]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib.c
* emulparams/elf32mipb.sh (TEMPLATE_NAME): Define as elf32.
[thirdparty/binutils-gdb.git] / gdb / solib.c
CommitLineData
f8b76e70 1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2fe3b329 2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
f8b76e70 3
bd5635a1
RP
4This file is part of GDB.
5
bdbd5f50 6This program is free software; you can redistribute it and/or modify
bd5635a1 7it under the terms of the GNU General Public License as published by
bdbd5f50
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
bd5635a1 10
bdbd5f50 11This program is distributed in the hope that it will be useful,
bd5635a1
RP
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
bdbd5f50
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
bd5635a1 19
f8b76e70 20
b0246b3b
FF
21#include "defs.h"
22
bd5635a1 23#include <sys/types.h>
f8b76e70 24#include <signal.h>
bd5635a1
RP
25#include <string.h>
26#include <link.h>
d0237a54
JK
27#include <sys/param.h>
28#include <fcntl.h>
be772100
JG
29
30#ifndef SVR4_SHARED_LIBS
31 /* SunOS shared libs need the nlist structure. */
32#include <a.out.h>
2fe3b329
PS
33#else
34#include "libelf.h"
35#ifndef DT_MIPS_RLD_MAP
36#include "elf/mips.h"
37#endif
be772100 38#endif
f8b76e70 39
bd5635a1 40#include "symtab.h"
b0246b3b
FF
41#include "bfd.h"
42#include "symfile.h"
be772100 43#include "objfiles.h"
bd5635a1
RP
44#include "gdbcore.h"
45#include "command.h"
b3fdaf3d 46#include "target.h"
2403f49b 47#include "frame.h"
bdbd5f50
JG
48#include "regex.h"
49#include "inferior.h"
a71c0593 50#include "language.h"
bdbd5f50 51
f8b76e70
FF
52#define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
53
a608f919
FF
54/* On SVR4 systems, for the initial implementation, use some runtime startup
55 symbol as the "startup mapping complete" breakpoint address. The models
56 for SunOS and SVR4 dynamic linking debugger support are different in that
57 SunOS hits one breakpoint when all mapping is complete while using the SVR4
f8b76e70
FF
58 debugger support takes two breakpoint hits for each file mapped, and
59 there is no way to know when the "last" one is hit. Both these
60 mechanisms should be tied to a "breakpoint service routine" that
61 gets automatically executed whenever one of the breakpoints indicating
62 a change in mapping is hit. This is a future enhancement. (FIXME) */
63
a608f919
FF
64#define BKPT_AT_SYMBOL 1
65
a71c0593 66#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
a608f919
FF
67static char *bkpt_names[] = {
68#ifdef SOLIB_BKPT_NAME
69 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
70#endif
71 "_start",
72 "main",
73 NULL
74};
a71c0593 75#endif
f8b76e70 76
4ad0021e
JK
77/* Symbols which are used to locate the base of the link map structures. */
78
2fe3b329 79#ifndef SVR4_SHARED_LIBS
4ad0021e 80static char *debug_base_symbols[] = {
2fe3b329 81 "_DYNAMIC",
4ad0021e
JK
82 NULL
83};
2fe3b329 84#endif
4ad0021e 85
f8b76e70
FF
86/* local data declarations */
87
d261ece7 88#ifndef SVR4_SHARED_LIBS
f8b76e70 89
f8b76e70
FF
90#define LM_ADDR(so) ((so) -> lm.lm_addr)
91#define LM_NEXT(so) ((so) -> lm.lm_next)
92#define LM_NAME(so) ((so) -> lm.lm_name)
4ad0021e
JK
93/* Test for first link map entry; first entry is a shared library. */
94#define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
f8b76e70
FF
95static struct link_dynamic dynamic_copy;
96static struct link_dynamic_2 ld_2_copy;
97static struct ld_debug debug_copy;
98static CORE_ADDR debug_addr;
99static CORE_ADDR flag_addr;
100
d261ece7 101#else /* SVR4_SHARED_LIBS */
f8b76e70 102
f8b76e70
FF
103#define LM_ADDR(so) ((so) -> lm.l_addr)
104#define LM_NEXT(so) ((so) -> lm.l_next)
105#define LM_NAME(so) ((so) -> lm.l_name)
4ad0021e
JK
106/* Test for first link map entry; first entry is the exec-file. */
107#define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
f8b76e70 108static struct r_debug debug_copy;
f8b76e70 109char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
f8b76e70 110
d261ece7 111#endif /* !SVR4_SHARED_LIBS */
bd5635a1 112
bd5635a1 113struct so_list {
f8b76e70
FF
114 struct so_list *next; /* next structure in linked list */
115 struct link_map lm; /* copy of link map from inferior */
116 struct link_map *lmaddr; /* addr in inferior lm was read from */
117 CORE_ADDR lmend; /* upper addr bound of mapped object */
118 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
119 char symbols_loaded; /* flag: symbols read in yet? */
120 char from_tty; /* flag: print msgs? */
b0246b3b 121 struct objfile *objfile; /* objfile for loaded lib */
f8b76e70
FF
122 struct section_table *sections;
123 struct section_table *sections_end;
51b57ded 124 struct section_table *textsection;
a71c0593 125 bfd *abfd;
bd5635a1
RP
126};
127
f8b76e70
FF
128static struct so_list *so_list_head; /* List of known shared objects */
129static CORE_ADDR debug_base; /* Base of dynamic linker structures */
