]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
34#include <unistd.h>
35
36#ifndef SVR4_SHARED_LIBS
37 /* SunOS shared libs need the nlist structure. */
c5aa993b 38#include <a.out.h>
c906108c
SS
39#else
40#include "elf/external.h"
41#endif
42
43#include <link.h>
44
45#include "symtab.h"
46#include "bfd.h"
47#include "symfile.h"
48#include "objfiles.h"
49#include "gdbcore.h"
50#include "command.h"
51#include "target.h"
52#include "frame.h"
53#include "gnu-regex.h"
54#include "inferior.h"
55#include "environ.h"
56#include "language.h"
57#include "gdbcmd.h"
58
c5aa993b 59#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
60
61/* On SVR4 systems, a list of symbols in the dynamic linker where
62 GDB can try to place a breakpoint to monitor shared library
63 events.
64
65 If none of these symbols are found, or other errors occur, then
66 SVR4 systems will fall back to using a symbol as the "startup
67 mapping complete" breakpoint address. */
68
69#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
70static char *solib_break_names[] =
71{
c906108c
SS
72 "r_debug_state",
73 "_r_debug_state",
74 "_dl_debug_state",
75 "rtld_db_dlactivity",
76 NULL
77};
78#endif
79
80#define BKPT_AT_SYMBOL 1
81
82#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
83static char *bkpt_names[] =
84{
c906108c
SS
85#ifdef SOLIB_BKPT_NAME
86 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
87#endif
88 "_start",
89 "main",
90 NULL
91};
92#endif
93
94/* Symbols which are used to locate the base of the link map structures. */
95
96#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
97static char *debug_base_symbols[] =
98{
c906108c
SS
99 "_DYNAMIC",
100 "_DYNAMIC__MGC",
101 NULL
102};
103#endif
104
c5aa993b
JM
105static char *main_name_list[] =
106{
c906108c
SS
107 "main_$main",
108 NULL
109};
110
111/* local data declarations */
112
113#ifndef SVR4_SHARED_LIBS
114
115#define LM_ADDR(so) ((so) -> lm.lm_addr)
116#define LM_NEXT(so) ((so) -> lm.lm_next)
117#define LM_NAME(so) ((so) -> lm.lm_name)
118/* Test for first link map entry; first entry is a shared library. */
119#define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
120static struct link_dynamic dynamic_copy;
121static struct link_dynamic_2 ld_2_copy;
122static struct ld_debug debug_copy;
123static CORE_ADDR debug_addr;
124static CORE_ADDR flag_addr;
125
c5aa993b 126#else /* SVR4_SHARED_LIBS */
c906108c
SS
127
128#define LM_ADDR(so) ((so) -> lm.l_addr)
129#define LM_NEXT(so) ((so) -> lm.l_next)
130#define LM_NAME(so) ((so) -> lm.l_name)
131/* Test for first link map entry; first entry is the exec-file. */
132#define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
133static struct r_debug debug_copy;
134char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
135
c5aa993b
JM
136#endif /* !SVR4_SHARED_LIBS */
137
138struct so_list
139 {
140 struct so_list *next; /* next structure in linked list */
141 struct link_map lm; /* copy of link map from inferior */
142 struct link_map *lmaddr; /* addr in inferior lm was read from */
143 CORE_ADDR lmend; /* upper addr bound of mapped object */
144 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
145 char symbols_loaded; /* flag: symbols read in yet? */
146 char from_tty; /* flag: print msgs? */
147 struct objfile *objfile; /* objfile for loaded lib */
148 struct section_table *sections;
149 struct section_table *sections_end;
150 struct section_table *textsection;
151 bfd *abfd;
152 };
c906108c
SS
153
154static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 155static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
156static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
157
c5aa993b 158static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
159
160extern int
c5aa993b 161fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
162
163/* Local function prototypes */
164
165static void
166do_clear_solib PARAMS ((PTR));
167
168static int
169match_main PARAMS ((char *));
170
171static void
172special_symbol_handling PARAMS ((struct so_list *));
173
174static void
175sharedlibrary_command PARAMS ((char *, int));
176
177static int
178enable_break PARAMS ((void));
179
180static void
181info_sharedlibrary_command PARAMS ((char *, int));
182
183static int symbol_add_stub PARAMS ((PTR));
184
185static struct so_list *
c5aa993b 186 find_solib PARAMS ((struct so_list *));
c906108c
SS
187
188static struct link_map *
c5aa993b 189 first_link_map_member PARAMS ((void));
c906108c
SS
190
191static CORE_ADDR
c5aa993b 192 locate_base PARAMS ((void));
c906108c
SS
193
194static int solib_map_sections PARAMS ((PTR));
195
196#ifdef SVR4_SHARED_LIBS
197
198static CORE_ADDR
c5aa993b 199 elf_locate_base PARAMS ((void));
c906108c
SS
200
201#else
202
203static int
204disable_break PARAMS ((void));
205
206static void
207allocate_rt_common_objfile PARAMS ((void));
208
209static void
210solib_add_common_symbols PARAMS ((struct rtc_symb *));
211
212#endif
213
214void _initialize_solib PARAMS ((void));
215
216/* If non-zero, this is a prefix that will be added to the front of the name
217 shared libraries with an absolute filename for loading. */
218static char *solib_absolute_prefix = NULL;
219
220/* If non-empty, this is a search path for loading non-absolute shared library
221 symbol files. This takes precedence over the environment variables PATH
222 and LD_LIBRARY_PATH. */
223static char *solib_search_path = NULL;
224
225/*
226
c5aa993b 227 LOCAL FUNCTION
c906108c 228
c5aa993b 229 solib_map_sections -- open bfd and build sections for shared lib
c906108c 230
c5aa993b 231 SYNOPSIS
c906108c 232
c5aa993b 233 static int solib_map_sections (struct so_list *so)
c906108c 234
c5aa993b 235 DESCRIPTION
c906108c 236
c5aa993b
JM
237 Given a pointer to one of the shared objects in our list
238 of mapped objects, use the recorded name to open a bfd
239 descriptor for the object, build a section table, and then
240 relocate all the section addresses by the base address at
241 which the shared object was mapped.
c906108c 242
c5aa993b 243 FIXMES
c906108c 244
c5aa993b
JM
245 In most (all?) cases the shared object file name recorded in the
246 dynamic linkage tables will be a fully qualified pathname. For
247 cases where it isn't, do we really mimic the systems search
248 mechanism correctly in the below code (particularly the tilde
249 expansion stuff?).
