]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
gdb: move store/extract integer functions to extract-store-integer.{c,h}
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
1d506c26 3 Copyright (C) 1990-2024 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b 20
13437d4b 21#include "elf/external.h"
21479ded 22#include "elf/common.h"
f7856c8f 23#include "elf/mips.h"
13437d4b 24
ec452525 25#include "extract-store-integer.h"
13437d4b
KB
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
76727919 35#include "observable.h"
13437d4b
KB
36
37#include "solist.h"
bba93f6c 38#include "solib.h"
13437d4b
KB
39#include "solib-svr4.h"
40
2f4950cd 41#include "bfd-target.h"
cc10cae3 42#include "elf-bfd.h"
2f4950cd 43#include "exec.h"
8d4e36ba 44#include "auxv.h"
695c3173 45#include "gdb_bfd.h"
f9e14852 46#include "probe.h"
2f4950cd 47
8d56636a
MM
48#include <map>
49
e5e2b9ff 50static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 51static int svr4_have_link_map_offsets (void);
9f2982ff 52static void svr4_relocate_main_executable (void);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
6e9cd73e
SM
54static void svr4_iterate_over_objfiles_in_search_order
55 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
56 objfile *current_objfile);
626ca2c0 57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
96bb3873
SM
174static bool
175svr4_same (const char *gdb_name, const char *inferior_name,
176 const lm_info_svr4 &gdb_lm_info,
177 const lm_info_svr4 &inferior_lm_info)
4d7b2d5b 178{
96bb3873 179 if (!svr4_same_1 (gdb_name, inferior_name))
8d56636a
MM
180 return false;
181
182 /* There may be different instances of the same library, in different
183 namespaces. Each instance, however, must have been loaded at a
184 different address so its relocation offset would be different. */
96bb3873
SM
185 return gdb_lm_info.l_addr_inferior == inferior_lm_info.l_addr_inferior;
186}
187
188static int
7b323785 189svr4_same (const solib &gdb, const solib &inferior)
96bb3873 190{
7ad0a42e
SM
191 auto *lmg
192 = gdb::checked_static_cast<const lm_info_svr4 *> (gdb.lm_info.get ());
193 auto *lmi
194 = gdb::checked_static_cast<const lm_info_svr4 *> (inferior.lm_info.get ());
8d56636a 195
98107b0b
SM
196 return svr4_same (gdb.so_original_name.c_str (),
197 inferior.so_original_name.c_str (), *lmg, *lmi);
4d7b2d5b
JB
198}
199
96bb3873 200static lm_info_svr4_up
3957565a 201lm_info_read (CORE_ADDR lm_addr)
13437d4b 202{
4b188b9f 203 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
96bb3873 204 lm_info_svr4_up lm_info;
3957565a 205
a7961323 206 gdb::byte_vector lm (lmo->link_map_size);
3957565a 207
a7961323
TT
208 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
209 warning (_("Error reading shared library list entry at %s"),
99d9c3b9 210 paddress (current_inferior ()->arch (), lm_addr));
3957565a
JK
211 else
212 {
99d9c3b9
SM
213 type *ptr_type
214 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
13437d4b 215
6b62451a 216 lm_info = std::make_unique<lm_info_svr4> ();
3957565a
JK
217 lm_info->lm_addr = lm_addr;
218
219 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
220 ptr_type);
221 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
222 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
223 ptr_type);
224 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
225 ptr_type);
226 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
227 ptr_type);
228 }
229
3957565a 230 return lm_info;
13437d4b
KB
231}
232
cc10cae3 233static int
b23518f0 234has_lm_dynamic_from_link_map (void)
cc10cae3
AO
235{
236 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
237
cfaefc65 238 return lmo->l_ld_offset >= 0;
cc10cae3
AO
239}
240
cc10cae3 241static CORE_ADDR
7b323785 242lm_addr_check (const solib &so, bfd *abfd)
cc10cae3 243{
7ad0a42e 244 auto *li = gdb::checked_static_cast<lm_info_svr4 *> (so.lm_info.get ());
d0e449a1
SM
245
246 if (!li->l_addr_p)
cc10cae3
AO
247 {
248 struct bfd_section *dyninfo_sect;
28f34a8f 249 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 250
d0e449a1 251 l_addr = li->l_addr_inferior;
cc10cae3 252
b23518f0 253 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
254 goto set_addr;
255
d0e449a1 256 l_dynaddr = li->l_ld;
cc10cae3
AO
257
258 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
259 if (dyninfo_sect == NULL)
260 goto set_addr;
261
fd361982 262 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
263
264 if (dynaddr + l_addr != l_dynaddr)
265 {
28f34a8f 266 CORE_ADDR align = 0x1000;
4e1fc9c9 267 CORE_ADDR minpagesize = align;
28f34a8f 268
cc10cae3
AO
269 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
270 {
271 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
272 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
273 int i;
274
275 align = 1;
276
277 for (i = 0; i < ehdr->e_phnum; i++)
278 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
279 align = phdr[i].p_align;
4e1fc9c9
JK
280
281 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
282 }
283
284 /* Turn it into a mask. */
285 align--;
286
287 /* If the changes match the alignment requirements, we
288 assume we're using a core file that was generated by the
289 same binary, just prelinked with a different base offset.
290 If it doesn't match, we may have a different binary, the
291 same binary with the dynamic table loaded at an unrelated
292 location, or anything, really. To avoid regressions,
293 don't adjust the base offset in the latter case, although
294 odds are that, if things really changed, debugging won't
5c0d192f
JK
295 quite work.
296
297 One could expect more the condition
298 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
299 but the one below is relaxed for PPC. The PPC kernel supports
300 either 4k or 64k page sizes. To be prepared for 64k pages,
301 PPC ELF files are built using an alignment requirement of 64k.
302 However, when running on a kernel supporting 4k pages, the memory
303 mapping of the library may not actually happen on a 64k boundary!
304
305 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
306 equivalent to the possibly expected check above.)
307
308 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 309
02835898
JK
310 l_addr = l_dynaddr - dynaddr;
311
4e1fc9c9
JK
312 if ((l_addr & (minpagesize - 1)) == 0
313 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 314 {
701ed6dc 315 if (info_verbose)
6cb06a8c
TT
316 gdb_printf (_("Using PIC (Position Independent Code) "
317 "prelink displacement %s for \"%s\".\n"),
99d9c3b9 318 paddress (current_inferior ()->arch (), l_addr),
98107b0b 319 so.so_name.c_str ());
cc10cae3 320 }
79d4c408 321 else
02835898
JK
322 {
323 /* There is no way to verify the library file matches. prelink
324 can during prelinking of an unprelinked file (or unprelinking
325 of a prelinked file) shift the DYNAMIC segment by arbitrary
326 offset without any page size alignment. There is no way to
327 find out the ELF header and/or Program Headers for a limited
328 verification if it they match. One could do a verification
329 of the DYNAMIC segment. Still the found address is the best
330 one GDB could find. */
331
332 warning (_(".dynamic section for \"%s\" "
333 "is not at the expected address "
98107b0b
SM
334 "(wrong library or version mismatch?)"),
335 so.so_name.c_str ());
02835898 336 }
cc10cae3
AO
337 }
338
339 set_addr:
d0e449a1
SM
340 li->l_addr = l_addr;
341 li->l_addr_p = 1;
cc10cae3
AO
342 }
343
d0e449a1 344 return li->l_addr;
cc10cae3
AO
345}
346
96bb3873
SM
347struct svr4_so
348{
349 svr4_so (const char *name, lm_info_svr4_up lm_info)
350 : name (name), lm_info (std::move (lm_info))
351 {}
352
353 std::string name;
354 lm_info_svr4_up lm_info;
355};
356
6c95b8df 357/* Per pspace SVR4 specific data. */
13437d4b 358
1a816a87
PA
359struct svr4_info
360{
8d56636a 361 /* Base of dynamic linker structures in default namespace. */
09232438 362 CORE_ADDR debug_base = 0;
1a816a87
PA
363
364 /* Validity flag for debug_loader_offset. */
09232438 365 int debug_loader_offset_p = 0;
1a816a87
PA
366
367 /* Load address for the dynamic linker, inferred. */
09232438 368 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
369
370 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 371 char *debug_loader_name = nullptr;
1a816a87 372
8d56636a 373 /* Load map address for the main executable in default namespace. */
09232438 374 CORE_ADDR main_lm_addr = 0;
1a816a87 375
09232438
TT
376 CORE_ADDR interp_text_sect_low = 0;
377 CORE_ADDR interp_text_sect_high = 0;
378 CORE_ADDR interp_plt_sect_low = 0;
379 CORE_ADDR interp_plt_sect_high = 0;
f9e14852 380
8d56636a 381 /* True if the list of objects was last obtained from the target
f9e14852 382 via qXfer:libraries-svr4:read. */
8d56636a 383 bool using_xfer = false;
f9e14852
GB
384
385 /* Table of struct probe_and_action instances, used by the
386 probes-based interface to map breakpoint addresses to probes
387 and their associated actions. Lookup is performed using
935676c9 388 probe_and_action->prob->address. */
09232438 389 htab_up probes_table;
f9e14852 390
8d56636a
MM
391 /* List of objects loaded into the inferior per namespace, used by the
392 probes-based interface.
393
394 The namespace is represented by the address of its corresponding
33b5899f 395 r_debug[_ext] object. We get the namespace id as argument to the
8d56636a
MM
396 'reloc_complete' probe but we don't get it when scanning the load map
397 on attach.
398
399 The r_debug[_ext] objects may move when ld.so itself moves. In that
400 case, we expect also the global _r_debug to move so we can detect
401 this and reload everything. The r_debug[_ext] objects are not
402 expected to move individually.
403
404 The special entry zero is reserved for a linear list to support
405 gdbstubs that do not support namespaces. */
96bb3873 406 std::map<CORE_ADDR, std::vector<svr4_so>> solib_lists;
6c95b8df 407};
1a816a87 408
6c95b8df 409/* Per-program-space data key. */
08b8a139 410static const registry<program_space>::key<svr4_info> solib_svr4_pspace_data;
1a816a87 411
8d56636a
MM
412/* Return whether DEBUG_BASE is the default namespace of INFO. */
413
414static bool
415svr4_is_default_namespace (const svr4_info *info, CORE_ADDR debug_base)
416{
417 return (debug_base == info->debug_base);
418}
419
f9e14852
GB
420/* Free the probes table. */
421
422static void
423free_probes_table (struct svr4_info *info)
424{
09232438 425 info->probes_table.reset (nullptr);
f9e14852
GB
426}
427
d70cc3ba
SM
428/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
429 This function always returns a valid object. */
34439770 430
6c95b8df 431static struct svr4_info *
d70cc3ba 432get_svr4_info (program_space *pspace)
1a816a87 433{
09232438 434 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 435
09232438
TT
436 if (info == NULL)
437 info = solib_svr4_pspace_data.emplace (pspace);
34439770 438
6c95b8df 439 return info;
1a816a87 440}
93a57060 441
13437d4b
KB
442/* Local function prototypes */
443
bc043ef3 444static int match_main (const char *);
13437d4b 445
97ec2c2f 446/* Read program header TYPE from inferior memory. The header is found
17658d46 447 by scanning the OS auxiliary vector.
97ec2c2f 448
09919ac2
JK
449 If TYPE == -1, return the program headers instead of the contents of
450 one program header.