130static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
131
51b57ded
FF
132extern int
133fdmatch PARAMS ((int, int)); /* In libiberty */
134
b0246b3b
FF
135/* Local function prototypes */
136
137static void
138special_symbol_handling PARAMS ((struct so_list *));
139
140static void
141sharedlibrary_command PARAMS ((char *, int));
142
143static int
144enable_break PARAMS ((void));
145
146static int
147disable_break PARAMS ((void));
148
149static void
51b57ded 150info_sharedlibrary_command PARAMS ((char *, int));
b0246b3b
FF
151
152static int
153symbol_add_stub PARAMS ((char *));
154
155static struct so_list *
156find_solib PARAMS ((struct so_list *));
157
158static struct link_map *
159first_link_map_member PARAMS ((void));
160
161static CORE_ADDR
162locate_base PARAMS ((void));
163
be772100
JG
164static void
165solib_map_sections PARAMS ((struct so_list *));
166
167#ifdef SVR4_SHARED_LIBS
168
b0246b3b 169static CORE_ADDR
2fe3b329 170elf_locate_base PARAMS ((void));
b0246b3b 171
be772100 172#else
b0246b3b
FF
173
174static void
175solib_add_common_symbols PARAMS ((struct rtc_symb *, struct objfile *));
176
177#endif
bd5635a1 178
d0237a54 179/*
f8b76e70
FF
180
181LOCAL FUNCTION
182
183 solib_map_sections -- open bfd and build sections for shared lib
184
185SYNOPSIS
186
187 static void solib_map_sections (struct so_list *so)
188
189DESCRIPTION
190
191 Given a pointer to one of the shared objects in our list
192 of mapped objects, use the recorded name to open a bfd
193 descriptor for the object, build a section table, and then
194 relocate all the section addresses by the base address at
195 which the shared object was mapped.
196
197FIXMES
198
199 In most (all?) cases the shared object file name recorded in the
200 dynamic linkage tables will be a fully qualified pathname. For
201 cases where it isn't, do we really mimic the systems search
202 mechanism correctly in the below code (particularly the tilde
203 expansion stuff?).
204 */
205
d0237a54 206static void
f8b76e70
FF
207solib_map_sections (so)
208 struct so_list *so;
d0237a54
JK
209{
210 char *filename;
211 char *scratch_pathname;
212 int scratch_chan;
213 struct section_table *p;
de9bef49
JG
214 struct cleanup *old_chain;
215 bfd *abfd;
d0237a54 216
f8b76e70 217 filename = tilde_expand (so -> so_name);
de9bef49 218 old_chain = make_cleanup (free, filename);
d0237a54
JK
219
220 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
f8b76e70 221 &scratch_pathname);
d0237a54 222 if (scratch_chan < 0)
f8b76e70
FF
223 {
224 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
225 O_RDONLY, 0, &scratch_pathname);
226 }
d0237a54 227 if (scratch_chan < 0)
f8b76e70
FF
228 {
229 perror_with_name (filename);
a608f919 230 }
a71c0593 231 /* Leave scratch_pathname allocated. abfd->name will point to it. */
f8b76e70 232
a71c0593 233 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
de9bef49 234 if (!abfd)
f8b76e70 235 {
de9bef49 236 close (scratch_chan);
f8b76e70 237 error ("Could not open `%s' as an executable file: %s",
4ad0021e 238 scratch_pathname, bfd_errmsg (bfd_get_error ()));
f8b76e70 239 }
a608f919 240 /* Leave bfd open, core_xfer_memory and "info files" need it. */
a71c0593 241 so -> abfd = abfd;
a608f919 242 abfd -> cacheable = true;
de9bef49
JG
243
244 if (!bfd_check_format (abfd, bfd_object))
f8b76e70
FF
245 {
246 error ("\"%s\": not in executable format: %s.",
4ad0021e 247 scratch_pathname, bfd_errmsg (bfd_get_error ()));
f8b76e70 248 }
de9bef49 249 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
f8b76e70
FF
250 {
251 error ("Can't find the file sections in `%s': %s",
2fe3b329 252 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
f8b76e70
FF
253 }
254
255 for (p = so -> sections; p < so -> sections_end; p++)
256 {
257 /* Relocate the section binding addresses as recorded in the shared
258 object's file by the base address to which the object was actually
259 mapped. */
260 p -> addr += (CORE_ADDR) LM_ADDR (so);
261 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
262 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
2fe3b329 263 if (STREQ (p -> the_bfd_section -> name, ".text"))
51b57ded
FF
264 {
265 so -> textsection = p;
266 }
f8b76e70 267 }
de9bef49
JG
268
269 /* Free the file names, close the file now. */
270 do_cleanups (old_chain);
f8b76e70
FF
271}
272
d261ece7 273/* Read all dynamically loaded common symbol definitions from the inferior
b0246b3b 274 and add them to the minimal symbol table for the shared library objfile. */
d261ece7 275
7f435241
FF
276#ifndef SVR4_SHARED_LIBS
277
a71c0593
FF
278/* In GDB 4.9 this routine was a real performance hog. According to
279 some gprof data which mtranle@paris.IntelliCorp.COM (Minh Tran-Le)
280 sent, almost all the time spend in solib_add (up to 20 minutes with
281 35 shared libraries) was spent here, with 5/6 in
282 lookup_minimal_symbol and 1/6 in read_memory.
