the link maps, and return the address of the one corresponding to
794 the given objfile. Note that this function takes into account that
795 objfile can be the main executable, not just a shared library. The
796 main executable has always an empty name field in the linkmap. */
797
798CORE_ADDR
799svr4_fetch_objfile_link_map (struct objfile *objfile)
800{
801 CORE_ADDR lm;
802
803 if ((debug_base = locate_base ()) == 0)
804 return 0; /* failed somehow... */
805
806 /* Position ourselves on the first link map. */
e4cd0d6a 807 lm = solib_svr4_r_map ();
bc4a16ae
EZ
808 while (lm)
809 {
810 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 811 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
812 int errcode;
813 char *buffer;
814 struct lm_info objfile_lm_info;
815 struct cleanup *old_chain;
816 CORE_ADDR name_address;
cfaefc65
AS
817 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
818 gdb_byte *l_name_buf = xmalloc (l_name_size);
bc4a16ae
EZ
819 old_chain = make_cleanup (xfree, l_name_buf);
820
821 /* Set up the buffer to contain the portion of the link_map
822 structure that gdb cares about. Note that this is not the
823 whole link_map structure. */
f4456994 824 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 825 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
826
827 /* Read the link map into our internal structure. */
828 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
829
830 /* Read address of name from target memory to GDB. */
cfaefc65 831 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
bc4a16ae 832
cfaefc65
AS
833 /* Extract this object's name. */
834 name_address = extract_typed_address (l_name_buf,
835 builtin_type_void_data_ptr);
bc4a16ae
EZ
836 target_read_string (name_address, &buffer,
837 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
838 make_cleanup (xfree, buffer);
839 if (errcode != 0)
8a3fe4f8
AC
840 warning (_("Can't read pathname for load map: %s."),
841 safe_strerror (errcode));
bc4a16ae
EZ
842 else
843 {
844 /* Is this the linkmap for the file we want? */
845 /* If the file is not a shared library and has no name,
846 we are sure it is the main executable, so we return that. */
f52df7d9
MS
847
848 if (buffer
849 && ((strcmp (buffer, objfile->name) == 0)
850 || (!(objfile->flags & OBJF_SHARED)
851 && (strcmp (buffer, "") == 0))))
bc4a16ae
EZ
852 {
853 do_cleanups (old_chain);
854 return lm;
855 }
856 }
cfaefc65
AS
857 /* Not the file we wanted, continue checking. */
858 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
859 builtin_type_void_data_ptr);
bc4a16ae
EZ
860 do_cleanups (old_chain);
861 }
862 return 0;
863}
13437d4b
KB
864
865/* On some systems, the only way to recognize the link map entry for
866 the main executable file is by looking at its name. Return
867 non-zero iff SONAME matches one of the known main executable names. */
868
869static int
870match_main (char *soname)
871{
872 char **mainp;
873
874 for (mainp = main_name_list; *mainp != NULL; mainp++)
875 {
876 if (strcmp (soname, *mainp) == 0)
877 return (1);
878 }
879
880 return (0);
881}
882
13437d4b
KB
883/* Return 1 if PC lies in the dynamic symbol resolution code of the
884 SVR4 run time loader. */
13437d4b
KB
885static CORE_ADDR interp_text_sect_low;
886static CORE_ADDR interp_text_sect_high;
887static CORE_ADDR interp_plt_sect_low;
888static CORE_ADDR interp_plt_sect_high;
889
7d522c90 890int
d7fa2ae2 891svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
892{
893 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
894 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
895 || in_plt_section (pc, NULL));
896}
13437d4b 897
2f4950cd
AC
898/* Given an executable's ABFD and target, compute the entry-point
899 address. */
900
901static CORE_ADDR
902exec_entry_point (struct bfd *abfd, struct target_ops *targ)
903{
904 /* KevinB wrote ... for most targets, the address returned by
905 bfd_get_start_address() is the entry point for the start
906 function. But, for some targets, bfd_get_start_address() returns
907 the address of a function descriptor from which the entry point
908 address may be extracted. This address is extracted by
909 gdbarch_convert_from_func_ptr_addr(). The method
910 gdbarch_convert_from_func_ptr_addr() is the merely the identify
911 function for targets which don't use function descriptors. */
912 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
913 bfd_get_start_address (abfd),
914 targ);
915}
13437d4b
KB
916
917/*
918
919 LOCAL FUNCTION
920
921 enable_break -- arrange for dynamic linker to hit breakpoint
922
923 SYNOPSIS
924
925 int enable_break (void)
926
927 DESCRIPTION
928
929 Both the SunOS and the SVR4 dynamic linkers have, as part of their
930 debugger interface, support for arranging for the inferior to hit
931 a breakpoint after mapping in the shared libraries. This function
932 enables that breakpoint.
