]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
gas/
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
fb14de7b 33#include "regcache.h"
2020b7ab 34#include "gdbthread.h"
1a816a87 35#include "observer.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd 45#include "exec.h"
8d4e36ba 46#include "auxv.h"
f1838a98 47#include "exceptions.h"
695c3173 48#include "gdb_bfd.h"
2f4950cd 49
e5e2b9ff 50static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 51static int svr4_have_link_map_offsets (void);
9f2982ff 52static void svr4_relocate_main_executable (void);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
3957565a
JK
143static struct lm_info *
144lm_info_read (CORE_ADDR lm_addr)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
147 gdb_byte *lm;
148 struct lm_info *lm_info;
149 struct cleanup *back_to;
150
151 lm = xmalloc (lmo->link_map_size);
152 back_to = make_cleanup (xfree, lm);
153
154 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
155 {
156 warning (_("Error reading shared library list entry at %s"),
f5656ead 157 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
158 lm_info = NULL;
159 }
160 else
161 {
f5656ead 162 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 163
3957565a
JK
164 lm_info = xzalloc (sizeof (*lm_info));
165 lm_info->lm_addr = lm_addr;
166
167 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
168 ptr_type);
169 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
170 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
171 ptr_type);
172 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
173 ptr_type);
174 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
175 ptr_type);
176 }
177
178 do_cleanups (back_to);
179
180 return lm_info;
13437d4b
KB
181}
182
cc10cae3 183static int
b23518f0 184has_lm_dynamic_from_link_map (void)
cc10cae3
AO
185{
186 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
187
cfaefc65 188 return lmo->l_ld_offset >= 0;
cc10cae3
AO
189}
190
cc10cae3 191static CORE_ADDR
b23518f0 192lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3 193{
3957565a 194 if (!so->lm_info->l_addr_p)
cc10cae3
AO
195 {
196 struct bfd_section *dyninfo_sect;
28f34a8f 197 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 198
3957565a 199 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 200
b23518f0 201 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
202 goto set_addr;
203
3957565a 204 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
205
206 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
207 if (dyninfo_sect == NULL)
208 goto set_addr;
209
210 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
211
212 if (dynaddr + l_addr != l_dynaddr)
213 {
28f34a8f 214 CORE_ADDR align = 0x1000;
4e1fc9c9 215 CORE_ADDR minpagesize = align;
28f34a8f 216
cc10cae3
AO
217 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
218 {
219 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
220 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
221 int i;
222
223 align = 1;
224
225 for (i = 0; i < ehdr->e_phnum; i++)
226 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
227 align = phdr[i].p_align;
4e1fc9c9
JK
228
229 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
230 }
231
232 /* Turn it into a mask. */
233 align--;
234
235 /* If the changes match the alignment requirements, we
236 assume we're using a core file that was generated by the
237 same binary, just prelinked with a different base offset.
238 If it doesn't match, we may have a different binary, the
239 same binary with the dynamic table loaded at an unrelated
240 location, or anything, really. To avoid regressions,
241 don't adjust the base offset in the latter case, although
242 odds are that, if things really changed, debugging won't
5c0d192f
JK
243 quite work.
244
245 One could expect more the condition
246 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
247 but the one below is relaxed for PPC. The PPC kernel supports
248 either 4k or 64k page sizes. To be prepared for 64k pages,
249 PPC ELF files are built using an alignment requirement of 64k.
250 However, when running on a kernel supporting 4k pages, the memory
251 mapping of the library may not actually happen on a 64k boundary!
252
253 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
254 equivalent to the possibly expected check above.)
255
256 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 257
02835898
JK
258 l_addr = l_dynaddr - dynaddr;
259
4e1fc9c9
JK
260 if ((l_addr & (minpagesize - 1)) == 0
261 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 262 {
701ed6dc 263 if (info_verbose)
ccf26247
JK
264 printf_unfiltered (_("Using PIC (Position Independent Code) "
265 "prelink displacement %s for \"%s\".\n"),
f5656ead 266 paddress (target_gdbarch (), l_addr),
ccf26247 267 so->so_name);
cc10cae3 268 }
79d4c408 269 else
02835898
JK
270 {
271 /* There is no way to verify the library file matches. prelink
272 can during prelinking of an unprelinked file (or unprelinking
273 of a prelinked file) shift the DYNAMIC segment by arbitrary
274 offset without any page size alignment. There is no way to
275 find out the ELF header and/or Program Headers for a limited
276 verification if it they match. One could do a verification
277 of the DYNAMIC segment. Still the found address is the best
278 one GDB could find. */
279
280 warning (_(".dynamic section for \"%s\" "
281 "is not at the expected address "
282 "(wrong library or version mismatch?)"), so->so_name);
283 }
cc10cae3
AO
284 }
285
286 set_addr:
287 so->lm_info->l_addr = l_addr;
3957565a 288 so->lm_info->l_addr_p = 1;
cc10cae3
AO
289 }
290
291 return so->lm_info->l_addr;
292}
293
6c95b8df 294/* Per pspace SVR4 specific data. */
13437d4b 295
1a816a87
PA
296struct svr4_info
297{
c378eb4e 298 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
299
300 /* Validity flag for debug_loader_offset. */
301 int debug_loader_offset_p;
302
303 /* Load address for the dynamic linker, inferred. */
304 CORE_ADDR debug_loader_offset;
305
306 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
307 char *debug_loader_name;
308
309 /* Load map address for the main executable. */
310 CORE_ADDR main_lm_addr;
1a816a87 311
6c95b8df
PA
312 CORE_ADDR interp_text_sect_low;
313 CORE_ADDR interp_text_sect_high;
314 CORE_ADDR interp_plt_sect_low;
315 CORE_ADDR interp_plt_sect_high;
316};
1a816a87 317
6c95b8df
PA
318/* Per-program-space data key. */
319static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 320
6c95b8df
PA
321static void
322svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 323{
6c95b8df 324 struct svr4_info *info;
1a816a87 325
6c95b8df
PA
326 info = program_space_data (pspace, solib_svr4_pspace_data);
327 xfree (info);
1a816a87
PA
328}
329
6c95b8df
PA
330/* Get the current svr4 data. If none is found yet, add it now. This
331 function always returns a valid object. */
34439770 332
6c95b8df
PA
333static struct svr4_info *
334get_svr4_info (void)
1a816a87 335{
6c95b8df 336 struct svr4_info *info;
1a816a87 337
6c95b8df
PA
338 info = program_space_data (current_program_space, solib_svr4_pspace_data);
339 if (info != NULL)
340 return info;
34439770 341
6c95b8df
PA
342 info = XZALLOC (struct svr4_info);
343 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
344 return info;
1a816a87 345}
93a57060 346
13437d4b
KB
347/* Local function prototypes */
348
bc043ef3 349static int match_main (const char *);
13437d4b 350
97ec2c2f
UW
351/* Read program header TYPE from inferior memory. The header is found
352 by scanning the OS auxillary vector.
353
09919ac2
JK
354 If TYPE == -1, return the program headers instead of the contents of
355 one program header.