2a4e8cc3 283
a71c0593
FF
284 To fix this, we moved the call to special_symbol_handling out of the
285 loop in solib_add, so this only gets called once, rather than once
286 for every shared library, and also removed the call to lookup_minimal_symbol
287 in this routine. */
2a4e8cc3 288
d261ece7 289static void
b0246b3b 290solib_add_common_symbols (rtc_symp, objfile)
d261ece7 291 struct rtc_symb *rtc_symp;
b0246b3b 292 struct objfile *objfile;
d261ece7
SG
293{
294 struct rtc_symb inferior_rtc_symb;
295 struct nlist inferior_rtc_nlist;
b0246b3b
FF
296 int len;
297 char *name;
298 char *origname;
d261ece7 299
b0246b3b
FF
300 init_minimal_symbol_collection ();
301 make_cleanup (discard_minimal_symbols, 0);
d261ece7
SG
302
303 while (rtc_symp)
304 {
b0246b3b
FF
305 read_memory ((CORE_ADDR) rtc_symp,
306 (char *) &inferior_rtc_symb,
307 sizeof (inferior_rtc_symb));
308 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
309 (char *) &inferior_rtc_nlist,
310 sizeof(inferior_rtc_nlist));
311 if (inferior_rtc_nlist.n_type == N_COMM)
312 {
313 /* FIXME: The length of the symbol name is not available, but in the
314 current implementation the common symbol is allocated immediately
315 behind the name of the symbol. */
316 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
317
318 origname = name = xmalloc (len);
319 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
320
321 /* Don't enter the symbol twice if the target is re-run. */
d261ece7 322
de9bef49 323 if (name[0] == bfd_get_symbol_leading_char (objfile->obfd))
b0246b3b
FF
324 {
325 name++;
326 }
de9bef49 327
a71c0593
FF
328#if 0
329 /* I think this is unnecessary, GDB can probably deal with
330 duplicate minimal symbols, more or less. And the duplication
331 which used to happen because this was called for each shared
332 library is gone now that we are just called once. */
b0246b3b
FF
333 /* FIXME: Do we really want to exclude symbols which happen
334 to match symbols for other locations in the inferior's
335 address space, even when they are in different linkage units? */
336 if (lookup_minimal_symbol (name, (struct objfile *) NULL) == NULL)
a71c0593 337#endif
b0246b3b
FF
338 {
339 name = obsavestring (name, strlen (name),
340 &objfile -> symbol_obstack);
341 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
8d60affd 342 mst_bss, objfile);
b0246b3b
FF
343 }
344 free (origname);
345 }
346 rtc_symp = inferior_rtc_symb.rtc_next;
d261ece7
SG
347 }
348
b0246b3b
FF
349 /* Install any minimal symbols that have been collected as the current
350 minimal symbols for this objfile. */
351
352 install_minimal_symbols (objfile);
d261ece7
SG
353}
354
7f435241
FF
355#endif /* SVR4_SHARED_LIBS */
356
2fe3b329 357
be772100
JG
358#ifdef SVR4_SHARED_LIBS
359
f8b76e70
FF
360/*
361
362LOCAL FUNCTION
363
2fe3b329
PS
364 elf_locate_base -- locate the base address of dynamic linker structs
365 for SVR4 elf targets.
f8b76e70
FF
366
367SYNOPSIS
368
2fe3b329 369 CORE_ADDR elf_locate_base (void)
f8b76e70
FF
370
371DESCRIPTION
372
2fe3b329
PS
373 For SVR4 elf targets the address of the dynamic linker's runtime
374 structure is contained within the dynamic info section in the
375 executable file. The dynamic section is also mapped into the
376 inferior address space. Because the runtime loader fills in the
377 real address before starting the inferior, we have to read in the
378 dynamic info section from the inferior address space.