933
934 For SunOS, there is a special flag location (in_debugger) which we
935 set to 1. When the dynamic linker sees this flag set, it will set
936 a breakpoint at a location known only to itself, after saving the
937 original contents of that place and the breakpoint address itself,
938 in it's own internal structures. When we resume the inferior, it
939 will eventually take a SIGTRAP when it runs into the breakpoint.
940 We handle this (in a different place) by restoring the contents of
941 the breakpointed location (which is only known after it stops),
942 chasing around to locate the shared libraries that have been
943 loaded, then resuming.
944
945 For SVR4, the debugger interface structure contains a member (r_brk)
946 which is statically initialized at the time the shared library is
947 built, to the offset of a function (_r_debug_state) which is guaran-
948 teed to be called once before mapping in a library, and again when
949 the mapping is complete. At the time we are examining this member,
950 it contains only the unrelocated offset of the function, so we have
951 to do our own relocation. Later, when the dynamic linker actually
952 runs, it relocates r_brk to be the actual address of _r_debug_state().
953
954 The debugger interface structure also contains an enumeration which
955 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
956 depending upon whether or not the library is being mapped or unmapped,
957 and then set to RT_CONSISTENT after the library is mapped/unmapped.
958 */
959
960static int
961enable_break (void)
962{
13437d4b
KB
963#ifdef BKPT_AT_SYMBOL
964
965 struct minimal_symbol *msymbol;
966 char **bkpt_namep;
967 asection *interp_sect;
968
969 /* First, remove all the solib event breakpoints. Their addresses
970 may have changed since the last time we ran the program. */
971 remove_solib_event_breakpoints ();
972
13437d4b
KB
973 interp_text_sect_low = interp_text_sect_high = 0;
974 interp_plt_sect_low = interp_plt_sect_high = 0;
975
976 /* Find the .interp section; if not found, warn the user and drop
977 into the old breakpoint at symbol code. */
978 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
979 if (interp_sect)
980 {
981 unsigned int interp_sect_size;
982 char *buf;
8ad2fcde
KB
983 CORE_ADDR load_addr = 0;
984 int load_addr_found = 0;
2ec9a4f8 985 int loader_found_in_list = 0;
f8766ec1 986 struct so_list *so;
e4f7b8c8 987 bfd *tmp_bfd = NULL;
2f4950cd 988 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
989 int tmp_fd = -1;
990 char *tmp_pathname = NULL;
13437d4b
KB
991 CORE_ADDR sym_addr = 0;
992
993 /* Read the contents of the .interp section into a local buffer;
994 the contents specify the dynamic linker this program uses. */
995 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
996 buf = alloca (interp_sect_size);
997 bfd_get_section_contents (exec_bfd, interp_sect,
998 buf, 0, interp_sect_size);
999
1000 /* Now we need to figure out where the dynamic linker was
1001 loaded so that we can load its symbols and place a breakpoint
1002 in the dynamic linker itself.
