]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib.c
2000-04-03 H.J. Lu (hjl@gnu.org)
[thirdparty/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
c906108c
SS
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
c5aa993b 37#include <a.out.h>
c906108c
SS
38#else
39#include "elf/external.h"
40#endif
41
42#include <link.h>
43
44#include "symtab.h"
45#include "bfd.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "gdbcore.h"
49#include "command.h"
50#include "target.h"
51#include "frame.h"
52#include "gnu-regex.h"
53#include "inferior.h"
54#include "environ.h"
55#include "language.h"
56#include "gdbcmd.h"
57
c5aa993b 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
59
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
69static char *solib_break_names[] =
70{
c906108c
SS
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76};
77#endif
78
79#define BKPT_AT_SYMBOL 1
80
81#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
82static char *bkpt_names[] =
83{
c906108c
SS
84#ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86#endif
87 "_start",
88 "main",
89 NULL
90};
91#endif
92
93/* Symbols which are used to locate the base of the link map structures. */
94
95#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
96static char *debug_base_symbols[] =
97{
c906108c
SS
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101};
102#endif
103
c5aa993b
JM
104static char *main_name_list[] =
105{
c906108c
SS
106 "main_$main",
107 NULL
108};
109
110/* local data declarations */
111
07cd4b97
JB
112/* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118#define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
c906108c
SS
121#ifndef SVR4_SHARED_LIBS
122
07cd4b97
JB
123#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
c906108c 126/* Test for first link map entry; first entry is a shared library. */
07cd4b97 127#define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
c906108c
SS
128static struct link_dynamic dynamic_copy;
129static struct link_dynamic_2 ld_2_copy;
130static struct ld_debug debug_copy;
131static CORE_ADDR debug_addr;
132static CORE_ADDR flag_addr;
133
c5aa993b 134#else /* SVR4_SHARED_LIBS */
c906108c 135
07cd4b97
JB
136#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
c906108c 139/* Test for first link map entry; first entry is the exec-file. */
07cd4b97
JB
140#define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
c906108c
SS
142static struct r_debug debug_copy;
143char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
c5aa993b
JM
145#endif /* !SVR4_SHARED_LIBS */
146
147struct so_list
148 {
07cd4b97
JB
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
c5aa993b
JM
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
07cd4b97
JB
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
c5aa993b 172 CORE_ADDR lmend; /* upper addr bound of mapped object */
c5aa993b
JM
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
c5aa993b 179 };
c906108c
SS
180
181static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 182static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
183static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
c5aa993b 185static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
186
187extern int
c5aa993b 188fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
189
190/* Local function prototypes */
191
192static void
193do_clear_solib PARAMS ((PTR));
194
195static int
196match_main PARAMS ((char *));
197
198static void
07cd4b97 199special_symbol_handling PARAMS ((void));
c906108c
SS
200
201static void
202sharedlibrary_command PARAMS ((char *, int));
203
204static int
205enable_break PARAMS ((void));
206
207static void
208info_sharedlibrary_command PARAMS ((char *, int));
209
210static int symbol_add_stub PARAMS ((PTR));
211
07cd4b97 212static CORE_ADDR
c5aa993b 213 first_link_map_member PARAMS ((void));
c906108c
SS
214
215static CORE_ADDR
c5aa993b 216 locate_base PARAMS ((void));
c906108c
SS
217
218static int solib_map_sections PARAMS ((PTR));
219
220#ifdef SVR4_SHARED_LIBS
221
222static CORE_ADDR
c5aa993b 223 elf_locate_base PARAMS ((void));
c906108c
SS
224
225#else
226
07cd4b97
JB
227static struct so_list *current_sos (void);
228static void free_so (struct so_list *node);
229
c906108c
SS
230static int
231disable_break PARAMS ((void));
232
233static void
234allocate_rt_common_objfile PARAMS ((void));
235
236static void
07cd4b97 237solib_add_common_symbols (CORE_ADDR);
c906108c
SS
238
239#endif
240
241void _initialize_solib PARAMS ((void));
242
243/* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245static char *solib_absolute_prefix = NULL;
246
247/* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250static char *solib_search_path = NULL;
251
252/*
253
c5aa993b 254 LOCAL FUNCTION
c906108c 255
c5aa993b 256 solib_map_sections -- open bfd and build sections for shared lib
c906108c 257
c5aa993b 258 SYNOPSIS
c906108c 259
c5aa993b 260 static int solib_map_sections (struct so_list *so)
c906108c 261
c5aa993b 262 DESCRIPTION
c906108c 263
c5aa993b
JM
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
c906108c 269
c5aa993b 270 FIXMES
c906108c 271
c5aa993b
JM
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
c906108c
SS
277 */
278
279static int
280solib_map_sections (arg)
281 PTR arg;
282{
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
c5aa993b
JM
290
291 filename = tilde_expand (so->so_name);
292
c906108c
SS
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
c5aa993b 322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
c5aa993b
JM
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
344 so->abfd = abfd;
345 abfd->cacheable = true;
c906108c
SS
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
c5aa993b 358 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 359 {
c5aa993b 360 error ("Can't find the file sections in `%s': %s",
c906108c
SS
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
c5aa993b 364 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
365 {
366 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
367 object's file by the base address to which the object was actually
368 mapped. */
07cd4b97
JB
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
c5aa993b 372 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 373 {
c5aa993b 374 so->textsection = p;
c906108c
SS
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382}
383
384#ifndef SVR4_SHARED_LIBS
385
386/* Allocate the runtime common object file. */
387
388static void
389allocate_rt_common_objfile ()
390{
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 398 xmalloc, free);
c5aa993b 399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 400 free);
c5aa993b 401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 402 free);
c5aa993b 403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 404 free);
c5aa993b 405 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
c5aa993b 409 objfile->next = NULL;
c906108c
SS
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
c5aa993b
JM
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
c906108c
SS
418 }
419
420 rt_common_objfile = objfile;
421}
422
423/* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427static void
428solib_add_common_symbols (rtc_symp)