451
17658d46
SM
452 Return vector of bytes holding the program header contents, or an empty
453 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
454 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
455 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 456
6b09f134 457static std::optional<gdb::byte_vector>
17658d46 458read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 459{
99d9c3b9 460 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
43136979 461 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
462 int arch_size, sect_size;
463 CORE_ADDR sect_addr;
43136979 464 int pt_phdr_p = 0;
97ec2c2f
UW
465
466 /* Get required auxv elements from target. */
82d23ca8 467 if (target_auxv_search (AT_PHDR, &at_phdr) <= 0)
17658d46 468 return {};
82d23ca8 469 if (target_auxv_search (AT_PHENT, &at_phent) <= 0)
17658d46 470 return {};
82d23ca8 471 if (target_auxv_search (AT_PHNUM, &at_phnum) <= 0)
17658d46 472 return {};
97ec2c2f 473 if (!at_phdr || !at_phnum)
17658d46 474 return {};
97ec2c2f
UW
475
476 /* Determine ELF architecture type. */
477 if (at_phent == sizeof (Elf32_External_Phdr))
478 arch_size = 32;
479 else if (at_phent == sizeof (Elf64_External_Phdr))
480 arch_size = 64;
481 else
17658d46 482 return {};
97ec2c2f 483
09919ac2
JK
484 /* Find the requested segment. */
485 if (type == -1)
486 {
487 sect_addr = at_phdr;
488 sect_size = at_phent * at_phnum;
489 }
490 else if (arch_size == 32)
97ec2c2f
UW
491 {
492 Elf32_External_Phdr phdr;
493 int i;
494
495 /* Search for requested PHDR. */
496 for (i = 0; i < at_phnum; i++)
497 {
43136979
AR
498 int p_type;
499
97ec2c2f
UW
500 if (target_read_memory (at_phdr + i * sizeof (phdr),
501 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 502 return {};
97ec2c2f 503
43136979
AR
504 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
505 4, byte_order);
506
507 if (p_type == PT_PHDR)
508 {
509 pt_phdr_p = 1;
510 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
511 4, byte_order);
512 }
513
514 if (p_type == type)
97ec2c2f
UW
515 break;
516 }
517
518 if (i == at_phnum)
17658d46 519 return {};
97ec2c2f
UW
520
521 /* Retrieve address and size. */
e17a4113
UW
522 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
523 4, byte_order);
524 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
525 4, byte_order);
97ec2c2f
UW
526 }
527 else
528 {
529 Elf64_External_Phdr phdr;
530 int i;
531
532 /* Search for requested PHDR. */
533 for (i = 0; i < at_phnum; i++)
534 {
43136979
AR
535 int p_type;
536
97ec2c2f
UW
537 if (target_read_memory (at_phdr + i * sizeof (phdr),
538 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 539 return {};
97ec2c2f 540
43136979
AR
541 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
542 4, byte_order);
543
544 if (p_type == PT_PHDR)
545 {
546 pt_phdr_p = 1;
547 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
548 8, byte_order);
549 }
550
551 if (p_type == type)
97ec2c2f
UW
552 break;
553 }
554
555 if (i == at_phnum)
17658d46 556 return {};
97ec2c2f
UW
557
558 /* Retrieve address and size. */
e17a4113
UW
559 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
560 8, byte_order);
561 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
562 8, byte_order);
97ec2c2f
UW
563 }
564
43136979
AR
565 /* PT_PHDR is optional, but we really need it
566 for PIE to make this work in general. */
567
568 if (pt_phdr_p)
569 {
570 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
571 Relocation offset is the difference between the two. */
572 sect_addr = sect_addr + (at_phdr - pt_phdr);
573 }
574
97ec2c2f 575 /* Read in requested program header. */
17658d46
SM
576 gdb::byte_vector buf (sect_size);
577 if (target_read_memory (sect_addr, buf.data (), sect_size))
578 return {};
97ec2c2f
UW
579
580 if (p_arch_size)
581 *p_arch_size = arch_size;
a738da3a
MF
582 if (base_addr)
583 *base_addr = sect_addr;
97ec2c2f
UW
584
585 return buf;
586}
587
588
589/* Return program interpreter string. */
6b09f134 590static std::optional<gdb::byte_vector>
97ec2c2f
UW
591find_program_interpreter (void)
592{
7e10abd1
TT
593 /* If we have a current exec_bfd, use its section table. */
594 if (current_program_space->exec_bfd ()
595 && (bfd_get_flavour (current_program_space->exec_bfd ())
596 == bfd_target_elf_flavour))
97ec2c2f
UW
597 {
598 struct bfd_section *interp_sect;
599
7e10abd1
TT
600 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
601 ".interp");
97ec2c2f
UW
602 if (interp_sect != NULL)
603 {
fd361982 604 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 605
17658d46 606 gdb::byte_vector buf (sect_size);
8e94bb3e
TV
607 bool res
608 = bfd_get_section_contents (current_program_space->exec_bfd (),
609 interp_sect, buf.data (), 0, sect_size);
610 if (res)
611 return buf;
97ec2c2f
UW
612 }
613 }
614
17658d46
SM
615 /* If we didn't find it, use the target auxiliary vector. */
616 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
617}
618
619
b6d7a4bf
SM
620/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
621 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
622 is returned and the corresponding PTR is set. */
97ec2c2f
UW
623
624static int
a738da3a
MF
625scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
626 CORE_ADDR *ptr_addr)
97ec2c2f 627{
99d9c3b9 628 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
17658d46 629 int arch_size, step;
b6d7a4bf 630 long current_dyntag;
97ec2c2f 631 CORE_ADDR dyn_ptr;
a738da3a 632 CORE_ADDR base_addr;
97ec2c2f
UW
633
634 /* Read in .dynamic section. */
6b09f134 635 std::optional<gdb::byte_vector> ph_data
17658d46
SM
636 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
637 if (!ph_data)
97ec2c2f
UW
638 return 0;
639
640 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
641 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
642 : sizeof (Elf64_External_Dyn);
17658d46
SM
643 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
644 buf < bufend; buf += step)
97ec2c2f
UW
645 {
646 if (arch_size == 32)
647 {
648 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 649
b6d7a4bf 650 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
651 4, byte_order);
652 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
653 4, byte_order);
97ec2c2f
UW
654 }
655 else
656 {
657 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 658
b6d7a4bf 659 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
660 8, byte_order);
661 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
662 8, byte_order);
97ec2c2f 663 }
b6d7a4bf 664 if (current_dyntag == DT_NULL)
97ec2c2f
UW
665 break;
666
b6d7a4bf 667 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
668 {
669 if (ptr)
670 *ptr = dyn_ptr;
671
a738da3a 672 if (ptr_addr)
17658d46 673 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 674
97ec2c2f
UW
675 return 1;
676 }
677 }
678
97ec2c2f
UW
679 return 0;
680}
681
7f86f058
PA
682/* Locate the base address of dynamic linker structs for SVR4 elf
683 targets.
13437d4b
KB
684
685 For SVR4 elf targets the address of the dynamic linker's runtime
686 structure is contained within the dynamic info section in the
687 executable file. The dynamic section is also mapped into the
688 inferior address space. Because the runtime loader fills in the
689 real address before starting the inferior, we have to read in the
690 dynamic info section from the inferior address space.
691 If there are any errors while trying to find the address, we
7f86f058 692 silently return 0, otherwise the found address is returned. */
13437d4b
KB
693
694static CORE_ADDR
695elf_locate_base (void)
696{
3b7344d5 697 struct bound_minimal_symbol msymbol;
a738da3a 698 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 699
60d09f0a
MM
700 if (!svr4_have_link_map_offsets ())
701 return 0;
702
65728c26
DJ
703 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
704 instead of DT_DEBUG, although they sometimes contain an unused
705 DT_DEBUG. */
8ddf4645
AM
706 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP,
707 current_program_space->exec_bfd (),
708 &dyn_ptr, NULL)
a738da3a 709 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 710 {
99d9c3b9
SM
711 type *ptr_type
712 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
3a40aaa0 713 gdb_byte *pbuf;
df86565b 714 int pbuf_size = ptr_type->length ();
433759f7 715
224c3ddb 716 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
717 /* DT_MIPS_RLD_MAP contains a pointer to the address
718 of the dynamic link structure. */
719 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 720 return 0;
b6da22b0 721 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
722 }
723
a738da3a
MF
724 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
725 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
726 in non-PIE. */
8ddf4645
AM
727 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL,
728 current_program_space->exec_bfd (),
729 &dyn_ptr, &dyn_ptr_addr)
a738da3a
MF
730 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
731 {
99d9c3b9
SM
732 type *ptr_type
733 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
a738da3a 734 gdb_byte *pbuf;
df86565b 735 int pbuf_size = ptr_type->length ();
a738da3a 736
224c3ddb 737 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
738 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
739 DT slot to the address of the dynamic link structure. */
740 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
741 return 0;
742 return extract_typed_address (pbuf, ptr_type);
743 }
744
65728c26 745 /* Find DT_DEBUG. */
8ddf4645
AM
746 if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (),
747 &dyn_ptr, NULL)
a738da3a 748 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
749 return dyn_ptr;
750
3a40aaa0
UW
751 /* This may be a static executable. Look for the symbol
752 conventionally named _r_debug, as a last resort. */
a42d7dd8
TT
753 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
754 current_program_space->symfile_object_file);
3b7344d5 755 if (msymbol.minsym != NULL)
4aeddc50 756 return msymbol.value_address ();
13437d4b
KB
757
758 /* DT_DEBUG entry not found. */
759 return 0;
760}
761
e4cd0d6a 762/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
763 return its address in the inferior. Return zero if the address
764 could not be determined.
13437d4b 765
e4cd0d6a
MK
766 FIXME: Perhaps we should validate the info somehow, perhaps by
767 checking r_version for a known version number, or r_state for
768 RT_CONSISTENT. */
13437d4b
KB
769
770static CORE_ADDR
8d56636a 771solib_svr4_r_map (CORE_ADDR debug_base)
13437d4b 772{
4b188b9f 773 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
99d9c3b9
SM
774 type *ptr_type
775 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
08597104 776 CORE_ADDR addr = 0;
13437d4b 777
a70b8144 778 try
08597104 779 {
8d56636a 780 addr = read_memory_typed_address (debug_base + lmo->r_map_offset,
dda83cd7 781 ptr_type);
08597104 782 }
230d2906 783 catch (const gdb_exception_error &ex)
492d29ea
PA
784 {
785 exception_print (gdb_stderr, ex);
786 }
492d29ea 787
08597104 788 return addr;
e4cd0d6a 789}
13437d4b 790
7cd25cfc
DJ
791/* Find r_brk from the inferior's debug base. */
792
793static CORE_ADDR
1a816a87 794solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
795{
796 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
99d9c3b9
SM
797 type *ptr_type
798 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
7cd25cfc 799
1a816a87
PA
800 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
801 ptr_type);
7cd25cfc
DJ
802}
803
e4cd0d6a
MK
804/* Find the link map for the dynamic linker (if it is not in the
805 normal list of loaded shared objects). */
13437d4b 806
e4cd0d6a 807static CORE_ADDR
1a816a87 808solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
809{
810 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
99d9c3b9
SM
811 type *ptr_type
812 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
34877895 813 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
814 ULONGEST version = 0;
815
a70b8144 816 try
416f679e
SDJ
817 {
818 /* Check version, and return zero if `struct r_debug' doesn't have
819 the r_ldsomap member. */
820 version
821 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
822 lmo->r_version_size, byte_order);
823 }
230d2906 824 catch (const gdb_exception_error &ex)
416f679e
SDJ
825 {
826 exception_print (gdb_stderr, ex);
827 }
13437d4b 828
e4cd0d6a
MK
829 if (version < 2 || lmo->r_ldsomap_offset == -1)
830 return 0;
13437d4b 831
1a816a87 832 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 833 ptr_type);
13437d4b
KB
834}
835
8d56636a
MM
836/* Find the next namespace from the r_next field. */
837
838static CORE_ADDR
839solib_svr4_r_next (CORE_ADDR debug_base)
840{
841 link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
99d9c3b9
SM
842 type *ptr_type
843 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
8d56636a
MM
844 bfd_endian byte_order = type_byte_order (ptr_type);
845 ULONGEST version = 0;
846
847 try
848 {
849 version
850 = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
851 lmo->r_version_size, byte_order);
852 }
853 catch (const gdb_exception_error &ex)
854 {
855 exception_print (gdb_stderr, ex);
856 }
857
858 /* The r_next field is added with r_version == 2. */
859 if (version < 2 || lmo->r_next_offset == -1)
860 return 0;
861
862 return read_memory_typed_address (debug_base + lmo->r_next_offset,
863 ptr_type);
864}
865
de18c1d8
JM
866/* On Solaris systems with some versions of the dynamic linker,
867 ld.so's l_name pointer points to the SONAME in the string table
868 rather than into writable memory. So that GDB can find shared
869 libraries when loading a core file generated by gcore, ensure that
870 memory areas containing the l_name string are saved in the core
871 file. */
872
873static int
874svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
875{
876 struct svr4_info *info;
877 CORE_ADDR ldsomap;
74de0234 878 CORE_ADDR name_lm;
de18c1d8 879
d70cc3ba 880 info = get_svr4_info (current_program_space);
de18c1d8 881
60d09f0a
MM
882 info->debug_base = elf_locate_base ();
883 if (info->debug_base == 0)
de18c1d8
JM
884 return 0;
885
886 ldsomap = solib_svr4_r_ldsomap (info);
887 if (!ldsomap)
888 return 0;
889
a7961323 890 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 891 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 892
74de0234 893 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
894}
895
bf469271 896/* See solist.h. */
13437d4b
KB
897
898static int
bf469271 899open_symbol_file_object (int from_tty)
13437d4b
KB
900{
901 CORE_ADDR lm, l_name;
4b188b9f 902 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
99d9c3b9
SM
903 type *ptr_type
904 = builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
df86565b 905 int l_name_size = ptr_type->length ();
a7961323 906 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 907 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
908 symfile_add_flags add_flags = 0;
909
910 if (from_tty)
911 add_flags |= SYMFILE_VERBOSE;
13437d4b 912
a42d7dd8 913 if (current_program_space->symfile_object_file)
9e2f0ad4 914 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 915 return 0;
13437d4b 916
7cd25cfc 917 /* Always locate the debug struct, in case it has moved. */
60d09f0a
MM
918 info->debug_base = elf_locate_base ();
919 if (info->debug_base == 0)
a7961323 920 return 0; /* failed somehow... */
13437d4b
KB
921
922 /* First link map member should be the executable. */
8d56636a 923 lm = solib_svr4_r_map (info->debug_base);
e4cd0d6a 924 if (lm == 0)
a7961323 925 return 0; /* failed somehow... */
13437d4b
KB
926
927 /* Read address of name from target memory to GDB. */
a7961323 928 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 929
cfaefc65 930 /* Convert the address to host format. */
a7961323 931 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 932
13437d4b 933 if (l_name == 0)
a7961323 934 return 0; /* No filename. */
13437d4b
KB
935
936 /* Now fetch the filename from target memory. */
66920317
TT
937 gdb::unique_xmalloc_ptr<char> filename
938 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
13437d4b 939
66920317 940 if (filename == nullptr)
13437d4b 941 {
66920317 942 warning (_("failed to read exec filename from attached file"));
13437d4b
KB
943 return 0;
944 }
945
13437d4b 946 /* Have a pathname: read the symbol file. */
e83e4e24 947 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
948
949 return 1;
950}
13437d4b 951
2268b414
JK
952/* Data exchange structure for the XML parser as returned by
953 svr4_current_sos_via_xfer_libraries. */
954
955struct svr4_library_list
956{
8971d278 957 /* The so list for the current namespace. This is internal to XML
8d56636a 958 parsing. */
96bb3873 959 std::vector<svr4_so> *cur_list;
2268b414
JK
960
961 /* Inferior address of struct link_map used for the main executable. It is
962 NULL if not known. */
963 CORE_ADDR main_lm;
8d56636a
MM
964
965 /* List of objects loaded into the inferior per namespace. This does
966 not include any default sos.
