]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib.c
* floatformat.h: New file, intended to replace ieee-float.h.
[thirdparty/binutils-gdb.git] / gdb / solib.c
CommitLineData
f8b76e70 1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
ee0613d1 2 Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
f8b76e70 3
bd5635a1
RP
4This file is part of GDB.
5
bdbd5f50 6This program is free software; you can redistribute it and/or modify
bd5635a1 7it under the terms of the GNU General Public License as published by
bdbd5f50
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
bd5635a1 10
bdbd5f50 11This program is distributed in the hope that it will be useful,
bd5635a1
RP
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
bdbd5f50
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
bd5635a1 19
f8b76e70 20
b0246b3b
FF
21#include "defs.h"
22
bd5635a1 23#include <sys/types.h>
f8b76e70 24#include <signal.h>
bd5635a1
RP
25#include <string.h>
26#include <link.h>
d0237a54
JK
27#include <sys/param.h>
28#include <fcntl.h>
be772100
JG
29
30#ifndef SVR4_SHARED_LIBS
31 /* SunOS shared libs need the nlist structure. */
32#include <a.out.h>
33#endif
f8b76e70 34
bd5635a1 35#include "symtab.h"
b0246b3b
FF
36#include "bfd.h"
37#include "symfile.h"
be772100 38#include "objfiles.h"
bd5635a1
RP
39#include "gdbcore.h"
40#include "command.h"
b3fdaf3d 41#include "target.h"
2403f49b 42#include "frame.h"
bdbd5f50
JG
43#include "regex.h"
44#include "inferior.h"
a71c0593 45#include "language.h"
bdbd5f50 46
f8b76e70
FF
47#define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
48
a608f919
FF
49/* On SVR4 systems, for the initial implementation, use some runtime startup
50 symbol as the "startup mapping complete" breakpoint address. The models
51 for SunOS and SVR4 dynamic linking debugger support are different in that
52 SunOS hits one breakpoint when all mapping is complete while using the SVR4
f8b76e70
FF
53 debugger support takes two breakpoint hits for each file mapped, and
54 there is no way to know when the "last" one is hit. Both these
55 mechanisms should be tied to a "breakpoint service routine" that
56 gets automatically executed whenever one of the breakpoints indicating
57 a change in mapping is hit. This is a future enhancement. (FIXME) */
58
a608f919
FF
59#define BKPT_AT_SYMBOL 1
60
a71c0593 61#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
a608f919
FF
62static char *bkpt_names[] = {
63#ifdef SOLIB_BKPT_NAME
64 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
65#endif
66 "_start",
67 "main",
68 NULL
69};
a71c0593 70#endif
f8b76e70
FF
71
72/* local data declarations */
73
d261ece7 74#ifndef SVR4_SHARED_LIBS
f8b76e70
FF
75
76#define DEBUG_BASE "_DYNAMIC"
77#define LM_ADDR(so) ((so) -> lm.lm_addr)
78#define LM_NEXT(so) ((so) -> lm.lm_next)
79#define LM_NAME(so) ((so) -> lm.lm_name)
80static struct link_dynamic dynamic_copy;
81static struct link_dynamic_2 ld_2_copy;
82static struct ld_debug debug_copy;
83static CORE_ADDR debug_addr;
84static CORE_ADDR flag_addr;
85
d261ece7 86#else /* SVR4_SHARED_LIBS */
f8b76e70
FF
87
88#define DEBUG_BASE "_r_debug"
89#define LM_ADDR(so) ((so) -> lm.l_addr)
90#define LM_NEXT(so) ((so) -> lm.l_next)
91#define LM_NAME(so) ((so) -> lm.l_name)
92static struct r_debug debug_copy;
f8b76e70 93char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
f8b76e70 94
d261ece7 95#endif /* !SVR4_SHARED_LIBS */
bd5635a1 96
bd5635a1 97struct so_list {
f8b76e70
FF
98 struct so_list *next; /* next structure in linked list */
99 struct link_map lm; /* copy of link map from inferior */
100 struct link_map *lmaddr; /* addr in inferior lm was read from */
101 CORE_ADDR lmend; /* upper addr bound of mapped object */
102 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
103 char symbols_loaded; /* flag: symbols read in yet? */
104 char from_tty; /* flag: print msgs? */
b0246b3b 105 struct objfile *objfile; /* objfile for loaded lib */
f8b76e70
FF
106 struct section_table *sections;
107 struct section_table *sections_end;
51b57ded 108 struct section_table *textsection;
a71c0593 109 bfd *abfd;
bd5635a1
RP
110};
111
f8b76e70
FF
112static struct so_list *so_list_head; /* List of known shared objects */
113static CORE_ADDR debug_base; /* Base of dynamic linker structures */
114static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
115
51b57ded
FF
116extern int
117fdmatch PARAMS ((int, int)); /* In libiberty */
118
b0246b3b
FF
119/* Local function prototypes */
120
121static void
122special_symbol_handling PARAMS ((struct so_list *));
123
124static void
125sharedlibrary_command PARAMS ((char *, int));
126
127static int
128enable_break PARAMS ((void));
129
130static int
131disable_break PARAMS ((void));
132
133static void
51b57ded 134info_sharedlibrary_command PARAMS ((char *, int));
b0246b3b
FF
135
136static int
137symbol_add_stub PARAMS ((char *));
138
139static struct so_list *
140find_solib PARAMS ((struct so_list *));
141
142static struct link_map *
143first_link_map_member PARAMS ((void));
144
145static CORE_ADDR
146locate_base PARAMS ((void));
147
be772100
JG
148static void
149solib_map_sections PARAMS ((struct so_list *));
150
151#ifdef SVR4_SHARED_LIBS
152
b0246b3b
FF
153static int
154look_for_base PARAMS ((int, CORE_ADDR));
155
156static CORE_ADDR
157bfd_lookup_symbol PARAMS ((bfd *, char *));
158
be772100 159#else
b0246b3b
FF
160
161static void
162solib_add_common_symbols PARAMS ((struct rtc_symb *, struct objfile *));
163
164#endif
bd5635a1 165
d0237a54 166/*
f8b76e70
FF
167
168LOCAL FUNCTION
169
170 solib_map_sections -- open bfd and build sections for shared lib
171
172SYNOPSIS
173
174 static void solib_map_sections (struct so_list *so)
175
176DESCRIPTION
177
178 Given a pointer to one of the shared objects in our list
179 of mapped objects, use the recorded name to open a bfd
180 descriptor for the object, build a section table, and then
181 relocate all the section addresses by the base address at
182 which the shared object was mapped.