c906108c
SS
250 */
251
252static int
253solib_map_sections (arg)
254 PTR arg;
255{
256 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
257 char *filename;
258 char *scratch_pathname;
259 int scratch_chan;
260 struct section_table *p;
261 struct cleanup *old_chain;
262 bfd *abfd;
c5aa993b
JM
263
264 filename = tilde_expand (so->so_name);
265
c906108c
SS
266 if (solib_absolute_prefix && ROOTED_P (filename))
267 /* Prefix shared libraries with absolute filenames with
268 SOLIB_ABSOLUTE_PREFIX. */
269 {
270 char *pfxed_fn;
271 int pfx_len;
272
273 pfx_len = strlen (solib_absolute_prefix);
274
275 /* Remove trailing slashes. */
276 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
277 pfx_len--;
278
279 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
280 strcpy (pfxed_fn, solib_absolute_prefix);
281 strcat (pfxed_fn, filename);
282 free (filename);
283
284 filename = pfxed_fn;
285 }
286
287 old_chain = make_cleanup (free, filename);
288
289 scratch_chan = -1;
290
291 if (solib_search_path)
292 scratch_chan = openp (solib_search_path,
293 1, filename, O_RDONLY, 0, &scratch_pathname);
294 if (scratch_chan < 0)
c5aa993b 295 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
296 1, filename, O_RDONLY, 0, &scratch_pathname);
297 if (scratch_chan < 0)
298 {
c5aa993b
JM
299 scratch_chan = openp (get_in_environ
300 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
301 1, filename, O_RDONLY, 0, &scratch_pathname);
302 }
303 if (scratch_chan < 0)
304 {
305 perror_with_name (filename);
306 }
307 /* Leave scratch_pathname allocated. abfd->name will point to it. */
308
309 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
310 if (!abfd)
311 {
312 close (scratch_chan);
313 error ("Could not open `%s' as an executable file: %s",
314 scratch_pathname, bfd_errmsg (bfd_get_error ()));
315 }
316 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
317 so->abfd = abfd;
318 abfd->cacheable = true;
c906108c
SS
319
320 /* copy full path name into so_name, so that later symbol_file_add can find
321 it */
322 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
323 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
324 strcpy (so->so_name, scratch_pathname);
325
326 if (!bfd_check_format (abfd, bfd_object))
327 {
328 error ("\"%s\": not in executable format: %s.",
329 scratch_pathname, bfd_errmsg (bfd_get_error ()));
330 }
c5aa993b 331 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 332 {
c5aa993b 333 error ("Can't find the file sections in `%s': %s",
c906108c
SS
334 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
335 }
336
c5aa993b 337 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
338 {
339 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
340 object's file by the base address to which the object was actually
341 mapped. */
342 p->addr += (CORE_ADDR) LM_ADDR (so);
343 p->endaddr += (CORE_ADDR) LM_ADDR (so);
344 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
345 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 346 {
c5aa993b 347 so->textsection = p;
c906108c
SS
348 }
349 }
350
351 /* Free the file names, close the file now. */
352 do_cleanups (old_chain);
353
354 return (1);
355}
356
357#ifndef SVR4_SHARED_LIBS
358
359/* Allocate the runtime common object file. */
360
361static void
362allocate_rt_common_objfile ()
363{
364 struct objfile *objfile;
365 struct objfile *last_one;
366
367 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
368 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
369 objfile->md = NULL;
370 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 371 xmalloc, free);
c5aa993b 372 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 373 free);
c5aa993b 374 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 375 free);
c5aa993b 376 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 377 free);
c5aa993b 378 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
379
380 /* Add this file onto the tail of the linked list of other such files. */
381
c5aa993b 382 objfile->next = NULL;
c906108c
SS
383 if (object_files == NULL)
384 object_files = objfile;
385 else
386 {
387 for (last_one = object_files;
c5aa993b
JM
388 last_one->next;
389 last_one = last_one->next);
390 last_one->next = objfile;
c906108c
SS
391 }
392
393 rt_common_objfile = objfile;
394}
395
396/* Read all dynamically loaded common symbol definitions from the inferior
397 and put them into the minimal symbol table for the runtime common
398 objfile. */
399
400static void
401solib_add_common_symbols (rtc_symp)
c5aa993b 402 struct rtc_symb *rtc_symp;
c906108c
SS
403{
404 struct rtc_symb inferior_rtc_symb;
405 struct nlist inferior_rtc_nlist;
406 int len;
407 char *name;
408
409 /* Remove any runtime common symbols from previous runs. */
410
c5aa993b 411 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 412 {
c5aa993b
JM
413 obstack_free (&rt_common_objfile->symbol_obstack, 0);
414 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 415 xmalloc, free);
c5aa993b
JM
416 rt_common_objfile->minimal_symbol_count = 0;
417 rt_common_objfile->msymbols = NULL;
c906108c
SS
418 }
419
420 init_minimal_symbol_collection ();
421 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
422
423 while (rtc_symp)
424 {
425 read_memory ((CORE_ADDR) rtc_symp,
426 (char *) &inferior_rtc_symb,
427 sizeof (inferior_rtc_symb));
428 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
429 (char *) &inferior_rtc_nlist,
c5aa993b 430 sizeof (inferior_rtc_nlist));
c906108c
SS
431 if (inferior_rtc_nlist.n_type == N_COMM)
432 {
433 /* FIXME: The length of the symbol name is not available, but in the
434 current implementation the common symbol is allocated immediately
435 behind the name of the symbol. */
436 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
437
438 name = xmalloc (len);
439 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
440
441 /* Allocate the runtime common objfile if necessary. */
442 if (rt_common_objfile == NULL)
443 allocate_rt_common_objfile ();
444
445 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
446 mst_bss, rt_common_objfile);
447 free (name);
448 }
449 rtc_symp = inferior_rtc_symb.rtc_next;
450 }
451
452 /* Install any minimal symbols that have been collected as the current
453 minimal symbols for the runtime common objfile. */
454
455 install_minimal_symbols (rt_common_objfile);
456}
457
c5aa993b 458#endif /* SVR4_SHARED_LIBS */
c906108c
SS
459
460
461#ifdef SVR4_SHARED_LIBS
462
463static CORE_ADDR
c5aa993b 464 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
465
466/*
467
c5aa993b 468 LOCAL FUNCTION
c906108c 469
c5aa993b 470 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 471
c5aa993b 472 SYNOPSIS
c906108c 473
c5aa993b 474 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 475
c5aa993b 476 DESCRIPTION
c906108c 477
c5aa993b
JM
478 An expensive way to lookup the value of a single symbol for
479 bfd's that are only temporary anyway. This is used by the
480 shared library support to find the address of the debugger
481 interface structures in the shared library.
c906108c 482
c5aa993b
JM
483 Note that 0 is specifically allowed as an error return (no
484 such symbol).
485 */
c906108c
SS
486
487static CORE_ADDR
488bfd_lookup_symbol (abfd, symname)
489 bfd *abfd;
490 char *symname;
491{
492 unsigned int storage_needed;
493 asymbol *sym;
494 asymbol **symbol_table;
495 unsigned int number_of_symbols;
496 unsigned int i;
497 struct cleanup *back_to;
498 CORE_ADDR symaddr = 0;
c5aa993b 499
c906108c
SS
500 storage_needed = bfd_get_symtab_upper_bound (abfd);
501
502 if (storage_needed > 0)
503 {
504 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
505 back_to = make_cleanup (free, (PTR) symbol_table);
506 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
507
c906108c
SS
508 for (i = 0; i < number_of_symbols; i++)
509 {
510 sym = *symbol_table++;
c5aa993b 511 if (STREQ (sym->name, symname))
c906108c
SS
512 {
513 /* Bfd symbols are section relative. */
c5aa993b 514 symaddr = sym->value + sym->section->vma;
c906108c
SS
515 break;
516 }
517 }
518 do_cleanups (back_to);
519 }
520 return (symaddr);
521}
522
523#ifdef HANDLE_SVR4_EXEC_EMULATORS
524
525/*
c5aa993b
JM
526 Solaris BCP (the part of Solaris which allows it to run SunOS4
527 a.out files) throws in another wrinkle. Solaris does not fill
528 in the usual a.out link map structures when running BCP programs,
529 the only way to get at them is via groping around in the dynamic
530 linker.
531 The dynamic linker and it's structures are located in the shared
532 C library, which gets run as the executable's "interpreter" by
533 the kernel.