07cd4b97 429 CORE_ADDR rtc_symp;
c906108c
SS
430{
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
c5aa993b 438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 439 {
c5aa993b
JM
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 442 xmalloc, free);
c5aa993b
JM
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
c906108c
SS
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
450 while (rtc_symp)
451 {
07cd4b97 452 read_memory (rtc_symp,
c906108c
SS
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
07cd4b97 455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
c906108c 456 (char *) &inferior_rtc_nlist,
c5aa993b 457 sizeof (inferior_rtc_nlist));
c906108c
SS
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
07cd4b97
JB
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
c906108c
SS
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
07cd4b97 477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
c906108c
SS
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484}
485
c5aa993b 486#endif /* SVR4_SHARED_LIBS */
c906108c
SS
487
488
489#ifdef SVR4_SHARED_LIBS
490
491static CORE_ADDR
c5aa993b 492 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b 502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 503
c5aa993b 504 DESCRIPTION
c906108c 505
c5aa993b
JM
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
c906108c 510
c5aa993b
JM
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
c906108c
SS
514
515static CORE_ADDR
516bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519{
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
c5aa993b 527
c906108c
SS
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
c906108c
SS
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
c5aa993b 539 if (STREQ (sym->name, symname))
c906108c
SS
540 {
541 /* Bfd symbols are section relative. */
c5aa993b 542 symaddr = sym->value + sym->section->vma;
c906108c
SS
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549}
550
551#ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553/*
c5aa993b
JM
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570static char *debug_base_symbols[] =
571{
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
574 NULL
575};
576
577static int
578look_for_base PARAMS ((int, CORE_ADDR));
579
580/*
581
c5aa993b 582 LOCAL FUNCTION
c906108c 583
c5aa993b 584 look_for_base -- examine file for each mapped address segment
c906108c 585
c5aa993b 586 SYNOPSYS
c906108c 587
c5aa993b 588 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 589
c5aa993b 590 DESCRIPTION
c906108c 591
c5aa993b
JM
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
c906108c 596
c5aa993b
JM
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
c906108c 600
c5aa993b
JM
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
c906108c
SS
604 */
605
606static int
607look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610{
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
c5aa993b 621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 637 interp_bfd. */
c906108c
SS
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 656 interp_bfd. */
c906108c
SS
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678}
679#endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681/*
682
c5aa993b 683 LOCAL FUNCTION
c906108c 684
c5aa993b
JM
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b 690 CORE_ADDR elf_locate_base (void)
c906108c 691
c5aa993b 692 DESCRIPTION
c906108c 693
c5aa993b
JM
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
c906108c
SS
702
703 */
704
705static CORE_ADDR
706elf_locate_base ()
707{
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713
714 /* Find the start address of the .dynamic section. */
715 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716 if (dyninfo_sect == NULL)
717 return 0;
718 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
720 /* Read in .dynamic section, silently ignore errors. */
721 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722 buf = alloca (dyninfo_sect_size);
723 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724 return 0;
725
726 /* Find the DT_DEBUG entry in the the .dynamic section.
727 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728 no DT_DEBUG entries. */
729#ifndef TARGET_ELF64
730 for (bufend = buf + dyninfo_sect_size;
731 buf < bufend;
732 buf += sizeof (Elf32_External_Dyn))
733 {
c5aa993b 734 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
735 long dyn_tag;
736 CORE_ADDR dyn_ptr;
737
738 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739 if (dyn_tag == DT_NULL)
740 break;
741 else if (dyn_tag == DT_DEBUG)
742 {
743 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744 return dyn_ptr;
745 }
746#ifdef DT_MIPS_RLD_MAP
747 else if (dyn_tag == DT_MIPS_RLD_MAP)
748 {
749 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755 return 0;
756 return extract_unsigned_integer (pbuf, sizeof (pbuf));
757 }
758#endif
759 }
760#else /* ELF64 */
761 for (bufend = buf + dyninfo_sect_size;
762 buf < bufend;
763 buf += sizeof (Elf64_External_Dyn))
764 {
c5aa993b 765 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
766 long dyn_tag;
767 CORE_ADDR dyn_ptr;
768
769 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770 if (dyn_tag == DT_NULL)
771 break;
772 else if (dyn_tag == DT_DEBUG)
773 {
774 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775 return dyn_ptr;
776 }
777 }
778#endif
779
780 /* DT_DEBUG entry not found. */
781 return 0;
782}
783
c5aa993b 784#endif /* SVR4_SHARED_LIBS */
c906108c
SS
785
786/*
787
c5aa993b 788 LOCAL FUNCTION
c906108c 789
c5aa993b 790 locate_base -- locate the base address of dynamic linker structs
c906108c 791
c5aa993b 792 SYNOPSIS
c906108c 793
c5aa993b 794 CORE_ADDR locate_base (void)
c906108c 795
c5aa993b 796 DESCRIPTION
c906108c 797
c5aa993b
JM
798 For both the SunOS and SVR4 shared library implementations, if the
799 inferior executable has been linked dynamically, there is a single
800 address somewhere in the inferior's data space which is the key to
801 locating all of the dynamic linker's runtime structures. This
802 address is the value of the debug base symbol. The job of this
803 function is to find and return that address, or to return 0 if there
804 is no such address (the executable is statically linked for example).
c906108c 805
c5aa993b
JM
806 For SunOS, the job is almost trivial, since the dynamic linker and
807 all of it's structures are statically linked to the executable at
808 link time. Thus the symbol for the address we are looking for has
809 already been added to the minimal symbol table for the executable's
810 objfile at the time the symbol file's symbols were read, and all we
811 have to do is look it up there. Note that we explicitly do NOT want
812 to find the copies in the shared library.
c906108c 813
c5aa993b
JM
814 The SVR4 version is a bit more complicated because the address
815 is contained somewhere in the dynamic info section. We have to go
816 to a lot more work to discover the address of the debug base symbol.
817 Because of this complexity, we cache the value we find and return that
818 value on subsequent invocations. Note there is no copy in the
819 executable symbol tables.