356
97ec2c2f
UW
357 Return a pointer to allocated memory holding the program header contents,
358 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
359 size of those contents is returned to P_SECT_SIZE. Likewise, the target
360 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
361
362static gdb_byte *
363read_program_header (int type, int *p_sect_size, int *p_arch_size)
364{
f5656ead 365 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 366 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
367 int arch_size, sect_size;
368 CORE_ADDR sect_addr;
369 gdb_byte *buf;
43136979 370 int pt_phdr_p = 0;
97ec2c2f
UW
371
372 /* Get required auxv elements from target. */
373 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
374 return 0;
375 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
376 return 0;
377 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
378 return 0;
379 if (!at_phdr || !at_phnum)
380 return 0;
381
382 /* Determine ELF architecture type. */
383 if (at_phent == sizeof (Elf32_External_Phdr))
384 arch_size = 32;
385 else if (at_phent == sizeof (Elf64_External_Phdr))
386 arch_size = 64;
387 else
388 return 0;
389
09919ac2
JK
390 /* Find the requested segment. */
391 if (type == -1)
392 {
393 sect_addr = at_phdr;
394 sect_size = at_phent * at_phnum;
395 }
396 else if (arch_size == 32)
97ec2c2f
UW
397 {
398 Elf32_External_Phdr phdr;
399 int i;
400
401 /* Search for requested PHDR. */
402 for (i = 0; i < at_phnum; i++)
403 {
43136979
AR
404 int p_type;
405
97ec2c2f
UW
406 if (target_read_memory (at_phdr + i * sizeof (phdr),
407 (gdb_byte *)&phdr, sizeof (phdr)))
408 return 0;
409
43136979
AR
410 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
411 4, byte_order);
412
413 if (p_type == PT_PHDR)
414 {
415 pt_phdr_p = 1;
416 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
417 4, byte_order);
418 }
419
420 if (p_type == type)
97ec2c2f
UW
421 break;
422 }
423
424 if (i == at_phnum)
425 return 0;
426
427 /* Retrieve address and size. */
e17a4113
UW
428 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
429 4, byte_order);
430 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
431 4, byte_order);
97ec2c2f
UW
432 }
433 else
434 {
435 Elf64_External_Phdr phdr;
436 int i;
437
438 /* Search for requested PHDR. */
439 for (i = 0; i < at_phnum; i++)
440 {
43136979
AR
441 int p_type;
442
97ec2c2f
UW
443 if (target_read_memory (at_phdr + i * sizeof (phdr),
444 (gdb_byte *)&phdr, sizeof (phdr)))
445 return 0;
446
43136979
AR
447 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
448 4, byte_order);
449
450 if (p_type == PT_PHDR)
451 {
452 pt_phdr_p = 1;
453 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
454 8, byte_order);
455 }
456
457 if (p_type == type)
97ec2c2f
UW
458 break;
459 }
460
461 if (i == at_phnum)
462 return 0;
463
464 /* Retrieve address and size. */
e17a4113
UW
465 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
466 8, byte_order);
467 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
468 8, byte_order);
97ec2c2f
UW
469 }
470
43136979
AR
471 /* PT_PHDR is optional, but we really need it
472 for PIE to make this work in general. */
473
474 if (pt_phdr_p)
475 {
476 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
477 Relocation offset is the difference between the two. */
478 sect_addr = sect_addr + (at_phdr - pt_phdr);
479 }
480
97ec2c2f
UW
481 /* Read in requested program header. */
482 buf = xmalloc (sect_size);
483 if (target_read_memory (sect_addr, buf, sect_size))
484 {
485 xfree (buf);
486 return NULL;
487 }
488
489 if (p_arch_size)
490 *p_arch_size = arch_size;
491 if (p_sect_size)
492 *p_sect_size = sect_size;
493
494 return buf;
495}
496
497
498/* Return program interpreter string. */
499static gdb_byte *
500find_program_interpreter (void)
501{
502 gdb_byte *buf = NULL;
503
504 /* If we have an exec_bfd, use its section table. */
505 if (exec_bfd
506 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
507 {
508 struct bfd_section *interp_sect;
509
510 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
511 if (interp_sect != NULL)
512 {
97ec2c2f
UW
513 int sect_size = bfd_section_size (exec_bfd, interp_sect);
514
515 buf = xmalloc (sect_size);
516 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
517 }
518 }
519
520 /* If we didn't find it, use the target auxillary vector. */
521 if (!buf)
522 buf = read_program_header (PT_INTERP, NULL, NULL);
523
524 return buf;
525}
526
527
c378eb4e 528/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
529 returned and the corresponding PTR is set. */
530
531static int
532scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
533{
534 int arch_size, step, sect_size;
535 long dyn_tag;
b381ea14 536 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 537 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
538 Elf32_External_Dyn *x_dynp_32;
539 Elf64_External_Dyn *x_dynp_64;
540 struct bfd_section *sect;
61f0d762 541 struct target_section *target_section;
3a40aaa0
UW
542
543 if (abfd == NULL)
544 return 0;
0763ab81
PA
545
546 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
547 return 0;
548
3a40aaa0
UW
549 arch_size = bfd_get_arch_size (abfd);
550 if (arch_size == -1)
0763ab81 551 return 0;
3a40aaa0
UW
552
553 /* Find the start address of the .dynamic section. */
554 sect = bfd_get_section_by_name (abfd, ".dynamic");
555 if (sect == NULL)
556 return 0;
61f0d762
JK
557
558 for (target_section = current_target_sections->sections;
559 target_section < current_target_sections->sections_end;
560 target_section++)
561 if (sect == target_section->the_bfd_section)
562 break;
b381ea14
JK
563 if (target_section < current_target_sections->sections_end)
564 dyn_addr = target_section->addr;
565 else
566 {
567 /* ABFD may come from OBJFILE acting only as a symbol file without being
568 loaded into the target (see add_symbol_file_command). This case is
569 such fallback to the file VMA address without the possibility of
570 having the section relocated to its actual in-memory address. */
571
572 dyn_addr = bfd_section_vma (abfd, sect);
573 }
3a40aaa0 574
65728c26
DJ
575 /* Read in .dynamic from the BFD. We will get the actual value
576 from memory later. */
3a40aaa0 577 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
578 buf = bufstart = alloca (sect_size);
579 if (!bfd_get_section_contents (abfd, sect,
580 buf, 0, sect_size))
581 return 0;
3a40aaa0
UW
582
583 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
584 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
585 : sizeof (Elf64_External_Dyn);
586 for (bufend = buf + sect_size;
587 buf < bufend;
588 buf += step)
589 {
590 if (arch_size == 32)
591 {
592 x_dynp_32 = (Elf32_External_Dyn *) buf;
593 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
594 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
595 }
65728c26 596 else
3a40aaa0
UW
597 {
598 x_dynp_64 = (Elf64_External_Dyn *) buf;
599 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
600 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
601 }
602 if (dyn_tag == DT_NULL)
603 return 0;
604 if (dyn_tag == dyntag)
605 {
65728c26
DJ
606 /* If requested, try to read the runtime value of this .dynamic
607 entry. */
3a40aaa0 608 if (ptr)
65728c26 609 {
b6da22b0 610 struct type *ptr_type;
65728c26
DJ
611 gdb_byte ptr_buf[8];
612 CORE_ADDR ptr_addr;
613
f5656ead 614 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 615 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 616 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 617 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
618 *ptr = dyn_ptr;
619 }
620 return 1;
3a40aaa0
UW
621 }
622 }
623
624 return 0;
625}
626
97ec2c2f
UW
627/* Scan for DYNTAG in .dynamic section of the target's main executable,
628 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
629 returned and the corresponding PTR is set. */
630
631static int
632scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
633{
f5656ead 634 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f
UW
635 int sect_size, arch_size, step;
636 long dyn_tag;
637 CORE_ADDR dyn_ptr;
638 gdb_byte *bufend, *bufstart, *buf;
639
640 /* Read in .dynamic section. */
641 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
642 if (!buf)
643 return 0;
644
645 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
646 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
647 : sizeof (Elf64_External_Dyn);
648 for (bufend = buf + sect_size;
649 buf < bufend;
650 buf += step)
651 {
652 if (arch_size == 32)
653 {
654 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 655
e17a4113
UW
656 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
657 4, byte_order);
658 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
659 4, byte_order);
97ec2c2f
UW
660 }
661 else
662 {
663 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 664
e17a4113
UW
665 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
666 8, byte_order);
667 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
668 8, byte_order);
97ec2c2f
UW
669 }
670 if (dyn_tag == DT_NULL)
671 break;
672
673 if (dyn_tag == dyntag)
674 {
675 if (ptr)
676 *ptr = dyn_ptr;
677
678 xfree (bufstart);
679 return 1;
680 }
681 }
682
683 xfree (bufstart);
684 return 0;
685}
686
7f86f058
PA
687/* Locate the base address of dynamic linker structs for SVR4 elf
688 targets.
13437d4b
KB
689
690 For SVR4 elf targets the address of the dynamic linker's runtime
691 structure is contained within the dynamic info section in the
692 executable file. The dynamic section is also mapped into the
693 inferior address space. Because the runtime loader fills in the
694 real address before starting the inferior, we have to read in the
695 dynamic info section from the inferior address space.
696 If there are any errors while trying to find the address, we
7f86f058 697 silently return 0, otherwise the found address is returned. */
13437d4b
KB
698
699static CORE_ADDR
700elf_locate_base (void)
701{
3a40aaa0
UW
702 struct minimal_symbol *msymbol;
703 CORE_ADDR dyn_ptr;
13437d4b 704
65728c26
DJ
705 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
706 instead of DT_DEBUG, although they sometimes contain an unused
707 DT_DEBUG. */
97ec2c2f
UW
708 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
709 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 710 {
f5656ead 711 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 712 gdb_byte *pbuf;
b6da22b0 713 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 714
3a40aaa0
UW
715 pbuf = alloca (pbuf_size);
716 /* DT_MIPS_RLD_MAP contains a pointer to the address
717 of the dynamic link structure. */
718 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 719 return 0;
b6da22b0 720 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
721 }
722
65728c26 723 /* Find DT_DEBUG. */
97ec2c2f
UW
724 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
725 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
726 return dyn_ptr;
727
3a40aaa0
UW
728 /* This may be a static executable. Look for the symbol
729 conventionally named _r_debug, as a last resort. */
730 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
731 if (msymbol != NULL)
732 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
733
734 /* DT_DEBUG entry not found. */
735 return 0;
736}
737
7f86f058 738/* Locate the base address of dynamic linker structs.
13437d4b
KB
739
740 For both the SunOS and SVR4 shared library implementations, if the
741 inferior executable has been linked dynamically, there is a single
742 address somewhere in the inferior's data space which is the key to
743 locating all of the dynamic linker's runtime structures. This
744 address is the value of the debug base symbol. The job of this
745 function is to find and return that address, or to return 0 if there
746 is no such address (the executable is statically linked for example).
747
748 For SunOS, the job is almost trivial, since the dynamic linker and
749 all of it's structures are statically linked to the executable at
750 link time. Thus the symbol for the address we are looking for has
751 already been added to the minimal symbol table for the executable's
752 objfile at the time the symbol file's symbols were read, and all we
753 have to do is look it up there. Note that we explicitly do NOT want
754 to find the copies in the shared library.