534
535 Note that we can assume nothing about the process state at the time
536 we need to find these structures. We may be stopped on the first
537 instruction of the interpreter (C shared library), the first
538 instruction of the executable itself, or somewhere else entirely
539 (if we attached to the process for example).
540 */
541
542static char *debug_base_symbols[] =
543{
544 "r_debug", /* Solaris 2.3 */
545 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
546 NULL
547};
548
549static int
550look_for_base PARAMS ((int, CORE_ADDR));
551
552/*
553
c5aa993b 554 LOCAL FUNCTION
c906108c 555
c5aa993b 556 look_for_base -- examine file for each mapped address segment
c906108c 557
c5aa993b 558 SYNOPSYS
c906108c 559
c5aa993b 560 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 561
c5aa993b 562 DESCRIPTION
c906108c 563
c5aa993b
JM
564 This function is passed to proc_iterate_over_mappings, which
565 causes it to get called once for each mapped address space, with
566 an open file descriptor for the file mapped to that space, and the
567 base address of that mapped space.
c906108c 568
c5aa993b
JM
569 Our job is to find the debug base symbol in the file that this
570 fd is open on, if it exists, and if so, initialize the dynamic
571 linker structure base address debug_base.
c906108c 572
c5aa993b
JM
573 Note that this is a computationally expensive proposition, since
574 we basically have to open a bfd on every call, so we specifically
575 avoid opening the exec file.
c906108c
SS
576 */
577
578static int
579look_for_base (fd, baseaddr)
580 int fd;
581 CORE_ADDR baseaddr;
582{
583 bfd *interp_bfd;
584 CORE_ADDR address = 0;
585 char **symbolp;
586
587 /* If the fd is -1, then there is no file that corresponds to this
588 mapped memory segment, so skip it. Also, if the fd corresponds
589 to the exec file, skip it as well. */
590
591 if (fd == -1
592 || (exec_bfd != NULL
c5aa993b 593 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
594 {
595 return (0);
596 }
597
598 /* Try to open whatever random file this fd corresponds to. Note that
599 we have no way currently to find the filename. Don't gripe about
600 any problems we might have, just fail. */
601
602 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
603 {
604 return (0);
605 }
606 if (!bfd_check_format (interp_bfd, bfd_object))
607 {
608 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 609 interp_bfd. */
c906108c
SS
610 bfd_close (interp_bfd);
611 return (0);
612 }
613
614 /* Now try to find our debug base symbol in this file, which we at
615 least know to be a valid ELF executable or shared library. */
616
617 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
618 {
619 address = bfd_lookup_symbol (interp_bfd, *symbolp);
620 if (address != 0)
621 {
622 break;
623 }
624 }
625 if (address == 0)
626 {
627 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 628 interp_bfd. */
c906108c
SS
629 bfd_close (interp_bfd);
630 return (0);
631 }
632
633 /* Eureka! We found the symbol. But now we may need to relocate it
634 by the base address. If the symbol's value is less than the base
635 address of the shared library, then it hasn't yet been relocated
636 by the dynamic linker, and we have to do it ourself. FIXME: Note
637 that we make the assumption that the first segment that corresponds
638 to the shared library has the base address to which the library
639 was relocated. */
640
641 if (address < baseaddr)
642 {
643 address += baseaddr;
644 }
645 debug_base = address;
646 /* FIXME-leak: on failure, might not free all memory associated with
647 interp_bfd. */
648 bfd_close (interp_bfd);
649 return (1);
650}
651#endif /* HANDLE_SVR4_EXEC_EMULATORS */
652
653/*
654
c5aa993b 655 LOCAL FUNCTION
c906108c 656
c5aa993b
JM
657 elf_locate_base -- locate the base address of dynamic linker structs
658 for SVR4 elf targets.
c906108c 659
c5aa993b 660 SYNOPSIS
c906108c 661
c5aa993b 662 CORE_ADDR elf_locate_base (void)
c906108c 663
c5aa993b 664 DESCRIPTION
c906108c 665
c5aa993b
JM
666 For SVR4 elf targets the address of the dynamic linker's runtime
667 structure is contained within the dynamic info section in the
668 executable file. The dynamic section is also mapped into the
669 inferior address space. Because the runtime loader fills in the
670 real address before starting the inferior, we have to read in the
671 dynamic info section from the inferior address space.
672 If there are any errors while trying to find the address, we
673 silently return 0, otherwise the found address is returned.
c906108c
SS
674
675 */
676
677static CORE_ADDR
678elf_locate_base ()
679{
680 sec_ptr dyninfo_sect;
681 int dyninfo_sect_size;
682 CORE_ADDR dyninfo_addr;
683 char *buf;
684 char *bufend;
685
686 /* Find the start address of the .dynamic section. */
687 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
688 if (dyninfo_sect == NULL)
689 return 0;
690 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
691
692 /* Read in .dynamic section, silently ignore errors. */
693 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
694 buf = alloca (dyninfo_sect_size);
695 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
696 return 0;
697
698 /* Find the DT_DEBUG entry in the the .dynamic section.
699 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
700 no DT_DEBUG entries. */
701#ifndef TARGET_ELF64
702 for (bufend = buf + dyninfo_sect_size;
703 buf < bufend;
704 buf += sizeof (Elf32_External_Dyn))
705 {
c5aa993b 706 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
707 long dyn_tag;
708 CORE_ADDR dyn_ptr;
709
710 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
711 if (dyn_tag == DT_NULL)
712 break;
713 else if (dyn_tag == DT_DEBUG)
714 {
715 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
716 return dyn_ptr;
717 }
718#ifdef DT_MIPS_RLD_MAP
719 else if (dyn_tag == DT_MIPS_RLD_MAP)
720 {
721 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
722
723 /* DT_MIPS_RLD_MAP contains a pointer to the address
724 of the dynamic link structure. */
725 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
726 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
727 return 0;
728 return extract_unsigned_integer (pbuf, sizeof (pbuf));
729 }
730#endif
731 }
732#else /* ELF64 */
733 for (bufend = buf + dyninfo_sect_size;
734 buf < bufend;
735 buf += sizeof (Elf64_External_Dyn))
736 {
c5aa993b 737 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
738 long dyn_tag;
739 CORE_ADDR dyn_ptr;
740
741 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
742 if (dyn_tag == DT_NULL)
743 break;
744 else if (dyn_tag == DT_DEBUG)
745 {
746 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
747 return dyn_ptr;
748 }
749 }
750#endif
751
752 /* DT_DEBUG entry not found. */
753 return 0;
754}
755
c5aa993b 756#endif /* SVR4_SHARED_LIBS */
c906108c
SS
757
758/*
759
c5aa993b 760 LOCAL FUNCTION
c906108c 761
c5aa993b 762 locate_base -- locate the base address of dynamic linker structs
c906108c 763
c5aa993b 764 SYNOPSIS
c906108c 765
c5aa993b 766 CORE_ADDR locate_base (void)
c906108c 767
c5aa993b 768 DESCRIPTION
c906108c 769
c5aa993b
JM
770 For both the SunOS and SVR4 shared library implementations, if the
771 inferior executable has been linked dynamically, there is a single
772 address somewhere in the inferior's data space which is the key to
773 locating all of the dynamic linker's runtime structures. This
774 address is the value of the debug base symbol. The job of this
775 function is to find and return that address, or to return 0 if there
776 is no such address (the executable is statically linked for example).
c906108c 777
c5aa993b
JM
778 For SunOS, the job is almost trivial, since the dynamic linker and
779 all of it's structures are statically linked to the executable at
780 link time. Thus the symbol for the address we are looking for has
781 already been added to the minimal symbol table for the executable's
782 objfile at the time the symbol file's symbols were read, and all we
783 have to do is look it up there. Note that we explicitly do NOT want
784 to find the copies in the shared library.
c906108c 785
c5aa993b
JM
786 The SVR4 version is a bit more complicated because the address
787 is contained somewhere in the dynamic info section. We have to go
788 to a lot more work to discover the address of the debug base symbol.