967
968 See comment on struct svr4_info.solib_lists. */
96bb3873 969 std::map<CORE_ADDR, std::vector<svr4_so>> solib_lists;
2268b414
JK
970};
971
7905fc35
PA
972/* This module's 'free_objfile' observer. */
973
974static void
975svr4_free_objfile_observer (struct objfile *objfile)
976{
977 probes_table_remove_objfile_probes (objfile);
978}
979
6cedf3bc 980/* Implement solib_ops.clear_so. */
0892cb63
DE
981
982static void
7b323785 983svr4_clear_so (const solib &so)
0892cb63 984{
7ad0a42e 985 auto *li = gdb::checked_static_cast<lm_info_svr4 *> (so.lm_info.get ());
d0e449a1
SM
986
987 if (li != NULL)
988 li->l_addr_p = 0;
0892cb63
DE
989}
990
96bb3873 991/* Create the so_list objects equivalent to the svr4_sos in SOS. */
93f2a35e 992
7b323785 993static intrusive_list<solib>
96bb3873 994so_list_from_svr4_sos (const std::vector<svr4_so> &sos)
f9e14852 995{
7b323785 996 intrusive_list<solib> dst;
f9e14852 997
96bb3873 998 for (const svr4_so &so : sos)
f9e14852 999 {
7b323785 1000 struct solib *newobj = new struct solib;
f9e14852 1001
98107b0b
SM
1002 newobj->so_name = so.name;
1003 newobj->so_original_name = so.name;
6b62451a 1004 newobj->lm_info = std::make_unique<lm_info_svr4> (*so.lm_info);
f9e14852 1005
8971d278 1006 dst.push_back (*newobj);
f9e14852
GB
1007 }
1008
1009 return dst;
1010}
1011
2268b414
JK
1012#ifdef HAVE_LIBEXPAT
1013
1014#include "xml-support.h"
1015
1016/* Handle the start of a <library> element. Note: new elements are added
1017 at the tail of the list, keeping the list in order. */
1018
1019static void
1020library_list_start_library (struct gdb_xml_parser *parser,
1021 const struct gdb_xml_element *element,
4d0fdd9b
SM
1022 void *user_data,
1023 std::vector<gdb_xml_value> &attributes)
2268b414 1024{
19ba03f4
SM
1025 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1026 const char *name
4d0fdd9b 1027 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1028 ULONGEST *lmp
4d0fdd9b 1029 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1030 ULONGEST *l_addrp
4d0fdd9b 1031 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1032 ULONGEST *l_ldp
4d0fdd9b 1033 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414 1034
6b62451a 1035 lm_info_svr4_up li = std::make_unique<lm_info_svr4> ();
d0e449a1
SM
1036 li->lm_addr = *lmp;
1037 li->l_addr_inferior = *l_addrp;
1038 li->l_ld = *l_ldp;
2268b414 1039
96bb3873 1040 std::vector<svr4_so> *solist;
2268b414 1041
2733d9d5
MM
1042 /* Older versions did not supply lmid. Put the element into the flat
1043 list of the special namespace zero in that case. */
1044 gdb_xml_value *at_lmid = xml_find_attribute (attributes, "lmid");
1045 if (at_lmid == nullptr)
96bb3873 1046 solist = list->cur_list;
2733d9d5
MM
1047 else
1048 {
1049 ULONGEST lmid = *(ULONGEST *) at_lmid->value.get ();
96bb3873 1050 solist = &list->solib_lists[lmid];
2733d9d5 1051 }
96bb3873
SM
1052
1053 solist->emplace_back (name, std::move (li));
2268b414
JK
1054}
1055
1056/* Handle the start of a <library-list-svr4> element. */
1057
1058static void
1059svr4_library_list_start_list (struct gdb_xml_parser *parser,
1060 const struct gdb_xml_element *element,
4d0fdd9b
SM
1061 void *user_data,
1062 std::vector<gdb_xml_value> &attributes)
2268b414 1063{
19ba03f4
SM
1064 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1065 const char *version
4d0fdd9b 1066 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1067 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1068
1069 if (strcmp (version, "1.0") != 0)
1070 gdb_xml_error (parser,
1071 _("SVR4 Library list has unsupported version \"%s\""),
1072 version);
1073
1074 if (main_lm)
4d0fdd9b 1075 list->main_lm = *(ULONGEST *) main_lm->value.get ();
8d56636a
MM
1076
1077 /* Older gdbserver do not support namespaces. We use the special
1078 namespace zero for a linear list of libraries. */
96bb3873 1079 list->cur_list = &list->solib_lists[0];
2268b414
JK
1080}
1081
1082/* The allowed elements and attributes for an XML library list.
1083 The root element is a <library-list>. */
1084
1085static const struct gdb_xml_attribute svr4_library_attributes[] =
1086{
1087 { "name", GDB_XML_AF_NONE, NULL, NULL },
1088 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1089 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1090 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
2733d9d5 1091 { "lmid", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
2268b414
JK
1092 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1093};
1094
1095static const struct gdb_xml_element svr4_library_list_children[] =
1096{
1097 {
1098 "library", svr4_library_attributes, NULL,
1099 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1100 library_list_start_library, NULL
1101 },
1102 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1103};
1104
1105static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1106{
1107 { "version", GDB_XML_AF_NONE, NULL, NULL },
1108 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1109 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1110};
1111
1112static const struct gdb_xml_element svr4_library_list_elements[] =
1113{
1114 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1115 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1116 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1117};
1118
2268b414
JK
1119/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1120
1121 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1122 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1123 empty, caller is responsible for freeing all its entries. */
1124
1125static int
1126svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1127{
8d56636a 1128 auto cleanup = make_scope_exit ([list] ()
96bb3873 1129 { list->solib_lists.clear (); });
2268b414 1130
96bb3873 1131 list->cur_list = nullptr;
8d56636a
MM
1132 list->main_lm = 0;
1133 list->solib_lists.clear ();
2eca4a8d 1134 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1135 svr4_library_list_elements, document, list) == 0)
1136 {
1137 /* Parsed successfully, keep the result. */
2b6ff1c0 1138 cleanup.release ();
2268b414
JK
1139 return 1;
1140 }
1141
2268b414
JK
1142 return 0;
1143}
1144
f9e14852 1145/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1146
1147 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1148 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1149 empty, caller is responsible for freeing all its entries.
1150
1151 Note that ANNEX must be NULL if the remote does not explicitly allow
1152 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1153 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1154
1155static int
f9e14852
GB
1156svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1157 const char *annex)
2268b414 1158{
f9e14852
GB
1159 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1160
2268b414 1161 /* Fetch the list of shared libraries. */
6b09f134 1162 std::optional<gdb::char_vector> svr4_library_document
328d42d8
SM
1163 = target_read_stralloc (current_inferior ()->top_target (),
1164 TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1165 annex);
9018be22 1166 if (!svr4_library_document)
2268b414
JK
1167 return 0;
1168
9018be22 1169 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1170}
1171
1172#else
1173
1174static int
f9e14852
GB
1175svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1176 const char *annex)
2268b414
JK
1177{
1178 return 0;
1179}
1180
1181#endif
1182
34439770
DJ
1183/* If no shared library information is available from the dynamic
1184 linker, build a fallback list from other sources. */
1185
7b323785 1186static intrusive_list<solib>
d70cc3ba 1187svr4_default_sos (svr4_info *info)
34439770 1188{
8e5c319d 1189 if (!info->debug_loader_offset_p)
8971d278 1190 return {};
34439770 1191
7b323785 1192 solib *newobj = new solib;
6b62451a 1193 auto li = std::make_unique<lm_info_svr4> ();
34439770 1194
3957565a 1195 /* Nothing will ever check the other fields if we set l_addr_p. */
8d56636a 1196 li->l_addr = li->l_addr_inferior = info->debug_loader_offset;
d0e449a1 1197 li->l_addr_p = 1;
34439770 1198
7ad0a42e 1199 newobj->lm_info = std::move (li);
98107b0b
SM
1200 newobj->so_name = info->debug_loader_name;
1201 newobj->so_original_name = newobj->so_name;
34439770 1202
7b323785 1203 intrusive_list<solib> sos;
8971d278
SM
1204 sos.push_back (*newobj);
1205
1206 return sos;
34439770
DJ
1207}
1208
f9e14852
GB
1209/* Read the whole inferior libraries chain starting at address LM.
1210 Expect the first entry in the chain's previous entry to be PREV_LM.
96bb3873
SM
1211 Add the entries to SOS. Ignore the first entry if IGNORE_FIRST and set
1212 global MAIN_LM_ADDR according to it. Returns nonzero upon success. If zero
1213 is returned the entries stored to LINK_PTR_PTR are still valid although they may
f9e14852 1214 represent only part of the inferior library list. */
13437d4b 1215
f9e14852 1216static int
d70cc3ba 1217svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
96bb3873 1218 std::vector<svr4_so> &sos, int ignore_first)
13437d4b 1219{
c725e7b6 1220 CORE_ADDR first_l_name = 0;
f9e14852 1221 CORE_ADDR next_lm;
13437d4b 1222
cb08cc53 1223 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1224 {
96bb3873 1225 lm_info_svr4_up li = lm_info_read (lm);
d0e449a1 1226 if (li == NULL)
b3bc8453 1227 return 0;
13437d4b 1228
d0e449a1 1229 next_lm = li->l_next;
492928e4 1230
d0e449a1 1231 if (li->l_prev != prev_lm)
492928e4 1232 {
2268b414 1233 warning (_("Corrupted shared library list: %s != %s"),
99d9c3b9
SM
1234 paddress (current_inferior ()->arch (), prev_lm),
1235 paddress (current_inferior ()->arch (), li->l_prev));
f9e14852 1236 return 0;
492928e4 1237 }
13437d4b
KB
1238
1239 /* For SVR4 versions, the first entry in the link map is for the
dda83cd7
SM
1240 inferior executable, so we must ignore it. For some versions of
1241 SVR4, it has no name. For others (Solaris 2.3 for example), it
1242 does have a name, so we can no longer use a missing name to
1243 decide when to ignore it. */
d0e449a1 1244 if (ignore_first && li->l_prev == 0)
93a57060 1245 {
d0e449a1
SM
1246 first_l_name = li->l_name;
1247 info->main_lm_addr = li->lm_addr;
cb08cc53 1248 continue;
93a57060 1249 }
13437d4b 1250
cb08cc53 1251 /* Extract this shared object's name. */
96bb3873 1252 gdb::unique_xmalloc_ptr<char> name
66920317 1253 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
96bb3873 1254 if (name == nullptr)
cb08cc53 1255 {
7d760051
UW
1256 /* If this entry's l_name address matches that of the
1257 inferior executable, then this is not a normal shared
1258 object, but (most likely) a vDSO. In this case, silently
1259 skip it; otherwise emit a warning. */
d0e449a1 1260 if (first_l_name == 0 || li->l_name != first_l_name)
66920317 1261 warning (_("Can't read pathname for load map."));
cb08cc53 1262 continue;
13437d4b
KB
1263 }
1264
cb08cc53
JK
1265 /* If this entry has no name, or its name matches the name
1266 for the main executable, don't include it in the list. */
96bb3873 1267 if (*name == '\0' || match_main (name.get ()))
b3bc8453 1268 continue;
e4cd0d6a 1269
96bb3873 1270 sos.emplace_back (name.get (), std::move (li));
13437d4b 1271 }
f9e14852
GB
1272
1273 return 1;
cb08cc53
JK
1274}
1275
f9e14852
GB
1276/* Read the full list of currently loaded shared objects directly
1277 from the inferior, without referring to any libraries read and
1278 stored by the probes interface. Handle special cases relating
8d56636a 1279 to the first elements of the list in default namespace. */
cb08cc53 1280
8d56636a 1281static void
f9e14852 1282svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1283{
1284 CORE_ADDR lm;
8d56636a 1285 bool ignore_first;
2268b414
JK
1286 struct svr4_library_list library_list;
1287
8d56636a 1288 /* Remove any old libraries. We're going to read them back in again. */
96bb3873 1289 info->solib_lists.clear ();
8d56636a 1290
0c5bf5a9
JK
1291 /* Fall back to manual examination of the target if the packet is not
1292 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1293 tests a case where gdbserver cannot find the shared libraries list while
1294 GDB itself is able to find it via SYMFILE_OBJFILE.
1295
1296 Unfortunately statically linked inferiors will also fall back through this
1297 suboptimal code path. */
1298
f9e14852
GB
1299 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1300 NULL);
1301 if (info->using_xfer)
2268b414
JK
1302 {
1303 if (library_list.main_lm)
f9e14852 1304 info->main_lm_addr = library_list.main_lm;
2268b414 1305
8d56636a
MM
1306 /* Remove an empty special zero namespace so we know that when there
1307 is one, it is actually used, and we have a flat list without
1308 namespace information. */
96bb3873
SM
1309 auto it_0 = library_list.solib_lists.find (0);
1310 if (it_0 != library_list.solib_lists.end ()
1311 && it_0->second.empty ())
1312 library_list.solib_lists.erase (it_0);
8d56636a
MM
1313
1314 /* Replace the (empty) solib_lists in INFO with the one generated
1315 from the target. We don't want to copy it on assignment and then
1316 delete the original afterwards, so let's just swap the
1317 internals. */
1318 std::swap (info->solib_lists, library_list.solib_lists);
1319 return;
2268b414 1320 }
cb08cc53 1321
cb08cc53
JK
1322 /* If we can't find the dynamic linker's base structure, this
1323 must not be a dynamically linked executable. Hmm. */
60d09f0a
MM
1324 info->debug_base = elf_locate_base ();
1325 if (info->debug_base == 0)
8d56636a 1326 return;
cb08cc53
JK
1327
1328 /* Assume that everything is a library if the dynamic loader was loaded
1329 late by a static executable. */
7e10abd1
TT
1330 if (current_program_space->exec_bfd ()
1331 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1332 ".dynamic") == NULL)
8d56636a 1333 ignore_first = false;
cb08cc53 1334 else
8d56636a 1335 ignore_first = true;
cb08cc53 1336
8d56636a 1337 auto cleanup = make_scope_exit ([info] ()
96bb3873 1338 { info->solib_lists.clear (); });
cb08cc53 1339
8d56636a
MM
1340 /* Collect the sos in each namespace. */
1341 CORE_ADDR debug_base = info->debug_base;
1342 for (; debug_base != 0;
1343 ignore_first = false, debug_base = solib_svr4_r_next (debug_base))
1344 {
1345 /* Walk the inferior's link map list, and build our so_list list. */
1346 lm = solib_svr4_r_map (debug_base);
1347 if (lm != 0)
96bb3873
SM
1348 svr4_read_so_list (info, lm, 0, info->solib_lists[debug_base],
1349 ignore_first);
8d56636a 1350 }
cb08cc53
JK
1351
1352 /* On Solaris, the dynamic linker is not in the normal list of
1353 shared objects, so make sure we pick it up too. Having
1354 symbol information for the dynamic linker is quite crucial
8d56636a
MM
1355 for skipping dynamic linker resolver code.