1003
1004 This address is stored on the stack. However, I've been unable
1005 to find any magic formula to find it for Solaris (appears to
1006 be trivial on GNU/Linux). Therefore, we have to try an alternate
1007 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1008
34439770 1009 tmp_fd = solib_open (buf, &tmp_pathname);
e4f7b8c8 1010 if (tmp_fd >= 0)
9f76c2cd 1011 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 1012
13437d4b
KB
1013 if (tmp_bfd == NULL)
1014 goto bkpt_at_symbol;
1015
1016 /* Make sure the dynamic linker's really a useful object. */
1017 if (!bfd_check_format (tmp_bfd, bfd_object))
1018 {
8a3fe4f8 1019 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
1020 bfd_close (tmp_bfd);
1021 goto bkpt_at_symbol;
1022 }
1023
2f4950cd
AC
1024 /* Now convert the TMP_BFD into a target. That way target, as
1025 well as BFD operations can be used. Note that closing the
1026 target will also close the underlying bfd. */
1027 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1028
f8766ec1
KB
1029 /* On a running target, we can get the dynamic linker's base
1030 address from the shared library table. */
2bbe3cc1 1031 solib_add (NULL, 0, &current_target, auto_solib_add);
f8766ec1
KB
1032 so = master_so_list ();
1033 while (so)
8ad2fcde 1034 {
f8766ec1 1035 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1036 {
1037 load_addr_found = 1;
2ec9a4f8 1038 loader_found_in_list = 1;
cc10cae3 1039 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1040 break;
1041 }
f8766ec1 1042 so = so->next;
8ad2fcde
KB
1043 }
1044
8d4e36ba
JB
1045 /* If we were not able to find the base address of the loader
1046 from our so_list, then try using the AT_BASE auxilliary entry. */
1047 if (!load_addr_found)
1048 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1049 load_addr_found = 1;
1050
8ad2fcde
KB
1051 /* Otherwise we find the dynamic linker's base address by examining
1052 the current pc (which should point at the entry point for the
8d4e36ba
JB
1053 dynamic linker) and subtracting the offset of the entry point.
1054
1055 This is more fragile than the previous approaches, but is a good
1056 fallback method because it has actually been working well in
1057 most cases. */
8ad2fcde 1058 if (!load_addr_found)
2ec9a4f8
DJ
1059 load_addr = (read_pc ()
1060 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1061
1062 if (!loader_found_in_list)
34439770 1063 {
34439770
DJ
1064 debug_loader_name = xstrdup (buf);
1065 debug_loader_offset_p = 1;
1066 debug_loader_offset = load_addr;
2bbe3cc1 1067 solib_add (NULL, 0, &current_target, auto_solib_add);
34439770 1068 }
13437d4b
KB
1069
1070 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1071 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1072 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1073 if (interp_sect)
1074 {
1075 interp_text_sect_low =
1076 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1077 interp_text_sect_high =
1078 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1079 }
1080 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1081 if (interp_sect)
1082 {
1083 interp_plt_sect_low =
1084 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1085 interp_plt_sect_high =
1086 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1087 }
1088
1089 /* Now try to set a breakpoint in the dynamic linker. */
1090 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1091 {
2bbe3cc1 1092 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1093 if (sym_addr != 0)
1094 break;
1095 }
1096
2bbe3cc1
DJ
1097 if (sym_addr != 0)
1098 /* Convert 'sym_addr' from a function pointer to an address.