755
756 The SVR4 version is a bit more complicated because the address
757 is contained somewhere in the dynamic info section. We have to go
758 to a lot more work to discover the address of the debug base symbol.
759 Because of this complexity, we cache the value we find and return that
760 value on subsequent invocations. Note there is no copy in the
7f86f058 761 executable symbol tables. */
13437d4b
KB
762
763static CORE_ADDR
1a816a87 764locate_base (struct svr4_info *info)
13437d4b 765{
13437d4b
KB
766 /* Check to see if we have a currently valid address, and if so, avoid
767 doing all this work again and just return the cached address. If
768 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
769 section for ELF executables. There's no point in doing any of this
770 though if we don't have some link map offsets to work with. */
13437d4b 771
1a816a87 772 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 773 info->debug_base = elf_locate_base ();
1a816a87 774 return info->debug_base;
13437d4b
KB
775}
776
e4cd0d6a 777/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
778 return its address in the inferior. Return zero if the address
779 could not be determined.
13437d4b 780
e4cd0d6a
MK
781 FIXME: Perhaps we should validate the info somehow, perhaps by
782 checking r_version for a known version number, or r_state for
783 RT_CONSISTENT. */
13437d4b
KB
784
785static CORE_ADDR
1a816a87 786solib_svr4_r_map (struct svr4_info *info)
13437d4b 787{
4b188b9f 788 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 789 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
790 CORE_ADDR addr = 0;
791 volatile struct gdb_exception ex;
13437d4b 792
08597104
JB
793 TRY_CATCH (ex, RETURN_MASK_ERROR)
794 {
795 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
796 ptr_type);
797 }
798 exception_print (gdb_stderr, ex);
799 return addr;
e4cd0d6a 800}
13437d4b 801
7cd25cfc
DJ
802/* Find r_brk from the inferior's debug base. */
803
804static CORE_ADDR
1a816a87 805solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
806{
807 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 808 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 809
1a816a87
PA
810 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
811 ptr_type);
7cd25cfc
DJ
812}
813
e4cd0d6a
MK
814/* Find the link map for the dynamic linker (if it is not in the
815 normal list of loaded shared objects). */
13437d4b 816
e4cd0d6a 817static CORE_ADDR
1a816a87 818solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
819{
820 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
821 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
822 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 823 ULONGEST version;
13437d4b 824
e4cd0d6a
MK
825 /* Check version, and return zero if `struct r_debug' doesn't have
826 the r_ldsomap member. */
1a816a87
PA
827 version
828 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 829 lmo->r_version_size, byte_order);
e4cd0d6a
MK
830 if (version < 2 || lmo->r_ldsomap_offset == -1)
831 return 0;
13437d4b 832
1a816a87 833 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 834 ptr_type);
13437d4b
KB
835}
836
de18c1d8
JM
837/* On Solaris systems with some versions of the dynamic linker,
838 ld.so's l_name pointer points to the SONAME in the string table
839 rather than into writable memory. So that GDB can find shared
840 libraries when loading a core file generated by gcore, ensure that
841 memory areas containing the l_name string are saved in the core
842 file. */
843
844static int
845svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
846{
847 struct svr4_info *info;
848 CORE_ADDR ldsomap;
849 struct so_list *new;
850 struct cleanup *old_chain;
74de0234 851 CORE_ADDR name_lm;
de18c1d8
JM
852
853 info = get_svr4_info ();
854
855 info->debug_base = 0;
856 locate_base (info);
857 if (!info->debug_base)
858 return 0;
859
860 ldsomap = solib_svr4_r_ldsomap (info);
861 if (!ldsomap)
862 return 0;
863
de18c1d8
JM
864 new = XZALLOC (struct so_list);
865 old_chain = make_cleanup (xfree, new);
3957565a 866 new->lm_info = lm_info_read (ldsomap);
de18c1d8 867 make_cleanup (xfree, new->lm_info);
3957565a 868 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
869 do_cleanups (old_chain);
870
74de0234 871 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
872}
873
7f86f058 874/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 875
7f86f058
PA
876 If no open symbol file, attempt to locate and open the main symbol
877 file. On SVR4 systems, this is the first link map entry. If its
878 name is here, we can open it. Useful when attaching to a process
879 without first loading its symbol file. */
13437d4b
KB
880
881static int
882open_symbol_file_object (void *from_ttyp)
883{
884 CORE_ADDR lm, l_name;
885 char *filename;
886 int errcode;
887 int from_tty = *(int *)from_ttyp;
4b188b9f 888 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 889 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 890 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 891 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 892 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 893 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
894
895 if (symfile_objfile)
9e2f0ad4 896 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
897 {
898 do_cleanups (cleanups);
899 return 0;
900 }
13437d4b 901
7cd25cfc 902 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
903 info->debug_base = 0;
904 if (locate_base (info) == 0)
3bb47e8b
TT
905 {
906 do_cleanups (cleanups);
907 return 0; /* failed somehow... */
908 }
13437d4b
KB
909
910 /* First link map member should be the executable. */
1a816a87 911 lm = solib_svr4_r_map (info);
e4cd0d6a 912 if (lm == 0)
3bb47e8b
TT
913 {
914 do_cleanups (cleanups);
915 return 0; /* failed somehow... */
916 }
13437d4b
KB
917
918 /* Read address of name from target memory to GDB. */
cfaefc65 919 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 920
cfaefc65 921 /* Convert the address to host format. */
b6da22b0 922 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 923
13437d4b 924 if (l_name == 0)
3bb47e8b
TT
925 {
926 do_cleanups (cleanups);
927 return 0; /* No filename. */
928 }
13437d4b
KB
929
930 /* Now fetch the filename from target memory. */
931 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 932 make_cleanup (xfree, filename);
13437d4b
KB
933
934 if (errcode)
935 {
8a3fe4f8 936 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 937 safe_strerror (errcode));
3bb47e8b 938 do_cleanups (cleanups);
13437d4b
KB
939 return 0;
940 }
941
13437d4b 942 /* Have a pathname: read the symbol file. */
1adeb98a 943 symbol_file_add_main (filename, from_tty);
13437d4b 944
3bb47e8b 945 do_cleanups (cleanups);
13437d4b
KB
946 return 1;
947}
13437d4b 948
2268b414
JK
949/* Data exchange structure for the XML parser as returned by
950 svr4_current_sos_via_xfer_libraries. */
951
952struct svr4_library_list
953{
954 struct so_list *head, **tailp;
955
956 /* Inferior address of struct link_map used for the main executable. It is
957 NULL if not known. */
958 CORE_ADDR main_lm;
959};
960
93f2a35e
JK
961/* Implementation for target_so_ops.free_so. */
962
963static void
964svr4_free_so (struct so_list *so)
965{
966 xfree (so->lm_info);
967}
968
969/* Free so_list built so far (called via cleanup). */
970
971static void
972svr4_free_library_list (void *p_list)
973{
974 struct so_list *list = *(struct so_list **) p_list;
975
976 while (list != NULL)
977 {
978 struct so_list *next = list->next;
979
3756ef7e 980 free_so (list);
93f2a35e
JK
981 list = next;
982 }
983}
984
2268b414
JK
985#ifdef HAVE_LIBEXPAT
986
987#include "xml-support.h"
988
989/* Handle the start of a <library> element. Note: new elements are added
990 at the tail of the list, keeping the list in order. */
991
992static void
993library_list_start_library (struct gdb_xml_parser *parser,
994 const struct gdb_xml_element *element,
995 void *user_data, VEC(gdb_xml_value_s) *attributes)
996{
997 struct svr4_library_list *list = user_data;
998 const char *name = xml_find_attribute (attributes, "name")->value;
999 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1000 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1001 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1002 struct so_list *new_elem;
1003
1004 new_elem = XZALLOC (struct so_list);
1005 new_elem->lm_info = XZALLOC (struct lm_info);
1006 new_elem->lm_info->lm_addr = *lmp;
1007 new_elem->lm_info->l_addr_inferior = *l_addrp;
1008 new_elem->lm_info->l_ld = *l_ldp;
1009
1010 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1011 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1012 strcpy (new_elem->so_original_name, new_elem->so_name);
1013
1014 *list->tailp = new_elem;
1015 list->tailp = &new_elem->next;
1016}
1017
1018/* Handle the start of a <library-list-svr4> element. */
1019
1020static void
1021svr4_library_list_start_list (struct gdb_xml_parser *parser,
1022 const struct gdb_xml_element *element,
1023 void *user_data, VEC(gdb_xml_value_s) *attributes)
1024{
1025 struct svr4_library_list *list = user_data;
1026 const char *version = xml_find_attribute (attributes, "version")->value;
1027 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1028
1029 if (strcmp (version, "1.0") != 0)
1030 gdb_xml_error (parser,
1031 _("SVR4 Library list has unsupported version \"%s\""),
1032 version);
1033
1034 if (main_lm)
1035 list->main_lm = *(ULONGEST *) main_lm->value;
1036}
1037
1038/* The allowed elements and attributes for an XML library list.