c906108c
SS
820
821 */
822
823static CORE_ADDR
824locate_base ()
825{
826
827#ifndef SVR4_SHARED_LIBS
828
829 struct minimal_symbol *msymbol;
830 CORE_ADDR address = 0;
831 char **symbolp;
832
833 /* For SunOS, we want to limit the search for the debug base symbol to the
834 executable being debugged, since there is a duplicate named symbol in the
835 shared library. We don't want the shared library versions. */
836
837 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838 {
839 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841 {
842 address = SYMBOL_VALUE_ADDRESS (msymbol);
843 return (address);
844 }
845 }
846 return (0);
847
c5aa993b 848#else /* SVR4_SHARED_LIBS */
c906108c
SS
849
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. */
854
855 if (debug_base == 0)
856 {
857 if (exec_bfd != NULL
858 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859 debug_base = elf_locate_base ();
860#ifdef HANDLE_SVR4_EXEC_EMULATORS
861 /* Try it the hard way for emulated executables. */
862 else if (inferior_pid != 0 && target_has_execution)
863 proc_iterate_over_mappings (look_for_base);
864#endif
865 }
866 return (debug_base);
867
c5aa993b 868#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
869
870}
871
872/*
873
c5aa993b 874 LOCAL FUNCTION
c906108c 875
c5aa993b 876 first_link_map_member -- locate first member in dynamic linker's map
c906108c 877
c5aa993b 878 SYNOPSIS
c906108c 879
07cd4b97 880 static CORE_ADDR first_link_map_member (void)
c906108c 881
c5aa993b 882 DESCRIPTION
c906108c 883
9ddea9f1
JB
884 Find the first element in the inferior's dynamic link map, and
885 return its address in the inferior. This function doesn't copy the
07cd4b97 886 link map entry itself into our address space; current_sos actually
9ddea9f1 887 does the reading. */
c906108c 888
07cd4b97 889static CORE_ADDR
c906108c
SS
890first_link_map_member ()
891{
07cd4b97 892 CORE_ADDR lm = 0;
c906108c
SS
893
894#ifndef SVR4_SHARED_LIBS
895
896 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897 if (dynamic_copy.ld_version >= 2)
898 {
899 /* It is a version that we can deal with, so read in the secondary
c5aa993b 900 structure and find the address of the link map list from it. */
07cd4b97
JB
901 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
c906108c
SS
904 }
905
c5aa993b 906#else /* SVR4_SHARED_LIBS */
c906108c
SS
907
908 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909 /* FIXME: Perhaps we should validate the info somehow, perhaps by
910 checking r_version for a known version number, or r_state for
911 RT_CONSISTENT. */
07cd4b97 912 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
c906108c 913
c5aa993b 914#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
915
916 return (lm);
917}
918
104c1213
JM
919#ifdef SVR4_SHARED_LIBS
920/*
921
922 LOCAL FUNCTION
923
9452d09b 924 open_symbol_file_object
104c1213
JM
925
926 SYNOPSIS
927
928 void open_symbol_file_object (int from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 */
938
9452d09b
MS
939static int
940open_symbol_file_object (from_ttyp)
941 int *from_ttyp; /* sneak past catch_errors */
104c1213 942{
07cd4b97
JB
943 CORE_ADDR lm;
944 struct link_map lmcopy;
104c1213
JM
945 char *filename;
946 int errcode;
947
948 if (symfile_objfile)
949 if (!query ("Attempt to reload symbols from process? "))
950 return 0;
951
952 if ((debug_base = locate_base ()) == 0)
953 return 0; /* failed somehow... */
954
955 /* First link map member should be the executable. */
07cd4b97 956 if ((lm = first_link_map_member ()) == 0)
104c1213
JM
957 return 0; /* failed somehow... */
958
959 /* Read from target memory to GDB. */
07cd4b97 960 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
104c1213
JM
961
962 if (lmcopy.l_name == 0)
963 return 0; /* no filename. */
964
965 /* Now fetch the filename from target memory. */
07cd4b97 966 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
104c1213
JM
967 MAX_PATH_SIZE - 1, &errcode);
968 if (errcode)
969 {
970 warning ("failed to read exec filename from attached file: %s",
971 safe_strerror (errcode));
972 return 0;
973 }
974
975 make_cleanup ((make_cleanup_func) free, (void *) filename);
976 /* Have a pathname: read the symbol file. */
9452d09b 977 symbol_file_command (filename, *from_ttyp);
104c1213
JM
978
979 return 1;
980}
981#endif /* SVR4_SHARED_LIBS */
982
c906108c 983
07cd4b97 984/* LOCAL FUNCTION
c906108c 985
07cd4b97 986 free_so --- free a `struct so_list' object
c906108c 987
c5aa993b 988 SYNOPSIS
c906108c 989
07cd4b97 990 void free_so (struct so_list *so)
c906108c 991
c5aa993b 992 DESCRIPTION
c906108c 993
07cd4b97
JB
994 Free the storage associated with the `struct so_list' object SO.
995 If we have opened a BFD for SO, close it.
c906108c 996
07cd4b97
JB
997 The caller is responsible for removing SO from whatever list it is
998 a member of. If we have placed SO's sections in some target's
999 section table, the caller is responsible for removing them.
c906108c 1000
07cd4b97
JB
1001 This function doesn't mess with objfiles at all. If there is an
1002 objfile associated with SO that needs to be removed, the caller is
1003 responsible for taking care of that. */
1004
1005static void
1006free_so (struct so_list *so)
c906108c 1007{
07cd4b97 1008 char *bfd_filename = 0;
c5aa993b 1009
07cd4b97
JB
1010 if (so->sections)
1011 free (so->sections);
1012
1013 if (so->abfd)
c906108c 1014 {
07cd4b97
JB
1015 bfd_filename = bfd_get_filename (so->abfd);
1016 if (! bfd_close (so->abfd))
1017 warning ("cannot close \"%s\": %s",
1018 bfd_filename, bfd_errmsg (bfd_get_error ()));
c906108c 1019 }
07cd4b97
JB
1020
1021 if (bfd_filename)
1022 free (bfd_filename);
1023
1024 free (so);
1025}
1026
1027
1028/* On some systems, the only way to recognize the link map entry for
1029 the main executable file is by looking at its name. Return
1030 non-zero iff SONAME matches one of the known main executable names. */
1031
1032static int
1033match_main (soname)
1034 char *soname;
1035{
1036 char **mainp;
1037
1038 for (mainp = main_name_list; *mainp != NULL; mainp++)
c906108c 1039 {
07cd4b97
JB
1040 if (strcmp (soname, *mainp) == 0)
1041 return (1);
c906108c 1042 }
07cd4b97
JB
1043
1044 return (0);
1045}
1046
1047
1048/* LOCAL FUNCTION
1049
1050 current_sos -- build a list of currently loaded shared objects
1051
1052 SYNOPSIS
1053
1054 struct so_list *current_sos ()
1055
1056 DESCRIPTION
1057
1058 Build a list of `struct so_list' objects describing the shared
1059 objects currently loaded in the inferior. This list does not
1060 include an entry for the main executable file.