1356
1357 Note that we interpret the ldsomap load map address as 'virtual'
1358 r_debug object. If we added it to the default namespace (as it was),
1359 we would probably run into inconsistencies with the load map's
1360 prev/next links (I wonder if we did). */
1361 debug_base = solib_svr4_r_ldsomap (info);
1362 if (debug_base != 0)
1363 {
1364 /* Add the dynamic linker's namespace unless we already did. */
1365 if (info->solib_lists.find (debug_base) == info->solib_lists.end ())
96bb3873
SM
1366 svr4_read_so_list (info, debug_base, 0, info->solib_lists[debug_base],
1367 0);
8d56636a 1368 }
cb08cc53 1369
2b6ff1c0 1370 cleanup.release ();
8d56636a
MM
1371}
1372
1373/* Collect sos read and stored by the probes interface. */
1374
7b323785 1375static intrusive_list<solib>
8d56636a
MM
1376svr4_collect_probes_sos (svr4_info *info)
1377{
7b323785 1378 intrusive_list<solib> res;
8d56636a 1379
96bb3873 1380 for (const auto &tuple : info->solib_lists)
8d56636a 1381 {
96bb3873 1382 const std::vector<svr4_so> &sos = tuple.second;
8971d278 1383 res.splice (so_list_from_svr4_sos (sos));
8d56636a 1384 }
34439770 1385
96bb3873 1386 return res;
13437d4b
KB
1387}
1388
6cedf3bc 1389/* Implement the main part of the "current_sos" solib_ops
8b9a549d 1390 method. */
f9e14852 1391
7b323785 1392static intrusive_list<solib>
d70cc3ba 1393svr4_current_sos_1 (svr4_info *info)
f9e14852 1394{
7b323785 1395 intrusive_list<solib> sos;
8d56636a
MM
1396
1397 /* If we're using the probes interface, we can use the cache as it will
1398 be maintained by probe update/reload actions. */
1399 if (info->probes_table != nullptr)
1400 sos = svr4_collect_probes_sos (info);
f9e14852 1401
8d56636a
MM
1402 /* If we're not using the probes interface or if we didn't cache
1403 anything, read the sos to fill the cache, then collect them from the
1404 cache. */
8971d278 1405 if (sos.empty ())
8d56636a
MM
1406 {
1407 svr4_current_sos_direct (info);
1408
1409 sos = svr4_collect_probes_sos (info);
8971d278 1410 if (sos.empty ())
8d56636a
MM
1411 sos = svr4_default_sos (info);
1412 }
1413
1414 return sos;
f9e14852
GB
1415}
1416
6cedf3bc 1417/* Implement the "current_sos" solib_ops method. */
8b9a549d 1418
7b323785 1419static intrusive_list<solib>
8971d278 1420svr4_current_sos ()
8b9a549d 1421{
d70cc3ba 1422 svr4_info *info = get_svr4_info (current_program_space);
7b323785 1423 intrusive_list<solib> sos = svr4_current_sos_1 (info);
8b9a549d
PA
1424 struct mem_range vsyscall_range;
1425
1426 /* Filter out the vDSO module, if present. Its symbol file would
1427 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1428 managed by symfile-mem.c:add_vsyscall_page. */
99d9c3b9 1429 if (gdbarch_vsyscall_range (current_inferior ()->arch (), &vsyscall_range)
8b9a549d
PA
1430 && vsyscall_range.length != 0)
1431 {
8971d278 1432 for (auto so = sos.begin (); so != sos.end (); )
8b9a549d 1433 {
8b9a549d
PA
1434 /* We can't simply match the vDSO by starting address alone,
1435 because lm_info->l_addr_inferior (and also l_addr) do not
1436 necessarily represent the real starting address of the
1437 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1438 field (the ".dynamic" section of the shared object)
1439 always points at the absolute/resolved address though.
1440 So check whether that address is inside the vDSO's
1441 mapping instead.
1442
1443 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1444 0-based ELF, and we see:
1445
1446 (gdb) info auxv
1447 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1448 (gdb) p/x *_r_debug.r_map.l_next
1449 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1450
1451 And on Linux 2.6.32 (x86_64) we see:
1452
1453 (gdb) info auxv
1454 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1455 (gdb) p/x *_r_debug.r_map.l_next
1456 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1457
1458 Dumping that vDSO shows:
1459
1460 (gdb) info proc mappings
1461 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1462 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1463 # readelf -Wa vdso.bin
1464 [...]
1465 Entry point address: 0xffffffffff700700
1466 [...]
1467 Section Headers:
1468 [Nr] Name Type Address Off Size
1469 [ 0] NULL 0000000000000000 000000 000000
1470 [ 1] .hash HASH ffffffffff700120 000120 000038
1471 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1472 [...]
1473 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1474 */
d0e449a1 1475
7ad0a42e 1476 auto *li = gdb::checked_static_cast<lm_info_svr4 *> (so->lm_info.get ());
d0e449a1
SM
1477
1478 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d 1479 {
8971d278 1480 auto next = sos.erase (so);
30932f40 1481 delete &*so;
8971d278 1482 so = next;
8b9a549d
PA
1483 break;
1484 }
1485
8971d278 1486 ++so;
8b9a549d
PA
1487 }
1488 }
1489
8971d278 1490 return sos;
8b9a549d
PA
1491}
1492
93a57060 1493/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1494
1495CORE_ADDR
1496svr4_fetch_objfile_link_map (struct objfile *objfile)
1497{
d70cc3ba 1498 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1499
93a57060 1500 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1501 if (info->main_lm_addr == 0)
e696b3ad 1502 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1503
93a57060 1504 /* svr4_current_sos() will set main_lm_addr for the main executable. */
a42d7dd8 1505 if (objfile == current_program_space->symfile_object_file)
1a816a87 1506 return info->main_lm_addr;
93a57060
DJ
1507
1508 /* The other link map addresses may be found by examining the list
1509 of shared libraries. */
7b323785 1510 for (const solib &so : current_program_space->solibs ())
8971d278 1511 if (so.objfile == objfile)
d0e449a1 1512 {
7ad0a42e 1513 auto *li
8971d278 1514 = gdb::checked_static_cast<lm_info_svr4 *> (so.lm_info.get ());
d0e449a1
SM
1515
1516 return li->lm_addr;
1517 }
93a57060
DJ
1518
1519 /* Not found! */
bc4a16ae
EZ
1520 return 0;
1521}
13437d4b
KB
1522
1523/* On some systems, the only way to recognize the link map entry for
1524 the main executable file is by looking at its name. Return
1525 non-zero iff SONAME matches one of the known main executable names. */
1526
1527static int
bc043ef3 1528match_main (const char *soname)
13437d4b 1529{
bc043ef3 1530 const char * const *mainp;
13437d4b
KB
1531
1532 for (mainp = main_name_list; *mainp != NULL; mainp++)
1533 {
1534 if (strcmp (soname, *mainp) == 0)
1535 return (1);
1536 }
1537
1538 return (0);
1539}
1540
13437d4b
KB
1541/* Return 1 if PC lies in the dynamic symbol resolution code of the
1542 SVR4 run time loader. */
13437d4b 1543
7d522c90 1544int
d7fa2ae2 1545svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1546{
d70cc3ba 1547 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1548
1549 return ((pc >= info->interp_text_sect_low
1550 && pc < info->interp_text_sect_high)
1551 || (pc >= info->interp_plt_sect_low
1552 && pc < info->interp_plt_sect_high)
3e5d3a5a 1553 || in_plt_section (pc)
0875794a 1554 || in_gnu_ifunc_stub (pc));
13437d4b 1555}
13437d4b 1556
2f4950cd
AC
1557/* Given an executable's ABFD and target, compute the entry-point
1558 address. */
1559
1560static CORE_ADDR
1561exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1562{
8c2b9656
YQ
1563 CORE_ADDR addr;
1564
2f4950cd
AC
1565 /* KevinB wrote ... for most targets, the address returned by
1566 bfd_get_start_address() is the entry point for the start
1567 function. But, for some targets, bfd_get_start_address() returns
1568 the address of a function descriptor from which the entry point
1569 address may be extracted. This address is extracted by
1570 gdbarch_convert_from_func_ptr_addr(). The method
1571 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1572 function for targets which don't use function descriptors. */
99d9c3b9 1573 addr = gdbarch_convert_from_func_ptr_addr (current_inferior ()->arch (),
2f4950cd
AC
1574 bfd_get_start_address (abfd),
1575 targ);
99d9c3b9 1576 return gdbarch_addr_bits_remove (current_inferior ()->arch (), addr);
2f4950cd 1577}
13437d4b 1578
f9e14852
GB
1579/* A probe and its associated action. */
1580
1581struct probe_and_action
1582{
1583 /* The probe. */
935676c9 1584 probe *prob;
f9e14852 1585
729662a5
TT
1586 /* The relocated address of the probe. */
1587 CORE_ADDR address;
1588
f9e14852
GB
1589 /* The action. */
1590 enum probe_action action;
7905fc35
PA
1591
1592 /* The objfile where this probe was found. */
1593 struct objfile *objfile;
f9e14852
GB
1594};
1595
1596/* Returns a hash code for the probe_and_action referenced by p. */
1597
1598static hashval_t
1599hash_probe_and_action (const void *p)
1600{
19ba03f4 1601 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1602
729662a5 1603 return (hashval_t) pa->address;
f9e14852
GB
1604}
1605
1606/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1607 are equal. */
1608
1609static int
1610equal_probe_and_action (const void *p1, const void *p2)
1611{
19ba03f4
SM
1612 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1613 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1614
729662a5 1615 return pa1->address == pa2->address;
f9e14852
GB
1616}
1617
7905fc35
PA
1618/* Traversal function for probes_table_remove_objfile_probes. */
1619
1620static int
1621probes_table_htab_remove_objfile_probes (void **slot, void *info)
1622{
1623 probe_and_action *pa = (probe_and_action *) *slot;
1624 struct objfile *objfile = (struct objfile *) info;
1625
1626 if (pa->objfile == objfile)
09232438
TT
1627 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1628 slot);
7905fc35
PA
1629
1630 return 1;
1631}
1632
1633/* Remove all probes that belong to OBJFILE from the probes table. */
1634
1635static void
1636probes_table_remove_objfile_probes (struct objfile *objfile)
1637{
d70cc3ba 1638 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1639 if (info->probes_table != nullptr)
09232438 1640 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1641 probes_table_htab_remove_objfile_probes, objfile);
1642}
1643
f9e14852
GB
1644/* Register a solib event probe and its associated action in the
1645 probes table. */
1646
1647static void
d70cc3ba 1648register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1649 probe *prob, CORE_ADDR address,
729662a5 1650 enum probe_action action)
f9e14852 1651{
f9e14852
GB
1652 struct probe_and_action lookup, *pa;
1653 void **slot;
1654
1655 /* Create the probes table, if necessary. */
1656 if (info->probes_table == NULL)
09232438
TT
1657 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1658 equal_probe_and_action,
1659 xfree, xcalloc, xfree));
f9e14852 1660
729662a5 1661 lookup.address = address;
09232438 1662 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1663 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1664
1665 pa = XCNEW (struct probe_and_action);
935676c9 1666 pa->prob = prob;
729662a5 1667 pa->address = address;
f9e14852 1668 pa->action = action;
7905fc35 1669 pa->objfile = objfile;
f9e14852
GB
1670
1671 *slot = pa;
1672}
1673
1674/* Get the solib event probe at the specified location, and the
1675 action associated with it. Returns NULL if no solib event probe
1676 was found. */
1677
1678static struct probe_and_action *
1679solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1680{
f9e14852
GB
1681 struct probe_and_action lookup;
1682 void **slot;
1683
729662a5 1684 lookup.address = address;
09232438 1685 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1686
1687 if (slot == NULL)
1688 return NULL;
1689
1690 return (struct probe_and_action *) *slot;
1691}
1692
1693/* Decide what action to take when the specified solib event probe is
1694 hit. */
1695
1696static enum probe_action
1697solib_event_probe_action (struct probe_and_action *pa)
1698{
1699 enum probe_action action;
73c6b475 1700 unsigned probe_argc = 0;
bd2b40ac 1701 frame_info_ptr frame = get_current_frame ();
f9e14852
GB
1702
1703 action = pa->action;
1704 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1705 return action;
1706
1707 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1708
1709 /* Check that an appropriate number of arguments has been supplied.
1710 We expect:
1711 arg0: Lmid_t lmid (mandatory)
1712 arg1: struct r_debug *debug_base (mandatory)
1713 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1714 try
3bd7e5b7 1715 {
fe01123e 1716 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1717 }
230d2906 1718 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1719 {
1720 exception_print (gdb_stderr, ex);
1721 probe_argc = 0;
1722 }
3bd7e5b7 1723
935676c9
SDJ
1724 /* If get_argument_count throws an exception, probe_argc will be set
1725 to zero. However, if pa->prob does not have arguments, then
1726 get_argument_count will succeed but probe_argc will also be zero.
1727 Both cases happen because of different things, but they are
1728 treated equally here: action will be set to
3bd7e5b7 1729 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1730 if (probe_argc == 2)
1731 action = FULL_RELOAD;
1732 else if (probe_argc < 2)
1733 action = PROBES_INTERFACE_FAILED;
1734
1735 return action;
1736}
1737
1738/* Populate the shared object list by reading the entire list of
1739 shared objects from the inferior. Handle special cases relating
1740 to the first elements of the list. Returns nonzero on success. */
1741
1742static int
1743solist_update_full (struct svr4_info *info)
1744{
8d56636a 1745 svr4_current_sos_direct (info);
f9e14852
GB
1746
1747 return 1;
1748}
1749
1750/* Update the shared object list starting from the link-map entry
1751 passed by the linker in the probe's third argument. Returns
1752 nonzero if the list was successfully updated, or zero to indicate
1753 failure. */
1754
1755static int
8d56636a
MM
1756solist_update_incremental (svr4_info *info, CORE_ADDR debug_base,
1757 CORE_ADDR lm)
f9e14852 1758{
f9e14852
GB
1759 /* Fall back to a full update if we are using a remote target
1760 that does not support incremental transfers. */
1761 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1762 return 0;
1763
8d56636a
MM
1764 /* Fall back to a full update if we used the special namespace zero. We
1765 wouldn't be able to find the last item in the DEBUG_BASE namespace
1766 and hence get the prev link wrong. */
1767 if (info->solib_lists.find (0) != info->solib_lists.end ())
1768 return 0;
1769
96bb3873 1770 std::vector<svr4_so> &solist = info->solib_lists[debug_base];
8d56636a
MM
1771 CORE_ADDR prev_lm;
1772
96bb3873 1773 if (solist.empty ())
8d56636a
MM
1774 {
1775 /* svr4_current_sos_direct contains logic to handle a number of
1776 special cases relating to the first elements of the list in
1777 default namespace. To avoid duplicating this logic we defer to
1778 solist_update_full in this case. */
1779 if (svr4_is_default_namespace (info, debug_base))
1780 return 0;
1781
1782 prev_lm = 0;
8d56636a
MM
1783 }
1784 else
96bb3873 1785 prev_lm = solist.back ().lm_info->lm_addr;
f9e14852
GB
1786
1787 /* Read the new objects. */
1788 if (info->using_xfer)
1789 {
1790 struct svr4_library_list library_list;
1791 char annex[64];
1792
2733d9d5
MM
1793 /* Unknown key=value pairs are ignored by the gdbstub. */
1794 xsnprintf (annex, sizeof (annex), "lmid=%s;start=%s;prev=%s",
1795 phex_nz (debug_base, sizeof (debug_base)),
f9e14852
GB
1796 phex_nz (lm, sizeof (lm)),
1797 phex_nz (prev_lm, sizeof (prev_lm)));
1798 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1799 return 0;
1800
8d56636a 1801 /* Get the so list from the target. We replace the list in the
287de656
SM
1802 target response so we can easily check that the response only
1803 covers one namespace.