1039 The root element is a <library-list>. */
1040
1041static const struct gdb_xml_attribute svr4_library_attributes[] =
1042{
1043 { "name", GDB_XML_AF_NONE, NULL, NULL },
1044 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1045 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1046 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1047 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1048};
1049
1050static const struct gdb_xml_element svr4_library_list_children[] =
1051{
1052 {
1053 "library", svr4_library_attributes, NULL,
1054 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1055 library_list_start_library, NULL
1056 },
1057 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1058};
1059
1060static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1061{
1062 { "version", GDB_XML_AF_NONE, NULL, NULL },
1063 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1064 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1065};
1066
1067static const struct gdb_xml_element svr4_library_list_elements[] =
1068{
1069 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1070 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1071 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1072};
1073
2268b414
JK
1074/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1075
1076 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1077 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1078 empty, caller is responsible for freeing all its entries. */
1079
1080static int
1081svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1082{
1083 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1084 &list->head);
1085
1086 memset (list, 0, sizeof (*list));
1087 list->tailp = &list->head;
1088 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1089 svr4_library_list_elements, document, list) == 0)
1090 {
1091 /* Parsed successfully, keep the result. */
1092 discard_cleanups (back_to);
1093 return 1;
1094 }
1095
1096 do_cleanups (back_to);
1097 return 0;
1098}
1099
1100/* Attempt to get so_list from target via qXfer:libraries:read packet.
1101
1102 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1103 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1104 empty, caller is responsible for freeing all its entries. */
1105
1106static int
1107svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1108{
1109 char *svr4_library_document;
1110 int result;
1111 struct cleanup *back_to;
1112
1113 /* Fetch the list of shared libraries. */
1114 svr4_library_document = target_read_stralloc (&current_target,
1115 TARGET_OBJECT_LIBRARIES_SVR4,
1116 NULL);
1117 if (svr4_library_document == NULL)
1118 return 0;
1119
1120 back_to = make_cleanup (xfree, svr4_library_document);
1121 result = svr4_parse_libraries (svr4_library_document, list);
1122 do_cleanups (back_to);
1123
1124 return result;
1125}
1126
1127#else
1128
1129static int
1130svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1131{
1132 return 0;
1133}
1134
1135#endif
1136
34439770
DJ
1137/* If no shared library information is available from the dynamic
1138 linker, build a fallback list from other sources. */
1139
1140static struct so_list *
1141svr4_default_sos (void)
1142{
6c95b8df 1143 struct svr4_info *info = get_svr4_info ();
8e5c319d 1144 struct so_list *new;
1a816a87 1145
8e5c319d
JK
1146 if (!info->debug_loader_offset_p)
1147 return NULL;
34439770 1148
8e5c319d 1149 new = XZALLOC (struct so_list);
34439770 1150
3957565a 1151 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1152
3957565a 1153 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1154 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1155 new->lm_info->l_addr_p = 1;
34439770 1156
8e5c319d
JK
1157 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1158 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1159 strcpy (new->so_original_name, new->so_name);
34439770 1160
8e5c319d 1161 return new;
34439770
DJ
1162}
1163
cb08cc53
JK
1164/* Read the whole inferior libraries chain starting at address LM. Add the
1165 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1166 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
13437d4b 1167
cb08cc53
JK
1168static void
1169svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1170 int ignore_first)
13437d4b 1171{
cb08cc53 1172 CORE_ADDR prev_lm = 0, next_lm;
13437d4b 1173
cb08cc53 1174 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1175 {
cb08cc53
JK
1176 struct so_list *new;
1177 struct cleanup *old_chain;
1178 int errcode;
1179 char *buffer;
13437d4b 1180
cb08cc53
JK
1181 new = XZALLOC (struct so_list);
1182 old_chain = make_cleanup_free_so (new);
13437d4b 1183
3957565a
JK
1184 new->lm_info = lm_info_read (lm);
1185 if (new->lm_info == NULL)
1186 {
1187 do_cleanups (old_chain);
1188 break;
1189 }
13437d4b 1190
3957565a 1191 next_lm = new->lm_info->l_next;
492928e4 1192
3957565a 1193 if (new->lm_info->l_prev != prev_lm)
492928e4 1194 {
2268b414 1195 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1196 paddress (target_gdbarch (), prev_lm),
1197 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53
JK
1198 do_cleanups (old_chain);
1199 break;
492928e4 1200 }
13437d4b
KB
1201
1202 /* For SVR4 versions, the first entry in the link map is for the
1203 inferior executable, so we must ignore it. For some versions of
1204 SVR4, it has no name. For others (Solaris 2.3 for example), it
1205 does have a name, so we can no longer use a missing name to
c378eb4e 1206 decide when to ignore it. */
3957565a 1207 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1208 {
cb08cc53
JK
1209 struct svr4_info *info = get_svr4_info ();
1210
1a816a87 1211 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1212 do_cleanups (old_chain);
1213 continue;
93a57060 1214 }
13437d4b 1215
cb08cc53 1216 /* Extract this shared object's name. */
3957565a 1217 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1218 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1219 if (errcode != 0)
1220 {
1221 warning (_("Can't read pathname for load map: %s."),
1222 safe_strerror (errcode));
1223 do_cleanups (old_chain);
1224 continue;
13437d4b
KB
1225 }
1226
cb08cc53
JK
1227 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1228 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1229 strcpy (new->so_original_name, new->so_name);
1230 xfree (buffer);
492928e4 1231
cb08cc53
JK
1232 /* If this entry has no name, or its name matches the name
1233 for the main executable, don't include it in the list. */
1234 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1235 {
cb08cc53
JK
1236 do_cleanups (old_chain);
1237 continue;
492928e4 1238 }
e4cd0d6a 1239
13437d4b 1240 discard_cleanups (old_chain);
cb08cc53
JK
1241 new->next = 0;
1242 **link_ptr_ptr = new;
1243 *link_ptr_ptr = &new->next;
13437d4b 1244 }
cb08cc53
JK
1245}
1246
1247/* Implement the "current_sos" target_so_ops method. */
1248
1249static struct so_list *
1250svr4_current_sos (void)
1251{
1252 CORE_ADDR lm;
1253 struct so_list *head = NULL;
1254 struct so_list **link_ptr = &head;
1255 struct svr4_info *info;
1256 struct cleanup *back_to;
1257 int ignore_first;
2268b414
JK
1258 struct svr4_library_list library_list;
1259
0c5bf5a9
JK
1260 /* Fall back to manual examination of the target if the packet is not
1261 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1262 tests a case where gdbserver cannot find the shared libraries list while