1061
1062 Note that we only gather information directly available from the
1063 inferior --- we don't examine any of the shared library files
1064 themselves. The declaration of `struct so_list' says which fields
1065 we provide values for. */
1066
1067static struct so_list *
1068current_sos ()
1069{
1070 CORE_ADDR lm;
1071 struct so_list *head = 0;
1072 struct so_list **link_ptr = &head;
1073
1074 /* Make sure we've looked up the inferior's dynamic linker's base
1075 structure. */
1076 if (! debug_base)
c906108c 1077 {
07cd4b97
JB
1078 debug_base = locate_base ();
1079
1080 /* If we can't find the dynamic linker's base structure, this
1081 must not be a dynamically linked executable. Hmm. */
1082 if (! debug_base)
1083 return 0;
1084 }
1085
1086 /* Walk the inferior's link map list, and build our list of
1087 `struct so_list' nodes. */
1088 lm = first_link_map_member ();
1089 while (lm)
1090 {
1091 struct so_list *new
1092 = (struct so_list *) xmalloc (sizeof (struct so_list));
15588ebb 1093 struct cleanup *old_chain = make_cleanup (free, new);
07cd4b97
JB
1094 memset (new, 0, sizeof (*new));
1095
c5aa993b 1096 new->lmaddr = lm;
07cd4b97 1097 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
c906108c 1098
07cd4b97 1099 lm = LM_NEXT (new);
c5aa993b 1100
c906108c 1101 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
1102 inferior executable, so we must ignore it. For some versions of
1103 SVR4, it has no name. For others (Solaris 2.3 for example), it
1104 does have a name, so we can no longer use a missing name to
1105 decide when to ignore it. */
07cd4b97 1106 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
15588ebb 1107 free_so (new);
07cd4b97 1108 else
c906108c
SS
1109 {
1110 int errcode;
1111 char *buffer;
07cd4b97
JB
1112
1113 /* Extract this shared object's name. */
1114 target_read_string (LM_NAME (new), &buffer,
c906108c
SS
1115 MAX_PATH_SIZE - 1, &errcode);
1116 if (errcode != 0)
1117 {
07cd4b97 1118 warning ("current_sos: Can't read pathname for load map: %s\n",
c906108c 1119 safe_strerror (errcode));
c906108c 1120 }
07cd4b97
JB
1121 else
1122 {
1123 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1124 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1125 free (buffer);
1126 strcpy (new->so_original_name, new->so_name);
1127 }
1128
1129 /* If this entry has no name, or its name matches the name
1130 for the main executable, don't include it in the list. */
1131 if (! new->so_name[0]
1132 || match_main (new->so_name))
1133 free_so (new);
1134 else
1135 {
1136 new->next = 0;
1137 *link_ptr = new;
1138 link_ptr = &new->next;
1139 }
c5aa993b 1140 }
15588ebb
JB
1141
1142 discard_cleanups (old_chain);
c906108c 1143 }
07cd4b97
JB
1144
1145 return head;
c906108c
SS
1146}
1147
07cd4b97 1148
c906108c
SS
1149/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1150
1151static int
1152symbol_add_stub (arg)
1153 PTR arg;
1154{
07cd4b97 1155 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 1156 CORE_ADDR text_addr = 0;
62557bbc 1157 struct section_addr_info *sap;
c906108c 1158
07cd4b97
JB
1159 /* Have we already loaded this shared object? */
1160 ALL_OBJFILES (so->objfile)
1161 {
1162 if (strcmp (so->objfile->name, so->so_name) == 0)
1163 return 1;
1164 }
1165
1166 /* Find the shared object's text segment. */
c5aa993b
JM
1167 if (so->textsection)
1168 text_addr = so->textsection->addr;
1169 else if (so->abfd != NULL)
c906108c
SS
1170 {
1171 asection *lowest_sect;
1172
1173 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1174 text_addr so that the relocation in symbol_file_add does no harm. */
c5aa993b 1175 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1176 if (lowest_sect == NULL)
c5aa993b 1177 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 1178 (PTR) &lowest_sect);
c906108c 1179 if (lowest_sect)
c5aa993b 1180 text_addr = bfd_section_vma (so->abfd, lowest_sect)
07cd4b97 1181 + LM_ADDR (so);
c906108c 1182 }
c5aa993b 1183
62557bbc
KB
1184 sap = build_section_addr_info_from_section_table (so->sections,
1185 so->sections_end);
1186 sap->text_addr = text_addr;
1187 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1188 sap, 0, OBJF_SHARED);
1189 free_section_addr_info (sap);
c906108c 1190
07cd4b97 1191 return (1);
c906108c
SS
1192}
1193
c906108c 1194
07cd4b97 1195/* LOCAL FUNCTION
c906108c 1196
07cd4b97 1197 solib_add -- synchronize GDB's shared object list with the inferior's
c906108c 1198
c5aa993b 1199 SYNOPSIS
c906108c 1200
07cd4b97 1201 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
c906108c 1202
c5aa993b 1203 DESCRIPTION
c906108c 1204
07cd4b97
JB
1205 Extract the list of currently loaded shared objects from the
1206 inferior, and compare it with the list of shared objects for which
1207 GDB has currently loaded symbolic information. If new shared
1208 objects have been loaded, or old shared objects have disappeared,
1209 make the appropriate changes to GDB's tables.
c906108c 1210
07cd4b97
JB
1211 If PATTERN is non-null, read symbols only for shared objects
1212 whose names match PATTERN.
1213
1214 If FROM_TTY is non-null, feel free to print messages about what
1215 we're doing.
c906108c 1216
07cd4b97
JB
1217 If TARGET is non-null, add the sections of all new shared objects
1218 to TARGET's section table. Note that this doesn't remove any
1219 sections for shared objects that have been unloaded, and it
1220 doesn't check to see if the new shared objects are already present in
1221 the section table. But we only use this for core files and
1222 processes we've just attached to, so that's okay. */
c906108c 1223
07cd4b97
JB
1224void
1225solib_add (char *pattern, int from_tty, struct target_ops *target)
1226{
1227 struct so_list *inferior = current_sos ();
1228 struct so_list *gdb, **gdb_link;
1229
104c1213
JM
1230#ifdef SVR4_SHARED_LIBS
1231 /* If we are attaching to a running process for which we
1232 have not opened a symbol file, we may be able to get its
1233 symbols now! */
1234 if (attach_flag &&
1235 symfile_objfile == NULL)
9452d09b 1236 catch_errors (open_symbol_file_object, (PTR) &from_tty,
104c1213
JM
1237 "Error reading attached process's symbol file.\n",
1238 RETURN_MASK_ALL);
1239
1240#endif SVR4_SHARED_LIBS
1241
07cd4b97 1242 if (pattern)
c906108c 1243 {
07cd4b97
JB
1244 char *re_err = re_comp (pattern);
1245
1246 if (re_err)
1247 error ("Invalid regexp: %s", re_err);
1248 }
1249
1250 /* Since this function might actually add some elements to the
1251 so_list_head list, arrange for it to be cleaned up when
1252 appropriate. */
1253 if (!solib_cleanup_queued)
1254 {
1255 make_run_cleanup (do_clear_solib, NULL);
1256 solib_cleanup_queued = 1;
c906108c 1257 }
c5aa993b 1258
07cd4b97
JB
1259 /* GDB and the inferior's dynamic linker each maintain their own
1260 list of currently loaded shared objects; we want to bring the
1261 former in sync with the latter. Scan both lists, seeing which
1262 shared objects appear where. There are three cases:
1263
1264 - A shared object appears on both lists. This means that GDB
1265 knows about it already, and it's still loaded in the inferior.
1266 Nothing needs to happen.
1267
1268 - A shared object appears only on GDB's list. This means that
1269 the inferior has unloaded it. We should remove the shared
1270 object from GDB's tables.
1271
1272 - A shared object appears only on the inferior's list. This
1273 means that it's just been loaded. We should add it to GDB's
1274 tables.