1099 Because we pass tmp_bfd_target instead of the current
1100 target, this will always produce an unrelocated value. */
1101 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1102 sym_addr,
1103 tmp_bfd_target);
1104
2f4950cd
AC
1105 /* We're done with both the temporary bfd and target. Remember,
1106 closing the target closes the underlying bfd. */
1107 target_close (tmp_bfd_target, 0);
13437d4b
KB
1108
1109 if (sym_addr != 0)
1110 {
1111 create_solib_event_breakpoint (load_addr + sym_addr);
1112 return 1;
1113 }
1114
1115 /* For whatever reason we couldn't set a breakpoint in the dynamic
1116 linker. Warn and drop into the old code. */
1117 bkpt_at_symbol:
518f9d3c 1118 xfree (tmp_pathname);
82d03102
PG
1119 warning (_("Unable to find dynamic linker breakpoint function.\n"
1120 "GDB will be unable to debug shared library initializers\n"
1121 "and track explicitly loaded dynamic code."));
13437d4b 1122 }
13437d4b 1123
e499d0f1
DJ
1124 /* Scan through the lists of symbols, trying to look up the symbol and
1125 set a breakpoint there. Terminate loop when we/if we succeed. */
1126
1127 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1128 {
1129 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1130 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1131 {
1132 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1133 return 1;
1134 }
1135 }
13437d4b 1136
13437d4b
KB
1137 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1138 {
1139 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1140 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1141 {
1142 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1143 return 1;
1144 }
1145 }
13437d4b
KB
1146#endif /* BKPT_AT_SYMBOL */
1147
542c95c2 1148 return 0;
13437d4b
KB
1149}
1150
1151/*
1152
1153 LOCAL FUNCTION
1154
1155 special_symbol_handling -- additional shared library symbol handling
1156
1157 SYNOPSIS
1158
1159 void special_symbol_handling ()
1160
1161 DESCRIPTION
1162
1163 Once the symbols from a shared object have been loaded in the usual
1164 way, we are called to do any system specific symbol handling that
1165 is needed.
1166
ab31aa69 1167 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1168 linkers structures to find symbol definitions for "common" symbols
1169 and adding them to the minimal symbol table for the runtime common
1170 objfile.
1171
ab31aa69
KB
1172 However, for SVR4, there's nothing to do.
1173
13437d4b
KB
1174 */
1175
1176static void
1177svr4_special_symbol_handling (void)
1178{
13437d4b
KB
1179}
1180
e2a44558
KB
1181/* Relocate the main executable. This function should be called upon
1182 stopping the inferior process at the entry point to the program.
1183 The entry point from BFD is compared to the PC and if they are
1184 different, the main executable is relocated by the proper amount.
1185
1186 As written it will only attempt to relocate executables which
1187 lack interpreter sections. It seems likely that only dynamic
1188 linker executables will get relocated, though it should work
1189 properly for a position-independent static executable as well. */
1190
1191static void
1192svr4_relocate_main_executable (void)
1193{
1194 asection *interp_sect;
1195 CORE_ADDR pc = read_pc ();
1196
1197 /* Decide if the objfile needs to be relocated. As indicated above,
1198 we will only be here when execution is stopped at the beginning
1199 of the program. Relocation is necessary if the address at which
1200 we are presently stopped differs from the start address stored in
1201 the executable AND there's no interpreter section. The condition
1202 regarding the interpreter section is very important because if
1203 there *is* an interpreter section, execution will begin there
1204 instead. When there is an interpreter section, the start address
1205 is (presumably) used by the interpreter at some point to start
1206 execution of the program.
1207
1208 If there is an interpreter, it is normal for it to be set to an
1209 arbitrary address at the outset. The job of finding it is
1210 handled in enable_break().
1211
1212 So, to summarize, relocations are necessary when there is no
1213 interpreter section and the start address obtained from the
1214 executable is different from the address at which GDB is
1215 currently stopped.
1216
1217 [ The astute reader will note that we also test to make sure that
1218 the executable in question has the DYNAMIC flag set. It is my
1219 opinion that this test is unnecessary (undesirable even). It
1220 was added to avoid inadvertent relocation of an executable
1221 whose e_type member in the ELF header is not ET_DYN. There may
1222 be a time in the future when it is desirable to do relocations
1223 on other types of files as well in which case this condition
1224 should either be removed or modified to accomodate the new file
1225 type. (E.g, an ET_EXEC executable which has been built to be
1226 position-independent could safely be relocated by the OS if
1227 desired. It is true that this violates the ABI, but the ABI
1228 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1229 */
1230
1231 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1232 if (interp_sect == NULL
1233 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1234 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1235 {
1236 struct cleanup *old_chain;
1237 struct section_offsets *new_offsets;
1238 int i, changed;
1239 CORE_ADDR displacement;
1240
1241 /* It is necessary to relocate the objfile. The amount to
1242 relocate by is simply the address at which we are stopped
1243 minus the starting address from the executable.