789 Because of this complexity, we cache the value we find and return that
790 value on subsequent invocations. Note there is no copy in the
791 executable symbol tables.
c906108c
SS
792
793 */
794
795static CORE_ADDR
796locate_base ()
797{
798
799#ifndef SVR4_SHARED_LIBS
800
801 struct minimal_symbol *msymbol;
802 CORE_ADDR address = 0;
803 char **symbolp;
804
805 /* For SunOS, we want to limit the search for the debug base symbol to the
806 executable being debugged, since there is a duplicate named symbol in the
807 shared library. We don't want the shared library versions. */
808
809 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
810 {
811 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
812 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
813 {
814 address = SYMBOL_VALUE_ADDRESS (msymbol);
815 return (address);
816 }
817 }
818 return (0);
819
c5aa993b 820#else /* SVR4_SHARED_LIBS */
c906108c
SS
821
822 /* Check to see if we have a currently valid address, and if so, avoid
823 doing all this work again and just return the cached address. If
824 we have no cached address, try to locate it in the dynamic info
825 section for ELF executables. */
826
827 if (debug_base == 0)
828 {
829 if (exec_bfd != NULL
830 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
831 debug_base = elf_locate_base ();
832#ifdef HANDLE_SVR4_EXEC_EMULATORS
833 /* Try it the hard way for emulated executables. */
834 else if (inferior_pid != 0 && target_has_execution)
835 proc_iterate_over_mappings (look_for_base);
836#endif
837 }
838 return (debug_base);
839
c5aa993b 840#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
841
842}
843
844/*
845
c5aa993b 846 LOCAL FUNCTION
c906108c 847
c5aa993b 848 first_link_map_member -- locate first member in dynamic linker's map
c906108c 849
c5aa993b 850 SYNOPSIS
c906108c 851
c5aa993b 852 static struct link_map *first_link_map_member (void)
c906108c 853
c5aa993b 854 DESCRIPTION
c906108c 855
c5aa993b
JM
856 Read in a copy of the first member in the inferior's dynamic
857 link map from the inferior's dynamic linker structures, and return
858 a pointer to the copy in our address space.
859 */
c906108c
SS
860
861static struct link_map *
862first_link_map_member ()
863{
864 struct link_map *lm = NULL;
865
866#ifndef SVR4_SHARED_LIBS
867
868 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
869 if (dynamic_copy.ld_version >= 2)
870 {
871 /* It is a version that we can deal with, so read in the secondary
c5aa993b 872 structure and find the address of the link map list from it. */
c906108c
SS
873 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
874 sizeof (struct link_dynamic_2));
875 lm = ld_2_copy.ld_loaded;
876 }
877
c5aa993b 878#else /* SVR4_SHARED_LIBS */
c906108c
SS
879
880 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
881 /* FIXME: Perhaps we should validate the info somehow, perhaps by
882 checking r_version for a known version number, or r_state for
883 RT_CONSISTENT. */
884 lm = debug_copy.r_map;
885
c5aa993b 886#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
887
888 return (lm);
889}
890
891/*
892
c5aa993b 893 LOCAL FUNCTION
c906108c 894
c5aa993b 895 find_solib -- step through list of shared objects
c906108c 896
c5aa993b 897 SYNOPSIS
c906108c 898
c5aa993b 899 struct so_list *find_solib (struct so_list *so_list_ptr)
c906108c 900
c5aa993b 901 DESCRIPTION
c906108c 902
c5aa993b
JM
903 This module contains the routine which finds the names of any
904 loaded "images" in the current process. The argument in must be
905 NULL on the first call, and then the returned value must be passed
906 in on subsequent calls. This provides the capability to "step" down
907 the list of loaded objects. On the last object, a NULL value is
908 returned.
c906108c 909
c5aa993b
JM
910 The arg and return value are "struct link_map" pointers, as defined
911 in <link.h>.
c906108c
SS
912 */
913
914static struct so_list *
915find_solib (so_list_ptr)
916 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
917{
918 struct so_list *so_list_next = NULL;
919 struct link_map *lm = NULL;
920 struct so_list *new;
c5aa993b 921
c906108c
SS
922 if (so_list_ptr == NULL)
923 {
924 /* We are setting up for a new scan through the loaded images. */
925 if ((so_list_next = so_list_head) == NULL)
926 {
927 /* We have not already read in the dynamic linking structures
928 from the inferior, lookup the address of the base structure. */
929 debug_base = locate_base ();
930 if (debug_base != 0)
931 {
932 /* Read the base structure in and find the address of the first
c5aa993b 933 link map list member. */
c906108c
SS
934 lm = first_link_map_member ();
935 }
936 }
937 }
938 else
939 {
940 /* We have been called before, and are in the process of walking
c5aa993b 941 the shared library list. Advance to the next shared object. */
c906108c
SS
942 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
943 {
944 /* We have hit the end of the list, so check to see if any were
945 added, but be quiet if we can't read from the target any more. */
c5aa993b
JM
946 int status = target_read_memory ((CORE_ADDR) so_list_ptr->lmaddr,
947 (char *) &(so_list_ptr->lm),
c906108c
SS
948 sizeof (struct link_map));
949 if (status == 0)
950 {
951 lm = LM_NEXT (so_list_ptr);
952 }
953 else
954 {
955 lm = NULL;
956 }
957 }
c5aa993b 958 so_list_next = so_list_ptr->next;
c906108c
SS
959 }
960 if ((so_list_next == NULL) && (lm != NULL))
961 {
962 /* Get next link map structure from inferior image and build a local
c5aa993b 963 abbreviated load_map structure */
c906108c
SS
964 new = (struct so_list *) xmalloc (sizeof (struct so_list));
965 memset ((char *) new, 0, sizeof (struct so_list));
c5aa993b 966 new->lmaddr = lm;
c906108c 967 /* Add the new node as the next node in the list, or as the root
c5aa993b 968 node if this is the first one. */
c906108c
SS
969 if (so_list_ptr != NULL)
970 {
c5aa993b 971 so_list_ptr->next = new;
c906108c
SS
972 }
973 else
974 {
975 so_list_head = new;
976
c5aa993b 977 if (!solib_cleanup_queued)
c906108c
SS
978 {
979 make_run_cleanup (do_clear_solib, NULL);
980 solib_cleanup_queued = 1;
981 }
c5aa993b
JM
982
983 }
c906108c 984 so_list_next = new;
c5aa993b 985 read_memory ((CORE_ADDR) lm, (char *) &(new->lm),
c906108c
SS
986 sizeof (struct link_map));
987 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
988 inferior executable, so we must ignore it. For some versions of
989 SVR4, it has no name. For others (Solaris 2.3 for example), it
990 does have a name, so we can no longer use a missing name to
991 decide when to ignore it. */
992 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new->lm))
c906108c
SS
993 {
994 int errcode;
995 char *buffer;
996 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
997 MAX_PATH_SIZE - 1, &errcode);
998 if (errcode != 0)
999 {
1000 warning ("find_solib: Can't read pathname for load map: %s\n",
1001 safe_strerror (errcode));
1002 return (so_list_next);
1003 }
c5aa993b
JM
1004 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1005 new->so_name[MAX_PATH_SIZE - 1] = '\0';
c906108c
SS
1006 free (buffer);
1007 catch_errors (solib_map_sections, new,
1008 "Error while mapping shared library sections:\n",
1009 RETURN_MASK_ALL);
c5aa993b 1010 }
c906108c
SS
1011 }
1012 return (so_list_next);
1013}
1014
1015/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1016
1017static int
1018symbol_add_stub (arg)
1019 PTR arg;
1020{
c5aa993b 1021 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c
SS
1022 CORE_ADDR text_addr = 0;
1023
c5aa993b
JM
1024 if (so->textsection)
1025 text_addr = so->textsection->addr;
1026 else if (so->abfd != NULL)
c906108c
SS
1027 {
1028 asection *lowest_sect;
1029
1030 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1031 text_addr so that the relocation in symbol_file_add does no harm. */
c906108c 1032
c5aa993b 1033 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1034 if (lowest_sect == NULL)
c5aa993b
JM
1035 bfd_map_over_sections (so->abfd, find_lowest_section,
1036 (PTR) & lowest_sect);
c906108c 1037 if (lowest_sect)
c5aa993b
JM
1038 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1039 + (CORE_ADDR) LM_ADDR (so);
c906108c 1040 }
c5aa993b
JM
1041
1042 ALL_OBJFILES (so->objfile)
1043 {
1044 if (strcmp (so->objfile->name, so->so_name) == 0)
1045 return 1;
1046 }
1047 so->objfile =
1048 symbol_file_add (so->so_name, so->from_tty,
c906108c
SS
1049 text_addr,
1050 0, 0, 0, 0, 1);
1051 return (1);
1052}
1053
1054/* This function will check the so name to see if matches the main list.