1263 GDB itself is able to find it via SYMFILE_OBJFILE.
1264
1265 Unfortunately statically linked inferiors will also fall back through this
1266 suboptimal code path. */
1267
2268b414
JK
1268 if (svr4_current_sos_via_xfer_libraries (&library_list))
1269 {
1270 if (library_list.main_lm)
1271 {
1272 info = get_svr4_info ();
1273 info->main_lm_addr = library_list.main_lm;
1274 }
1275
1276 return library_list.head ? library_list.head : svr4_default_sos ();
1277 }
cb08cc53
JK
1278
1279 info = get_svr4_info ();
1280
1281 /* Always locate the debug struct, in case it has moved. */
1282 info->debug_base = 0;
1283 locate_base (info);
1284
1285 /* If we can't find the dynamic linker's base structure, this
1286 must not be a dynamically linked executable. Hmm. */
1287 if (! info->debug_base)
1288 return svr4_default_sos ();
1289
1290 /* Assume that everything is a library if the dynamic loader was loaded
1291 late by a static executable. */
1292 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1293 ignore_first = 0;
1294 else
1295 ignore_first = 1;
1296
1297 back_to = make_cleanup (svr4_free_library_list, &head);
1298
1299 /* Walk the inferior's link map list, and build our list of
1300 `struct so_list' nodes. */
1301 lm = solib_svr4_r_map (info);
1302 if (lm)
1303 svr4_read_so_list (lm, &link_ptr, ignore_first);
1304
1305 /* On Solaris, the dynamic linker is not in the normal list of
1306 shared objects, so make sure we pick it up too. Having
1307 symbol information for the dynamic linker is quite crucial
1308 for skipping dynamic linker resolver code. */
1309 lm = solib_svr4_r_ldsomap (info);
1310 if (lm)
1311 svr4_read_so_list (lm, &link_ptr, 0);
1312
1313 discard_cleanups (back_to);
13437d4b 1314
34439770
DJ
1315 if (head == NULL)
1316 return svr4_default_sos ();
1317
13437d4b
KB
1318 return head;
1319}
1320
93a57060 1321/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1322
1323CORE_ADDR
1324svr4_fetch_objfile_link_map (struct objfile *objfile)
1325{
93a57060 1326 struct so_list *so;
6c95b8df 1327 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1328
93a57060 1329 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1330 if (info->main_lm_addr == 0)
93a57060 1331 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1332
93a57060
DJ
1333 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1334 if (objfile == symfile_objfile)
1a816a87 1335 return info->main_lm_addr;
93a57060
DJ
1336
1337 /* The other link map addresses may be found by examining the list
1338 of shared libraries. */
1339 for (so = master_so_list (); so; so = so->next)
1340 if (so->objfile == objfile)
1341 return so->lm_info->lm_addr;
1342
1343 /* Not found! */
bc4a16ae
EZ
1344 return 0;
1345}
13437d4b
KB
1346
1347/* On some systems, the only way to recognize the link map entry for
1348 the main executable file is by looking at its name. Return
1349 non-zero iff SONAME matches one of the known main executable names. */
1350
1351static int
bc043ef3 1352match_main (const char *soname)
13437d4b 1353{
bc043ef3 1354 const char * const *mainp;
13437d4b
KB
1355
1356 for (mainp = main_name_list; *mainp != NULL; mainp++)
1357 {
1358 if (strcmp (soname, *mainp) == 0)
1359 return (1);
1360 }
1361
1362 return (0);
1363}
1364
13437d4b
KB
1365/* Return 1 if PC lies in the dynamic symbol resolution code of the
1366 SVR4 run time loader. */
13437d4b 1367
7d522c90 1368int
d7fa2ae2 1369svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1370{
6c95b8df
PA
1371 struct svr4_info *info = get_svr4_info ();
1372
1373 return ((pc >= info->interp_text_sect_low
1374 && pc < info->interp_text_sect_high)
1375 || (pc >= info->interp_plt_sect_low
1376 && pc < info->interp_plt_sect_high)
0875794a
JK
1377 || in_plt_section (pc, NULL)
1378 || in_gnu_ifunc_stub (pc));
13437d4b 1379}
13437d4b 1380
2f4950cd
AC
1381/* Given an executable's ABFD and target, compute the entry-point
1382 address. */
1383
1384static CORE_ADDR
1385exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1386{
8c2b9656
YQ
1387 CORE_ADDR addr;
1388
2f4950cd
AC
1389 /* KevinB wrote ... for most targets, the address returned by
1390 bfd_get_start_address() is the entry point for the start
1391 function. But, for some targets, bfd_get_start_address() returns
1392 the address of a function descriptor from which the entry point
1393 address may be extracted. This address is extracted by
1394 gdbarch_convert_from_func_ptr_addr(). The method
1395 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1396 function for targets which don't use function descriptors. */
8c2b9656 1397 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1398 bfd_get_start_address (abfd),
1399 targ);
8c2b9656 1400 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1401}
13437d4b 1402
cb457ae2
YQ
1403/* Helper function for gdb_bfd_lookup_symbol. */
1404
1405static int
1406cmp_name_and_sec_flags (asymbol *sym, void *data)
1407{
1408 return (strcmp (sym->name, (const char *) data) == 0
1409 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1410}
7f86f058 1411/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1412
1413 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1414 debugger interface, support for arranging for the inferior to hit
1415 a breakpoint after mapping in the shared libraries. This function
1416 enables that breakpoint.
1417
1418 For SunOS, there is a special flag location (in_debugger) which we
1419 set to 1. When the dynamic linker sees this flag set, it will set
1420 a breakpoint at a location known only to itself, after saving the
1421 original contents of that place and the breakpoint address itself,
1422 in it's own internal structures. When we resume the inferior, it
1423 will eventually take a SIGTRAP when it runs into the breakpoint.
1424 We handle this (in a different place) by restoring the contents of
1425 the breakpointed location (which is only known after it stops),
1426 chasing around to locate the shared libraries that have been
1427 loaded, then resuming.
1428
1429 For SVR4, the debugger interface structure contains a member (r_brk)
1430 which is statically initialized at the time the shared library is
1431 built, to the offset of a function (_r_debug_state) which is guaran-
1432 teed to be called once before mapping in a library, and again when
1433 the mapping is complete. At the time we are examining this member,
1434 it contains only the unrelocated offset of the function, so we have
1435 to do our own relocation. Later, when the dynamic linker actually
1436 runs, it relocates r_brk to be the actual address of _r_debug_state().
1437
1438 The debugger interface structure also contains an enumeration which
1439 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1440 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1441 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1442
1443static int
268a4a75 1444enable_break (struct svr4_info *info, int from_tty)
13437d4b 1445{
13437d4b 1446 struct minimal_symbol *msymbol;
bc043ef3 1447 const char * const *bkpt_namep;
13437d4b 1448 asection *interp_sect;
97ec2c2f 1449 gdb_byte *interp_name;
7cd25cfc 1450 CORE_ADDR sym_addr;
13437d4b 1451
6c95b8df
PA
1452 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1453 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1454
7cd25cfc
DJ
1455 /* If we already have a shared library list in the target, and
1456 r_debug contains r_brk, set the breakpoint there - this should
1457 mean r_brk has already been relocated. Assume the dynamic linker
1458 is the object containing r_brk. */
1459
268a4a75 1460 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1461 sym_addr = 0;
1a816a87
PA
1462 if (info->debug_base && solib_svr4_r_map (info) != 0)
1463 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1464
1465 if (sym_addr != 0)
1466 {
1467 struct obj_section *os;
1468
b36ec657 1469 sym_addr = gdbarch_addr_bits_remove
f5656ead 1470 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
1471 sym_addr,
1472 &current_target));
b36ec657 1473
48379de6
DE
1474 /* On at least some versions of Solaris there's a dynamic relocation
1475 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1476 we get control before the dynamic linker has self-relocated.
1477 Check if SYM_ADDR is in a known section, if it is assume we can
1478 trust its value. This is just a heuristic though, it could go away
1479 or be replaced if it's getting in the way.
1480
1481 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1482 however it's spelled in your particular system) is ARM or Thumb.
1483 That knowledge is encoded in the address, if it's Thumb the low bit
1484 is 1. However, we've stripped that info above and it's not clear
1485 what all the consequences are of passing a non-addr_bits_remove'd
1486 address to create_solib_event_breakpoint. The call to
1487 find_pc_section verifies we know about the address and have some
1488 hope of computing the right kind of breakpoint to use (via
1489 symbol info). It does mean that GDB needs to be pointed at a
1490 non-stripped version of the dynamic linker in order to obtain
1491 information it already knows about. Sigh. */
1492
7cd25cfc
DJ
1493 os = find_pc_section (sym_addr);
1494 if (os != NULL)
1495 {
1496 /* Record the relocated start and end address of the dynamic linker
1497 text and plt section for svr4_in_dynsym_resolve_code. */
1498 bfd *tmp_bfd;
1499 CORE_ADDR load_addr;
1500
1501 tmp_bfd = os->objfile->obfd;
1502 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 1503 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
1504
1505 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1506 if (interp_sect)
1507 {
6c95b8df 1508 info->interp_text_sect_low =
7cd25cfc 1509 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1510 info->interp_text_sect_high =
1511 info->interp_text_sect_low
1512 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1513 }
1514 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1515 if (interp_sect)
1516 {
6c95b8df 1517 info->interp_plt_sect_low =
7cd25cfc 1518 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1519 info->interp_plt_sect_high =
1520 info->interp_plt_sect_low
1521 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1522 }
1523
f5656ead 1524 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
7cd25cfc
DJ
1525 return 1;
1526 }
1527 }
1528
97ec2c2f 1529 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1530 into the old breakpoint at symbol code. */
97ec2c2f
UW
1531 interp_name = find_program_interpreter ();
1532 if (interp_name)
13437d4b 1533 {
8ad2fcde
KB
1534 CORE_ADDR load_addr = 0;
1535 int load_addr_found = 0;
2ec9a4f8 1536 int loader_found_in_list = 0;
f8766ec1 1537 struct so_list *so;
e4f7b8c8 1538 bfd *tmp_bfd = NULL;
2f4950cd 1539 struct target_ops *tmp_bfd_target;
f1838a98 1540 volatile struct gdb_exception ex;
13437d4b 1541
7cd25cfc 1542 sym_addr = 0;
13437d4b
KB
1543
1544 /* Now we need to figure out where the dynamic linker was
1545 loaded so that we can load its symbols and place a breakpoint
1546 in the dynamic linker itself.
1547
1548 This address is stored on the stack. However, I've been unable
1549 to find any magic formula to find it for Solaris (appears to
1550 be trivial on GNU/Linux). Therefore, we have to try an alternate
1551 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1552
f1838a98
UW
1553 TRY_CATCH (ex, RETURN_MASK_ALL)
1554 {
97ec2c2f 1555 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1556 }
13437d4b
KB
1557 if (tmp_bfd == NULL)
1558 goto bkpt_at_symbol;
1559
2f4950cd 1560 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 1561 well as BFD operations can be used. */
2f4950cd 1562 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
1563 /* target_bfd_reopen acquired its own reference, so we can
1564 release ours now. */
1565 gdb_bfd_unref (tmp_bfd);
2f4950cd 1566
f8766ec1
KB
1567 /* On a running target, we can get the dynamic linker's base
1568 address from the shared library table. */
f8766ec1
KB
1569 so = master_so_list ();
1570 while (so)
8ad2fcde 1571 {
97ec2c2f 1572 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1573 {
1574 load_addr_found = 1;
2ec9a4f8 1575 loader_found_in_list = 1;
b23518f0 1576 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1577 break;
1578 }
f8766ec1 1579 so = so->next;
8ad2fcde
KB
1580 }
1581
8d4e36ba
JB
1582 /* If we were not able to find the base address of the loader
1583 from our so_list, then try using the AT_BASE auxilliary entry. */
1584 if (!load_addr_found)
1585 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 1586 {
f5656ead 1587 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
1588
1589 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1590 that `+ load_addr' will overflow CORE_ADDR width not creating
1591 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1592 GDB. */
1593
d182d057 1594 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1595 {
d182d057 1596 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1597 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1598 tmp_bfd_target);
1599
1600 gdb_assert (load_addr < space_size);
1601
1602 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1603 64bit ld.so with 32bit executable, it should not happen. */
1604
1605 if (tmp_entry_point < space_size
1606 && tmp_entry_point + load_addr >= space_size)
1607 load_addr -= space_size;
1608 }
1609
1610 load_addr_found = 1;
1611 }
8d4e36ba 1612
8ad2fcde
KB
1613 /* Otherwise we find the dynamic linker's base address by examining
1614 the current pc (which should point at the entry point for the
8d4e36ba
JB
1615 dynamic linker) and subtracting the offset of the entry point.