379 If there are any errors while trying to find the address, we
380 silently return 0, otherwise the found address is returned.
f8b76e70 381
2fe3b329 382 */
f8b76e70
FF
383
384static CORE_ADDR
2fe3b329 385elf_locate_base ()
f8b76e70 386{
2fe3b329
PS
387 struct elf_internal_shdr *dyninfo_sect;
388 int dyninfo_sect_size;
389 CORE_ADDR dyninfo_addr;
390 char *buf;
391 char *bufend;
392
393 /* Find the start address of the .dynamic section. */
394 if (exec_bfd == NULL || bfd_get_flavour (exec_bfd) != bfd_target_elf_flavour)
395 return 0;
396 dyninfo_sect = bfd_elf_find_section (exec_bfd, ".dynamic");
397 if (dyninfo_sect == NULL)
398 return 0;
399 dyninfo_addr = dyninfo_sect->sh_addr;
400
401 /* Read in .dynamic section, silently ignore errors. */
402 dyninfo_sect_size = dyninfo_sect->sh_size;
403 buf = alloca (dyninfo_sect_size);
404 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
405 return 0;
406
407 /* Find the DT_DEBUG entry in the the .dynamic section.
408 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
409 no DT_DEBUG entries. */
410 /* FIXME: In lack of a 64 bit ELF ABI the following code assumes
411 a 32 bit ELF ABI target. */
412 for (bufend = buf + dyninfo_sect_size;
413 buf < bufend;
414 buf += sizeof (Elf32_External_Dyn))
f8b76e70 415 {
2fe3b329
PS
416 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *)buf;
417 long dyn_tag;
418 CORE_ADDR dyn_ptr;
419
420 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
421 if (dyn_tag == DT_NULL)
422 break;
423 else if (dyn_tag == DT_DEBUG)
d0237a54 424 {
2fe3b329
PS
425 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
426 return dyn_ptr;
d0237a54 427 }
2fe3b329 428 else if (dyn_tag == DT_MIPS_RLD_MAP)
4ad0021e 429 {
2fe3b329
PS
430 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
431
432 /* DT_MIPS_RLD_MAP contains a pointer to the address
433 of the dynamic link structure. */
434 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
435 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
436 return 0;
437 return extract_unsigned_integer (pbuf, sizeof (pbuf));
4ad0021e
JK
438 }
439 }
d261ece7 440
2fe3b329
PS
441 /* DT_DEBUG entry not found. */
442 return 0;
d261ece7
SG
443}
444
2fe3b329 445#endif /* SVR4_SHARED_LIBS */
be772100 446
d261ece7
SG
447/*
448
f8b76e70
FF
449LOCAL FUNCTION
450
451 locate_base -- locate the base address of dynamic linker structs
452
453SYNOPSIS
454
455 CORE_ADDR locate_base (void)
456
457DESCRIPTION
458
459 For both the SunOS and SVR4 shared library implementations, if the
460 inferior executable has been linked dynamically, there is a single
461 address somewhere in the inferior's data space which is the key to
d261ece7 462 locating all of the dynamic linker's runtime structures. This
4ad0021e
JK
463 address is the value of the debug base symbol. The job of this
464 function is to find and return that address, or to return 0 if there
465 is no such address (the executable is statically linked for example).
f8b76e70
FF
466
467 For SunOS, the job is almost trivial, since the dynamic linker and
468 all of it's structures are statically linked to the executable at
469 link time. Thus the symbol for the address we are looking for has
b0246b3b
FF
470 already been added to the minimal symbol table for the executable's
471 objfile at the time the symbol file's symbols were read, and all we
472 have to do is look it up there. Note that we explicitly do NOT want
473 to find the copies in the shared library.
f8b76e70 474
2fe3b329
PS
475 The SVR4 version is a bit more complicated because the address
476 is contained somewhere in the dynamic info section. We have to go
4ad0021e
JK
477 to a lot more work to discover the address of the debug base symbol.