1055 In some system the main object is in the list, which we want to exclude */
1056
c5aa993b
JM
1057static int
1058match_main (soname)
1059 char *soname;
c906108c
SS
1060{
1061 char **mainp;
1062
1063 for (mainp = main_name_list; *mainp != NULL; mainp++)
1064 {
1065 if (strcmp (soname, *mainp) == 0)
1066 return (1);
1067 }
1068
1069 return (0);
1070}
1071
1072/*
1073
c5aa993b 1074 GLOBAL FUNCTION
c906108c 1075
c5aa993b 1076 solib_add -- add a shared library file to the symtab and section list
c906108c 1077
c5aa993b 1078 SYNOPSIS
c906108c 1079
c5aa993b
JM
1080 void solib_add (char *arg_string, int from_tty,
1081 struct target_ops *target)
c906108c 1082
c5aa993b 1083 DESCRIPTION
c906108c 1084
c5aa993b 1085 */
c906108c
SS
1086
1087void
1088solib_add (arg_string, from_tty, target)
1089 char *arg_string;
1090 int from_tty;
1091 struct target_ops *target;
c5aa993b
JM
1092{
1093 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1094
1095 /* Last shared library that we read. */
1096 struct so_list *so_last = NULL;
1097
1098 char *re_err;
1099 int count;
1100 int old;
c5aa993b 1101
c906108c
SS
1102 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
1103 {
1104 error ("Invalid regexp: %s", re_err);
1105 }
c5aa993b 1106
c906108c
SS
1107 /* Add the shared library sections to the section table of the
1108 specified target, if any. */
1109 if (target)
1110 {
1111 /* Count how many new section_table entries there are. */
1112 so = NULL;
1113 count = 0;
1114 while ((so = find_solib (so)) != NULL)
1115 {
c5aa993b 1116 if (so->so_name[0] && !match_main (so->so_name))
c906108c 1117 {
c5aa993b 1118 count += so->sections_end - so->sections;
c906108c
SS
1119 }
1120 }
c5aa993b 1121
c906108c
SS
1122 if (count)
1123 {
1124 int update_coreops;
1125
1126 /* We must update the to_sections field in the core_ops structure
1127 here, otherwise we dereference a potential dangling pointer
1128 for each call to target_read/write_memory within this routine. */
1129 update_coreops = core_ops.to_sections == target->to_sections;
c5aa993b 1130
c906108c 1131 /* Reallocate the target's section table including the new size. */
c5aa993b 1132 if (target->to_sections)
c906108c 1133 {
c5aa993b
JM
1134 old = target->to_sections_end - target->to_sections;
1135 target->to_sections = (struct section_table *)
1136 xrealloc ((char *) target->to_sections,
1137 (sizeof (struct section_table)) * (count + old));
c906108c
SS
1138 }
1139 else
1140 {
1141 old = 0;
c5aa993b 1142 target->to_sections = (struct section_table *)
c906108c
SS
1143 xmalloc ((sizeof (struct section_table)) * count);
1144 }
c5aa993b
JM
1145 target->to_sections_end = target->to_sections + (count + old);
1146
c906108c
SS
1147 /* Update the to_sections field in the core_ops structure
1148 if needed. */
1149 if (update_coreops)
1150 {
1151 core_ops.to_sections = target->to_sections;
1152 core_ops.to_sections_end = target->to_sections_end;
1153 }
1154
1155 /* Add these section table entries to the target's table. */
1156 while ((so = find_solib (so)) != NULL)
1157 {
c5aa993b 1158 if (so->so_name[0])
c906108c 1159 {
c5aa993b
JM
1160 count = so->sections_end - so->sections;
1161 memcpy ((char *) (target->to_sections + old),
1162 so->sections,
c906108c
SS
1163 (sizeof (struct section_table)) * count);
1164 old += count;
1165 }
1166 }
1167 }
1168 }
c5aa993b 1169
c906108c
SS
1170 /* Now add the symbol files. */
1171 while ((so = find_solib (so)) != NULL)
1172 {
c5aa993b
JM
1173 if (so->so_name[0] && re_exec (so->so_name) &&
1174 !match_main (so->so_name))
c906108c 1175 {
c5aa993b
JM
1176 so->from_tty = from_tty;
1177 if (so->symbols_loaded)
c906108c
SS
1178 {
1179 if (from_tty)
1180 {
c5aa993b 1181 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
c906108c
SS
1182 }
1183 }
1184 else if (catch_errors
1185 (symbol_add_stub, so,
1186 "Error while reading shared library symbols:\n",
1187 RETURN_MASK_ALL))
1188 {
1189 so_last = so;
c5aa993b 1190 so->symbols_loaded = 1;
c906108c
SS
1191 }
1192 }
1193 }
1194
1195 /* Getting new symbols may change our opinion about what is
1196 frameless. */
1197 if (so_last)
1198 reinit_frame_cache ();
1199
1200 if (so_last)
1201 special_symbol_handling (so_last);
1202}
1203
1204/*
1205
c5aa993b 1206 LOCAL FUNCTION
c906108c 1207
c5aa993b 1208 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1209
c5aa993b 1210 SYNOPSIS
c906108c 1211
c5aa993b 1212 static void info_sharedlibrary_command ()
c906108c 1213
c5aa993b 1214 DESCRIPTION
c906108c 1215
c5aa993b
JM
1216 Walk through the shared library list and print information
1217 about each attached library.