8d56636a
MM
1804
1805 We expect gdbserver to provide updates for the namespace that
33b5899f 1806 contains LM, which would be this namespace... */
96bb3873
SM
1807 std::vector<svr4_so> sos;
1808 auto it_debug_base = library_list.solib_lists.find (debug_base);
1809 if (it_debug_base != library_list.solib_lists.end ())
1810 std::swap (sos, it_debug_base->second);
1811 else
8d56636a
MM
1812 {
1813 /* ...or for the special zero namespace for earlier versions... */
96bb3873
SM
1814 auto it_0 = library_list.solib_lists.find (0);
1815 if (it_0 != library_list.solib_lists.end ())
1816 std::swap (sos, it_0->second);
8d56636a
MM
1817 }
1818
1819 /* ...but nothing else. */
96bb3873
SM
1820 for (const auto &tuple : library_list.solib_lists)
1821 gdb_assert (tuple.second.empty ());
8d56636a 1822
96bb3873 1823 std::move (sos.begin (), sos.end (), std::back_inserter (solist));
f9e14852
GB
1824 }
1825 else
1826 {
f9e14852
GB
1827 /* IGNORE_FIRST may safely be set to zero here because the
1828 above check and deferral to solist_update_full ensures
1829 that this call to svr4_read_so_list will never see the
1830 first element. */
96bb3873 1831 if (!svr4_read_so_list (info, lm, prev_lm, solist, 0))
f9e14852
GB
1832 return 0;
1833 }
1834
1835 return 1;
1836}
1837
1838/* Disable the probes-based linker interface and revert to the
1839 original interface. We don't reset the breakpoints as the
1840 ones set up for the probes-based interface are adequate. */
1841
1842static void
d70cc3ba 1843disable_probes_interface (svr4_info *info)
f9e14852 1844{
f9e14852 1845 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1846 "Reverting to original interface."));
f9e14852
GB
1847
1848 free_probes_table (info);
96bb3873 1849 info->solib_lists.clear ();
f9e14852
GB
1850}
1851
1852/* Update the solib list as appropriate when using the
1853 probes-based linker interface. Do nothing if using the
1854 standard interface. */
1855
1856static void
1857svr4_handle_solib_event (void)
1858{
d70cc3ba 1859 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1860 struct probe_and_action *pa;
1861 enum probe_action action;
ad1c917a 1862 struct value *val = NULL;
f9e14852 1863 CORE_ADDR pc, debug_base, lm = 0;
bd2b40ac 1864 frame_info_ptr frame = get_current_frame ();
f9e14852
GB
1865
1866 /* Do nothing if not using the probes interface. */
1867 if (info->probes_table == NULL)
1868 return;
1869
9c742269 1870 pc = regcache_read_pc (get_thread_regcache (inferior_thread ()));
17467c10
SM
1871 pa = solib_event_probe_at (info, pc);
1872 if (pa == nullptr)
1873 {
1874 /* When some solib ops sits above us, it can respond to a solib event
1875 by calling in here. This is done assuming that if the current event
1876 is not an SVR4 solib event, calling here should be a no-op. */
1877 return;
1878 }
1879
f9e14852
GB
1880 /* If anything goes wrong we revert to the original linker
1881 interface. */
d70cc3ba
SM
1882 auto cleanup = make_scope_exit ([info] ()
1883 {
1884 disable_probes_interface (info);
1885 });
f9e14852 1886
f9e14852
GB
1887 action = solib_event_probe_action (pa);
1888 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1889 return;
f9e14852
GB
1890
1891 if (action == DO_NOTHING)
1892 {
d01c5877 1893 cleanup.release ();
f9e14852
GB
1894 return;
1895 }
1896
935676c9 1897 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1898 using find_pc_section. find_pc_section is accelerated by a cache
1899 called the section map. The section map is invalidated every
1900 time a shared library is loaded or unloaded, and if the inferior
1901 is generating a lot of shared library events then the section map
1902 will be updated every time svr4_handle_solib_event is called.
1903 We called find_pc_section in svr4_create_solib_event_breakpoints,
1904 so we can guarantee that the dynamic linker's sections are in the
1905 section map. We can therefore inhibit section map updates across
935676c9 1906 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1907 {
1908 scoped_restore inhibit_updates
1909 = inhibit_section_map_updates (current_program_space);
f9e14852 1910
a70b8144 1911 try
06424eac
TT
1912 {
1913 val = pa->prob->evaluate_argument (1, frame);
1914 }
230d2906 1915 catch (const gdb_exception_error &ex)
06424eac
TT
1916 {
1917 exception_print (gdb_stderr, ex);
1918 val = NULL;
1919 }
f9e14852 1920
06424eac 1921 if (val == NULL)
d01c5877 1922 return;
f9e14852 1923
06424eac
TT
1924 debug_base = value_as_address (val);
1925 if (debug_base == 0)
d01c5877 1926 return;
f9e14852 1927
8d56636a
MM
1928 /* If the global _r_debug object moved, we need to reload everything
1929 since we cannot identify namespaces (by the location of their
1930 r_debug_ext object) anymore. */
1931 CORE_ADDR global_debug_base = elf_locate_base ();
1932 if (global_debug_base != info->debug_base)
1933 {
1934 info->debug_base = global_debug_base;
1935 action = FULL_RELOAD;
1936 }
1937
60d09f0a 1938 if (info->debug_base == 0)
cb736441
GB
1939 {
1940 /* It's possible for the reloc_complete probe to be triggered before
1941 the linker has set the DT_DEBUG pointer (for example, when the
1942 linker has finished relocating an LD_AUDIT library or its
1943 dependencies). Since we can't yet handle libraries from other link
1944 namespaces, we don't lose anything by ignoring them here. */
1945 struct value *link_map_id_val;
1946 try
1947 {
1948 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1949 }
1950 catch (const gdb_exception_error)
1951 {
1952 link_map_id_val = NULL;
1953 }
1954 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1955 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1956 action = DO_NOTHING;
1957 else
1958 return;
1959 }
3bd7e5b7 1960
06424eac
TT
1961 if (action == UPDATE_OR_RELOAD)
1962 {
a70b8144 1963 try
06424eac
TT
1964 {
1965 val = pa->prob->evaluate_argument (2, frame);
1966 }
230d2906 1967 catch (const gdb_exception_error &ex)
06424eac
TT
1968 {
1969 exception_print (gdb_stderr, ex);
06424eac
TT
1970 return;
1971 }
06424eac
TT
1972
1973 if (val != NULL)
1974 lm = value_as_address (val);
1975
1976 if (lm == 0)
1977 action = FULL_RELOAD;
1978 }
f9e14852 1979
06424eac
TT
1980 /* Resume section map updates. Closing the scope is
1981 sufficient. */
1982 }
f9e14852
GB
1983
1984 if (action == UPDATE_OR_RELOAD)
1985 {
8d56636a 1986 if (!solist_update_incremental (info, debug_base, lm))
f9e14852
GB
1987 action = FULL_RELOAD;
1988 }
1989
1990 if (action == FULL_RELOAD)
1991 {
1992 if (!solist_update_full (info))
d01c5877 1993 return;
f9e14852
GB
1994 }
1995
d01c5877 1996 cleanup.release ();
f9e14852
GB
1997}
1998
1999/* Helper function for svr4_update_solib_event_breakpoints. */
2000
95da600f
CB
2001static bool
2002svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852 2003{
f9e14852
GB
2004 if (b->type != bp_shlib_event)
2005 {
2006 /* Continue iterating. */
95da600f 2007 return false;
f9e14852
GB
2008 }
2009
b00b30b2 2010 for (bp_location &loc : b->locations ())
f9e14852
GB
2011 {
2012 struct svr4_info *info;
2013 struct probe_and_action *pa;
2014
b00b30b2 2015 info = solib_svr4_pspace_data.get (loc.pspace);
f9e14852
GB
2016 if (info == NULL || info->probes_table == NULL)
2017 continue;
2018
b00b30b2 2019 pa = solib_event_probe_at (info, loc.address);
f9e14852
GB
2020 if (pa == NULL)
2021 continue;
2022
2023 if (pa->action == DO_NOTHING)
2024 {
2025 if (b->enable_state == bp_disabled && stop_on_solib_events)
2026 enable_breakpoint (b);
2027 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2028 disable_breakpoint (b);
2029 }
2030
2031 break;
2032 }
2033
2034 /* Continue iterating. */
95da600f 2035 return false;
f9e14852
GB
2036}
2037
2038/* Enable or disable optional solib event breakpoints as appropriate.
2039 Called whenever stop_on_solib_events is changed. */
2040
2041static void
2042svr4_update_solib_event_breakpoints (void)
2043{
a1decfc1
SM
2044 for (breakpoint &bp : all_breakpoints_safe ())
2045 svr4_update_solib_event_breakpoint (&bp);
f9e14852
GB
2046}
2047
2048/* Create and register solib event breakpoints. PROBES is an array
2049 of NUM_PROBES elements, each of which is vector of probes. A
2050 solib event breakpoint will be created and registered for each
2051 probe. */
2052
2053static void
d70cc3ba 2054svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2055 const std::vector<probe *> *probes,
729662a5 2056 struct objfile *objfile)
f9e14852 2057{
45461e0d 2058 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2059 {
2060 enum probe_action action = probe_info[i].action;
f9e14852 2061
45461e0d 2062 for (probe *p : probes[i])
f9e14852 2063 {
935676c9 2064 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5 2065
f8baaa2b
SM
2066 solib_debug_printf ("name=%s, addr=%s", probe_info[i].name,
2067 paddress (gdbarch, address));
2068
729662a5 2069 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2070 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2071 }
2072 }
2073
2074 svr4_update_solib_event_breakpoints ();
2075}
2076
e661ef01
AH
2077/* Find all the glibc named probes. Only if all of the probes are found, then
2078 create them and return true. Otherwise return false. If WITH_PREFIX is set
2079 then add "rtld" to the front of the probe names. */
2080static bool
2081svr4_find_and_create_probe_breakpoints (svr4_info *info,
2082 struct gdbarch *gdbarch,
2083 struct obj_section *os,
2084 bool with_prefix)
2085{
f8baaa2b
SM
2086 SOLIB_SCOPED_DEBUG_START_END ("objfile=%s, with_prefix=%d",
2087 os->objfile->original_name, with_prefix);
2088
e661ef01 2089 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2090
2091 for (int i = 0; i < NUM_PROBES; i++)
2092 {
2093 const char *name = probe_info[i].name;
2094 char buf[32];
2095
2096 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2097 version of the probes code in which the probes' names were prefixed
2098 with "rtld_" and the "map_failed" probe did not exist. The locations
2099 of the probes are otherwise the same, so we check for probes with
2100 prefixed names if probes with unprefixed names are not present. */
2101 if (with_prefix)
2102 {
2103 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2104 name = buf;
2105 }
2106
2107 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
f8baaa2b 2108 solib_debug_printf ("probe=%s, num found=%zu", name, probes[i].size ());
e661ef01 2109
e661ef01
AH
2110 /* Ensure at least one probe for the current name was found. */
2111 if (probes[i].empty ())
79d40365
AB
2112 {
2113 /* The "map_failed" probe did not exist in early versions of the
2114 probes code in which the probes' names were prefixed with
2115 "rtld_".
2116
2117 Additionally, the "map_failed" probe was accidentally removed
2118 from glibc 2.35 and 2.36, when changes in glibc meant the
2119 probe could no longer be reached, and the compiler optimized
2120 the probe away. In this case the probe name doesn't have the
2121 "rtld_" prefix.
2122
2123 To handle this, and give GDB as much flexibility as possible,
2124 we make the rule that, if a probe isn't required for the
2125 correct operation of GDB (i.e. its action is DO_NOTHING), then
2126 we will still use the probes interface, even if that probe is
2127 missing.
2128
2129 The only (possible) downside of this is that, if the user has
2130 'set stop-on-solib-events on' in effect, then they might get
2131 fewer events using the probes interface than with the classic
2132 non-probes interface. */
2133 if (probe_info[i].action == DO_NOTHING)
2134 continue;
2135 else
2136 return false;
2137 }
e661ef01
AH
2138
2139 /* Ensure probe arguments can be evaluated. */
d90b8f26 2140 for (probe *p : probes[i])
e661ef01 2141 {
e661ef01
AH
2142 if (!p->can_evaluate_arguments ())
2143 return false;
d90b8f26
AH
2144 /* This will fail if the probe is invalid. This has been seen on Arm
2145 due to references to symbols that have been resolved away. */
2146 try
2147 {
2148 p->get_argument_count (gdbarch);
2149 }
2150 catch (const gdb_exception_error &ex)
2151 {
2152 exception_print (gdb_stderr, ex);
2153 warning (_("Initializing probes-based dynamic linker interface "
2154 "failed.\nReverting to original interface."));
2155 return false;
2156 }
e661ef01
AH
2157 }
2158 }
2159
2160 /* All probes found. Now create them. */
f8baaa2b 2161 solib_debug_printf ("using probes interface");
e661ef01
AH
2162 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2163 return true;
2164}
2165
f9e14852
GB
2166/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2167 before and after mapping and unmapping shared libraries. The sole
2168 purpose of this method is to allow debuggers to set a breakpoint so
2169 they can track these changes.
2170
2171 Some versions of the glibc dynamic linker contain named probes
2172 to allow more fine grained stopping. Given the address of the
2173 original marker function, this function attempts to find these
2174 probes, and if found, sets breakpoints on those instead. If the
2175 probes aren't found, a single breakpoint is set on the original
2176 marker function. */
2177
2178static void
d70cc3ba 2179svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2180 CORE_ADDR address)
2181{
e661ef01 2182 struct obj_section *os = find_pc_section (address);
f9e14852 2183
e661ef01
AH
2184 if (os == nullptr
2185 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2186 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
f8baaa2b
SM
2187 {
2188 solib_debug_printf ("falling back to r_brk breakpoint: addr=%s",
2189 paddress (gdbarch, address));
2190 create_solib_event_breakpoint (gdbarch, address);
2191 }
f9e14852
GB
2192}
2193
7f86f058 2194/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2195
2196 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2197 debugger interface, support for arranging for the inferior to hit
2198 a breakpoint after mapping in the shared libraries. This function
2199 enables that breakpoint.
2200
2201 For SunOS, there is a special flag location (in_debugger) which we
2202 set to 1. When the dynamic linker sees this flag set, it will set
2203 a breakpoint at a location known only to itself, after saving the
2204 original contents of that place and the breakpoint address itself,
f4afd6cb 2205 in its own internal structures. When we resume the inferior, it
13437d4b
KB
2206 will eventually take a SIGTRAP when it runs into the breakpoint.
2207 We handle this (in a different place) by restoring the contents of
2208 the breakpointed location (which is only known after it stops),
2209 chasing around to locate the shared libraries that have been
2210 loaded, then resuming.