1244
1245 We relocate all of the sections by the same amount. This
1246 behavior is mandated by recent editions of the System V ABI.
1247 According to the System V Application Binary Interface,
1248 Edition 4.1, page 5-5:
1249
1250 ... Though the system chooses virtual addresses for
1251 individual processes, it maintains the segments' relative
1252 positions. Because position-independent code uses relative
1253 addressesing between segments, the difference between
1254 virtual addresses in memory must match the difference
1255 between virtual addresses in the file. The difference
1256 between the virtual address of any segment in memory and
1257 the corresponding virtual address in the file is thus a
1258 single constant value for any one executable or shared
1259 object in a given process. This difference is the base
1260 address. One use of the base address is to relocate the
1261 memory image of the program during dynamic linking.
1262
1263 The same language also appears in Edition 4.0 of the System V
1264 ABI and is left unspecified in some of the earlier editions. */
1265
2f4950cd 1266 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1267 changed = 0;
1268
13fc0c2f
KB
1269 new_offsets = xcalloc (symfile_objfile->num_sections,
1270 sizeof (struct section_offsets));
b8c9b27d 1271 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1272
1273 for (i = 0; i < symfile_objfile->num_sections; i++)
1274 {
1275 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1276 changed = 1;
1277 new_offsets->offsets[i] = displacement;
1278 }
1279
1280 if (changed)
1281 objfile_relocate (symfile_objfile, new_offsets);
1282
1283 do_cleanups (old_chain);
1284 }
1285}
1286
13437d4b
KB
1287/*
1288
1289 GLOBAL FUNCTION
1290
1291 svr4_solib_create_inferior_hook -- shared library startup support
1292
1293 SYNOPSIS
1294
7095b863 1295 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1296
1297 DESCRIPTION
1298
1299 When gdb starts up the inferior, it nurses it along (through the
1300 shell) until it is ready to execute it's first instruction. At this
1301 point, this function gets called via expansion of the macro
1302 SOLIB_CREATE_INFERIOR_HOOK.
1303
1304 For SunOS executables, this first instruction is typically the
1305 one at "_start", or a similar text label, regardless of whether
1306 the executable is statically or dynamically linked. The runtime
1307 startup code takes care of dynamically linking in any shared
1308 libraries, once gdb allows the inferior to continue.
1309
1310 For SVR4 executables, this first instruction is either the first
1311 instruction in the dynamic linker (for dynamically linked
1312 executables) or the instruction at "start" for statically linked
1313 executables. For dynamically linked executables, the system
1314 first exec's /lib/libc.so.N, which contains the dynamic linker,
1315 and starts it running. The dynamic linker maps in any needed
1316 shared libraries, maps in the actual user executable, and then
1317 jumps to "start" in the user executable.
1318
1319 For both SunOS shared libraries, and SVR4 shared libraries, we
1320 can arrange to cooperate with the dynamic linker to discover the
1321 names of shared libraries that are dynamically linked, and the
1322 base addresses to which they are linked.
1323
1324 This function is responsible for discovering those names and
1325 addresses, and saving sufficient information about them to allow
1326 their symbols to be read at a later time.
1327
1328 FIXME
1329
1330 Between enable_break() and disable_break(), this code does not
1331 properly handle hitting breakpoints which the user might have
1332 set in the startup code or in the dynamic linker itself. Proper
1333 handling will probably have to wait until the implementation is
1334 changed to use the "breakpoint handler function" method.
1335
1336 Also, what if child has exit()ed? Must exit loop somehow.
1337 */
1338
e2a44558 1339static void
13437d4b
KB
1340svr4_solib_create_inferior_hook (void)
1341{
e2a44558
KB
1342 /* Relocate the main executable if necessary. */
1343 svr4_relocate_main_executable ();
1344
d5a921c9 1345 if (!svr4_have_link_map_offsets ())
513f5903 1346 return;
d5a921c9 1347
13437d4b 1348 if (!enable_break ())
542c95c2 1349 return;
13437d4b 1350
ab31aa69
KB
1351#if defined(_SCO_DS)
1352 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1353 special shared library breakpoints and the shared library breakpoint
1354 service routine.