1218 */
c906108c
SS
1219
1220static void
1221info_sharedlibrary_command (ignore, from_tty)
1222 char *ignore;
1223 int from_tty;
1224{
c5aa993b 1225 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1226 int header_done = 0;
1227 int addr_width;
1228 char *addr_fmt;
1229
1230 if (exec_bfd == NULL)
1231 {
1232 printf_unfiltered ("No exec file.\n");
1233 return;
1234 }
1235
1236#ifndef TARGET_ELF64
c5aa993b 1237 addr_width = 8 + 4;
c906108c
SS
1238 addr_fmt = "08l";
1239#else
c5aa993b 1240 addr_width = 16 + 4;
c906108c
SS
1241 addr_fmt = "016l";
1242#endif
1243
1244 while ((so = find_solib (so)) != NULL)
1245 {
c5aa993b 1246 if (so->so_name[0])
c906108c
SS
1247 {
1248 if (!header_done)
1249 {
c5aa993b
JM
1250 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1251 addr_width, "To", "Syms Read",
1252 "Shared Object Library");
c906108c
SS
1253 header_done++;
1254 }
1255
1256 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1257 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1258 addr_fmt));
c906108c 1259 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1260 local_hex_string_custom ((unsigned long) so->lmend,
1261 addr_fmt));
1262 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1263 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1264 }
1265 }
1266 if (so_list_head == NULL)
1267 {
c5aa993b 1268 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1269 }
1270}
1271
1272/*
1273
c5aa993b 1274 GLOBAL FUNCTION
c906108c 1275
c5aa993b 1276 solib_address -- check to see if an address is in a shared lib
c906108c 1277
c5aa993b 1278 SYNOPSIS
c906108c 1279
c5aa993b 1280 char * solib_address (CORE_ADDR address)
c906108c 1281
c5aa993b 1282 DESCRIPTION
c906108c 1283
c5aa993b
JM
1284 Provides a hook for other gdb routines to discover whether or
1285 not a particular address is within the mapped address space of
1286 a shared library. Any address between the base mapping address
1287 and the first address beyond the end of the last mapping, is
1288 considered to be within the shared library address space, for
1289 our purposes.
c906108c 1290
c5aa993b
JM
1291 For example, this routine is called at one point to disable
1292 breakpoints which are in shared libraries that are not currently
1293 mapped in.
c906108c
SS
1294 */
1295
1296char *
1297solib_address (address)
1298 CORE_ADDR address;
1299{
c5aa993b
JM
1300 register struct so_list *so = 0; /* link map state variable */
1301
c906108c
SS
1302 while ((so = find_solib (so)) != NULL)
1303 {
c5aa993b 1304 if (so->so_name[0])
c906108c
SS
1305 {
1306 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
c5aa993b 1307 (address < (CORE_ADDR) so->lmend))
c906108c
SS
1308 return (so->so_name);
1309 }
1310 }
1311 return (0);
1312}
1313
1314/* Called by free_all_symtabs */
1315
c5aa993b 1316void
085dd6e6 1317clear_solib ()
c906108c
SS
1318{
1319 struct so_list *next;
1320 char *bfd_filename;
7a292a7a 1321
085dd6e6
JM
1322 /* This function is expected to handle ELF shared libraries. It is
1323 also used on Solaris, which can run either ELF or a.out binaries
1324 (for compatibility with SunOS 4), both of which can use shared
1325 libraries. So we don't know whether we have an ELF executable or
1326 an a.out executable until the user chooses an executable file.
1327
1328 ELF shared libraries don't get mapped into the address space
1329 until after the program starts, so we'd better not try to insert
1330 breakpoints in them immediately. We have to wait until the
1331 dynamic linker has loaded them; we'll hit a bp_shlib_event
1332 breakpoint (look for calls to create_solib_event_breakpoint) when
1333 it's ready.
1334
1335 SunOS shared libraries seem to be different --- they're present
1336 as soon as the process begins execution, so there's no need to
1337 put off inserting breakpoints. There's also nowhere to put a
1338 bp_shlib_event breakpoint, so if we put it off, we'll never get
1339 around to it.
1340
1341 So: disable breakpoints only if we're using ELF shared libs. */
1342 if (exec_bfd != NULL
1343 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1344 disable_breakpoints_in_shlibs (1);
1345
c906108c
SS
1346 while (so_list_head)
1347 {
c5aa993b 1348 if (so_list_head->sections)
c906108c 1349 {
c5aa993b 1350 free ((PTR) so_list_head->sections);
c906108c 1351 }
c5aa993b 1352 if (so_list_head->abfd)
c906108c 1353 {
c5aa993b
JM
1354 bfd_filename = bfd_get_filename (so_list_head->abfd);
1355 if (!bfd_close (so_list_head->abfd))
c906108c
SS
1356 warning ("cannot close \"%s\": %s",
1357 bfd_filename, bfd_errmsg (bfd_get_error ()));
1358 }
1359 else
1360 /* This happens for the executable on SVR4. */
1361 bfd_filename = NULL;
1362
c5aa993b 1363 next = so_list_head->next;
c906108c 1364 if (bfd_filename)
c5aa993b
JM
1365 free ((PTR) bfd_filename);
1366 free ((PTR) so_list_head);
c906108c
SS
1367 so_list_head = next;
1368 }
1369 debug_base = 0;
1370}
1371
1372static void
1373do_clear_solib (dummy)
1374 PTR dummy;
1375{
1376 solib_cleanup_queued = 0;
1377 clear_solib ();
1378}
1379
1380#ifdef SVR4_SHARED_LIBS
1381
1382/* Return 1 if PC lies in the dynamic symbol resolution code of the
1383 SVR4 run time loader. */
1384
1385static CORE_ADDR interp_text_sect_low;
1386static CORE_ADDR interp_text_sect_high;
1387static CORE_ADDR interp_plt_sect_low;
1388static CORE_ADDR interp_plt_sect_high;
1389
1390int
1391in_svr4_dynsym_resolve_code (pc)
1392 CORE_ADDR pc;
1393{
1394 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1395 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1396 || in_plt_section (pc, NULL));
1397}
1398#endif
1399
1400/*
1401
c5aa993b 1402 LOCAL FUNCTION
c906108c 1403
c5aa993b 1404 disable_break -- remove the "mapping changed" breakpoint
c906108c 1405
c5aa993b 1406 SYNOPSIS
c906108c 1407
c5aa993b 1408 static int disable_break ()
c906108c 1409
c5aa993b 1410 DESCRIPTION
c906108c 1411
c5aa993b
JM
1412 Removes the breakpoint that gets hit when the dynamic linker
1413 completes a mapping change.
c906108c 1414
c5aa993b 1415 */
c906108c
SS
1416
1417#ifndef SVR4_SHARED_LIBS
1418
1419static int
1420disable_break ()
1421{
1422 int status = 1;
1423
1424#ifndef SVR4_SHARED_LIBS
1425
1426 int in_debugger = 0;
c5aa993b 1427
c906108c
SS
1428 /* Read the debugger structure from the inferior to retrieve the
1429 address of the breakpoint and the original contents of the
1430 breakpoint address. Remove the breakpoint by writing the original
1431 contents back. */
1432
1433 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1434
1435 /* Set `in_debugger' to zero now. */
1436
1437 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1438
1439 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1440 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1441 sizeof (debug_copy.ldd_bp_inst));
1442
c5aa993b 1443#else /* SVR4_SHARED_LIBS */
c906108c
SS
1444
1445 /* Note that breakpoint address and original contents are in our address
1446 space, so we just need to write the original contents back. */
1447
1448 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1449 {
1450 status = 0;
1451 }
1452
c5aa993b 1453#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1454
1455 /* For the SVR4 version, we always know the breakpoint address. For the
1456 SunOS version we don't know it until the above code is executed.
1457 Grumble if we are stopped anywhere besides the breakpoint address. */
1458
1459 if (stop_pc != breakpoint_addr)
1460 {
1461 warning ("stopped at unknown breakpoint while handling shared libraries");
1462 }
1463
1464 return (status);
1465}
1466
c5aa993b 1467#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1468
1469/*
1470
c5aa993b
JM
1471 LOCAL FUNCTION
1472
1473 enable_break -- arrange for dynamic linker to hit breakpoint
1474
1475 SYNOPSIS
1476
1477 int enable_break (void)
1478
1479 DESCRIPTION
1480
1481 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1482 debugger interface, support for arranging for the inferior to hit
1483 a breakpoint after mapping in the shared libraries. This function
1484 enables that breakpoint.