1275
1276 So we walk GDB's list, checking each entry to see if it appears
1277 in the inferior's list too. If it does, no action is needed, and
1278 we remove it from the inferior's list. If it doesn't, the
1279 inferior has unloaded it, and we remove it from GDB's list. By
1280 the time we're done walking GDB's list, the inferior's list
1281 contains only the new shared objects, which we then add. */
1282
1283 gdb = so_list_head;
1284 gdb_link = &so_list_head;
1285 while (gdb)
c906108c 1286 {
07cd4b97
JB
1287 struct so_list *i = inferior;
1288 struct so_list **i_link = &inferior;
1289
1290 /* Check to see whether the shared object *gdb also appears in
1291 the inferior's current list. */
1292 while (i)
c906108c 1293 {
07cd4b97
JB
1294 if (! strcmp (gdb->so_original_name, i->so_original_name))
1295 break;
1296
1297 i_link = &i->next;
1298 i = *i_link;
c906108c 1299 }
c5aa993b 1300
07cd4b97
JB
1301 /* If the shared object appears on the inferior's list too, then
1302 it's still loaded, so we don't need to do anything. Delete
1303 it from the inferior's list, and leave it on GDB's list. */
1304 if (i)
c906108c 1305 {
07cd4b97 1306 *i_link = i->next;
07cd4b97
JB
1307 free_so (i);
1308 gdb_link = &gdb->next;
1309 gdb = *gdb_link;
1310 }
1311
1312 /* If it's not on the inferior's list, remove it from GDB's tables. */
1313 else
1314 {
1315 *gdb_link = gdb->next;
07cd4b97
JB
1316
1317 /* Unless the user loaded it explicitly, free SO's objfile. */
1318 if (! (gdb->objfile->flags & OBJF_USERLOADED))
1319 free_objfile (gdb->objfile);
1320
1321 /* Some targets' section tables might be referring to
1322 sections from so->abfd; remove them. */
1323 remove_target_sections (gdb->abfd);
1324
1325 free_so (gdb);
1326 gdb = *gdb_link;
c906108c
SS
1327 }
1328 }
c5aa993b 1329
07cd4b97
JB
1330 /* Now the inferior's list contains only shared objects that don't
1331 appear in GDB's list --- those that are newly loaded. Add them
1332 to GDB's shared object list, and read in their symbols, if
1333 appropriate. */
1334 if (inferior)
c906108c 1335 {
07cd4b97
JB
1336 struct so_list *i;
1337
1338 /* Add the new shared objects to GDB's list. */
1339 *gdb_link = inferior;
1340
1341 /* Fill in the rest of each of the `struct so_list' nodes, and
1342 read symbols for those files whose names match PATTERN. */
1343 for (i = inferior; i; i = i->next)
c906108c 1344 {
07cd4b97
JB
1345 i->from_tty = from_tty;
1346
1347 /* Fill in the rest of the `struct so_list' node. */
1348 catch_errors (solib_map_sections, i,
1349 "Error while mapping shared library sections:\n",
1350 RETURN_MASK_ALL);
1351
1352 if (! pattern || re_exec (i->so_name))
c906108c 1353 {
07cd4b97 1354 if (i->symbols_loaded)
c906108c 1355 {
07cd4b97
JB
1356 if (from_tty)
1357 printf_unfiltered ("Symbols already loaded for %s\n",
1358 i->so_name);
1359 }
1360 else
1361 {
07cd4b97
JB
1362 if (catch_errors
1363 (symbol_add_stub, i,
1364 "Error while reading shared library symbols:\n",
1365 RETURN_MASK_ALL))
1366 {
1367 if (from_tty)
1368 printf_unfiltered ("Loaded symbols for %s\n",
1369 i->so_name);
1370 i->symbols_loaded = 1;
1371 }
c906108c
SS
1372 }
1373 }
07cd4b97
JB
1374 }
1375
1376 /* If requested, add the shared objects' sections to the the
1377 TARGET's section table. */
1378 if (target)
1379 {
1380 int new_sections;
1381
1382 /* Figure out how many sections we'll need to add in total. */
1383 new_sections = 0;
1384 for (i = inferior; i; i = i->next)
1385 new_sections += (i->sections_end - i->sections);
1386
1387 if (new_sections > 0)
c906108c 1388 {
07cd4b97
JB
1389 int space = target_resize_to_sections (target, new_sections);
1390
1391 for (i = inferior; i; i = i->next)
1392 {
1393 int count = (i->sections_end - i->sections);
1394 memcpy (target->to_sections + space,
1395 i->sections,
1396 count * sizeof (i->sections[0]));
1397 space += count;
1398 }
c906108c
SS
1399 }
1400 }
c906108c 1401
07cd4b97
JB
1402 /* Getting new symbols may change our opinion about what is
1403 frameless. */
1404 reinit_frame_cache ();
c906108c 1405
07cd4b97
JB
1406 special_symbol_handling ();
1407 }
c906108c
SS
1408}
1409
07cd4b97 1410
c906108c
SS
1411/*
1412
c5aa993b 1413 LOCAL FUNCTION
c906108c 1414
c5aa993b 1415 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1416
c5aa993b 1417 SYNOPSIS
c906108c 1418
c5aa993b 1419 static void info_sharedlibrary_command ()
c906108c 1420
c5aa993b 1421 DESCRIPTION
c906108c 1422
c5aa993b
JM
1423 Walk through the shared library list and print information
1424 about each attached library.
1425 */
c906108c
SS
1426
1427static void
1428info_sharedlibrary_command (ignore, from_tty)
1429 char *ignore;
1430 int from_tty;
1431{
c5aa993b 1432 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1433 int header_done = 0;
1434 int addr_width;
1435 char *addr_fmt;
1436
1437 if (exec_bfd == NULL)
1438 {
4ce44c66 1439 printf_unfiltered ("No executable file.\n");
c906108c
SS
1440 return;
1441 }
1442
1443#ifndef TARGET_ELF64
c5aa993b 1444 addr_width = 8 + 4;
c906108c
SS
1445 addr_fmt = "08l";
1446#else
c5aa993b 1447 addr_width = 16 + 4;
c906108c
SS
1448 addr_fmt = "016l";
1449#endif
1450
07cd4b97
JB
1451 solib_add (0, 0, 0);
1452
1453 for (so = so_list_head; so; so = so->next)
c906108c 1454 {
c5aa993b 1455 if (so->so_name[0])
c906108c
SS
1456 {
1457 if (!header_done)
1458 {
c5aa993b
JM
1459 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1460 addr_width, "To", "Syms Read",
1461 "Shared Object Library");
c906108c
SS
1462 header_done++;
1463 }
1464
1465 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1466 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1467 addr_fmt));
c906108c 1468 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1469 local_hex_string_custom ((unsigned long) so->lmend,
1470 addr_fmt));
1471 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1472 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1473 }
1474 }
1475 if (so_list_head == NULL)
1476 {
c5aa993b 1477 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1478 }
1479}
1480
1481/*
1482
c5aa993b 1483 GLOBAL FUNCTION
c906108c 1484
c5aa993b 1485 solib_address -- check to see if an address is in a shared lib
c906108c 1486
c5aa993b 1487 SYNOPSIS
c906108c 1488
c5aa993b 1489 char * solib_address (CORE_ADDR address)
c906108c 1490
c5aa993b 1491 DESCRIPTION
c906108c 1492
c5aa993b
JM
1493 Provides a hook for other gdb routines to discover whether or
1494 not a particular address is within the mapped address space of
1495 a shared library. Any address between the base mapping address
1496 and the first address beyond the end of the last mapping, is
1497 considered to be within the shared library address space, for
1498 our purposes.