2211
2212 For SVR4, the debugger interface structure contains a member (r_brk)
2213 which is statically initialized at the time the shared library is
2214 built, to the offset of a function (_r_debug_state) which is guaran-
2215 teed to be called once before mapping in a library, and again when
2216 the mapping is complete. At the time we are examining this member,
2217 it contains only the unrelocated offset of the function, so we have
2218 to do our own relocation. Later, when the dynamic linker actually
2219 runs, it relocates r_brk to be the actual address of _r_debug_state().
2220
2221 The debugger interface structure also contains an enumeration which
2222 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2223 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2224 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2225
2226static int
268a4a75 2227enable_break (struct svr4_info *info, int from_tty)
13437d4b 2228{
3b7344d5 2229 struct bound_minimal_symbol msymbol;
bc043ef3 2230 const char * const *bkpt_namep;
13437d4b 2231 asection *interp_sect;
7cd25cfc 2232 CORE_ADDR sym_addr;
13437d4b 2233
6c95b8df
PA
2234 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2235 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2236
7cd25cfc
DJ
2237 /* If we already have a shared library list in the target, and
2238 r_debug contains r_brk, set the breakpoint there - this should
2239 mean r_brk has already been relocated. Assume the dynamic linker
2240 is the object containing r_brk. */
2241
e696b3ad 2242 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2243 sym_addr = 0;
8d56636a 2244 if (info->debug_base && solib_svr4_r_map (info->debug_base) != 0)
1a816a87 2245 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2246
2247 if (sym_addr != 0)
2248 {
2249 struct obj_section *os;
2250
b36ec657 2251 sym_addr = gdbarch_addr_bits_remove
99d9c3b9 2252 (current_inferior ()->arch (),
328d42d8 2253 gdbarch_convert_from_func_ptr_addr
99d9c3b9
SM
2254 (current_inferior ()->arch (), sym_addr,
2255 current_inferior ()->top_target ()));
b36ec657 2256
48379de6
DE
2257 /* On at least some versions of Solaris there's a dynamic relocation
2258 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2259 we get control before the dynamic linker has self-relocated.
2260 Check if SYM_ADDR is in a known section, if it is assume we can
2261 trust its value. This is just a heuristic though, it could go away
2262 or be replaced if it's getting in the way.
2263
2264 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2265 however it's spelled in your particular system) is ARM or Thumb.
2266 That knowledge is encoded in the address, if it's Thumb the low bit
2267 is 1. However, we've stripped that info above and it's not clear
2268 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2269 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2270 find_pc_section verifies we know about the address and have some
2271 hope of computing the right kind of breakpoint to use (via
2272 symbol info). It does mean that GDB needs to be pointed at a
2273 non-stripped version of the dynamic linker in order to obtain
2274 information it already knows about. Sigh. */
2275
7cd25cfc
DJ
2276 os = find_pc_section (sym_addr);
2277 if (os != NULL)
2278 {
2279 /* Record the relocated start and end address of the dynamic linker
2280 text and plt section for svr4_in_dynsym_resolve_code. */
2281 bfd *tmp_bfd;
2282 CORE_ADDR load_addr;
2283
98badbfd 2284 tmp_bfd = os->objfile->obfd.get ();
b3b3bada 2285 load_addr = os->objfile->text_section_offset ();
7cd25cfc
DJ
2286
2287 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2288 if (interp_sect)
2289 {
fd361982
AM
2290 info->interp_text_sect_low
2291 = bfd_section_vma (interp_sect) + load_addr;
2292 info->interp_text_sect_high
2293 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2294 }
2295 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2296 if (interp_sect)
2297 {
fd361982
AM
2298 info->interp_plt_sect_low
2299 = bfd_section_vma (interp_sect) + load_addr;
2300 info->interp_plt_sect_high
2301 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2302 }
2303
99d9c3b9
SM
2304 svr4_create_solib_event_breakpoints
2305 (info, current_inferior ()->arch (), sym_addr);
7cd25cfc
DJ
2306 return 1;
2307 }
2308 }
2309
97ec2c2f 2310 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2311 into the old breakpoint at symbol code. */
6b09f134 2312 std::optional<gdb::byte_vector> interp_name_holder
17658d46
SM
2313 = find_program_interpreter ();
2314 if (interp_name_holder)
13437d4b 2315 {
17658d46 2316 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2317 CORE_ADDR load_addr = 0;
2318 int load_addr_found = 0;
2ec9a4f8 2319 int loader_found_in_list = 0;
57685738 2320 target_ops_up tmp_bfd_target;
13437d4b 2321
7cd25cfc 2322 sym_addr = 0;
13437d4b
KB
2323
2324 /* Now we need to figure out where the dynamic linker was
dda83cd7
SM
2325 loaded so that we can load its symbols and place a breakpoint
2326 in the dynamic linker itself.
13437d4b 2327
dda83cd7
SM
2328 This address is stored on the stack. However, I've been unable
2329 to find any magic formula to find it for Solaris (appears to
2330 be trivial on GNU/Linux). Therefore, we have to try an alternate
2331 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2332
192b62ce 2333 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2334 try
dda83cd7 2335 {
97ec2c2f 2336 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2337 }
230d2906 2338 catch (const gdb_exception &ex)
492d29ea
PA
2339 {
2340 }
492d29ea 2341
13437d4b
KB
2342 if (tmp_bfd == NULL)
2343 goto bkpt_at_symbol;
2344
2f4950cd 2345 /* Now convert the TMP_BFD into a target. That way target, as
15908a11
TT
2346 well as BFD operations can be used. */
2347 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2f4950cd 2348
f8766ec1 2349 /* On a running target, we can get the dynamic linker's base
dda83cd7 2350 address from the shared library table. */
7b323785 2351 for (const solib &so : current_program_space->solibs ())
8ad2fcde 2352 {
8971d278 2353 if (svr4_same_1 (interp_name, so.so_original_name.c_str ()))
8ad2fcde
KB
2354 {
2355 load_addr_found = 1;
2ec9a4f8 2356 loader_found_in_list = 1;
8971d278 2357 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2358 break;
2359 }
8ad2fcde
KB
2360 }
2361
8d4e36ba 2362 /* If we were not able to find the base address of the loader
dda83cd7 2363 from our so_list, then try using the AT_BASE auxilliary entry. */
8d4e36ba 2364 if (!load_addr_found)
82d23ca8 2365 if (target_auxv_search (AT_BASE, &load_addr) > 0)
ad3a0e5b 2366 {
99d9c3b9 2367 int addr_bit = gdbarch_addr_bit (current_inferior ()->arch ());
ad3a0e5b
JK
2368
2369 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2370 that `+ load_addr' will overflow CORE_ADDR width not creating
2371 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2372 GDB. */
2373
d182d057 2374 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2375 {
d182d057 2376 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
57685738
TT
2377 CORE_ADDR tmp_entry_point
2378 = exec_entry_point (tmp_bfd.get (), tmp_bfd_target.get ());
ad3a0e5b
JK
2379
2380 gdb_assert (load_addr < space_size);
2381
2382 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2383 64bit ld.so with 32bit executable, it should not happen. */
2384
2385 if (tmp_entry_point < space_size
2386 && tmp_entry_point + load_addr >= space_size)
2387 load_addr -= space_size;
2388 }
2389
2390 load_addr_found = 1;
2391 }
8d4e36ba 2392
8ad2fcde
KB
2393 /* Otherwise we find the dynamic linker's base address by examining
2394 the current pc (which should point at the entry point for the
8d4e36ba
JB
2395 dynamic linker) and subtracting the offset of the entry point.
2396
dda83cd7
SM
2397 This is more fragile than the previous approaches, but is a good
2398 fallback method because it has actually been working well in
2399 most cases. */
8ad2fcde 2400 if (!load_addr_found)
fb14de7b 2401 {
74387712
SM
2402 regcache *regcache
2403 = get_thread_arch_regcache (current_inferior (), inferior_ptid,
99d9c3b9 2404 current_inferior ()->arch ());
433759f7 2405
fb14de7b 2406 load_addr = (regcache_read_pc (regcache)
57685738
TT
2407 - exec_entry_point (tmp_bfd.get (),
2408 tmp_bfd_target.get ()));
fb14de7b 2409 }
2ec9a4f8
DJ
2410
2411 if (!loader_found_in_list)
34439770 2412 {
1a816a87
PA
2413 info->debug_loader_name = xstrdup (interp_name);
2414 info->debug_loader_offset_p = 1;
2415 info->debug_loader_offset = load_addr;
e696b3ad 2416 solib_add (NULL, from_tty, auto_solib_add);
34439770 2417 }
13437d4b
KB
2418
2419 /* Record the relocated start and end address of the dynamic linker
dda83cd7 2420 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2421 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2422 if (interp_sect)
2423 {
fd361982
AM
2424 info->interp_text_sect_low
2425 = bfd_section_vma (interp_sect) + load_addr;
2426 info->interp_text_sect_high
2427 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2428 }
192b62ce 2429 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2430 if (interp_sect)
2431 {
fd361982
AM
2432 info->interp_plt_sect_low
2433 = bfd_section_vma (interp_sect) + load_addr;
2434 info->interp_plt_sect_high
2435 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2436 }
2437
2438 /* Now try to set a breakpoint in the dynamic linker. */
2439 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2440 {
6b3a2759
TT
2441 sym_addr
2442 = (gdb_bfd_lookup_symbol
2443 (tmp_bfd.get (),
2444 [=] (const asymbol *sym)
2445 {
2446 return (strcmp (sym->name, *bkpt_namep) == 0
2447 && ((sym->section->flags & (SEC_CODE | SEC_DATA))
2448 != 0));
2449 }));
13437d4b
KB
2450 if (sym_addr != 0)
2451 break;
2452 }
2453
2bbe3cc1
DJ
2454 if (sym_addr != 0)
2455 /* Convert 'sym_addr' from a function pointer to an address.
2456 Because we pass tmp_bfd_target instead of the current
2457 target, this will always produce an unrelocated value. */
99d9c3b9
SM
2458 sym_addr = gdbarch_convert_from_func_ptr_addr
2459 (current_inferior ()->arch (), sym_addr,
2460 tmp_bfd_target.get ());
13437d4b
KB
2461
2462 if (sym_addr != 0)
2463 {
99d9c3b9
SM
2464 svr4_create_solib_event_breakpoints (info,
2465 current_inferior ()->arch (),
f9e14852 2466 load_addr + sym_addr);
13437d4b
KB
2467 return 1;
2468 }
2469
2470 /* For whatever reason we couldn't set a breakpoint in the dynamic
dda83cd7 2471 linker. Warn and drop into the old code. */
13437d4b 2472 bkpt_at_symbol:
82d03102 2473 warning (_("Unable to find dynamic linker breakpoint function.\n"
dda83cd7
SM
2474 "GDB will be unable to debug shared library initializers\n"
2475 "and track explicitly loaded dynamic code."));
13437d4b 2476 }
13437d4b 2477
e499d0f1
DJ
2478 /* Scan through the lists of symbols, trying to look up the symbol and
2479 set a breakpoint there. Terminate loop when we/if we succeed. */
2480
a42d7dd8 2481 objfile *objf = current_program_space->symfile_object_file;
e499d0f1
DJ
2482 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2483 {
a42d7dd8 2484 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2485 if ((msymbol.minsym != NULL)
4aeddc50 2486 && (msymbol.value_address () != 0))
e499d0f1 2487 {
4aeddc50 2488 sym_addr = msymbol.value_address ();
328d42d8 2489 sym_addr = gdbarch_convert_from_func_ptr_addr
99d9c3b9
SM
2490 (current_inferior ()->arch (), sym_addr,
2491 current_inferior ()->top_target ());
2492 svr4_create_solib_event_breakpoints (info,
2493 current_inferior ()->arch (),
d70cc3ba 2494 sym_addr);
e499d0f1
DJ
2495 return 1;
2496 }
2497 }
13437d4b 2498
17658d46 2499 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2500 {
c6490bf2 2501 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2502 {
a42d7dd8 2503 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2504 if ((msymbol.minsym != NULL)
4aeddc50 2505 && (msymbol.value_address () != 0))
c6490bf2 2506 {
4aeddc50 2507 sym_addr = msymbol.value_address ();
328d42d8 2508 sym_addr = gdbarch_convert_from_func_ptr_addr
99d9c3b9 2509 (current_inferior ()->arch (), sym_addr,
328d42d8 2510 current_inferior ()->top_target ());
99d9c3b9
SM
2511 svr4_create_solib_event_breakpoints
2512 (info, current_inferior ()->arch (), sym_addr);
c6490bf2
KB
2513 return 1;
2514 }
13437d4b
KB
2515 }
2516 }
542c95c2 2517 return 0;
13437d4b
KB
2518}
2519
d1012b8e 2520/* Read the ELF program headers from ABFD. */
e2a44558 2521
6b09f134 2522static std::optional<gdb::byte_vector>
d1012b8e 2523read_program_headers_from_bfd (bfd *abfd)
e2a44558 2524{
d1012b8e
SM
2525 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2526 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2527 if (phdrs_size == 0)
2528 return {};
09919ac2 2529
d1012b8e 2530 gdb::byte_vector buf (phdrs_size);
09919ac2 2531 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
226f9f4f 2532 || bfd_read (buf.data (), phdrs_size, abfd) != phdrs_size)
d1012b8e 2533 return {};
09919ac2
JK
2534
2535 return buf;
b8040f19
JK
2536}
2537
01c30d6e
JK
2538/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2539 exec_bfd. Otherwise return 0.
2540
2541 We relocate all of the sections by the same amount. This
c378eb4e 2542 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2543 According to the System V Application Binary Interface,
2544 Edition 4.1, page 5-5:
2545
2546 ... Though the system chooses virtual addresses for
2547 individual processes, it maintains the segments' relative
2548 positions. Because position-independent code uses relative
85102364 2549 addressing between segments, the difference between
b8040f19
JK
2550 virtual addresses in memory must match the difference
2551 between virtual addresses in the file. The difference
2552 between the virtual address of any segment in memory and
2553 the corresponding virtual address in the file is thus a
2554 single constant value for any one executable or shared
2555 object in a given process. This difference is the base
2556 address. One use of the base address is to relocate the
2557 memory image of the program during dynamic linking.
2558
2559 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2560 ABI and is left unspecified in some of the earlier editions.
2561
2562 Decide if the objfile needs to be relocated. As indicated above, we will
2563 only be here when execution is stopped. But during attachment PC can be at
2564 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2565 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2566 regcache_read_pc would point to the interpreter and not the main executable.