183
184FIXMES
185
186 In most (all?) cases the shared object file name recorded in the
187 dynamic linkage tables will be a fully qualified pathname. For
188 cases where it isn't, do we really mimic the systems search
189 mechanism correctly in the below code (particularly the tilde
190 expansion stuff?).
191 */
192
d0237a54 193static void
f8b76e70
FF
194solib_map_sections (so)
195 struct so_list *so;
d0237a54
JK
196{
197 char *filename;
198 char *scratch_pathname;
199 int scratch_chan;
200 struct section_table *p;
de9bef49
JG
201 struct cleanup *old_chain;
202 bfd *abfd;
d0237a54 203
f8b76e70 204 filename = tilde_expand (so -> so_name);
de9bef49 205 old_chain = make_cleanup (free, filename);
d0237a54
JK
206
207 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
f8b76e70 208 &scratch_pathname);
d0237a54 209 if (scratch_chan < 0)
f8b76e70
FF
210 {
211 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
212 O_RDONLY, 0, &scratch_pathname);
213 }
d0237a54 214 if (scratch_chan < 0)
f8b76e70
FF
215 {
216 perror_with_name (filename);
a608f919 217 }
a71c0593 218 /* Leave scratch_pathname allocated. abfd->name will point to it. */
f8b76e70 219
a71c0593 220 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
de9bef49 221 if (!abfd)
f8b76e70 222 {
de9bef49 223 close (scratch_chan);
f8b76e70
FF
224 error ("Could not open `%s' as an executable file: %s",
225 scratch_pathname, bfd_errmsg (bfd_error));
226 }
a608f919 227 /* Leave bfd open, core_xfer_memory and "info files" need it. */
a71c0593 228 so -> abfd = abfd;
a608f919 229 abfd -> cacheable = true;
de9bef49
JG
230
231 if (!bfd_check_format (abfd, bfd_object))
f8b76e70
FF
232 {
233 error ("\"%s\": not in executable format: %s.",
234 scratch_pathname, bfd_errmsg (bfd_error));
235 }
de9bef49 236 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
f8b76e70
FF
237 {
238 error ("Can't find the file sections in `%s': %s",
a608f919 239 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_error));
f8b76e70
FF
240 }
241
242 for (p = so -> sections; p < so -> sections_end; p++)
243 {
244 /* Relocate the section binding addresses as recorded in the shared
245 object's file by the base address to which the object was actually
246 mapped. */
247 p -> addr += (CORE_ADDR) LM_ADDR (so);
248 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
249 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
2e4964ad 250 if (STREQ (p -> sec_ptr -> name, ".text"))
51b57ded
FF
251 {
252 so -> textsection = p;
253 }
f8b76e70 254 }
de9bef49
JG
255
256 /* Free the file names, close the file now. */
257 do_cleanups (old_chain);
f8b76e70
FF
258}
259
d261ece7 260/* Read all dynamically loaded common symbol definitions from the inferior
b0246b3b 261 and add them to the minimal symbol table for the shared library objfile. */
d261ece7 262
7f435241
FF
263#ifndef SVR4_SHARED_LIBS
264
a71c0593
FF
265/* In GDB 4.9 this routine was a real performance hog. According to
266 some gprof data which mtranle@paris.IntelliCorp.COM (Minh Tran-Le)
267 sent, almost all the time spend in solib_add (up to 20 minutes with
268 35 shared libraries) was spent here, with 5/6 in
269 lookup_minimal_symbol and 1/6 in read_memory.
2a4e8cc3 270
a71c0593
FF
271 To fix this, we moved the call to special_symbol_handling out of the
272 loop in solib_add, so this only gets called once, rather than once
273 for every shared library, and also removed the call to lookup_minimal_symbol
274 in this routine. */
2a4e8cc3 275
d261ece7 276static void
b0246b3b 277solib_add_common_symbols (rtc_symp, objfile)
d261ece7 278 struct rtc_symb *rtc_symp;
b0246b3b 279 struct objfile *objfile;
d261ece7
SG
280{
281 struct rtc_symb inferior_rtc_symb;
282 struct nlist inferior_rtc_nlist;
b0246b3b
FF
283 int len;
284 char *name;
285 char *origname;
d261ece7 286
b0246b3b
FF
287 init_minimal_symbol_collection ();
288 make_cleanup (discard_minimal_symbols, 0);
d261ece7
SG
289
290 while (rtc_symp)
291 {
b0246b3b
FF
292 read_memory ((CORE_ADDR) rtc_symp,
293 (char *) &inferior_rtc_symb,
294 sizeof (inferior_rtc_symb));
295 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
296 (char *) &inferior_rtc_nlist,
297 sizeof(inferior_rtc_nlist));
298 if (inferior_rtc_nlist.n_type == N_COMM)
299 {
300 /* FIXME: The length of the symbol name is not available, but in the
301 current implementation the common symbol is allocated immediately
302 behind the name of the symbol. */
303 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
304
305 origname = name = xmalloc (len);
306 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
307
308 /* Don't enter the symbol twice if the target is re-run. */
d261ece7 309
de9bef49 310 if (name[0] == bfd_get_symbol_leading_char (objfile->obfd))
b0246b3b
FF
311 {
312 name++;
313 }
de9bef49 314
a71c0593
FF
315#if 0
316 /* I think this is unnecessary, GDB can probably deal with
317 duplicate minimal symbols, more or less. And the duplication
318 which used to happen because this was called for each shared
319 library is gone now that we are just called once. */
b0246b3b
FF
320 /* FIXME: Do we really want to exclude symbols which happen
321 to match symbols for other locations in the inferior's
322 address space, even when they are in different linkage units? */
323 if (lookup_minimal_symbol (name, (struct objfile *) NULL) == NULL)
a71c0593 324#endif
b0246b3b
FF
325 {
326 name = obsavestring (name, strlen (name),
327 &objfile -> symbol_obstack);
328 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
8d60affd 329 mst_bss, objfile);
b0246b3b
FF
330 }
331 free (origname);
332 }
333 rtc_symp = inferior_rtc_symb.rtc_next;
d261ece7
SG
334 }
335
b0246b3b
FF
336 /* Install any minimal symbols that have been collected as the current
337 minimal symbols for this objfile. */
338
339 install_minimal_symbols (objfile);
d261ece7
SG
340}
341
7f435241
FF
342#endif /* SVR4_SHARED_LIBS */
343
be772100
JG
344#ifdef SVR4_SHARED_LIBS
345
f8b76e70
FF
346/*
347
348LOCAL FUNCTION
349
350 bfd_lookup_symbol -- lookup the value for a specific symbol
351
352SYNOPSIS
353
354 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
355
356DESCRIPTION
357
358 An expensive way to lookup the value of a single symbol for
359 bfd's that are only temporary anyway. This is used by the
360 shared library support to find the address of the debugger
361 interface structures in the shared library.