c906108c 1499
c5aa993b
JM
1500 For example, this routine is called at one point to disable
1501 breakpoints which are in shared libraries that are not currently
1502 mapped in.
c906108c
SS
1503 */
1504
1505char *
1506solib_address (address)
1507 CORE_ADDR address;
1508{
c5aa993b
JM
1509 register struct so_list *so = 0; /* link map state variable */
1510
07cd4b97 1511 for (so = so_list_head; so; so = so->next)
c906108c 1512 {
07cd4b97
JB
1513 if (LM_ADDR (so) <= address && address < so->lmend)
1514 return (so->so_name);
c906108c 1515 }
07cd4b97 1516
c906108c
SS
1517 return (0);
1518}
1519
1520/* Called by free_all_symtabs */
1521
c5aa993b 1522void
085dd6e6 1523clear_solib ()
c906108c 1524{
085dd6e6
JM
1525 /* This function is expected to handle ELF shared libraries. It is
1526 also used on Solaris, which can run either ELF or a.out binaries
1527 (for compatibility with SunOS 4), both of which can use shared
1528 libraries. So we don't know whether we have an ELF executable or
1529 an a.out executable until the user chooses an executable file.
1530
1531 ELF shared libraries don't get mapped into the address space
1532 until after the program starts, so we'd better not try to insert
1533 breakpoints in them immediately. We have to wait until the
1534 dynamic linker has loaded them; we'll hit a bp_shlib_event
1535 breakpoint (look for calls to create_solib_event_breakpoint) when
1536 it's ready.
1537
1538 SunOS shared libraries seem to be different --- they're present
1539 as soon as the process begins execution, so there's no need to
1540 put off inserting breakpoints. There's also nowhere to put a
1541 bp_shlib_event breakpoint, so if we put it off, we'll never get
1542 around to it.
1543
1544 So: disable breakpoints only if we're using ELF shared libs. */
1545 if (exec_bfd != NULL
1546 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1547 disable_breakpoints_in_shlibs (1);
1548
c906108c
SS
1549 while (so_list_head)
1550 {
07cd4b97
JB
1551 struct so_list *so = so_list_head;
1552 so_list_head = so->next;
1553 free_so (so);
c906108c 1554 }
07cd4b97 1555
c906108c
SS
1556 debug_base = 0;
1557}
1558
1559static void
1560do_clear_solib (dummy)
1561 PTR dummy;
1562{
1563 solib_cleanup_queued = 0;
1564 clear_solib ();
1565}
1566
1567#ifdef SVR4_SHARED_LIBS
1568
1569/* Return 1 if PC lies in the dynamic symbol resolution code of the
1570 SVR4 run time loader. */
1571
1572static CORE_ADDR interp_text_sect_low;
1573static CORE_ADDR interp_text_sect_high;
1574static CORE_ADDR interp_plt_sect_low;
1575static CORE_ADDR interp_plt_sect_high;
1576
1577int
1578in_svr4_dynsym_resolve_code (pc)
1579 CORE_ADDR pc;
1580{
1581 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1582 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1583 || in_plt_section (pc, NULL));
1584}
1585#endif
1586
1587/*
1588
c5aa993b 1589 LOCAL FUNCTION
c906108c 1590
c5aa993b 1591 disable_break -- remove the "mapping changed" breakpoint
c906108c 1592
c5aa993b 1593 SYNOPSIS
c906108c 1594
c5aa993b 1595 static int disable_break ()
c906108c 1596
c5aa993b 1597 DESCRIPTION
c906108c 1598
c5aa993b
JM
1599 Removes the breakpoint that gets hit when the dynamic linker
1600 completes a mapping change.
c906108c 1601
c5aa993b 1602 */
c906108c
SS
1603
1604#ifndef SVR4_SHARED_LIBS
1605
1606static int
1607disable_break ()
1608{
1609 int status = 1;
1610
1611#ifndef SVR4_SHARED_LIBS
1612
1613 int in_debugger = 0;
c5aa993b 1614
c906108c
SS
1615 /* Read the debugger structure from the inferior to retrieve the
1616 address of the breakpoint and the original contents of the
1617 breakpoint address. Remove the breakpoint by writing the original
1618 contents back. */
1619
1620 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1621
1622 /* Set `in_debugger' to zero now. */
1623
1624 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1625
07cd4b97 1626 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
c906108c
SS
1627 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1628 sizeof (debug_copy.ldd_bp_inst));
1629
c5aa993b 1630#else /* SVR4_SHARED_LIBS */
c906108c
SS
1631
1632 /* Note that breakpoint address and original contents are in our address
1633 space, so we just need to write the original contents back. */
1634
1635 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1636 {
1637 status = 0;
1638 }
1639
c5aa993b 1640#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1641
1642 /* For the SVR4 version, we always know the breakpoint address. For the
1643 SunOS version we don't know it until the above code is executed.
1644 Grumble if we are stopped anywhere besides the breakpoint address. */
1645
1646 if (stop_pc != breakpoint_addr)
1647 {
1648 warning ("stopped at unknown breakpoint while handling shared libraries");
1649 }
1650
1651 return (status);
1652}
1653
c5aa993b 1654#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1655
1656/*
1657
c5aa993b
JM
1658 LOCAL FUNCTION
1659
1660 enable_break -- arrange for dynamic linker to hit breakpoint
1661
1662 SYNOPSIS
1663
1664 int enable_break (void)
1665
1666 DESCRIPTION
1667
1668 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1669 debugger interface, support for arranging for the inferior to hit
1670 a breakpoint after mapping in the shared libraries. This function
1671 enables that breakpoint.
1672
1673 For SunOS, there is a special flag location (in_debugger) which we
1674 set to 1. When the dynamic linker sees this flag set, it will set
1675 a breakpoint at a location known only to itself, after saving the
1676 original contents of that place and the breakpoint address itself,
1677 in it's own internal structures. When we resume the inferior, it
1678 will eventually take a SIGTRAP when it runs into the breakpoint.
1679 We handle this (in a different place) by restoring the contents of
1680 the breakpointed location (which is only known after it stops),
1681 chasing around to locate the shared libraries that have been
1682 loaded, then resuming.