478 Because of this complexity, we cache the value we find and return that
479 value on subsequent invocations. Note there is no copy in the
480 executable symbol tables.
f8b76e70 481
f8b76e70
FF
482 */
483
484static CORE_ADDR
485locate_base ()
486{
f8b76e70 487
d261ece7 488#ifndef SVR4_SHARED_LIBS
f8b76e70 489
b0246b3b 490 struct minimal_symbol *msymbol;
d261ece7 491 CORE_ADDR address = 0;
4ad0021e 492 char **symbolp;
f8b76e70 493
4ad0021e
JK
494 /* For SunOS, we want to limit the search for the debug base symbol to the
495 executable being debugged, since there is a duplicate named symbol in the
496 shared library. We don't want the shared library versions. */
b0246b3b 497
4ad0021e 498 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
f8b76e70 499 {
4ad0021e
JK
500 msymbol = lookup_minimal_symbol (*symbolp, symfile_objfile);
501 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
502 {
503 address = SYMBOL_VALUE_ADDRESS (msymbol);
504 return (address);
505 }
f8b76e70 506 }
4ad0021e 507 return (0);
f8b76e70 508
d261ece7 509#else /* SVR4_SHARED_LIBS */
f8b76e70 510
d261ece7
SG
511 /* Check to see if we have a currently valid address, and if so, avoid
512 doing all this work again and just return the cached address. If
2fe3b329
PS
513 we have no cached address, try to locate it in the dynamic info
514 section. */
f8b76e70 515
d261ece7 516 if (debug_base == 0)
f8b76e70 517 {
2fe3b329 518 debug_base = elf_locate_base ();
f8b76e70 519 }
d261ece7 520 return (debug_base);
f8b76e70 521
d261ece7 522#endif /* !SVR4_SHARED_LIBS */
f8b76e70
FF
523
524}
bd5635a1 525
a608f919
FF
526/*
527
528LOCAL FUNCTION
529
530 first_link_map_member -- locate first member in dynamic linker's map
531
532SYNOPSIS
533
534 static struct link_map *first_link_map_member (void)
535
536DESCRIPTION
537
538 Read in a copy of the first member in the inferior's dynamic
539 link map from the inferior's dynamic linker structures, and return
540 a pointer to the copy in our address space.
541*/
542
f8b76e70
FF
543static struct link_map *
544first_link_map_member ()
bd5635a1 545{
f8b76e70
FF
546 struct link_map *lm = NULL;
547
d261ece7 548#ifndef SVR4_SHARED_LIBS
f8b76e70 549
b0246b3b 550 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
f8b76e70
FF
551 if (dynamic_copy.ld_version >= 2)
552 {
553 /* It is a version that we can deal with, so read in the secondary
554 structure and find the address of the link map list from it. */
b0246b3b 555 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
f8b76e70
FF
556 sizeof (struct link_dynamic_2));
557 lm = ld_2_copy.ld_loaded;
558 }
559
d261ece7 560#else /* SVR4_SHARED_LIBS */
f8b76e70 561
b0246b3b 562 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
a608f919
FF
563 /* FIXME: Perhaps we should validate the info somehow, perhaps by
564 checking r_version for a known version number, or r_state for
565 RT_CONSISTENT. */
f8b76e70
FF
566 lm = debug_copy.r_map;
567
d261ece7 568#endif /* !SVR4_SHARED_LIBS */
d0237a54 569
f8b76e70
FF
570 return (lm);
571}
572
573/*
574
b0246b3b 575LOCAL FUNCTION
f8b76e70
FF
576
577 find_solib -- step through list of shared objects
578
579SYNOPSIS
580
581 struct so_list *find_solib (struct so_list *so_list_ptr)
582
583DESCRIPTION
584
585 This module contains the routine which finds the names of any
586 loaded "images" in the current process. The argument in must be
587 NULL on the first call, and then the returned value must be passed
588 in on subsequent calls. This provides the capability to "step" down
589 the list of loaded objects. On the last object, a NULL value is
590 returned.
d0237a54 591
f8b76e70
FF
592 The arg and return value are "struct link_map" pointers, as defined
593 in <link.h>.