1355
1356 Now run the target. It will eventually hit the breakpoint, at
1357 which point all of the libraries will have been mapped in and we
1358 can go groveling around in the dynamic linker structures to find
1359 out what we need to know about them. */
1360
1361 clear_proceed_status ();
c0236d92 1362 stop_soon = STOP_QUIETLY;
13437d4b
KB
1363 stop_signal = TARGET_SIGNAL_0;
1364 do
1365 {
39f77062 1366 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1367 wait_for_inferior ();
1368 }
1369 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1370 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1371#endif /* defined(_SCO_DS) */
13437d4b
KB
1372}
1373
1374static void
1375svr4_clear_solib (void)
1376{
1377 debug_base = 0;
34439770
DJ
1378 debug_loader_offset_p = 0;
1379 debug_loader_offset = 0;
1380 xfree (debug_loader_name);
1381 debug_loader_name = NULL;
13437d4b
KB
1382}
1383
1384static void
1385svr4_free_so (struct so_list *so)
1386{
b8c9b27d
KB
1387 xfree (so->lm_info->lm);
1388 xfree (so->lm_info);
13437d4b
KB
1389}
1390
6bb7be43
JB
1391
1392/* Clear any bits of ADDR that wouldn't fit in a target-format
1393 data pointer. "Data pointer" here refers to whatever sort of
1394 address the dynamic linker uses to manage its sections. At the
1395 moment, we don't support shared libraries on any processors where
1396 code and data pointers are different sizes.
1397
1398 This isn't really the right solution. What we really need here is
1399 a way to do arithmetic on CORE_ADDR values that respects the
1400 natural pointer/address correspondence. (For example, on the MIPS,
1401 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1402 sign-extend the value. There, simply truncating the bits above
819844ad 1403 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1404 be a new gdbarch method or something. */
1405static CORE_ADDR
1406svr4_truncate_ptr (CORE_ADDR addr)
1407{
819844ad 1408 if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1409 /* We don't need to truncate anything, and the bit twiddling below
1410 will fail due to overflow problems. */
1411 return addr;
1412 else
819844ad 1413 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
6bb7be43
JB
1414}
1415
1416
749499cb
KB
1417static void
1418svr4_relocate_section_addresses (struct so_list *so,
1419 struct section_table *sec)
1420{
cc10cae3
AO
1421 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1422 sec->bfd));
1423 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1424 sec->bfd));
749499cb 1425}
4b188b9f 1426\f
749499cb 1427
4b188b9f 1428/* Architecture-specific operations. */
6bb7be43 1429
4b188b9f
MK
1430/* Per-architecture data key. */
1431static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1432
4b188b9f 1433struct solib_svr4_ops
e5e2b9ff 1434{
4b188b9f
MK
1435 /* Return a description of the layout of `struct link_map'. */
1436 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1437};
e5e2b9ff 1438
4b188b9f 1439/* Return a default for the architecture-specific operations. */
e5e2b9ff 1440
4b188b9f
MK
1441static void *
1442solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1443{
4b188b9f 1444 struct solib_svr4_ops *ops;
e5e2b9ff 1445
4b188b9f 1446 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1447 ops->fetch_link_map_offsets = NULL;
4b188b9f 1448 return ops;
e5e2b9ff
KB
1449}
1450
4b188b9f
MK
1451/* Set the architecture-specific `struct link_map_offsets' fetcher for
1452 GDBARCH to FLMO. */
1c4dcb57 1453
21479ded 1454void
e5e2b9ff
KB
1455set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1456 struct link_map_offsets *(*flmo) (void))
21479ded 1457{
4b188b9f
MK
1458 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1459
1460 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1461}
1462
4b188b9f
MK
1463/* Fetch a link_map_offsets structure using the architecture-specific
1464 `struct link_map_offsets' fetcher. */
1c4dcb57 1465
4b188b9f