1616
1617 This is more fragile than the previous approaches, but is a good
1618 fallback method because it has actually been working well in
1619 most cases. */
8ad2fcde 1620 if (!load_addr_found)
fb14de7b 1621 {
c2250ad1 1622 struct regcache *regcache
f5656ead 1623 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 1624
fb14de7b
UW
1625 load_addr = (regcache_read_pc (regcache)
1626 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1627 }
2ec9a4f8
DJ
1628
1629 if (!loader_found_in_list)
34439770 1630 {
1a816a87
PA
1631 info->debug_loader_name = xstrdup (interp_name);
1632 info->debug_loader_offset_p = 1;
1633 info->debug_loader_offset = load_addr;
268a4a75 1634 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1635 }
13437d4b
KB
1636
1637 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1638 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1639 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1640 if (interp_sect)
1641 {
6c95b8df 1642 info->interp_text_sect_low =
13437d4b 1643 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1644 info->interp_text_sect_high =
1645 info->interp_text_sect_low
1646 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1647 }
1648 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1649 if (interp_sect)
1650 {
6c95b8df 1651 info->interp_plt_sect_low =
13437d4b 1652 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1653 info->interp_plt_sect_high =
1654 info->interp_plt_sect_low
1655 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1656 }
1657
1658 /* Now try to set a breakpoint in the dynamic linker. */
1659 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1660 {
cb457ae2
YQ
1661 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1662 (void *) *bkpt_namep);
13437d4b
KB
1663 if (sym_addr != 0)
1664 break;
1665 }
1666
2bbe3cc1
DJ
1667 if (sym_addr != 0)
1668 /* Convert 'sym_addr' from a function pointer to an address.
1669 Because we pass tmp_bfd_target instead of the current
1670 target, this will always produce an unrelocated value. */
f5656ead 1671 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
1672 sym_addr,
1673 tmp_bfd_target);
1674
695c3173
TT
1675 /* We're done with both the temporary bfd and target. Closing
1676 the target closes the underlying bfd, because it holds the
1677 only remaining reference. */
460014f5 1678 target_close (tmp_bfd_target);
13437d4b
KB
1679
1680 if (sym_addr != 0)
1681 {
f5656ead 1682 create_solib_event_breakpoint (target_gdbarch (), load_addr + sym_addr);
97ec2c2f 1683 xfree (interp_name);
13437d4b
KB
1684 return 1;
1685 }
1686
1687 /* For whatever reason we couldn't set a breakpoint in the dynamic
1688 linker. Warn and drop into the old code. */
1689 bkpt_at_symbol:
97ec2c2f 1690 xfree (interp_name);
82d03102
PG
1691 warning (_("Unable to find dynamic linker breakpoint function.\n"
1692 "GDB will be unable to debug shared library initializers\n"
1693 "and track explicitly loaded dynamic code."));
13437d4b 1694 }
13437d4b 1695
e499d0f1
DJ
1696 /* Scan through the lists of symbols, trying to look up the symbol and
1697 set a breakpoint there. Terminate loop when we/if we succeed. */
1698
1699 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1700 {
1701 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1702 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1703 {
de64a9ac 1704 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1705 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
1706 sym_addr,
1707 &current_target);
f5656ead 1708 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
e499d0f1
DJ
1709 return 1;
1710 }
1711 }
13437d4b 1712
fb139f32 1713 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 1714 {
c6490bf2 1715 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1716 {
c6490bf2
KB
1717 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1718 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1719 {
1720 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1721 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
1722 sym_addr,
1723 &current_target);
f5656ead 1724 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
c6490bf2
KB
1725 return 1;
1726 }
13437d4b
KB
1727 }
1728 }
542c95c2 1729 return 0;
13437d4b
KB
1730}
1731
7f86f058 1732/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1733
1734static void
1735svr4_special_symbol_handling (void)
1736{
7f86f058 1737 /* Nothing to do. */
13437d4b
KB
1738}
1739
09919ac2
JK
1740/* Read the ELF program headers from ABFD. Return the contents and
1741 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1742
09919ac2
JK
1743static gdb_byte *
1744read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1745{
09919ac2
JK
1746 Elf_Internal_Ehdr *ehdr;
1747 gdb_byte *buf;
e2a44558 1748
09919ac2 1749 ehdr = elf_elfheader (abfd);
b8040f19 1750
09919ac2
JK
1751 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1752 if (*phdrs_size == 0)
1753 return NULL;
1754
1755 buf = xmalloc (*phdrs_size);
1756 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1757 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1758 {
1759 xfree (buf);
1760 return NULL;
1761 }
1762
1763 return buf;
b8040f19
JK
1764}
1765
01c30d6e
JK
1766/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1767 exec_bfd. Otherwise return 0.
1768
1769 We relocate all of the sections by the same amount. This
c378eb4e 1770 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1771 According to the System V Application Binary Interface,
1772 Edition 4.1, page 5-5:
1773
1774 ... Though the system chooses virtual addresses for
1775 individual processes, it maintains the segments' relative
1776 positions. Because position-independent code uses relative
1777 addressesing between segments, the difference between
1778 virtual addresses in memory must match the difference
1779 between virtual addresses in the file. The difference
1780 between the virtual address of any segment in memory and
1781 the corresponding virtual address in the file is thus a
1782 single constant value for any one executable or shared
1783 object in a given process. This difference is the base
1784 address. One use of the base address is to relocate the
1785 memory image of the program during dynamic linking.
1786
1787 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1788 ABI and is left unspecified in some of the earlier editions.
1789
1790 Decide if the objfile needs to be relocated. As indicated above, we will
1791 only be here when execution is stopped. But during attachment PC can be at
1792 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1793 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1794 regcache_read_pc would point to the interpreter and not the main executable.
1795
1796 So, to summarize, relocations are necessary when the start address obtained
1797 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1798
09919ac2
JK
1799 [ The astute reader will note that we also test to make sure that
1800 the executable in question has the DYNAMIC flag set. It is my
1801 opinion that this test is unnecessary (undesirable even). It
1802 was added to avoid inadvertent relocation of an executable
1803 whose e_type member in the ELF header is not ET_DYN. There may
1804 be a time in the future when it is desirable to do relocations
1805 on other types of files as well in which case this condition
1806 should either be removed or modified to accomodate the new file
1807 type. - Kevin, Nov 2000. ] */
b8040f19 1808
01c30d6e
JK
1809static int
1810svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1811{
41752192
JK
1812 /* ENTRY_POINT is a possible function descriptor - before
1813 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1814 CORE_ADDR entry_point, displacement;
b8040f19
JK
1815
1816 if (exec_bfd == NULL)
1817 return 0;
1818
09919ac2
JK
1819 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1820 being executed themselves and PIE (Position Independent Executable)
1821 executables are ET_DYN. */
1822
1823 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1824 return 0;
1825
1826 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1827 return 0;
1828
1829 displacement = entry_point - bfd_get_start_address (exec_bfd);
1830
1831 /* Verify the DISPLACEMENT candidate complies with the required page
1832 alignment. It is cheaper than the program headers comparison below. */
1833
1834 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1835 {
1836 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1837
1838 /* p_align of PT_LOAD segments does not specify any alignment but
1839 only congruency of addresses:
1840 p_offset % p_align == p_vaddr % p_align
1841 Kernel is free to load the executable with lower alignment. */
1842
1843 if ((displacement & (elf->minpagesize - 1)) != 0)
1844 return 0;
1845 }
1846
1847 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1848 comparing their program headers. If the program headers in the auxilliary
1849 vector do not match the program headers in the executable, then we are
1850 looking at a different file than the one used by the kernel - for
1851 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1852
1853 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1854 {
1855 /* Be optimistic and clear OK only if GDB was able to verify the headers
1856 really do not match. */
1857 int phdrs_size, phdrs2_size, ok = 1;
1858 gdb_byte *buf, *buf2;
0a1e94c7 1859 int arch_size;
09919ac2 1860
0a1e94c7 1861 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1862 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1863 if (buf != NULL && buf2 != NULL)
1864 {
f5656ead 1865 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
1866
1867 /* We are dealing with three different addresses. EXEC_BFD
1868 represents current address in on-disk file. target memory content
1869 may be different from EXEC_BFD as the file may have been prelinked
1870 to a different address after the executable has been loaded.