594 */
d0237a54 595
b0246b3b 596static struct so_list *
f8b76e70
FF
597find_solib (so_list_ptr)
598 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
599{
600 struct so_list *so_list_next = NULL;
601 struct link_map *lm = NULL;
602 struct so_list *new;
603
604 if (so_list_ptr == NULL)
605 {
606 /* We are setting up for a new scan through the loaded images. */
607 if ((so_list_next = so_list_head) == NULL)
608 {
609 /* We have not already read in the dynamic linking structures
610 from the inferior, lookup the address of the base structure. */
611 debug_base = locate_base ();
a608f919 612 if (debug_base != 0)
f8b76e70
FF
613 {
614 /* Read the base structure in and find the address of the first
615 link map list member. */
616 lm = first_link_map_member ();
617 }
618 }
619 }
620 else
621 {
622 /* We have been called before, and are in the process of walking
623 the shared library list. Advance to the next shared object. */
624 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
625 {
626 /* We have hit the end of the list, so check to see if any were
627 added, but be quiet if we can't read from the target any more. */
628 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
629 (char *) &(so_list_ptr -> lm),
630 sizeof (struct link_map));
631 if (status == 0)
632 {
633 lm = LM_NEXT (so_list_ptr);
634 }
635 else
636 {
637 lm = NULL;
638 }
639 }
640 so_list_next = so_list_ptr -> next;
641 }
642 if ((so_list_next == NULL) && (lm != NULL))
643 {
644 /* Get next link map structure from inferior image and build a local
645 abbreviated load_map structure */
646 new = (struct so_list *) xmalloc (sizeof (struct so_list));
de9bef49 647 memset ((char *) new, 0, sizeof (struct so_list));
f8b76e70
FF
648 new -> lmaddr = lm;
649 /* Add the new node as the next node in the list, or as the root
650 node if this is the first one. */
651 if (so_list_ptr != NULL)
652 {
653 so_list_ptr -> next = new;
654 }
655 else
656 {
657 so_list_head = new;
658 }
659 so_list_next = new;
b0246b3b
FF
660 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
661 sizeof (struct link_map));
4ad0021e
JK
662 /* For SVR4 versions, the first entry in the link map is for the
663 inferior executable, so we must ignore it. For some versions of
664 SVR4, it has no name. For others (Solaris 2.3 for example), it
665 does have a name, so we can no longer use a missing name to
666 decide when to ignore it. */
667 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new -> lm))
f8b76e70 668 {
4ad0021e
JK
669 int errcode;
670 char *buffer;
671 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
672 MAX_PATH_SIZE - 1, &errcode);
673 if (errcode != 0)
674 error ("find_solib: Can't read pathname for load map: %s\n",
675 safe_strerror (errcode));
676 strncpy (new -> so_name, buffer, MAX_PATH_SIZE - 1);
677 new -> so_name[MAX_PATH_SIZE - 1] = '\0';
678 free (buffer);
f8b76e70
FF
679 solib_map_sections (new);
680 }
681 }
682 return (so_list_next);
bd5635a1 683}
d0237a54 684
bdbd5f50
JG
685/* A small stub to get us past the arg-passing pinhole of catch_errors. */
686
687static int
688symbol_add_stub (arg)
689 char *arg;
d0237a54 690{
f8b76e70
FF
691 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
692
b0246b3b 693 so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
51b57ded
FF
694 (unsigned int) so -> textsection -> addr,
695 0, 0, 0);
f8b76e70 696 return (1);
d0237a54 697}
bd5635a1 698
f8b76e70
FF
699/*
700
701GLOBAL FUNCTION
702
703 solib_add -- add a shared library file to the symtab and section list
704
705SYNOPSIS
706
707 void solib_add (char *arg_string, int from_tty,
708 struct target_ops *target)
709
710DESCRIPTION
711
712*/
bdbd5f50
JG
713
714void
715solib_add (arg_string, from_tty, target)
716 char *arg_string;
717 int from_tty;
718 struct target_ops *target;
bd5635a1 719{
f8b76e70 720 register struct so_list *so = NULL; /* link map state variable */
a71c0593
FF
721
722 /* Last shared library that we read. */
723 struct so_list *so_last = NULL;
724
f8b76e70
FF
725 char *re_err;
726 int count;
727 int old;
728
729 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
730 {
731 error ("Invalid regexp: %s", re_err);
732 }
733
2fe3b329
PS
734 /* Add the shared library sections to the section table of the
735 specified target, if any. We have to do this before reading the
736 symbol files as symbol_file_add calls reinit_frame_cache and
737 creating a new frame might access memory in the shared library. */
f8b76e70
FF
738 if (target)
739 {
740 /* Count how many new section_table entries there are. */
741 so = NULL;
742 count = 0;
743 while ((so = find_solib (so)) != NULL)
744 {
745 if (so -> so_name[0])
746 {
747 count += so -> sections_end - so -> sections;
748 }
749 }
750
751 if (count)
752 {
753 /* Reallocate the target's section table including the new size. */
ee0613d1 754 if (target -> to_sections)
f8b76e70 755 {
ee0613d1
JG
756 old = target -> to_sections_end - target -> to_sections;
757 target -> to_sections = (struct section_table *)
a71c0593 758 xrealloc ((char *)target -> to_sections,
f8b76e70
FF
759 (sizeof (struct section_table)) * (count + old));
760 }
761 else
762 {
763 old = 0;
ee0613d1 764 target -> to_sections = (struct section_table *)
a71c0593 765 xmalloc ((sizeof (struct section_table)) * count);
f8b76e70 766 }
ee0613d1 767 target -> to_sections_end = target -> to_sections + (count + old);
f8b76e70
FF
768
769 /* Add these section table entries to the target's table. */
770 while ((so = find_solib (so)) != NULL)
771 {
772 if (so -> so_name[0])
773 {
774 count = so -> sections_end - so -> sections;
de9bef49
JG
775 memcpy ((char *) (target -> to_sections + old),
776 so -> sections,
777 (sizeof (struct section_table)) * count);
f8b76e70
FF
778 old += count;
779 }
780 }
781 }
782 }
2fe3b329
PS
783
784 /* Now add the symbol files. */
785 while ((so = find_solib (so)) != NULL)
786 {
787 if (so -> so_name[0] && re_exec (so -> so_name))
788 {
789 so -> from_tty = from_tty;
790 if (so -> symbols_loaded)
791 {
792 if (from_tty)
793 {
794 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
795 }
796 }
797 else if (catch_errors
798 (symbol_add_stub, (char *) so,
799 "Error while reading shared library symbols:\n",
800 RETURN_MASK_ALL))
801 {
802 so_last = so;
803 so -> symbols_loaded = 1;
804 }
805 }
806 }
a71c0593
FF
807
808 /* Calling this once at the end means that we put all the minimal
809 symbols for commons into the objfile for the last shared library.