2567
2568 So, to summarize, relocations are necessary when the start address obtained
2569 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2570
09919ac2
JK
2571 [ The astute reader will note that we also test to make sure that
2572 the executable in question has the DYNAMIC flag set. It is my
2573 opinion that this test is unnecessary (undesirable even). It
2574 was added to avoid inadvertent relocation of an executable
2575 whose e_type member in the ELF header is not ET_DYN. There may
2576 be a time in the future when it is desirable to do relocations
2577 on other types of files as well in which case this condition
33b5899f 2578 should either be removed or modified to accommodate the new file
09919ac2 2579 type. - Kevin, Nov 2000. ] */
b8040f19 2580
01c30d6e
JK
2581static int
2582svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2583{
41752192
JK
2584 /* ENTRY_POINT is a possible function descriptor - before
2585 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2586 CORE_ADDR entry_point, exec_displacement;
b8040f19 2587
7e10abd1 2588 if (current_program_space->exec_bfd () == NULL)
b8040f19
JK
2589 return 0;
2590
09919ac2
JK
2591 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2592 being executed themselves and PIE (Position Independent Executable)
2593 executables are ET_DYN. */
2594
7e10abd1 2595 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
09919ac2
JK
2596 return 0;
2597
82d23ca8 2598 if (target_auxv_search (AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2599 return 0;
2600
7e10abd1
TT
2601 exec_displacement
2602 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
09919ac2 2603
8f61baf8 2604 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2605 alignment. It is cheaper than the program headers comparison below. */
2606
7e10abd1
TT
2607 if (bfd_get_flavour (current_program_space->exec_bfd ())
2608 == bfd_target_elf_flavour)
09919ac2 2609 {
7e10abd1
TT
2610 const struct elf_backend_data *elf
2611 = get_elf_backend_data (current_program_space->exec_bfd ());
09919ac2
JK
2612
2613 /* p_align of PT_LOAD segments does not specify any alignment but
2614 only congruency of addresses:
2615 p_offset % p_align == p_vaddr % p_align
2616 Kernel is free to load the executable with lower alignment. */
2617
8f61baf8 2618 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2619 return 0;
2620 }
2621
2622 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2623 comparing their program headers. If the program headers in the auxilliary
2624 vector do not match the program headers in the executable, then we are
2625 looking at a different file than the one used by the kernel - for
2626 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2627
7e10abd1
TT
2628 if (bfd_get_flavour (current_program_space->exec_bfd ())
2629 == bfd_target_elf_flavour)
09919ac2 2630 {
d1012b8e 2631 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2632 really do not match. */
0a1e94c7 2633 int arch_size;
09919ac2 2634
6b09f134 2635 std::optional<gdb::byte_vector> phdrs_target
17658d46 2636 = read_program_header (-1, &arch_size, NULL);
6b09f134 2637 std::optional<gdb::byte_vector> phdrs_binary
7e10abd1 2638 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
d1012b8e 2639 if (phdrs_target && phdrs_binary)
0a1e94c7 2640 {
99d9c3b9 2641 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
0a1e94c7
JK
2642
2643 /* We are dealing with three different addresses. EXEC_BFD
2644 represents current address in on-disk file. target memory content
2645 may be different from EXEC_BFD as the file may have been prelinked
2646 to a different address after the executable has been loaded.
2647 Moreover the address of placement in target memory can be
3e43a32a
MS
2648 different from what the program headers in target memory say -
2649 this is the goal of PIE.
0a1e94c7
JK
2650
2651 Detected DISPLACEMENT covers both the offsets of PIE placement and
2652 possible new prelink performed after start of the program. Here
2653 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2654 content offset for the verification purpose. */
2655
d1012b8e 2656 if (phdrs_target->size () != phdrs_binary->size ()
7e10abd1 2657 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
d1012b8e 2658 return 0;
3e43a32a 2659 else if (arch_size == 32
17658d46 2660 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
dda83cd7 2661 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7 2662 {
7e10abd1
TT
2663 Elf_Internal_Ehdr *ehdr2
2664 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2665 Elf_Internal_Phdr *phdr2
2666 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2667 CORE_ADDR displacement = 0;
2668 int i;
2669
2670 /* DISPLACEMENT could be found more easily by the difference of
2671 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2672 already have enough information to compute that displacement
2673 with what we've read. */
2674
2675 for (i = 0; i < ehdr2->e_phnum; i++)
2676 if (phdr2[i].p_type == PT_LOAD)
2677 {
2678 Elf32_External_Phdr *phdrp;
2679 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2680 CORE_ADDR vaddr, paddr;
2681 CORE_ADDR displacement_vaddr = 0;
2682 CORE_ADDR displacement_paddr = 0;
2683
17658d46 2684 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2685 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2686 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2687
2688 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2689 byte_order);
2690 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2691
2692 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2693 byte_order);
2694 displacement_paddr = paddr - phdr2[i].p_paddr;
2695
2696 if (displacement_vaddr == displacement_paddr)
2697 displacement = displacement_vaddr;
2698
2699 break;
2700 }
2701
17658d46 2702 /* Now compare program headers from the target and the binary
dda83cd7 2703 with optional DISPLACEMENT. */
0a1e94c7 2704
17658d46
SM
2705 for (i = 0;
2706 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2707 i++)
0a1e94c7
JK
2708 {
2709 Elf32_External_Phdr *phdrp;
2710 Elf32_External_Phdr *phdr2p;
2711 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2712 CORE_ADDR vaddr, paddr;
43b8e241 2713 asection *plt2_asect;
0a1e94c7 2714
17658d46 2715 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2716 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2717 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2718 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2719
2720 /* PT_GNU_STACK is an exception by being never relocated by
2721 prelink as its addresses are always zero. */
2722
2723 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2724 continue;
2725
2726 /* Check also other adjustment combinations - PR 11786. */
2727
3e43a32a
MS
2728 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2729 byte_order);
0a1e94c7
JK
2730 vaddr -= displacement;
2731 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2732
3e43a32a
MS
2733 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2734 byte_order);
0a1e94c7
JK
2735 paddr -= displacement;
2736 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2737
2738 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2739 continue;
2740
204b5331
DE
2741 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2742 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2743 Strip also modifies memsz of PT_TLS.
204b5331 2744 See PR 11786. */
c44deb73
SM
2745 if (phdr2[i].p_type == PT_GNU_RELRO
2746 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2747 {
2748 Elf32_External_Phdr tmp_phdr = *phdrp;
2749 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2750
2751 memset (tmp_phdr.p_filesz, 0, 4);
2752 memset (tmp_phdr.p_memsz, 0, 4);
2753 memset (tmp_phdr.p_flags, 0, 4);
2754 memset (tmp_phdr.p_align, 0, 4);
2755 memset (tmp_phdr2.p_filesz, 0, 4);
2756 memset (tmp_phdr2.p_memsz, 0, 4);
2757 memset (tmp_phdr2.p_flags, 0, 4);
2758 memset (tmp_phdr2.p_align, 0, 4);
2759
2760 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2761 == 0)
2762 continue;
2763 }
2764
43b8e241 2765 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1 2766 bfd *exec_bfd = current_program_space->exec_bfd ();
43b8e241
JK
2767 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2768 if (plt2_asect)
2769 {
2770 int content2;
2771 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2772 CORE_ADDR filesz;
2773
fd361982 2774 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2775 & SEC_HAS_CONTENTS) != 0;
2776
2777 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2778 byte_order);
2779
2780 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2781 FILESZ is from the in-memory image. */
2782 if (content2)
fd361982 2783 filesz += bfd_section_size (plt2_asect);
43b8e241 2784 else
fd361982 2785 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2786
2787 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2788 filesz);
2789
2790 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2791 continue;
2792 }
2793
d1012b8e 2794 return 0;
0a1e94c7
JK
2795 }
2796 }
3e43a32a 2797 else if (arch_size == 64
17658d46 2798 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
dda83cd7 2799 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7 2800 {
7e10abd1
TT
2801 Elf_Internal_Ehdr *ehdr2
2802 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2803 Elf_Internal_Phdr *phdr2
2804 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2805 CORE_ADDR displacement = 0;
2806 int i;
2807
2808 /* DISPLACEMENT could be found more easily by the difference of
2809 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2810 already have enough information to compute that displacement
2811 with what we've read. */
2812
2813 for (i = 0; i < ehdr2->e_phnum; i++)
2814 if (phdr2[i].p_type == PT_LOAD)
2815 {
2816 Elf64_External_Phdr *phdrp;
2817 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2818 CORE_ADDR vaddr, paddr;
2819 CORE_ADDR displacement_vaddr = 0;
2820 CORE_ADDR displacement_paddr = 0;
2821
17658d46 2822 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2823 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2824 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2825
2826 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2827 byte_order);
2828 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2829
2830 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2831 byte_order);
2832 displacement_paddr = paddr - phdr2[i].p_paddr;
2833
2834 if (displacement_vaddr == displacement_paddr)
2835 displacement = displacement_vaddr;
2836
2837 break;
2838 }
2839
2840 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2841
17658d46
SM
2842 for (i = 0;
2843 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2844 i++)
0a1e94c7
JK
2845 {
2846 Elf64_External_Phdr *phdrp;
2847 Elf64_External_Phdr *phdr2p;
2848 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2849 CORE_ADDR vaddr, paddr;
43b8e241 2850 asection *plt2_asect;
0a1e94c7 2851
17658d46 2852 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2853 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2854 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2855 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2856
2857 /* PT_GNU_STACK is an exception by being never relocated by
2858 prelink as its addresses are always zero. */
2859
2860 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2861 continue;
2862
2863 /* Check also other adjustment combinations - PR 11786. */
2864
3e43a32a
MS
2865 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2866 byte_order);
0a1e94c7
JK
2867 vaddr -= displacement;
2868 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2869
3e43a32a
MS
2870 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2871 byte_order);
0a1e94c7
JK
2872 paddr -= displacement;
2873 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2874
2875 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2876 continue;
2877
204b5331
DE
2878 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2879 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2880 Strip also modifies memsz of PT_TLS.
204b5331 2881 See PR 11786. */
c44deb73
SM
2882 if (phdr2[i].p_type == PT_GNU_RELRO
2883 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2884 {
2885 Elf64_External_Phdr tmp_phdr = *phdrp;
2886 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2887
2888 memset (tmp_phdr.p_filesz, 0, 8);
2889 memset (tmp_phdr.p_memsz, 0, 8);
2890 memset (tmp_phdr.p_flags, 0, 4);
2891 memset (tmp_phdr.p_align, 0, 8);
2892 memset (tmp_phdr2.p_filesz, 0, 8);
2893 memset (tmp_phdr2.p_memsz, 0, 8);
2894 memset (tmp_phdr2.p_flags, 0, 4);
2895 memset (tmp_phdr2.p_align, 0, 8);
2896
2897 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2898 == 0)
2899 continue;
2900 }
2901
43b8e241 2902 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1
TT
2903 plt2_asect
2904 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2905 ".plt");
43b8e241
JK
2906 if (plt2_asect)
2907 {
2908 int content2;
2909 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2910 CORE_ADDR filesz;
2911
fd361982 2912 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2913 & SEC_HAS_CONTENTS) != 0;
2914
2915 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2916 byte_order);
2917
7e10abd1
TT
2918 /* PLT2_ASECT is from on-disk file (current
2919 exec_bfd) while FILESZ is from the in-memory
2920 image. */
43b8e241 2921 if (content2)
fd361982 2922 filesz += bfd_section_size (plt2_asect);
43b8e241 2923 else
fd361982 2924 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2925
2926 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2927 filesz);
2928
2929 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2930 continue;
2931 }
2932
d1012b8e 2933 return 0;
0a1e94c7
JK
2934 }
2935 }
2936 else
d1012b8e 2937 return 0;
0a1e94c7 2938 }
09919ac2 2939 }
b8040f19 2940
ccf26247
JK
2941 if (info_verbose)
2942 {
2943 /* It can be printed repeatedly as there is no easy way to check
2944 the executable symbols/file has been already relocated to
2945 displacement. */
2946
6cb06a8c
TT
2947 gdb_printf (_("Using PIE (Position Independent Executable) "
2948 "displacement %s for \"%s\".\n"),
99d9c3b9 2949 paddress (current_inferior ()->arch (), exec_displacement),
6cb06a8c 2950 bfd_get_filename (current_program_space->exec_bfd ()));
ccf26247
JK
2951 }
2952
8f61baf8 2953 *displacementp = exec_displacement;
01c30d6e 2954 return 1;
b8040f19
JK
2955}
2956
2957/* Relocate the main executable. This function should be called upon
c378eb4e 2958 stopping the inferior process at the entry point to the program.
b8040f19
JK
2959 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2960 different, the main executable is relocated by the proper amount. */
2961
2962static void
2963svr4_relocate_main_executable (void)
2964{
01c30d6e
JK
2965 CORE_ADDR displacement;
2966
4e5799b6
JK
2967 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2968 probably contains the offsets computed using the PIE displacement
2969 from the previous run, which of course are irrelevant for this run.
2970 So we need to determine the new PIE displacement and recompute the
2971 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2972 already contains pre-computed offsets.
01c30d6e 2973
4e5799b6 2974 If we cannot compute the PIE displacement, either:
01c30d6e 2975
4e5799b6
JK
2976 - The executable is not PIE.
2977
2978 - SYMFILE_OBJFILE does not match the executable started in the target.
2979 This can happen for main executable symbols loaded at the host while
2980 `ld.so --ld-args main-executable' is loaded in the target.
2981
2982 Then we leave the section offsets untouched and use them as is for
2983 this run. Either:
2984
2985 - These section offsets were properly reset earlier, and thus
2986 already contain the correct values. This can happen for instance
2987 when reconnecting via the remote protocol to a target that supports
2988 the `qOffsets' packet.
2989
2990 - The section offsets were not reset earlier, and the best we can
c378eb4e 2991 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2992
2993 if (! svr4_exec_displacement (&displacement))
2994 return;
b8040f19 2995
01c30d6e
JK
2996 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2997 addresses. */
b8040f19 2998
a42d7dd8
TT
2999 objfile *objf = current_program_space->symfile_object_file;
3000 if (objf)
e2a44558 3001 {
a42d7dd8 3002 section_offsets new_offsets (objf->section_offsets.size (),
6a053cb1 3003 displacement);
a42d7dd8 3004 objfile_relocate (objf, new_offsets);
e2a44558 3005 }
7e10abd1 3006 else if (current_program_space->exec_bfd ())
51bee8e9
JK
3007 {
3008 asection *asect;
3009
7e10abd1 3010 bfd *exec_bfd = current_program_space->exec_bfd ();
51bee8e9
JK
3011 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3012 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 3013 bfd_section_vma (asect) + displacement);
51bee8e9 3014 }
e2a44558
KB
3015}
3016
7f86f058 3017/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3018
3019 For SVR4 executables, this first instruction is either the first
3020 instruction in the dynamic linker (for dynamically linked
3021 executables) or the instruction at "start" for statically linked
3022 executables. For dynamically linked executables, the system
3023 first exec's /lib/libc.so.N, which contains the dynamic linker,
3024 and starts it running. The dynamic linker maps in any needed
3025 shared libraries, maps in the actual user executable, and then
3026 jumps to "start" in the user executable.