1871 Moreover the address of placement in target memory can be
3e43a32a
MS
1872 different from what the program headers in target memory say -
1873 this is the goal of PIE.
0a1e94c7
JK
1874
1875 Detected DISPLACEMENT covers both the offsets of PIE placement and
1876 possible new prelink performed after start of the program. Here
1877 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1878 content offset for the verification purpose. */
1879
1880 if (phdrs_size != phdrs2_size
1881 || bfd_get_arch_size (exec_bfd) != arch_size)
1882 ok = 0;
3e43a32a
MS
1883 else if (arch_size == 32
1884 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1885 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1886 {
1887 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1888 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1889 CORE_ADDR displacement = 0;
1890 int i;
1891
1892 /* DISPLACEMENT could be found more easily by the difference of
1893 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1894 already have enough information to compute that displacement
1895 with what we've read. */
1896
1897 for (i = 0; i < ehdr2->e_phnum; i++)
1898 if (phdr2[i].p_type == PT_LOAD)
1899 {
1900 Elf32_External_Phdr *phdrp;
1901 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1902 CORE_ADDR vaddr, paddr;
1903 CORE_ADDR displacement_vaddr = 0;
1904 CORE_ADDR displacement_paddr = 0;
1905
1906 phdrp = &((Elf32_External_Phdr *) buf)[i];
1907 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1908 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1909
1910 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1911 byte_order);
1912 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1913
1914 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1915 byte_order);
1916 displacement_paddr = paddr - phdr2[i].p_paddr;
1917
1918 if (displacement_vaddr == displacement_paddr)
1919 displacement = displacement_vaddr;
1920
1921 break;
1922 }
1923
1924 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1925
1926 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1927 {
1928 Elf32_External_Phdr *phdrp;
1929 Elf32_External_Phdr *phdr2p;
1930 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1931 CORE_ADDR vaddr, paddr;
43b8e241 1932 asection *plt2_asect;
0a1e94c7
JK
1933
1934 phdrp = &((Elf32_External_Phdr *) buf)[i];
1935 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1936 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1937 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1938
1939 /* PT_GNU_STACK is an exception by being never relocated by
1940 prelink as its addresses are always zero. */
1941
1942 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1943 continue;
1944
1945 /* Check also other adjustment combinations - PR 11786. */
1946
3e43a32a
MS
1947 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1948 byte_order);
0a1e94c7
JK
1949 vaddr -= displacement;
1950 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1951
3e43a32a
MS
1952 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1953 byte_order);
0a1e94c7
JK
1954 paddr -= displacement;
1955 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1956
1957 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1958 continue;
1959
43b8e241
JK
1960 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1961 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1962 if (plt2_asect)
1963 {
1964 int content2;
1965 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1966 CORE_ADDR filesz;
1967
1968 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1969 & SEC_HAS_CONTENTS) != 0;
1970
1971 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1972 byte_order);
1973
1974 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1975 FILESZ is from the in-memory image. */
1976 if (content2)
1977 filesz += bfd_get_section_size (plt2_asect);
1978 else
1979 filesz -= bfd_get_section_size (plt2_asect);
1980
1981 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1982 filesz);
1983
1984 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1985 continue;
1986 }
1987
0a1e94c7
JK
1988 ok = 0;
1989 break;
1990 }
1991 }
3e43a32a
MS
1992 else if (arch_size == 64
1993 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1994 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1995 {
1996 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1997 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1998 CORE_ADDR displacement = 0;
1999 int i;
2000
2001 /* DISPLACEMENT could be found more easily by the difference of
2002 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2003 already have enough information to compute that displacement
2004 with what we've read. */
2005
2006 for (i = 0; i < ehdr2->e_phnum; i++)
2007 if (phdr2[i].p_type == PT_LOAD)
2008 {
2009 Elf64_External_Phdr *phdrp;
2010 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2011 CORE_ADDR vaddr, paddr;
2012 CORE_ADDR displacement_vaddr = 0;
2013 CORE_ADDR displacement_paddr = 0;
2014
2015 phdrp = &((Elf64_External_Phdr *) buf)[i];
2016 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2017 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2018
2019 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2020 byte_order);
2021 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2022
2023 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2024 byte_order);
2025 displacement_paddr = paddr - phdr2[i].p_paddr;
2026
2027 if (displacement_vaddr == displacement_paddr)
2028 displacement = displacement_vaddr;
2029
2030 break;
2031 }
2032
2033 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2034
2035 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2036 {
2037 Elf64_External_Phdr *phdrp;
2038 Elf64_External_Phdr *phdr2p;
2039 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2040 CORE_ADDR vaddr, paddr;
43b8e241 2041 asection *plt2_asect;
0a1e94c7
JK
2042
2043 phdrp = &((Elf64_External_Phdr *) buf)[i];
2044 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2045 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2046 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2047
2048 /* PT_GNU_STACK is an exception by being never relocated by
2049 prelink as its addresses are always zero. */
2050
2051 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2052 continue;
2053
2054 /* Check also other adjustment combinations - PR 11786. */
2055
3e43a32a
MS
2056 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2057 byte_order);
0a1e94c7
JK
2058 vaddr -= displacement;
2059 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2060
3e43a32a
MS
2061 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2062 byte_order);
0a1e94c7
JK
2063 paddr -= displacement;
2064 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2065
2066 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2067 continue;
2068
43b8e241
JK
2069 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2070 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2071 if (plt2_asect)
2072 {
2073 int content2;
2074 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2075 CORE_ADDR filesz;
2076
2077 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2078 & SEC_HAS_CONTENTS) != 0;
2079
2080 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2081 byte_order);
2082
2083 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2084 FILESZ is from the in-memory image. */
2085 if (content2)
2086 filesz += bfd_get_section_size (plt2_asect);
2087 else
2088 filesz -= bfd_get_section_size (plt2_asect);
2089
2090 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2091 filesz);
2092
2093 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2094 continue;
2095 }
2096
0a1e94c7
JK
2097 ok = 0;
2098 break;
2099 }
2100 }
2101 else
2102 ok = 0;
2103 }
09919ac2
JK
2104
2105 xfree (buf);
2106 xfree (buf2);
2107
2108 if (!ok)
2109 return 0;
2110 }
b8040f19 2111
ccf26247
JK
2112 if (info_verbose)
2113 {
2114 /* It can be printed repeatedly as there is no easy way to check
2115 the executable symbols/file has been already relocated to
2116 displacement. */
2117
2118 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2119 "displacement %s for \"%s\".\n"),
f5656ead 2120 paddress (target_gdbarch (), displacement),
ccf26247
JK
2121 bfd_get_filename (exec_bfd));
2122 }
2123
01c30d6e
JK
2124 *displacementp = displacement;
2125 return 1;
b8040f19
JK
2126}
2127
2128/* Relocate the main executable. This function should be called upon
c378eb4e 2129 stopping the inferior process at the entry point to the program.
b8040f19
JK
2130 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2131 different, the main executable is relocated by the proper amount. */
2132
2133static void
2134svr4_relocate_main_executable (void)
2135{
01c30d6e
JK
2136 CORE_ADDR displacement;
2137
4e5799b6
JK
2138 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2139 probably contains the offsets computed using the PIE displacement
2140 from the previous run, which of course are irrelevant for this run.
2141 So we need to determine the new PIE displacement and recompute the
2142 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2143 already contains pre-computed offsets.
01c30d6e 2144
4e5799b6 2145 If we cannot compute the PIE displacement, either:
01c30d6e 2146
4e5799b6
JK
2147 - The executable is not PIE.
2148
2149 - SYMFILE_OBJFILE does not match the executable started in the target.
2150 This can happen for main executable symbols loaded at the host while
2151 `ld.so --ld-args main-executable' is loaded in the target.
2152
2153 Then we leave the section offsets untouched and use them as is for
2154 this run. Either:
2155
2156 - These section offsets were properly reset earlier, and thus
2157 already contain the correct values. This can happen for instance
2158 when reconnecting via the remote protocol to a target that supports
2159 the `qOffsets' packet.
2160
2161 - The section offsets were not reset earlier, and the best we can
c378eb4e 2162 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2163
2164 if (! svr4_exec_displacement (&displacement))
2165 return;
b8040f19 2166
01c30d6e
JK
2167 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2168 addresses. */
b8040f19
JK
2169
2170 if (symfile_objfile)
e2a44558 2171 {
e2a44558 2172 struct section_offsets *new_offsets;
b8040f19 2173 int i;
e2a44558 2174
b8040f19
JK
2175 new_offsets = alloca (symfile_objfile->num_sections
2176 * sizeof (*new_offsets));
e2a44558 2177
b8040f19
JK
2178 for (i = 0; i < symfile_objfile->num_sections; i++)
2179 new_offsets->offsets[i] = displacement;
e2a44558 2180
b8040f19 2181 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2182 }
51bee8e9
JK
2183 else if (exec_bfd)
2184 {
2185 asection *asect;
2186
2187 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2188 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2189 (bfd_section_vma (exec_bfd, asect)
2190 + displacement));
2191 }
e2a44558
KB
2192}
2193
7f86f058 2194/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2195
2196 For SVR4 executables, this first instruction is either the first
2197 instruction in the dynamic linker (for dynamically linked
2198 executables) or the instruction at "start" for statically linked
2199 executables. For dynamically linked executables, the system
2200 first exec's /lib/libc.so.N, which contains the dynamic linker,
2201 and starts it running. The dynamic linker maps in any needed
2202 shared libraries, maps in the actual user executable, and then
2203 jumps to "start" in the user executable.