1485
1486 For SunOS, there is a special flag location (in_debugger) which we
1487 set to 1. When the dynamic linker sees this flag set, it will set
1488 a breakpoint at a location known only to itself, after saving the
1489 original contents of that place and the breakpoint address itself,
1490 in it's own internal structures. When we resume the inferior, it
1491 will eventually take a SIGTRAP when it runs into the breakpoint.
1492 We handle this (in a different place) by restoring the contents of
1493 the breakpointed location (which is only known after it stops),
1494 chasing around to locate the shared libraries that have been
1495 loaded, then resuming.
1496
1497 For SVR4, the debugger interface structure contains a member (r_brk)
1498 which is statically initialized at the time the shared library is
1499 built, to the offset of a function (_r_debug_state) which is guaran-
1500 teed to be called once before mapping in a library, and again when
1501 the mapping is complete. At the time we are examining this member,
1502 it contains only the unrelocated offset of the function, so we have
1503 to do our own relocation. Later, when the dynamic linker actually
1504 runs, it relocates r_brk to be the actual address of _r_debug_state().
1505
1506 The debugger interface structure also contains an enumeration which
1507 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1508 depending upon whether or not the library is being mapped or unmapped,
1509 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1510 */
c906108c
SS
1511
1512static int
1513enable_break ()
1514{
1515 int success = 0;
1516
1517#ifndef SVR4_SHARED_LIBS
1518
1519 int j;
1520 int in_debugger;
1521
1522 /* Get link_dynamic structure */
1523
1524 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1525 sizeof (dynamic_copy));
1526 if (j)
1527 {
1528 /* unreadable */
1529 return (0);
1530 }
1531
1532 /* Calc address of debugger interface structure */
1533
1534 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1535
1536 /* Calc address of `in_debugger' member of debugger interface structure */
1537
1538 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1539 (char *) &debug_copy);
1540
1541 /* Write a value of 1 to this member. */
1542
1543 in_debugger = 1;
1544 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1545 success = 1;
1546
c5aa993b 1547#else /* SVR4_SHARED_LIBS */
c906108c
SS
1548
1549#ifdef BKPT_AT_SYMBOL
1550
1551 struct minimal_symbol *msymbol;
1552 char **bkpt_namep;
1553 asection *interp_sect;
1554
1555 /* First, remove all the solib event breakpoints. Their addresses
1556 may have changed since the last time we ran the program. */
1557 remove_solib_event_breakpoints ();
1558
1559#ifdef SVR4_SHARED_LIBS
1560 interp_text_sect_low = interp_text_sect_high = 0;
1561 interp_plt_sect_low = interp_plt_sect_high = 0;
1562
1563 /* Find the .interp section; if not found, warn the user and drop
1564 into the old breakpoint at symbol code. */
1565 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1566 if (interp_sect)
1567 {
1568 unsigned int interp_sect_size;
1569 char *buf;
1570 CORE_ADDR load_addr;
1571 bfd *tmp_bfd;
1572 CORE_ADDR sym_addr = 0;
1573
1574 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1575 the contents specify the dynamic linker this program uses. */
c906108c
SS
1576 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1577 buf = alloca (interp_sect_size);
1578 bfd_get_section_contents (exec_bfd, interp_sect,
1579 buf, 0, interp_sect_size);
1580
1581 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1582 loaded so that we can load its symbols and place a breakpoint
1583 in the dynamic linker itself.
c906108c 1584
c5aa993b
JM
1585 This address is stored on the stack. However, I've been unable
1586 to find any magic formula to find it for Solaris (appears to
1587 be trivial on GNU/Linux). Therefore, we have to try an alternate
1588 mechanism to find the dynamic linker's base address. */
c906108c
SS
1589 tmp_bfd = bfd_openr (buf, gnutarget);
1590 if (tmp_bfd == NULL)
1591 goto bkpt_at_symbol;
1592
1593 /* Make sure the dynamic linker's really a useful object. */
1594 if (!bfd_check_format (tmp_bfd, bfd_object))
1595 {
1596 warning ("Unable to grok dynamic linker %s as an object file", buf);
1597 bfd_close (tmp_bfd);
1598 goto bkpt_at_symbol;
1599 }
1600
1601 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1602 current pc (which point at the entry point for the dynamic
1603 linker) and subtracting the offset of the entry point. */
c906108c
SS
1604 load_addr = read_pc () - tmp_bfd->start_address;
1605
1606 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1607 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1608 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1609 if (interp_sect)
1610 {
1611 interp_text_sect_low =
1612 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1613 interp_text_sect_high =
1614 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1615 }
1616 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1617 if (interp_sect)
1618 {
1619 interp_plt_sect_low =
1620 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1621 interp_plt_sect_high =
1622 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1623 }
1624
1625 /* Now try to set a breakpoint in the dynamic linker. */
1626 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1627 {
1628 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1629 if (sym_addr != 0)
1630 break;
1631 }
1632
1633 /* We're done with the temporary bfd. */
1634 bfd_close (tmp_bfd);
1635
1636 if (sym_addr != 0)
1637 {
1638 create_solib_event_breakpoint (load_addr + sym_addr);
1639 return 1;
1640 }
1641
1642 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1643 linker. Warn and drop into the old code. */
1644 bkpt_at_symbol:
c906108c
SS
1645 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1646 }
1647#endif
1648
1649 /* Scan through the list of symbols, trying to look up the symbol and
1650 set a breakpoint there. Terminate loop when we/if we succeed. */
1651
1652 breakpoint_addr = 0;
1653 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1654 {
1655 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1656 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1657 {
1658 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1659 return 1;
1660 }
1661 }
1662
1663 /* Nothing good happened. */
1664 success = 0;
1665
c5aa993b 1666#endif /* BKPT_AT_SYMBOL */
c906108c 1667
c5aa993b 1668#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1669
1670 return (success);
1671}
c5aa993b 1672
c906108c 1673/*
c5aa993b
JM
1674
1675 GLOBAL FUNCTION
1676
1677 solib_create_inferior_hook -- shared library startup support
1678
1679 SYNOPSIS
1680
1681 void solib_create_inferior_hook()
1682
1683 DESCRIPTION
1684
1685 When gdb starts up the inferior, it nurses it along (through the
1686 shell) until it is ready to execute it's first instruction. At this
1687 point, this function gets called via expansion of the macro
1688 SOLIB_CREATE_INFERIOR_HOOK.
1689
1690 For SunOS executables, this first instruction is typically the
1691 one at "_start", or a similar text label, regardless of whether
1692 the executable is statically or dynamically linked. The runtime
1693 startup code takes care of dynamically linking in any shared
1694 libraries, once gdb allows the inferior to continue.