3027
7f86f058
PA
3028 We can arrange to cooperate with the dynamic linker to discover the
3029 names of shared libraries that are dynamically linked, and the base
3030 addresses to which they are linked.
13437d4b
KB
3031
3032 This function is responsible for discovering those names and
3033 addresses, and saving sufficient information about them to allow
d2e5c99a 3034 their symbols to be read at a later time. */
13437d4b 3035
e2a44558 3036static void
268a4a75 3037svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3038{
1a816a87
PA
3039 struct svr4_info *info;
3040
d70cc3ba 3041 info = get_svr4_info (current_program_space);
2020b7ab 3042
f9e14852
GB
3043 /* Clear the probes-based interface's state. */
3044 free_probes_table (info);
96bb3873 3045 info->solib_lists.clear ();
f9e14852 3046
e2a44558 3047 /* Relocate the main executable if necessary. */
86e4bafc 3048 svr4_relocate_main_executable ();
e2a44558 3049
c91c8c16
PA
3050 /* No point setting a breakpoint in the dynamic linker if we can't
3051 hit it (e.g., a core file, or a trace file). */
55f6301a 3052 if (!target_has_execution ())
c91c8c16
PA
3053 return;
3054
d5a921c9 3055 if (!svr4_have_link_map_offsets ())
513f5903 3056 return;
d5a921c9 3057
268a4a75 3058 if (!enable_break (info, from_tty))
542c95c2 3059 return;
13437d4b
KB
3060}
3061
3062static void
581b34c2 3063svr4_clear_solib (program_space *pspace)
13437d4b 3064{
581b34c2 3065 svr4_info *info = get_svr4_info (pspace);
6c95b8df
PA
3066 info->debug_base = 0;
3067 info->debug_loader_offset_p = 0;
3068 info->debug_loader_offset = 0;
3069 xfree (info->debug_loader_name);
3070 info->debug_loader_name = NULL;
13437d4b
KB
3071}
3072
6bb7be43
JB
3073/* Clear any bits of ADDR that wouldn't fit in a target-format
3074 data pointer. "Data pointer" here refers to whatever sort of
3075 address the dynamic linker uses to manage its sections. At the
3076 moment, we don't support shared libraries on any processors where
3077 code and data pointers are different sizes.
3078
3079 This isn't really the right solution. What we really need here is
3080 a way to do arithmetic on CORE_ADDR values that respects the
3081 natural pointer/address correspondence. (For example, on the MIPS,
3082 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3083 sign-extend the value. There, simply truncating the bits above
819844ad 3084 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3085 be a new gdbarch method or something. */
3086static CORE_ADDR
3087svr4_truncate_ptr (CORE_ADDR addr)
3088{
99d9c3b9 3089 if (gdbarch_ptr_bit (current_inferior ()->arch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3090 /* We don't need to truncate anything, and the bit twiddling below
3091 will fail due to overflow problems. */
3092 return addr;
3093 else
99d9c3b9 3094 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_inferior ()->arch ())) - 1);
6bb7be43
JB
3095}
3096
3097
749499cb 3098static void
7b323785 3099svr4_relocate_section_addresses (solib &so, target_section *sec)
749499cb 3100{
2b2848e2
DE
3101 bfd *abfd = sec->the_bfd_section->owner;
3102
3103 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3104 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3105}
4b188b9f 3106\f
749499cb 3107
4b188b9f 3108/* Architecture-specific operations. */
6bb7be43 3109
4b188b9f 3110struct solib_svr4_ops
e5e2b9ff 3111{
4b188b9f 3112 /* Return a description of the layout of `struct link_map'. */
cb275538 3113 struct link_map_offsets *(*fetch_link_map_offsets)(void) = nullptr;
4b188b9f 3114};
e5e2b9ff 3115
cb275538
TT
3116/* Per-architecture data key. */
3117static const registry<gdbarch>::key<struct solib_svr4_ops> solib_svr4_data;
3118
4b188b9f 3119/* Return a default for the architecture-specific operations. */
e5e2b9ff 3120
cb275538
TT
3121static struct solib_svr4_ops *
3122get_ops (struct gdbarch *gdbarch)
e5e2b9ff 3123{
cb275538
TT
3124 struct solib_svr4_ops *ops = solib_svr4_data.get (gdbarch);
3125 if (ops == nullptr)
3126 ops = solib_svr4_data.emplace (gdbarch);
4b188b9f 3127 return ops;
e5e2b9ff
KB
3128}
3129
4b188b9f 3130/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3131 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3132
21479ded 3133void
e5e2b9ff 3134set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
dda83cd7 3135 struct link_map_offsets *(*flmo) (void))
21479ded 3136{
cb275538 3137 struct solib_svr4_ops *ops = get_ops (gdbarch);
4b188b9f
MK
3138
3139 ops->fetch_link_map_offsets = flmo;
7e3cb44c 3140
9e468e95 3141 set_gdbarch_so_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3142 set_gdbarch_iterate_over_objfiles_in_search_order
3143 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3144}
3145
4b188b9f
MK
3146/* Fetch a link_map_offsets structure using the architecture-specific
3147 `struct link_map_offsets' fetcher. */
1c4dcb57 3148
4b188b9f
MK
3149static struct link_map_offsets *
3150svr4_fetch_link_map_offsets (void)
21479ded 3151{
99d9c3b9 3152 struct solib_svr4_ops *ops = get_ops (current_inferior ()->arch ());
4b188b9f
MK
3153
3154 gdb_assert (ops->fetch_link_map_offsets);
3155 return ops->fetch_link_map_offsets ();
21479ded
KB
3156}
3157
4b188b9f
MK
3158/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3159
3160static int
3161svr4_have_link_map_offsets (void)
3162{
99d9c3b9 3163 struct solib_svr4_ops *ops = get_ops (current_inferior ()->arch ());
433759f7 3164
4b188b9f
MK
3165 return (ops->fetch_link_map_offsets != NULL);
3166}
3167\f
3168
e4bbbda8
MK
3169/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3170 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3171 with the original SVR4 implementation. */
e4bbbda8
MK
3172
3173/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3174 for an ILP32 SVR4 system. */
d989b283 3175
e4bbbda8
MK
3176struct link_map_offsets *
3177svr4_ilp32_fetch_link_map_offsets (void)
3178{
3179 static struct link_map_offsets lmo;
3180 static struct link_map_offsets *lmp = NULL;
3181
3182 if (lmp == NULL)
3183 {
3184 lmp = &lmo;
3185
e4cd0d6a
MK
3186 lmo.r_version_offset = 0;
3187 lmo.r_version_size = 4;
e4bbbda8 3188 lmo.r_map_offset = 4;
7cd25cfc 3189 lmo.r_brk_offset = 8;
e4cd0d6a 3190 lmo.r_ldsomap_offset = 20;
8d56636a 3191 lmo.r_next_offset = -1;
e4bbbda8
MK
3192
3193 /* Everything we need is in the first 20 bytes. */
3194 lmo.link_map_size = 20;
3195 lmo.l_addr_offset = 0;
e4bbbda8 3196 lmo.l_name_offset = 4;
cc10cae3 3197 lmo.l_ld_offset = 8;
e4bbbda8 3198 lmo.l_next_offset = 12;
e4bbbda8 3199 lmo.l_prev_offset = 16;
e4bbbda8
MK
3200 }
3201
3202 return lmp;
3203}
3204
3205/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3206 for an LP64 SVR4 system. */
d989b283 3207
e4bbbda8
MK
3208struct link_map_offsets *
3209svr4_lp64_fetch_link_map_offsets (void)
3210{
3211 static struct link_map_offsets lmo;
3212 static struct link_map_offsets *lmp = NULL;
3213
3214 if (lmp == NULL)
3215 {
3216 lmp = &lmo;
3217
e4cd0d6a
MK
3218 lmo.r_version_offset = 0;
3219 lmo.r_version_size = 4;
e4bbbda8 3220 lmo.r_map_offset = 8;
7cd25cfc 3221 lmo.r_brk_offset = 16;
e4cd0d6a 3222 lmo.r_ldsomap_offset = 40;
8d56636a 3223 lmo.r_next_offset = -1;
e4bbbda8
MK
3224
3225 /* Everything we need is in the first 40 bytes. */
3226 lmo.link_map_size = 40;
3227 lmo.l_addr_offset = 0;
e4bbbda8 3228 lmo.l_name_offset = 8;
cc10cae3 3229 lmo.l_ld_offset = 16;
e4bbbda8 3230 lmo.l_next_offset = 24;
e4bbbda8 3231 lmo.l_prev_offset = 32;
e4bbbda8
MK
3232 }
3233
3234 return lmp;
3235}
3236\f
3237
aebb370b
MM
3238/* Return the DSO matching OBJFILE or nullptr if none can be found. */
3239
7b323785 3240static const solib *
aebb370b
MM
3241find_solib_for_objfile (struct objfile *objfile)
3242{
3243 if (objfile == nullptr)
3244 return nullptr;
3245
3246 /* If OBJFILE is a separate debug object file, look for the original
3247 object file. */
3248 if (objfile->separate_debug_objfile_backlink != nullptr)
3249 objfile = objfile->separate_debug_objfile_backlink;
3250
7b323785 3251 for (const solib &so : current_program_space->solibs ())
8971d278
SM
3252 if (so.objfile == objfile)
3253 return &so;
aebb370b
MM
3254
3255 return nullptr;
3256}
3257
3258/* Return the address of the r_debug object for the namespace containing
3259 SOLIB or zero if it cannot be found. This may happen when symbol files
3260 are added manually, for example, or with the main executable.
3261
3262 Current callers treat zero as initial namespace so they are doing the
3263 right thing for the main executable. */
3264
3265static CORE_ADDR
7b323785 3266find_debug_base_for_solib (const solib *solib)
aebb370b
MM
3267{
3268 if (solib == nullptr)
3269 return 0;
3270
3271 svr4_info *info = get_svr4_info (current_program_space);
3272 gdb_assert (info != nullptr);
96bb3873 3273
7ad0a42e
SM
3274 auto *lm_info
3275 = gdb::checked_static_cast<const lm_info_svr4 *> (solib->lm_info.get ());
96bb3873
SM
3276
3277 for (const auto &tuple : info->solib_lists)
aebb370b
MM
3278 {
3279 CORE_ADDR debug_base = tuple.first;
96bb3873 3280 const std::vector<svr4_so> &sos = tuple.second;
aebb370b 3281
96bb3873 3282 for (const svr4_so &so : sos)
98107b0b 3283 if (svr4_same (solib->so_original_name.c_str (), so.name.c_str (),
96bb3873 3284 *lm_info, *so.lm_info))
aebb370b
MM
3285 return debug_base;
3286 }
3287
3288 return 0;
3289}
3290
626ca2c0 3291/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
aebb370b
MM
3292 different rule for symbol lookup. The lookup begins here in the DSO,
3293 not in the main executable. When starting from CURRENT_OBJFILE, we
3294 stay in the same namespace as that file. Otherwise, we only consider
3295 the initial namespace. */
3a40aaa0 3296
626ca2c0
CB
3297static void
3298svr4_iterate_over_objfiles_in_search_order
6e9cd73e
SM
3299 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
3300 objfile *current_objfile)
3a40aaa0 3301{
626ca2c0
CB
3302 bool checked_current_objfile = false;
3303 if (current_objfile != nullptr)
61f0d762 3304 {
626ca2c0 3305 bfd *abfd;
61f0d762 3306
626ca2c0 3307 if (current_objfile->separate_debug_objfile_backlink != nullptr)
dda83cd7 3308 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3309
a42d7dd8 3310 if (current_objfile == current_program_space->symfile_object_file)
7e10abd1 3311 abfd = current_program_space->exec_bfd ();
626ca2c0 3312 else
98badbfd 3313 abfd = current_objfile->obfd.get ();
626ca2c0 3314
7ab78ccb 3315 if (abfd != nullptr
8ddf4645 3316 && gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3317 {
3318 checked_current_objfile = true;
6e9cd73e 3319 if (cb (current_objfile))
626ca2c0
CB
3320 return;
3321 }
3322 }
3a40aaa0 3323
aebb370b
MM
3324 /* The linker namespace to iterate identified by the address of its
3325 r_debug object, defaulting to the initial namespace. */
3326 CORE_ADDR initial = elf_locate_base ();
7b323785 3327 const solib *curr_solib = find_solib_for_objfile (current_objfile);
aebb370b
MM
3328 CORE_ADDR debug_base = find_debug_base_for_solib (curr_solib);
3329 if (debug_base == 0)
3330 debug_base = initial;
3331
626ca2c0
CB
3332 for (objfile *objfile : current_program_space->objfiles ())
3333 {
3334 if (checked_current_objfile && objfile == current_objfile)
3335 continue;
aebb370b
MM
3336
3337 /* Try to determine the namespace into which objfile was loaded.
3338
3339 If we fail, e.g. for manually added symbol files or for the main
3340 executable, we assume that they were added to the initial
3341 namespace. */
7b323785 3342 const solib *solib = find_solib_for_objfile (objfile);
aebb370b
MM
3343 CORE_ADDR solib_base = find_debug_base_for_solib (solib);
3344 if (solib_base == 0)
3345 solib_base = initial;
3346
3347 /* Ignore objfiles that were added to a different namespace. */
3348 if (solib_base != debug_base)
3349 continue;
3350
6e9cd73e 3351 if (cb (objfile))
626ca2c0
CB
3352 return;
3353 }
3a40aaa0
UW
3354}
3355
6cedf3bc 3356const struct solib_ops svr4_so_ops =
549dfc51
TT
3357{
3358 svr4_relocate_section_addresses,
549dfc51
TT
3359 svr4_clear_so,
3360 svr4_clear_solib,
3361 svr4_solib_create_inferior_hook,
3362 svr4_current_sos,
3363 open_symbol_file_object,
3364 svr4_in_dynsym_resolve_code,
3365 solib_bfd_open,
3366 nullptr,
3367 svr4_same,
3368 svr4_keep_data_in_core,
3369 svr4_update_solib_event_breakpoints,
3370 svr4_handle_solib_event,
3371};
3372
6c265988 3373void _initialize_svr4_solib ();
13437d4b 3374void
6c265988 3375_initialize_svr4_solib ()
13437d4b 3376{
c90e7d63
SM
3377 gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
3378 "solib-svr4");
13437d4b 3379}