810 Since they are in common, this should not be a problem. If we
811 delete the objfile with the minimal symbols, we can put all the
812 symbols into a new objfile (and will on the next call to solib_add).
813
814 An alternate approach would be to create an objfile just for
815 common minsyms, thus not needing any objfile argument to
816 solib_add_common_symbols. */
817
818 if (so_last)
819 special_symbol_handling (so_last);
bd5635a1 820}
bdbd5f50 821
f8b76e70 822/*
bd5635a1 823
f8b76e70
FF
824LOCAL FUNCTION
825
826 info_sharedlibrary_command -- code for "info sharedlibrary"
827
828SYNOPSIS
829
830 static void info_sharedlibrary_command ()
831
832DESCRIPTION
bd5635a1 833
f8b76e70
FF
834 Walk through the shared library list and print information
835 about each attached library.
836*/
837
838static void
51b57ded
FF
839info_sharedlibrary_command (ignore, from_tty)
840 char *ignore;
841 int from_tty;
f8b76e70
FF
842{
843 register struct so_list *so = NULL; /* link map state variable */
844 int header_done = 0;
845
846 if (exec_bfd == NULL)
847 {
8d60affd 848 printf_unfiltered ("No exec file.\n");
f8b76e70
FF
849 return;
850 }
851 while ((so = find_solib (so)) != NULL)
852 {
853 if (so -> so_name[0])
854 {
855 if (!header_done)
856 {
8d60affd 857 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
f8b76e70
FF
858 "Shared Object Library");
859 header_done++;
860 }
4ad0021e
JK
861 /* FIXME-32x64: need print_address_numeric with field width or
862 some such. */
8d60affd 863 printf_unfiltered ("%-12s",
a71c0593
FF
864 local_hex_string_custom ((unsigned long) LM_ADDR (so),
865 "08l"));
8d60affd 866 printf_unfiltered ("%-12s",
a71c0593
FF
867 local_hex_string_custom ((unsigned long) so -> lmend,
868 "08l"));
8d60affd
JK
869 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
870 printf_unfiltered ("%s\n", so -> so_name);
bd5635a1 871 }
bd5635a1 872 }
f8b76e70
FF
873 if (so_list_head == NULL)
874 {
8d60affd 875 printf_unfiltered ("No shared libraries loaded at this time.\n");
bd5635a1
RP
876 }
877}
878
879/*
f8b76e70
FF
880
881GLOBAL FUNCTION
882
883 solib_address -- check to see if an address is in a shared lib
884
885SYNOPSIS
886
887 int solib_address (CORE_ADDR address)
888
889DESCRIPTION
890
891 Provides a hook for other gdb routines to discover whether or
892 not a particular address is within the mapped address space of
893 a shared library. Any address between the base mapping address
894 and the first address beyond the end of the last mapping, is
895 considered to be within the shared library address space, for
896 our purposes.
897
898 For example, this routine is called at one point to disable
899 breakpoints which are in shared libraries that are not currently
900 mapped in.