1695
1696 For SVR4 executables, this first instruction is either the first
1697 instruction in the dynamic linker (for dynamically linked
1698 executables) or the instruction at "start" for statically linked
1699 executables. For dynamically linked executables, the system
1700 first exec's /lib/libc.so.N, which contains the dynamic linker,
1701 and starts it running. The dynamic linker maps in any needed
1702 shared libraries, maps in the actual user executable, and then
1703 jumps to "start" in the user executable.
1704
1705 For both SunOS shared libraries, and SVR4 shared libraries, we
1706 can arrange to cooperate with the dynamic linker to discover the
1707 names of shared libraries that are dynamically linked, and the
1708 base addresses to which they are linked.
1709
1710 This function is responsible for discovering those names and
1711 addresses, and saving sufficient information about them to allow
1712 their symbols to be read at a later time.
1713
1714 FIXME
1715
1716 Between enable_break() and disable_break(), this code does not
1717 properly handle hitting breakpoints which the user might have
1718 set in the startup code or in the dynamic linker itself. Proper
1719 handling will probably have to wait until the implementation is
1720 changed to use the "breakpoint handler function" method.
1721
1722 Also, what if child has exit()ed? Must exit loop somehow.
1723 */
1724
1725void
1726solib_create_inferior_hook ()
c906108c
SS
1727{
1728 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1729 yet. In fact, in the case of a SunOS4 executable being run on
1730 Solaris, we can't get it yet. find_solib will get it when it needs
1731 it. */
1732#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1733 if ((debug_base = locate_base ()) == 0)
1734 {
1735 /* Can't find the symbol or the executable is statically linked. */
1736 return;
1737 }
1738#endif
1739
1740 if (!enable_break ())
1741 {
1742 warning ("shared library handler failed to enable breakpoint");
1743 return;
1744 }
1745
1746#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1747 /* SCO and SunOS need the loop below, other systems should be using the
1748 special shared library breakpoints and the shared library breakpoint
1749 service routine.
1750
1751 Now run the target. It will eventually hit the breakpoint, at
1752 which point all of the libraries will have been mapped in and we
1753 can go groveling around in the dynamic linker structures to find
1754 out what we need to know about them. */
1755
1756 clear_proceed_status ();
1757 stop_soon_quietly = 1;
1758 stop_signal = TARGET_SIGNAL_0;
1759 do
1760 {
1761 target_resume (-1, 0, stop_signal);
1762 wait_for_inferior ();
1763 }
1764 while (stop_signal != TARGET_SIGNAL_TRAP);
1765 stop_soon_quietly = 0;
1766
1767#if !defined(_SCO_DS)
1768 /* We are now either at the "mapping complete" breakpoint (or somewhere
1769 else, a condition we aren't prepared to deal with anyway), so adjust
1770 the PC as necessary after a breakpoint, disable the breakpoint, and
1771 add any shared libraries that were mapped in. */
1772
1773 if (DECR_PC_AFTER_BREAK)
1774 {
1775 stop_pc -= DECR_PC_AFTER_BREAK;
1776 write_register (PC_REGNUM, stop_pc);
1777 }
1778
1779 if (!disable_break ())
1780 {
1781 warning ("shared library handler failed to disable breakpoint");
1782 }
1783
1784 if (auto_solib_add)
1785 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1786#endif /* ! _SCO_DS */
1787#endif
1788}
1789
1790/*
1791
c5aa993b 1792 LOCAL FUNCTION
c906108c 1793
c5aa993b 1794 special_symbol_handling -- additional shared library symbol handling
c906108c 1795
c5aa993b 1796 SYNOPSIS
c906108c 1797
c5aa993b 1798 void special_symbol_handling (struct so_list *so)
c906108c 1799
c5aa993b 1800 DESCRIPTION
c906108c 1801
c5aa993b
JM
1802 Once the symbols from a shared object have been loaded in the usual
1803 way, we are called to do any system specific symbol handling that
1804 is needed.
c906108c 1805
c5aa993b
JM
1806 For SunOS4, this consists of grunging around in the dynamic
1807 linkers structures to find symbol definitions for "common" symbols
1808 and adding them to the minimal symbol table for the runtime common
1809 objfile.
c906108c 1810
c5aa993b 1811 */
c906108c
SS
1812
1813static void
1814special_symbol_handling (so)
c5aa993b 1815 struct so_list *so;
c906108c
SS
1816{
1817#ifndef SVR4_SHARED_LIBS
1818 int j;
1819
1820 if (debug_addr == 0)
1821 {
1822 /* Get link_dynamic structure */
1823
1824 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1825 sizeof (dynamic_copy));
1826 if (j)
1827 {
1828 /* unreadable */
1829 return;
1830 }
1831
1832 /* Calc address of debugger interface structure */
1833 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 1834 (byteorder, size, alignment, etc). */
c906108c
SS
1835
1836 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1837 }
1838
1839 /* Read the debugger structure from the inferior, just to make sure
1840 we have a current copy. */
1841
1842 j = target_read_memory (debug_addr, (char *) &debug_copy,
1843 sizeof (debug_copy));
1844 if (j)
c5aa993b 1845 return; /* unreadable */
c906108c
SS
1846
1847 /* Get common symbol definitions for the loaded object. */
1848
1849 if (debug_copy.ldd_cp)
1850 {
1851 solib_add_common_symbols (debug_copy.ldd_cp);
1852 }
1853
c5aa993b 1854#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1855}
1856
1857
1858/*
1859
c5aa993b 1860 LOCAL FUNCTION
c906108c 1861
c5aa993b 1862 sharedlibrary_command -- handle command to explicitly add library
c906108c 1863
c5aa993b 1864 SYNOPSIS
c906108c 1865
c5aa993b 1866 static void sharedlibrary_command (char *args, int from_tty)
c906108c 1867
c5aa993b 1868 DESCRIPTION
c906108c 1869
c5aa993b 1870 */
c906108c
SS
1871
1872static void
1873sharedlibrary_command (args, from_tty)
c5aa993b
JM
1874 char *args;
1875 int from_tty;
c906108c
SS
1876{
1877 dont_repeat ();
1878 solib_add (args, from_tty, (struct target_ops *) 0);
1879}
1880
1881#endif /* HAVE_LINK_H */
1882
1883void
c5aa993b 1884_initialize_solib ()
c906108c
SS
1885{
1886#ifdef HAVE_LINK_H
1887
1888 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1889 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 1890 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
1891 "Status of loaded shared object libraries.");
1892
1893 add_show_from_set
1894 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1895 (char *) &auto_solib_add,
1896 "Set autoloading of shared library symbols.\n\
1897If nonzero, symbols from all shared object libraries will be loaded\n\
1898automatically when the inferior begins execution or when the dynamic linker\n\
1899informs gdb that a new library has been loaded. Otherwise, symbols\n\
1900must be loaded manually, using `sharedlibrary'.",
1901 &setlist),
1902 &showlist);
1903
1904 add_show_from_set
1905 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1906 (char *) &solib_absolute_prefix,
1907 "Set prefix for loading absolute shared library symbol files.\n\
1908For other (relative) files, you can add values using `set solib-search-path'.",
1909 &setlist),
1910 &showlist);
1911 add_show_from_set
1912 (add_set_cmd ("solib-search-path", class_support, var_string,
1913 (char *) &solib_search_path,
1914 "Set the search path for loading non-absolute shared library symbol files.\n\
1915This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1916 &setlist),
1917 &showlist);
1918
1919#endif /* HAVE_LINK_H */
1920}