2204
7f86f058
PA
2205 We can arrange to cooperate with the dynamic linker to discover the
2206 names of shared libraries that are dynamically linked, and the base
2207 addresses to which they are linked.
13437d4b
KB
2208
2209 This function is responsible for discovering those names and
2210 addresses, and saving sufficient information about them to allow
d2e5c99a 2211 their symbols to be read at a later time. */
13437d4b 2212
e2a44558 2213static void
268a4a75 2214svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2215{
1a816a87
PA
2216 struct svr4_info *info;
2217
6c95b8df 2218 info = get_svr4_info ();
2020b7ab 2219
e2a44558 2220 /* Relocate the main executable if necessary. */
86e4bafc 2221 svr4_relocate_main_executable ();
e2a44558 2222
c91c8c16
PA
2223 /* No point setting a breakpoint in the dynamic linker if we can't
2224 hit it (e.g., a core file, or a trace file). */
2225 if (!target_has_execution)
2226 return;
2227
d5a921c9 2228 if (!svr4_have_link_map_offsets ())
513f5903 2229 return;
d5a921c9 2230
268a4a75 2231 if (!enable_break (info, from_tty))
542c95c2 2232 return;
13437d4b
KB
2233}
2234
2235static void
2236svr4_clear_solib (void)
2237{
6c95b8df
PA
2238 struct svr4_info *info;
2239
2240 info = get_svr4_info ();
2241 info->debug_base = 0;
2242 info->debug_loader_offset_p = 0;
2243 info->debug_loader_offset = 0;
2244 xfree (info->debug_loader_name);
2245 info->debug_loader_name = NULL;
13437d4b
KB
2246}
2247
6bb7be43
JB
2248/* Clear any bits of ADDR that wouldn't fit in a target-format
2249 data pointer. "Data pointer" here refers to whatever sort of
2250 address the dynamic linker uses to manage its sections. At the
2251 moment, we don't support shared libraries on any processors where
2252 code and data pointers are different sizes.
2253
2254 This isn't really the right solution. What we really need here is
2255 a way to do arithmetic on CORE_ADDR values that respects the
2256 natural pointer/address correspondence. (For example, on the MIPS,
2257 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2258 sign-extend the value. There, simply truncating the bits above
819844ad 2259 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2260 be a new gdbarch method or something. */
2261static CORE_ADDR
2262svr4_truncate_ptr (CORE_ADDR addr)
2263{
f5656ead 2264 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2265 /* We don't need to truncate anything, and the bit twiddling below
2266 will fail due to overflow problems. */
2267 return addr;
2268 else
f5656ead 2269 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2270}
2271
2272
749499cb
KB
2273static void
2274svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2275 struct target_section *sec)
749499cb 2276{
b23518f0 2277 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2278 sec->bfd));
b23518f0 2279 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2280 sec->bfd));
749499cb 2281}
4b188b9f 2282\f
749499cb 2283
4b188b9f 2284/* Architecture-specific operations. */
6bb7be43 2285
4b188b9f
MK
2286/* Per-architecture data key. */
2287static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2288
4b188b9f 2289struct solib_svr4_ops
e5e2b9ff 2290{
4b188b9f
MK
2291 /* Return a description of the layout of `struct link_map'. */
2292 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2293};
e5e2b9ff 2294
4b188b9f 2295/* Return a default for the architecture-specific operations. */
e5e2b9ff 2296
4b188b9f
MK
2297static void *
2298solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2299{
4b188b9f 2300 struct solib_svr4_ops *ops;
e5e2b9ff 2301
4b188b9f 2302 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2303 ops->fetch_link_map_offsets = NULL;
4b188b9f 2304 return ops;
e5e2b9ff
KB
2305}
2306
4b188b9f 2307/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2308 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2309
21479ded 2310void
e5e2b9ff
KB
2311set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2312 struct link_map_offsets *(*flmo) (void))
21479ded 2313{
4b188b9f
MK
2314 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2315
2316 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2317
2318 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2319}
2320
4b188b9f
MK
2321/* Fetch a link_map_offsets structure using the architecture-specific
2322 `struct link_map_offsets' fetcher. */
1c4dcb57 2323
4b188b9f
MK
2324static struct link_map_offsets *
2325svr4_fetch_link_map_offsets (void)
21479ded 2326{
f5656ead 2327 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
2328
2329 gdb_assert (ops->fetch_link_map_offsets);
2330 return ops->fetch_link_map_offsets ();
21479ded
KB
2331}
2332
4b188b9f
MK
2333/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2334
2335static int
2336svr4_have_link_map_offsets (void)
2337{
f5656ead 2338 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 2339
4b188b9f
MK
2340 return (ops->fetch_link_map_offsets != NULL);
2341}
2342\f
2343
e4bbbda8
MK
2344/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2345 `struct r_debug' and a `struct link_map' that are binary compatible
2346 with the origional SVR4 implementation. */
2347
2348/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2349 for an ILP32 SVR4 system. */
d989b283 2350
e4bbbda8
MK
2351struct link_map_offsets *
2352svr4_ilp32_fetch_link_map_offsets (void)
2353{
2354 static struct link_map_offsets lmo;
2355 static struct link_map_offsets *lmp = NULL;
2356
2357 if (lmp == NULL)
2358 {
2359 lmp = &lmo;
2360
e4cd0d6a
MK
2361 lmo.r_version_offset = 0;
2362 lmo.r_version_size = 4;
e4bbbda8 2363 lmo.r_map_offset = 4;
7cd25cfc 2364 lmo.r_brk_offset = 8;
e4cd0d6a 2365 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2366
2367 /* Everything we need is in the first 20 bytes. */
2368 lmo.link_map_size = 20;
2369 lmo.l_addr_offset = 0;
e4bbbda8 2370 lmo.l_name_offset = 4;
cc10cae3 2371 lmo.l_ld_offset = 8;
e4bbbda8 2372 lmo.l_next_offset = 12;
e4bbbda8 2373 lmo.l_prev_offset = 16;
e4bbbda8
MK
2374 }
2375
2376 return lmp;
2377}
2378
2379/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2380 for an LP64 SVR4 system. */
d989b283 2381
e4bbbda8
MK
2382struct link_map_offsets *
2383svr4_lp64_fetch_link_map_offsets (void)
2384{
2385 static struct link_map_offsets lmo;
2386 static struct link_map_offsets *lmp = NULL;
2387
2388 if (lmp == NULL)
2389 {
2390 lmp = &lmo;
2391
e4cd0d6a
MK
2392 lmo.r_version_offset = 0;
2393 lmo.r_version_size = 4;
e4bbbda8 2394 lmo.r_map_offset = 8;
7cd25cfc 2395 lmo.r_brk_offset = 16;
e4cd0d6a 2396 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2397
2398 /* Everything we need is in the first 40 bytes. */
2399 lmo.link_map_size = 40;
2400 lmo.l_addr_offset = 0;
e4bbbda8 2401 lmo.l_name_offset = 8;
cc10cae3 2402 lmo.l_ld_offset = 16;
e4bbbda8 2403 lmo.l_next_offset = 24;
e4bbbda8 2404 lmo.l_prev_offset = 32;
e4bbbda8
MK
2405 }
2406
2407 return lmp;
2408}
2409\f
2410
7d522c90 2411struct target_so_ops svr4_so_ops;
13437d4b 2412
c378eb4e 2413/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2414 different rule for symbol lookup. The lookup begins here in the DSO, not in
2415 the main executable. */
2416
2417static struct symbol *
2418elf_lookup_lib_symbol (const struct objfile *objfile,
2419 const char *name,
21b556f4 2420 const domain_enum domain)
3a40aaa0 2421{
61f0d762
JK
2422 bfd *abfd;
2423
2424 if (objfile == symfile_objfile)
2425 abfd = exec_bfd;
2426 else
2427 {
2428 /* OBJFILE should have been passed as the non-debug one. */
2429 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2430
2431 abfd = objfile->obfd;
2432 }
2433
2434 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2435 return NULL;
2436
94af9270 2437 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2438}
2439
a78f21af
AC
2440extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2441
13437d4b
KB
2442void
2443_initialize_svr4_solib (void)
2444{
4b188b9f 2445 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 2446 solib_svr4_pspace_data
8e260fc0 2447 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 2448
749499cb 2449 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2450 svr4_so_ops.free_so = svr4_free_so;
2451 svr4_so_ops.clear_solib = svr4_clear_solib;
2452 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2453 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2454 svr4_so_ops.current_sos = svr4_current_sos;
2455 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2456 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2457 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2458 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2459 svr4_so_ops.same = svr4_same;
de18c1d8 2460 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2461}