362
363 Note that 0 is specifically allowed as an error return (no
364 such symbol).
365
366 FIXME: See if there is a less "expensive" way of doing this.
367 Also see if there is already another bfd or gdb function
368 that specifically does this, and if so, use it.
369*/
370
371static CORE_ADDR
b0246b3b
FF
372bfd_lookup_symbol (abfd, symname)
373 bfd *abfd;
374 char *symname;
f8b76e70
FF
375{
376 unsigned int storage_needed;
377 asymbol *sym;
378 asymbol **symbol_table;
379 unsigned int number_of_symbols;
380 unsigned int i;
381 struct cleanup *back_to;
382 CORE_ADDR symaddr = 0;
f8b76e70
FF
383
384 storage_needed = get_symtab_upper_bound (abfd);
385
386 if (storage_needed > 0)
387 {
be772100
JG
388 symbol_table = (asymbol **) xmalloc (storage_needed);
389 back_to = make_cleanup (free, (PTR)symbol_table);
f8b76e70
FF
390 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
391
392 for (i = 0; i < number_of_symbols; i++)
d0237a54 393 {
f8b76e70 394 sym = *symbol_table++;
2e4964ad 395 if (STREQ (sym -> name, symname))
f8b76e70 396 {
a608f919
FF
397 /* Bfd symbols are section relative. */
398 symaddr = sym -> value + sym -> section -> vma;
f8b76e70
FF
399 break;
400 }
d0237a54 401 }
f8b76e70 402 do_cleanups (back_to);
d0237a54 403 }
f8b76e70 404 return (symaddr);
d0237a54
JK
405}
406
f8b76e70
FF
407/*
408
d261ece7
SG
409LOCAL FUNCTION
410
411 look_for_base -- examine file for each mapped address segment
412
413SYNOPSYS
414
415 static int look_for_base (int fd, CORE_ADDR baseaddr)
416
417DESCRIPTION
418
419 This function is passed to proc_iterate_over_mappings, which
420 causes it to get called once for each mapped address space, with
421 an open file descriptor for the file mapped to that space, and the
422 base address of that mapped space.
423
424 Our job is to find the symbol DEBUG_BASE in the file that this
425 fd is open on, if it exists, and if so, initialize the dynamic
426 linker structure base address debug_base.
427
428 Note that this is a computationally expensive proposition, since
429 we basically have to open a bfd on every call, so we specifically
430 avoid opening the exec file.
431 */
432
433static int
b0246b3b
FF
434look_for_base (fd, baseaddr)
435 int fd;
436 CORE_ADDR baseaddr;
d261ece7
SG
437{
438 bfd *interp_bfd;
439 CORE_ADDR address;
440
441 /* If the fd is -1, then there is no file that corresponds to this
442 mapped memory segment, so skip it. Also, if the fd corresponds
443 to the exec file, skip it as well. */
444
8d60affd 445 if ((fd == -1) || fdmatch (fileno ((GDB_FILE *)(exec_bfd -> iostream)), fd))
d261ece7
SG
446 {
447 return (0);
448 }
449
450 /* Try to open whatever random file this fd corresponds to. Note that
451 we have no way currently to find the filename. Don't gripe about
452 any problems we might have, just fail. */
453
a71c0593 454 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
d261ece7
SG
455 {
456 return (0);
457 }
458 if (!bfd_check_format (interp_bfd, bfd_object))
459 {
460 bfd_close (interp_bfd);
461 return (0);
462 }
463
464 /* Now try to find our DEBUG_BASE symbol in this file, which we at
465 least know to be a valid ELF executable or shared library. */
466
467 if ((address = bfd_lookup_symbol (interp_bfd, DEBUG_BASE)) == 0)
468 {
469 bfd_close (interp_bfd);
470 return (0);
471 }
472
473 /* Eureka! We found the symbol. But now we may need to relocate it
474 by the base address. If the symbol's value is less than the base
475 address of the shared library, then it hasn't yet been relocated
476 by the dynamic linker, and we have to do it ourself. FIXME: Note
477 that we make the assumption that the first segment that corresponds
478 to the shared library has the base address to which the library
479 was relocated. */
480
481 if (address < baseaddr)
482 {
483 address += baseaddr;
484 }
485 debug_base = address;
486 bfd_close (interp_bfd);
487 return (1);
488}
489
be772100
JG
490#endif
491
d261ece7
SG
492/*
493
f8b76e70
FF
494LOCAL FUNCTION
495
496 locate_base -- locate the base address of dynamic linker structs
497
498SYNOPSIS
499
500 CORE_ADDR locate_base (void)
501
502DESCRIPTION
503
504 For both the SunOS and SVR4 shared library implementations, if the
505 inferior executable has been linked dynamically, there is a single
506 address somewhere in the inferior's data space which is the key to
d261ece7 507 locating all of the dynamic linker's runtime structures. This
f8b76e70
FF
508 address is the value of the symbol defined by the macro DEBUG_BASE.