MK
1466static struct link_map_offsets *
1467svr4_fetch_link_map_offsets (void)
21479ded 1468{
4b188b9f
MK
1469 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1470
1471 gdb_assert (ops->fetch_link_map_offsets);
1472 return ops->fetch_link_map_offsets ();
21479ded
KB
1473}
1474
4b188b9f
MK
1475/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1476
1477static int
1478svr4_have_link_map_offsets (void)
1479{
1480 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1481 return (ops->fetch_link_map_offsets != NULL);
1482}
1483\f
1484
e4bbbda8
MK
1485/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1486 `struct r_debug' and a `struct link_map' that are binary compatible
1487 with the origional SVR4 implementation. */
1488
1489/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1490 for an ILP32 SVR4 system. */
1491
1492struct link_map_offsets *
1493svr4_ilp32_fetch_link_map_offsets (void)
1494{
1495 static struct link_map_offsets lmo;
1496 static struct link_map_offsets *lmp = NULL;
1497
1498 if (lmp == NULL)
1499 {
1500 lmp = &lmo;
1501
e4cd0d6a
MK
1502 lmo.r_version_offset = 0;
1503 lmo.r_version_size = 4;
e4bbbda8 1504 lmo.r_map_offset = 4;
e4cd0d6a 1505 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1506
1507 /* Everything we need is in the first 20 bytes. */
1508 lmo.link_map_size = 20;
1509 lmo.l_addr_offset = 0;
e4bbbda8 1510 lmo.l_name_offset = 4;
cc10cae3 1511 lmo.l_ld_offset = 8;
e4bbbda8 1512 lmo.l_next_offset = 12;
e4bbbda8 1513 lmo.l_prev_offset = 16;
e4bbbda8
MK
1514 }
1515
1516 return lmp;
1517}
1518
1519/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1520 for an LP64 SVR4 system. */
1521
1522struct link_map_offsets *
1523svr4_lp64_fetch_link_map_offsets (void)
1524{
1525 static struct link_map_offsets lmo;
1526 static struct link_map_offsets *lmp = NULL;
1527
1528 if (lmp == NULL)
1529 {
1530 lmp = &lmo;
1531
e4cd0d6a
MK
1532 lmo.r_version_offset = 0;
1533 lmo.r_version_size = 4;
e4bbbda8 1534 lmo.r_map_offset = 8;
e4cd0d6a 1535 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1536
1537 /* Everything we need is in the first 40 bytes. */
1538 lmo.link_map_size = 40;
1539 lmo.l_addr_offset = 0;
e4bbbda8 1540 lmo.l_name_offset = 8;
cc10cae3 1541 lmo.l_ld_offset = 16;
e4bbbda8 1542 lmo.l_next_offset = 24;
e4bbbda8 1543 lmo.l_prev_offset = 32;
e4bbbda8
MK
1544 }
1545
1546 return lmp;
1547}
1548\f
1549
7d522c90 1550struct target_so_ops svr4_so_ops;
13437d4b 1551
3a40aaa0
UW
1552/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1553 different rule for symbol lookup. The lookup begins here in the DSO, not in
1554 the main executable. */
1555
1556static struct symbol *
1557elf_lookup_lib_symbol (const struct objfile *objfile,
1558 const char *name,
1559 const char *linkage_name,
1560 const domain_enum domain, struct symtab **symtab)
1561{
1562 if (objfile->obfd == NULL
1563 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1564 return NULL;
1565
65728c26 1566 return lookup_global_symbol_from_objfile
3a40aaa0
UW
1567 (objfile, name, linkage_name, domain, symtab);
1568}
1569
a78f21af
AC
1570extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1571
13437d4b
KB
1572void
1573_initialize_svr4_solib (void)
1574{
4b188b9f
MK
1575 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1576
749499cb 1577 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1578 svr4_so_ops.free_so = svr4_free_so;
1579 svr4_so_ops.clear_solib = svr4_clear_solib;
1580 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1581 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1582 svr4_so_ops.current_sos = svr4_current_sos;
1583 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1584 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3a40aaa0 1585 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
13437d4b
KB
1586
1587 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1588 current_target_so_ops = &svr4_so_ops;
1589}