1683
1684 For SVR4, the debugger interface structure contains a member (r_brk)
1685 which is statically initialized at the time the shared library is
1686 built, to the offset of a function (_r_debug_state) which is guaran-
1687 teed to be called once before mapping in a library, and again when
1688 the mapping is complete. At the time we are examining this member,
1689 it contains only the unrelocated offset of the function, so we have
1690 to do our own relocation. Later, when the dynamic linker actually
1691 runs, it relocates r_brk to be the actual address of _r_debug_state().
1692
1693 The debugger interface structure also contains an enumeration which
1694 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1695 depending upon whether or not the library is being mapped or unmapped,
1696 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1697 */
c906108c
SS
1698
1699static int
1700enable_break ()
1701{
1702 int success = 0;
1703
1704#ifndef SVR4_SHARED_LIBS
1705
1706 int j;
1707 int in_debugger;
1708
1709 /* Get link_dynamic structure */
1710
1711 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1712 sizeof (dynamic_copy));
1713 if (j)
1714 {
1715 /* unreadable */
1716 return (0);
1717 }
1718
1719 /* Calc address of debugger interface structure */
1720
07cd4b97 1721 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
1722
1723 /* Calc address of `in_debugger' member of debugger interface structure */
1724
1725 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1726 (char *) &debug_copy);
1727
1728 /* Write a value of 1 to this member. */
1729
1730 in_debugger = 1;
1731 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1732 success = 1;
1733
c5aa993b 1734#else /* SVR4_SHARED_LIBS */
c906108c
SS
1735
1736#ifdef BKPT_AT_SYMBOL
1737
1738 struct minimal_symbol *msymbol;
1739 char **bkpt_namep;
1740 asection *interp_sect;
1741
1742 /* First, remove all the solib event breakpoints. Their addresses
1743 may have changed since the last time we ran the program. */
1744 remove_solib_event_breakpoints ();
1745
1746#ifdef SVR4_SHARED_LIBS
1747 interp_text_sect_low = interp_text_sect_high = 0;
1748 interp_plt_sect_low = interp_plt_sect_high = 0;
1749
1750 /* Find the .interp section; if not found, warn the user and drop
1751 into the old breakpoint at symbol code. */
1752 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1753 if (interp_sect)
1754 {
1755 unsigned int interp_sect_size;
1756 char *buf;
1757 CORE_ADDR load_addr;
1758 bfd *tmp_bfd;
1759 CORE_ADDR sym_addr = 0;
1760
1761 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1762 the contents specify the dynamic linker this program uses. */
c906108c
SS
1763 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1764 buf = alloca (interp_sect_size);
1765 bfd_get_section_contents (exec_bfd, interp_sect,
1766 buf, 0, interp_sect_size);
1767
1768 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1769 loaded so that we can load its symbols and place a breakpoint
1770 in the dynamic linker itself.
c906108c 1771
c5aa993b
JM
1772 This address is stored on the stack. However, I've been unable
1773 to find any magic formula to find it for Solaris (appears to
1774 be trivial on GNU/Linux). Therefore, we have to try an alternate
1775 mechanism to find the dynamic linker's base address. */
c906108c
SS
1776 tmp_bfd = bfd_openr (buf, gnutarget);
1777 if (tmp_bfd == NULL)
1778 goto bkpt_at_symbol;
1779
1780 /* Make sure the dynamic linker's really a useful object. */
1781 if (!bfd_check_format (tmp_bfd, bfd_object))
1782 {
1783 warning ("Unable to grok dynamic linker %s as an object file", buf);
1784 bfd_close (tmp_bfd);
1785 goto bkpt_at_symbol;
1786 }
1787
1788 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1789 current pc (which point at the entry point for the dynamic
1790 linker) and subtracting the offset of the entry point. */
c906108c
SS
1791 load_addr = read_pc () - tmp_bfd->start_address;
1792
1793 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1794 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1795 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1796 if (interp_sect)
1797 {
1798 interp_text_sect_low =
1799 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1800 interp_text_sect_high =
1801 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1802 }
1803 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1804 if (interp_sect)
1805 {
1806 interp_plt_sect_low =
1807 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1808 interp_plt_sect_high =
1809 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1810 }
1811
1812 /* Now try to set a breakpoint in the dynamic linker. */
1813 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1814 {
1815 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1816 if (sym_addr != 0)
1817 break;
1818 }
1819
1820 /* We're done with the temporary bfd. */
1821 bfd_close (tmp_bfd);
1822
1823 if (sym_addr != 0)
1824 {
1825 create_solib_event_breakpoint (load_addr + sym_addr);
1826 return 1;
1827 }
1828
1829 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1830 linker. Warn and drop into the old code. */
1831 bkpt_at_symbol:
c906108c
SS
1832 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1833 }
1834#endif
1835
1836 /* Scan through the list of symbols, trying to look up the symbol and
1837 set a breakpoint there. Terminate loop when we/if we succeed. */
1838
1839 breakpoint_addr = 0;
1840 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1841 {
1842 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1843 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1844 {
1845 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1846 return 1;
1847 }
1848 }
1849
1850 /* Nothing good happened. */
1851 success = 0;
1852
c5aa993b 1853#endif /* BKPT_AT_SYMBOL */
c906108c 1854
c5aa993b 1855#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1856
1857 return (success);
1858}
c5aa993b 1859
c906108c 1860/*
c5aa993b
JM
1861
1862 GLOBAL FUNCTION
1863
1864 solib_create_inferior_hook -- shared library startup support
1865
1866 SYNOPSIS
1867
1868 void solib_create_inferior_hook()
1869
1870 DESCRIPTION
1871
1872 When gdb starts up the inferior, it nurses it along (through the
1873 shell) until it is ready to execute it's first instruction. At this
1874 point, this function gets called via expansion of the macro
1875 SOLIB_CREATE_INFERIOR_HOOK.
1876
1877 For SunOS executables, this first instruction is typically the
1878 one at "_start", or a similar text label, regardless of whether
1879 the executable is statically or dynamically linked. The runtime
1880 startup code takes care of dynamically linking in any shared
1881 libraries, once gdb allows the inferior to continue.
1882
1883 For SVR4 executables, this first instruction is either the first
1884 instruction in the dynamic linker (for dynamically linked
1885 executables) or the instruction at "start" for statically linked
1886 executables. For dynamically linked executables, the system
1887 first exec's /lib/libc.so.N, which contains the dynamic linker,
1888 and starts it running. The dynamic linker maps in any needed
1889 shared libraries, maps in the actual user executable, and then
1890 jumps to "start" in the user executable.
1891
1892 For both SunOS shared libraries, and SVR4 shared libraries, we
1893 can arrange to cooperate with the dynamic linker to discover the
1894 names of shared libraries that are dynamically linked, and the
1895 base addresses to which they are linked.