509 The job of this function is to find and return that address, or to
510 return 0 if there is no such address (the executable is statically
511 linked for example).
512
513 For SunOS, the job is almost trivial, since the dynamic linker and
514 all of it's structures are statically linked to the executable at
515 link time. Thus the symbol for the address we are looking for has
b0246b3b
FF
516 already been added to the minimal symbol table for the executable's
517 objfile at the time the symbol file's symbols were read, and all we
518 have to do is look it up there. Note that we explicitly do NOT want
519 to find the copies in the shared library.
f8b76e70
FF
520
521 The SVR4 version is much more complicated because the dynamic linker
d261ece7
SG
522 and it's structures are located in the shared C library, which gets
523 run as the executable's "interpreter" by the kernel. We have to go
524 to a lot more work to discover the address of DEBUG_BASE. Because
f8b76e70 525 of this complexity, we cache the value we find and return that value
b0246b3b
FF
526 on subsequent invocations. Note there is no copy in the executable
527 symbol tables.
f8b76e70 528
d261ece7
SG
529 Note that we can assume nothing about the process state at the time
530 we need to find this address. We may be stopped on the first instruc-
531 tion of the interpreter (C shared library), the first instruction of
532 the executable itself, or somewhere else entirely (if we attached
533 to the process for example).
f8b76e70
FF
534
535 */
536
537static CORE_ADDR
538locate_base ()
539{
f8b76e70 540
d261ece7 541#ifndef SVR4_SHARED_LIBS
f8b76e70 542
b0246b3b 543 struct minimal_symbol *msymbol;
d261ece7 544 CORE_ADDR address = 0;
f8b76e70 545
b0246b3b
FF
546 /* For SunOS, we want to limit the search for DEBUG_BASE to the executable
547 being debugged, since there is a duplicate named symbol in the shared
548 library. We don't want the shared library versions. */
549
550 msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
2e4964ad 551 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
f8b76e70 552 {
2e4964ad 553 address = SYMBOL_VALUE_ADDRESS (msymbol);
f8b76e70 554 }
d261ece7 555 return (address);
f8b76e70 556
d261ece7 557#else /* SVR4_SHARED_LIBS */
f8b76e70 558
d261ece7
SG
559 /* Check to see if we have a currently valid address, and if so, avoid
560 doing all this work again and just return the cached address. If
561 we have no cached address, ask the /proc support interface to iterate
562 over the list of mapped address segments, calling look_for_base() for
563 each segment. When we are done, we will have either found the base
564 address or not. */
f8b76e70 565
d261ece7 566 if (debug_base == 0)
f8b76e70 567 {
d261ece7 568 proc_iterate_over_mappings (look_for_base);
f8b76e70 569 }
d261ece7 570 return (debug_base);
f8b76e70 571
d261ece7 572#endif /* !SVR4_SHARED_LIBS */
f8b76e70
FF
573
574}
bd5635a1 575
a608f919
FF
576/*
577
578LOCAL FUNCTION
579
580 first_link_map_member -- locate first member in dynamic linker's map
581
582SYNOPSIS
583
584 static struct link_map *first_link_map_member (void)
585
586DESCRIPTION
587
588 Read in a copy of the first member in the inferior's dynamic
589 link map from the inferior's dynamic linker structures, and return
590 a pointer to the copy in our address space.
591*/
592
f8b76e70
FF
593static struct link_map *
594first_link_map_member ()
bd5635a1 595{
f8b76e70
FF
596 struct link_map *lm = NULL;
597
d261ece7 598#ifndef SVR4_SHARED_LIBS
f8b76e70 599
b0246b3b 600 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
f8b76e70
FF
601 if (dynamic_copy.ld_version >= 2)
602 {
603 /* It is a version that we can deal with, so read in the secondary
604 structure and find the address of the link map list from it. */
b0246b3b 605 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
f8b76e70
FF
606 sizeof (struct link_dynamic_2));
607 lm = ld_2_copy.ld_loaded;
608 }
609
d261ece7 610#else /* SVR4_SHARED_LIBS */
f8b76e70 611
b0246b3b 612 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
a608f919
FF
613 /* FIXME: Perhaps we should validate the info somehow, perhaps by
614 checking r_version for a known version number, or r_state for
615 RT_CONSISTENT. */
f8b76e70
FF
616 lm = debug_copy.r_map;
617
d261ece7 618#endif /* !SVR4_SHARED_LIBS */
d0237a54 619
f8b76e70
FF
620 return (lm);
621}
622
623/*
624
b0246b3b 625LOCAL FUNCTION
f8b76e70
FF
626
627 find_solib -- step through list of shared objects
628
629SYNOPSIS
630
631 struct so_list *find_solib (struct so_list *so_list_ptr)
632
633DESCRIPTION
634
635 This module contains the routine which finds the names of any
636 loaded "images" in the current process. The argument in must be
637 NULL on the first call, and then the returned value must be passed
638 in on subsequent calls. This provides the capability to "step" down
639 the list of loaded objects. On the last object, a NULL value is
640 returned.
d0237a54 641
f8b76e70
FF
642 The arg and return value are "struct link_map" pointers, as defined
643 in <link.h>.
644 */
d0237a54 645
b0246b3b 646static struct so_list *
f8b76e70
FF
647find_solib (so_list_ptr)
648 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
649{
650 struct so_list *so_list_next = NULL;
651 struct link_map *lm = NULL;
652 struct so_list *new;
653
654 if (so_list_ptr == NULL)
655 {
656 /* We are setting up for a new scan through the loaded images. */
657 if ((so_list_next = so_list_head) == NULL)
658 {
659 /* We have not already read in the dynamic linking structures
660 from the inferior, lookup the address of the base structure. */
661 debug_base = locate_base ();
a608f919 662 if (debug_base != 0)
f8b76e70
FF
663 {
664 /* Read the base structure in and find the address of the first
665 link map list member. */
666 lm = first_link_map_member ();
667 }
668 }
669 }
670 else
671 {
672 /* We have been called before, and are in the process of walking
673 the shared library list. Advance to the next shared object. */
674 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
675 {
676 /* We have hit the end of the list, so check to see if any were
677 added, but be quiet if we can't read from the target any more. */
678 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
679 (char *) &(so_list_ptr -> lm),
680 sizeof (struct link_map));
681 if (status == 0)
682 {
683 lm = LM_NEXT (so_list_ptr);
684 }
685 else
686 {
687 lm = NULL;
688 }
689 }
690 so_list_next = so_list_ptr -> next;
691 }
692 if ((so_list_next == NULL) && (lm != NULL))
693 {
694 /* Get next link map structure from inferior image and build a local
695 abbreviated load_map structure */
696 new = (struct so_list *) xmalloc (sizeof (struct so_list));
de9bef49 697 memset ((char *) new, 0, sizeof (struct so_list));
f8b76e70
FF
698 new -> lmaddr = lm;
699 /* Add the new node as the next node in the list, or as the root
700 node if this is the first one. */
701 if (so_list_ptr != NULL)
702 {
703 so_list_ptr -> next = new;
704 }
705 else
706 {
707 so_list_head = new;
708 }
709 so_list_next = new;
b0246b3b
FF
710 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
711 sizeof (struct link_map));
f8b76e70
FF
712 /* For the SVR4 version, there is one entry that has no name
713 (for the inferior executable) since it is not a shared object. */
714 if (LM_NAME (new) != 0)
715 {
ee0613d1
JG
716 if (!target_read_string((CORE_ADDR) LM_NAME (new), new -> so_name,
717 MAX_PATH_SIZE - 1))
718 error ("find_solib: Can't read pathname for load map\n");
f8b76e70
FF
719 new -> so_name[MAX_PATH_SIZE - 1] = 0;
720 solib_map_sections (new);
721 }
722 }
723 return (so_list_next);
bd5635a1 724}
d0237a54 725
bdbd5f50
JG
726/* A small stub to get us past the arg-passing pinhole of catch_errors. */
727
728static int
729symbol_add_stub (arg)
730 char *arg;
d0237a54 731{
f8b76e70
FF
732 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
733
b0246b3b 734 so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
51b57ded
FF
735 (unsigned int) so -> textsection -> addr,
736 0, 0, 0);
f8b76e70 737 return (1);
d0237a54 738}
bd5635a1 739
f8b76e70
FF
740/*
741
742GLOBAL FUNCTION
743
744 solib_add -- add a shared library file to the symtab and section list
745
746SYNOPSIS
747
748 void solib_add (char *arg_string, int from_tty,
749 struct target_ops *target)
750
751DESCRIPTION
752
753*/
bdbd5f50
JG
754
755void
756solib_add (arg_string, from_tty, target)
757 char *arg_string;
758 int from_tty;
759 struct target_ops *target;
bd5635a1 760{
f8b76e70 761 register struct so_list *so = NULL; /* link map state variable */
a71c0593
FF
762
763 /* Last shared library that we read. */
764 struct so_list *so_last = NULL;
765
f8b76e70
FF
766 char *re_err;
767 int count;
768 int old;
769
770 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
771 {
772 error ("Invalid regexp: %s", re_err);
773 }
774
bdbd5f50
JG
775 /* Getting new symbols may change our opinion about what is
776 frameless. */
777 reinit_frame_cache ();
bdbd5f50 778
f8b76e70
FF
779 while ((so = find_solib (so)) != NULL)
780 {
781 if (so -> so_name[0] && re_exec (so -> so_name))
782 {
a608f919 783 so -> from_tty = from_tty;
f8b76e70
FF
784 if (so -> symbols_loaded)
785 {
bdbd5f50 786 if (from_tty)
f8b76e70 787 {
8d60affd 788 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
f8b76e70
FF
789 }
790 }
a608f919
FF
791 else if (catch_errors
792 (symbol_add_stub, (char *) so,
9748446f
JK
793 "Error while reading shared library symbols:\n",
794 RETURN_MASK_ALL))
f8b76e70 795 {
a71c0593 796 so_last = so;
b0246b3b 797 so -> symbols_loaded = 1;
f8b76e70
FF
798 }
799 }
800 }
801
bdbd5f50
JG
802 /* Now add the shared library sections to the section table of the
803 specified target, if any. */
f8b76e70
FF
804 if (target)
805 {
806 /* Count how many new section_table entries there are. */
807 so = NULL;
808 count = 0;
809 while ((so = find_solib (so)) != NULL)
810 {
811 if (so -> so_name[0])
812 {
813 count += so -> sections_end - so -> sections;
814 }
815 }
816
817 if (count)
818 {
819 /* Reallocate the target's section table including the new size. */
ee0613d1 820 if (target -> to_sections)
f8b76e70 821 {
ee0613d1
JG
822 old = target -> to_sections_end - target -> to_sections;
823 target -> to_sections = (struct section_table *)
a71c0593 824 xrealloc ((char *)target -> to_sections,
f8b76e70
FF
825 (sizeof (struct section_table)) * (count + old));
826 }
827 else
828 {
829 old = 0;
ee0613d1 830 target -> to_sections = (struct section_table *)
a71c0593 831 xmalloc ((sizeof (struct section_table)) * count);
f8b76e70 832 }
ee0613d1 833 target -> to_sections_end = target -> to_sections + (count + old);
f8b76e70
FF
834
835 /* Add these section table entries to the target's table. */
836 while ((so = find_solib (so)) != NULL)
837 {
838 if (so -> so_name[0])
839 {
840 count = so -> sections_end - so -> sections;
de9bef49
JG
841 memcpy ((char *) (target -> to_sections + old),
842 so -> sections,
843 (sizeof (struct section_table)) * count);
f8b76e70
FF
844 old += count;
845 }
846 }
847 }
848 }
a71c0593
FF
849
850 /* Calling this once at the end means that we put all the minimal
851 symbols for commons into the objfile for the last shared library.
852 Since they are in common, this should not be a problem. If we
853 delete the objfile with the minimal symbols, we can put all the
854 symbols into a new objfile (and will on the next call to solib_add).