1896
1897 This function is responsible for discovering those names and
1898 addresses, and saving sufficient information about them to allow
1899 their symbols to be read at a later time.
1900
1901 FIXME
1902
1903 Between enable_break() and disable_break(), this code does not
1904 properly handle hitting breakpoints which the user might have
1905 set in the startup code or in the dynamic linker itself. Proper
1906 handling will probably have to wait until the implementation is
1907 changed to use the "breakpoint handler function" method.
1908
1909 Also, what if child has exit()ed? Must exit loop somehow.
1910 */
1911
1912void
1913solib_create_inferior_hook ()
c906108c
SS
1914{
1915 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1916 yet. In fact, in the case of a SunOS4 executable being run on
07cd4b97 1917 Solaris, we can't get it yet. current_sos will get it when it needs
c906108c
SS
1918 it. */
1919#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1920 if ((debug_base = locate_base ()) == 0)
1921 {
1922 /* Can't find the symbol or the executable is statically linked. */
1923 return;
1924 }
1925#endif
1926
1927 if (!enable_break ())
1928 {
1929 warning ("shared library handler failed to enable breakpoint");
1930 return;
1931 }
1932
1933#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1934 /* SCO and SunOS need the loop below, other systems should be using the
1935 special shared library breakpoints and the shared library breakpoint
1936 service routine.
1937
1938 Now run the target. It will eventually hit the breakpoint, at
1939 which point all of the libraries will have been mapped in and we
1940 can go groveling around in the dynamic linker structures to find
1941 out what we need to know about them. */
1942
1943 clear_proceed_status ();
1944 stop_soon_quietly = 1;
1945 stop_signal = TARGET_SIGNAL_0;
1946 do
1947 {
1948 target_resume (-1, 0, stop_signal);
1949 wait_for_inferior ();
1950 }
1951 while (stop_signal != TARGET_SIGNAL_TRAP);
1952 stop_soon_quietly = 0;
1953
1954#if !defined(_SCO_DS)
1955 /* We are now either at the "mapping complete" breakpoint (or somewhere
1956 else, a condition we aren't prepared to deal with anyway), so adjust
1957 the PC as necessary after a breakpoint, disable the breakpoint, and
1958 add any shared libraries that were mapped in. */
1959
1960 if (DECR_PC_AFTER_BREAK)
1961 {
1962 stop_pc -= DECR_PC_AFTER_BREAK;
1963 write_register (PC_REGNUM, stop_pc);
1964 }
1965
1966 if (!disable_break ())
1967 {
1968 warning ("shared library handler failed to disable breakpoint");
1969 }
1970
1971 if (auto_solib_add)
1972 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1973#endif /* ! _SCO_DS */
1974#endif
1975}
1976
1977/*
1978
c5aa993b 1979 LOCAL FUNCTION
c906108c 1980
c5aa993b 1981 special_symbol_handling -- additional shared library symbol handling
c906108c 1982
c5aa993b 1983 SYNOPSIS
c906108c 1984
07cd4b97 1985 void special_symbol_handling ()
c906108c 1986
c5aa993b 1987 DESCRIPTION
c906108c 1988
c5aa993b
JM
1989 Once the symbols from a shared object have been loaded in the usual
1990 way, we are called to do any system specific symbol handling that
1991 is needed.
c906108c 1992
c5aa993b
JM
1993 For SunOS4, this consists of grunging around in the dynamic
1994 linkers structures to find symbol definitions for "common" symbols
1995 and adding them to the minimal symbol table for the runtime common
1996 objfile.
c906108c 1997
c5aa993b 1998 */
c906108c
SS
1999
2000static void
07cd4b97 2001special_symbol_handling ()
c906108c
SS
2002{
2003#ifndef SVR4_SHARED_LIBS
2004 int j;
2005
2006 if (debug_addr == 0)
2007 {
2008 /* Get link_dynamic structure */
2009
2010 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2011 sizeof (dynamic_copy));
2012 if (j)
2013 {
2014 /* unreadable */
2015 return;
2016 }
2017
2018 /* Calc address of debugger interface structure */
2019 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 2020 (byteorder, size, alignment, etc). */
c906108c 2021
07cd4b97 2022 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
2023 }
2024
2025 /* Read the debugger structure from the inferior, just to make sure
2026 we have a current copy. */
2027
2028 j = target_read_memory (debug_addr, (char *) &debug_copy,
2029 sizeof (debug_copy));
2030 if (j)
c5aa993b 2031 return; /* unreadable */
c906108c
SS
2032
2033 /* Get common symbol definitions for the loaded object. */
2034
2035 if (debug_copy.ldd_cp)
2036 {
07cd4b97 2037 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
c906108c
SS
2038 }
2039
c5aa993b 2040#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
2041}
2042
2043
2044/*
2045
c5aa993b 2046 LOCAL FUNCTION
c906108c 2047
c5aa993b 2048 sharedlibrary_command -- handle command to explicitly add library
c906108c 2049
c5aa993b 2050 SYNOPSIS
c906108c 2051
c5aa993b 2052 static void sharedlibrary_command (char *args, int from_tty)
c906108c 2053
c5aa993b 2054 DESCRIPTION
c906108c 2055
c5aa993b 2056 */
c906108c
SS
2057
2058static void
2059sharedlibrary_command (args, from_tty)
c5aa993b
JM
2060 char *args;
2061 int from_tty;
c906108c
SS
2062{
2063 dont_repeat ();
2064 solib_add (args, from_tty, (struct target_ops *) 0);
2065}
2066
2067#endif /* HAVE_LINK_H */
2068
2069void
c5aa993b 2070_initialize_solib ()
c906108c
SS
2071{
2072#ifdef HAVE_LINK_H
2073
2074 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2075 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 2076 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
2077 "Status of loaded shared object libraries.");
2078
2079 add_show_from_set
2080 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2081 (char *) &auto_solib_add,
2082 "Set autoloading of shared library symbols.\n\
2083If nonzero, symbols from all shared object libraries will be loaded\n\
2084automatically when the inferior begins execution or when the dynamic linker\n\
2085informs gdb that a new library has been loaded. Otherwise, symbols\n\
2086must be loaded manually, using `sharedlibrary'.",
2087 &setlist),
2088 &showlist);
2089
2090 add_show_from_set
2091 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2092 (char *) &solib_absolute_prefix,
2093 "Set prefix for loading absolute shared library symbol files.\n\
2094For other (relative) files, you can add values using `set solib-search-path'.",
2095 &setlist),
2096 &showlist);
2097 add_show_from_set
2098 (add_set_cmd ("solib-search-path", class_support, var_string,
2099 (char *) &solib_search_path,
2100 "Set the search path for loading non-absolute shared library symbol files.\n\
2101This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2102 &setlist),
2103 &showlist);
2104
2105#endif /* HAVE_LINK_H */
2106}