855
856 An alternate approach would be to create an objfile just for
857 common minsyms, thus not needing any objfile argument to
858 solib_add_common_symbols. */
859
860 if (so_last)
861 special_symbol_handling (so_last);
bd5635a1 862}
bdbd5f50 863
f8b76e70 864/*
bd5635a1 865
f8b76e70
FF
866LOCAL FUNCTION
867
868 info_sharedlibrary_command -- code for "info sharedlibrary"
869
870SYNOPSIS
871
872 static void info_sharedlibrary_command ()
873
874DESCRIPTION
bd5635a1 875
f8b76e70
FF
876 Walk through the shared library list and print information
877 about each attached library.
878*/
879
880static void
51b57ded
FF
881info_sharedlibrary_command (ignore, from_tty)
882 char *ignore;
883 int from_tty;
f8b76e70
FF
884{
885 register struct so_list *so = NULL; /* link map state variable */
886 int header_done = 0;
887
888 if (exec_bfd == NULL)
889 {
8d60affd 890 printf_unfiltered ("No exec file.\n");
f8b76e70
FF
891 return;
892 }
893 while ((so = find_solib (so)) != NULL)
894 {
895 if (so -> so_name[0])
896 {
897 if (!header_done)
898 {
8d60affd 899 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
f8b76e70
FF
900 "Shared Object Library");
901 header_done++;
902 }
8d60affd 903 printf_unfiltered ("%-12s",
a71c0593
FF
904 local_hex_string_custom ((unsigned long) LM_ADDR (so),
905 "08l"));
8d60affd 906 printf_unfiltered ("%-12s",
a71c0593
FF
907 local_hex_string_custom ((unsigned long) so -> lmend,
908 "08l"));
8d60affd
JK
909 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
910 printf_unfiltered ("%s\n", so -> so_name);
bd5635a1 911 }
bd5635a1 912 }
f8b76e70
FF
913 if (so_list_head == NULL)
914 {
8d60affd 915 printf_unfiltered ("No shared libraries loaded at this time.\n");
bd5635a1
RP
916 }
917}
918
919/*
f8b76e70
FF
920
921GLOBAL FUNCTION
922
923 solib_address -- check to see if an address is in a shared lib
924
925SYNOPSIS
926
927 int solib_address (CORE_ADDR address)
928
929DESCRIPTION
930
931 Provides a hook for other gdb routines to discover whether or
932 not a particular address is within the mapped address space of
933 a shared library. Any address between the base mapping address
934 and the first address beyond the end of the last mapping, is
935 considered to be within the shared library address space, for
936 our purposes.
937
938 For example, this routine is called at one point to disable
939 breakpoints which are in shared libraries that are not currently
940 mapped in.
941 */
942
bd5635a1 943int
f8b76e70 944solib_address (address)
bd5635a1
RP
945 CORE_ADDR address;
946{
f8b76e70
FF
947 register struct so_list *so = 0; /* link map state variable */
948
949 while ((so = find_solib (so)) != NULL)
950 {
951 if (so -> so_name[0])
952 {
953 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
954 (address < (CORE_ADDR) so -> lmend))
955 {
956 return (1);
957 }
958 }
959 }
960 return (0);
961}
962
963/* Called by free_all_symtabs */
bd5635a1 964
f8b76e70
FF
965void
966clear_solib()
967{
968 struct so_list *next;
a608f919 969 char *bfd_filename;
f8b76e70
FF
970
971 while (so_list_head)
972 {
973 if (so_list_head -> sections)
974 {
be772100 975 free ((PTR)so_list_head -> sections);
f8b76e70 976 }
a71c0593 977 if (so_list_head -> abfd)
a608f919 978 {
a71c0593
FF
979 bfd_filename = bfd_get_filename (so_list_head -> abfd);
980 bfd_close (so_list_head -> abfd);
a608f919
FF
981 }
982 else
983 /* This happens for the executable on SVR4. */
984 bfd_filename = NULL;
985
f8b76e70 986 next = so_list_head -> next;
a608f919
FF
987 if (bfd_filename)
988 free ((PTR)bfd_filename);
989 free ((PTR)so_list_head);
f8b76e70 990 so_list_head = next;
bd5635a1 991 }
f8b76e70 992 debug_base = 0;
bd5635a1
RP
993}
994
995/*
f8b76e70
FF
996
997LOCAL FUNCTION
998
999 disable_break -- remove the "mapping changed" breakpoint
1000
1001SYNOPSIS
1002
1003 static int disable_break ()
1004
1005DESCRIPTION
1006
1007 Removes the breakpoint that gets hit when the dynamic linker
1008 completes a mapping change.
1009
bd5635a1 1010*/
f8b76e70
FF
1011
1012static int
1013disable_break ()
bd5635a1 1014{
f8b76e70
FF
1015 int status = 1;
1016
d261ece7 1017#ifndef SVR4_SHARED_LIBS
f8b76e70
FF
1018
1019 int in_debugger = 0;
1020
f8b76e70
FF
1021 /* Read the debugger structure from the inferior to retrieve the
1022 address of the breakpoint and the original contents of the
1023 breakpoint address. Remove the breakpoint by writing the original
1024 contents back. */
1025
b0246b3b 1026 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
d261ece7
SG
1027
1028 /* Set `in_debugger' to zero now. */
1029
b0246b3b 1030 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
d261ece7 1031
f8b76e70 1032 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
b0246b3b 1033 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
f8b76e70
FF
1034 sizeof (debug_copy.ldd_bp_inst));
1035
d261ece7 1036#else /* SVR4_SHARED_LIBS */
f8b76e70
FF
1037
1038 /* Note that breakpoint address and original contents are in our address
1039 space, so we just need to write the original contents back. */
1040
1041 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1042 {
1043 status = 0;
1044 }
1045
d261ece7 1046#endif /* !SVR4_SHARED_LIBS */
f8b76e70
FF
1047
1048 /* For the SVR4 version, we always know the breakpoint address. For the
1049 SunOS version we don't know it until the above code is executed.
1050 Grumble if we are stopped anywhere besides the breakpoint address. */
1051
1052 if (stop_pc != breakpoint_addr)
1053 {
1054 warning ("stopped at unknown breakpoint while handling shared libraries");
1055 }
1056
1057 return (status);
bdbd5f50
JG
1058}
1059
f8b76e70 1060/*
bdbd5f50 1061
f8b76e70
FF
1062LOCAL FUNCTION
1063
1064 enable_break -- arrange for dynamic linker to hit breakpoint
1065
1066SYNOPSIS
1067
1068 int enable_break (void)
1069
1070DESCRIPTION
1071
1072 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1073 debugger interface, support for arranging for the inferior to hit
1074 a breakpoint after mapping in the shared libraries. This function
1075 enables that breakpoint.
1076
1077 For SunOS, there is a special flag location (in_debugger) which we
1078 set to 1. When the dynamic linker sees this flag set, it will set
1079 a breakpoint at a location known only to itself, after saving the
1080 original contents of that place and the breakpoint address itself,
1081 in it's own internal structures. When we resume the inferior, it
1082 will eventually take a SIGTRAP when it runs into the breakpoint.
1083 We handle this (in a different place) by restoring the contents of
1084 the breakpointed location (which is only known after it stops),
1085 chasing around to locate the shared libraries that have been
1086 loaded, then resuming.
1087
1088 For SVR4, the debugger interface structure contains a member (r_brk)
1089 which is statically initialized at the time the shared library is
1090 built, to the offset of a function (_r_debug_state) which is guaran-
1091 teed to be called once before mapping in a library, and again when
1092 the mapping is complete. At the time we are examining this member,
1093 it contains only the unrelocated offset of the function, so we have
1094 to do our own relocation. Later, when the dynamic linker actually
1095 runs, it relocates r_brk to be the actual address of _r_debug_state().
1096
1097 The debugger interface structure also contains an enumeration which
1098 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1099 depending upon whether or not the library is being mapped or unmapped,
1100 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1101*/
1102
1103static int
1104enable_break ()
bdbd5f50 1105{
a608f919 1106 int success = 0;
bdbd5f50 1107
d261ece7 1108#ifndef SVR4_SHARED_LIBS
bdbd5f50 1109
51b57ded 1110 int j;
f8b76e70 1111 int in_debugger;
51b57ded 1112
bdbd5f50 1113 /* Get link_dynamic structure */
f8b76e70
FF
1114
1115 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1116 sizeof (dynamic_copy));
1117 if (j)
1118 {
1119 /* unreadable */
1120 return (0);
1121 }
06b6c733 1122
bdbd5f50 1123 /* Calc address of debugger interface structure */
f8b76e70
FF
1124
1125 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1126
bdbd5f50 1127 /* Calc address of `in_debugger' member of debugger interface structure */
f8b76e70
FF
1128
1129 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1130 (char *) &debug_copy);
1131
bdbd5f50 1132 /* Write a value of 1 to this member. */
f8b76e70 1133
bdbd5f50 1134 in_debugger = 1;
b0246b3b 1135 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
a608f919 1136 success = 1;
f8b76e70 1137
d261ece7 1138#else /* SVR4_SHARED_LIBS */
f8b76e70 1139
a608f919 1140#ifdef BKPT_AT_SYMBOL
f8b76e70 1141
b0246b3b 1142 struct minimal_symbol *msymbol;
a608f919
FF
1143 char **bkpt_namep;
1144 CORE_ADDR bkpt_addr;
f8b76e70 1145
a608f919
FF
1146 /* Scan through the list of symbols, trying to look up the symbol and
1147 set a breakpoint there. Terminate loop when we/if we succeed. */
f8b76e70 1148
a608f919
FF
1149 breakpoint_addr = 0;
1150 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
f8b76e70 1151 {
a608f919
FF
1152 msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
1153 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1154 {
1155 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1156 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
1157 {
1158 breakpoint_addr = bkpt_addr;
1159 success = 1;
1160 break;
1161 }
1162 }
f8b76e70
FF
1163 }
1164
a608f919 1165#else /* !BKPT_AT_SYMBOL */
f8b76e70
FF
1166
1167 struct symtab_and_line sal;
1168
1169 /* Read the debugger interface structure directly. */
1170
1171 read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
1172
1173 /* Set breakpoint at the debugger interface stub routine that will
1174 be called just prior to each mapping change and again after the
1175 mapping change is complete. Set up the (nonexistent) handler to
1176 deal with hitting these breakpoints. (FIXME). */
1177
1178 warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
a608f919 1179 success = 1;
f8b76e70 1180
a608f919 1181#endif /* BKPT_AT_SYMBOL */
f8b76e70 1182
d261ece7 1183#endif /* !SVR4_SHARED_LIBS */
f8b76e70 1184
a608f919 1185 return (success);
f8b76e70
FF
1186}
1187
1188/*
1189
1190GLOBAL FUNCTION
1191
1192 solib_create_inferior_hook -- shared library startup support
1193
1194SYNOPSIS
1195
1196 void solib_create_inferior_hook()
1197
1198DESCRIPTION
1199
1200 When gdb starts up the inferior, it nurses it along (through the
1201 shell) until it is ready to execute it's first instruction. At this
1202 point, this function gets called via expansion of the macro
1203 SOLIB_CREATE_INFERIOR_HOOK.
1204
a608f919
FF
1205 For SunOS executables, this first instruction is typically the
1206 one at "_start", or a similar text label, regardless of whether
1207 the executable is statically or dynamically linked. The runtime
1208 startup code takes care of dynamically linking in any shared
1209 libraries, once gdb allows the inferior to continue.
1210
1211 For SVR4 executables, this first instruction is either the first
1212 instruction in the dynamic linker (for dynamically linked
1213 executables) or the instruction at "start" for statically linked
1214 executables. For dynamically linked executables, the system
1215 first exec's /lib/libc.so.N, which contains the dynamic linker,
1216 and starts it running. The dynamic linker maps in any needed
1217 shared libraries, maps in the actual user executable, and then
1218 jumps to "start" in the user executable.
1219
f8b76e70
FF
1220 For both SunOS shared libraries, and SVR4 shared libraries, we
1221 can arrange to cooperate with the dynamic linker to discover the
1222 names of shared libraries that are dynamically linked, and the
1223 base addresses to which they are linked.
1224
1225 This function is responsible for discovering those names and
1226 addresses, and saving sufficient information about them to allow
1227 their symbols to be read at a later time.
1228
1229FIXME
1230
1231 Between enable_break() and disable_break(), this code does not
1232 properly handle hitting breakpoints which the user might have
1233 set in the startup code or in the dynamic linker itself. Proper
1234 handling will probably have to wait until the implementation is
1235 changed to use the "breakpoint handler function" method.
1236
1237 Also, what if child has exit()ed? Must exit loop somehow.
1238 */
1239
1240void
1241solib_create_inferior_hook()
1242{
ff56144e
JK
1243 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1244 yet. In fact, in the case of a SunOS4 executable being run on
1245 Solaris, we can't get it yet. find_solib will get it when it needs
1246 it. */
1247#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
f8b76e70
FF
1248 if ((debug_base = locate_base ()) == 0)
1249 {
1250 /* Can't find the symbol or the executable is statically linked. */
1251 return;
1252 }
ff56144e 1253#endif
f8b76e70
FF
1254
1255 if (!enable_break ())
1256 {
1257 warning ("shared library handler failed to enable breakpoint");
1258 return;
1259 }
1260
1261 /* Now run the target. It will eventually hit the breakpoint, at
1262 which point all of the libraries will have been mapped in and we
1263 can go groveling around in the dynamic linker structures to find
1264 out what we need to know about them. */
bdbd5f50
JG
1265
1266 clear_proceed_status ();
1267 stop_soon_quietly = 1;
f8b76e70
FF
1268 stop_signal = 0;
1269 do
bdbd5f50 1270 {
8d60affd 1271 target_resume (-1, 0, stop_signal);
bdbd5f50
JG
1272 wait_for_inferior ();
1273 }
f8b76e70 1274 while (stop_signal != SIGTRAP);
bdbd5f50 1275 stop_soon_quietly = 0;
f8b76e70
FF
1276
1277 /* We are now either at the "mapping complete" breakpoint (or somewhere
1278 else, a condition we aren't prepared to deal with anyway), so adjust
1279 the PC as necessary after a breakpoint, disable the breakpoint, and
1280 add any shared libraries that were mapped in. */
bdbd5f50 1281
f8b76e70
FF
1282 if (DECR_PC_AFTER_BREAK)
1283 {
1284 stop_pc -= DECR_PC_AFTER_BREAK;
1285 write_register (PC_REGNUM, stop_pc);
1286 }
1287
1288 if (!disable_break ())
1289 {
1290 warning ("shared library handler failed to disable breakpoint");
1291 }
1292
1293 solib_add ((char *) 0, 0, (struct target_ops *) 0);
bdbd5f50
JG
1294}
1295
f8b76e70
FF
1296/*
1297
b0246b3b
FF
1298LOCAL FUNCTION
1299
1300 special_symbol_handling -- additional shared library symbol handling
1301
1302SYNOPSIS
1303
1304 void special_symbol_handling (struct so_list *so)
1305
1306DESCRIPTION
1307
1308 Once the symbols from a shared object have been loaded in the usual
1309 way, we are called to do any system specific symbol handling that
1310 is needed.
1311
1312 For Suns, this consists of grunging around in the dynamic linkers
1313 structures to find symbol definitions for "common" symbols and
1314 adding them to the minimal symbol table for the corresponding
1315 objfile.
1316
1317*/
1318
1319static void
1320special_symbol_handling (so)
1321struct so_list *so;
1322{
1323#ifndef SVR4_SHARED_LIBS
51b57ded
FF
1324 int j;
1325
1326 if (debug_addr == 0)
1327 {
1328 /* Get link_dynamic structure */
1329
1330 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1331 sizeof (dynamic_copy));
1332 if (j)
1333 {
1334 /* unreadable */
1335 return;
1336 }
1337
1338 /* Calc address of debugger interface structure */
1339 /* FIXME, this needs work for cross-debugging of core files
1340 (byteorder, size, alignment, etc). */
1341
1342 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1343 }
b0246b3b
FF
1344
1345 /* Read the debugger structure from the inferior, just to make sure
1346 we have a current copy. */
1347
51b57ded
FF
1348 j = target_read_memory (debug_addr, (char *) &debug_copy,
1349 sizeof (debug_copy));
1350 if (j)
1351 return; /* unreadable */
b0246b3b
FF
1352
1353 /* Get common symbol definitions for the loaded object. */
1354
1355 if (debug_copy.ldd_cp)
1356 {
1357 solib_add_common_symbols (debug_copy.ldd_cp, so -> objfile);
1358 }
1359
1360#endif /* !SVR4_SHARED_LIBS */
1361}
1362
1363
1364/*
1365
1366LOCAL FUNCTION
f8b76e70
FF
1367
1368 sharedlibrary_command -- handle command to explicitly add library
1369
1370SYNOPSIS
1371
b0246b3b 1372 static void sharedlibrary_command (char *args, int from_tty)
f8b76e70
FF
1373
1374DESCRIPTION
1375
1376*/
1377
b0246b3b 1378static void
bdbd5f50 1379sharedlibrary_command (args, from_tty)
f8b76e70
FF
1380char *args;
1381int from_tty;
bdbd5f50 1382{
f8b76e70
FF
1383 dont_repeat ();
1384 solib_add (args, from_tty, (struct target_ops *) 0);
bd5635a1
RP
1385}
1386
1387void
1388_initialize_solib()
1389{
f8b76e70
FF
1390
1391 add_com ("sharedlibrary", class_files, sharedlibrary_command,
bd5635a1 1392 "Load shared object library symbols for files matching REGEXP.");
f8b76e70
FF
1393 add_info ("sharedlibrary", info_sharedlibrary_command,
1394 "Status of loaded shared object libraries.");
bd5635a1 1395}