901 */
902
bd5635a1 903int
f8b76e70 904solib_address (address)
bd5635a1
RP
905 CORE_ADDR address;
906{
f8b76e70
FF
907 register struct so_list *so = 0; /* link map state variable */
908
909 while ((so = find_solib (so)) != NULL)
910 {
911 if (so -> so_name[0])
912 {
913 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
914 (address < (CORE_ADDR) so -> lmend))
915 {
916 return (1);
917 }
918 }
919 }
920 return (0);
921}
922
923/* Called by free_all_symtabs */
bd5635a1 924
f8b76e70
FF
925void
926clear_solib()
927{
928 struct so_list *next;
a608f919 929 char *bfd_filename;
f8b76e70
FF
930
931 while (so_list_head)
932 {
933 if (so_list_head -> sections)
934 {
be772100 935 free ((PTR)so_list_head -> sections);
f8b76e70 936 }
a71c0593 937 if (so_list_head -> abfd)
a608f919 938 {
a71c0593
FF
939 bfd_filename = bfd_get_filename (so_list_head -> abfd);
940 bfd_close (so_list_head -> abfd);
a608f919
FF
941 }
942 else
943 /* This happens for the executable on SVR4. */
944 bfd_filename = NULL;
945
f8b76e70 946 next = so_list_head -> next;
a608f919
FF
947 if (bfd_filename)
948 free ((PTR)bfd_filename);
949 free ((PTR)so_list_head);
f8b76e70 950 so_list_head = next;
bd5635a1 951 }
f8b76e70 952 debug_base = 0;
bd5635a1
RP
953}
954
955/*
f8b76e70
FF
956
957LOCAL FUNCTION
958
959 disable_break -- remove the "mapping changed" breakpoint
960
961SYNOPSIS
962
963 static int disable_break ()
964
965DESCRIPTION
966
967 Removes the breakpoint that gets hit when the dynamic linker
968 completes a mapping change.
969
bd5635a1 970*/
f8b76e70
FF
971
972static int
973disable_break ()
bd5635a1 974{
f8b76e70
FF
975 int status = 1;
976
d261ece7 977#ifndef SVR4_SHARED_LIBS
f8b76e70
FF
978
979 int in_debugger = 0;
980
f8b76e70
FF
981 /* Read the debugger structure from the inferior to retrieve the
982 address of the breakpoint and the original contents of the
983 breakpoint address. Remove the breakpoint by writing the original
984 contents back. */
985
b0246b3b 986 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
d261ece7
SG
987
988 /* Set `in_debugger' to zero now. */
989
b0246b3b 990 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
d261ece7 991
f8b76e70 992 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
b0246b3b 993 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
f8b76e70
FF
994 sizeof (debug_copy.ldd_bp_inst));
995
d261ece7 996#else /* SVR4_SHARED_LIBS */
f8b76e70
FF
997
998 /* Note that breakpoint address and original contents are in our address
999 space, so we just need to write the original contents back. */
1000
1001 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1002 {
1003 status = 0;
1004 }
1005
d261ece7 1006#endif /* !SVR4_SHARED_LIBS */
f8b76e70
FF
1007
1008 /* For the SVR4 version, we always know the breakpoint address. For the
1009 SunOS version we don't know it until the above code is executed.
1010 Grumble if we are stopped anywhere besides the breakpoint address. */
1011
1012 if (stop_pc != breakpoint_addr)
1013 {
1014 warning ("stopped at unknown breakpoint while handling shared libraries");
1015 }
1016
1017 return (status);
bdbd5f50
JG
1018}
1019
f8b76e70 1020/*
bdbd5f50 1021
f8b76e70
FF
1022LOCAL FUNCTION
1023
1024 enable_break -- arrange for dynamic linker to hit breakpoint
1025
1026SYNOPSIS
1027
1028 int enable_break (void)
1029
1030DESCRIPTION
1031
1032 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1033 debugger interface, support for arranging for the inferior to hit
1034 a breakpoint after mapping in the shared libraries. This function
1035 enables that breakpoint.
1036
1037 For SunOS, there is a special flag location (in_debugger) which we
1038 set to 1. When the dynamic linker sees this flag set, it will set
1039 a breakpoint at a location known only to itself, after saving the
1040 original contents of that place and the breakpoint address itself,
1041 in it's own internal structures. When we resume the inferior, it
1042 will eventually take a SIGTRAP when it runs into the breakpoint.
1043 We handle this (in a different place) by restoring the contents of
1044 the breakpointed location (which is only known after it stops),
1045 chasing around to locate the shared libraries that have been
1046 loaded, then resuming.
1047
1048 For SVR4, the debugger interface structure contains a member (r_brk)
1049 which is statically initialized at the time the shared library is
1050 built, to the offset of a function (_r_debug_state) which is guaran-
1051 teed to be called once before mapping in a library, and again when
1052 the mapping is complete. At the time we are examining this member,
1053 it contains only the unrelocated offset of the function, so we have
1054 to do our own relocation. Later, when the dynamic linker actually
1055 runs, it relocates r_brk to be the actual address of _r_debug_state().
1056
1057 The debugger interface structure also contains an enumeration which
1058 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1059 depending upon whether or not the library is being mapped or unmapped,
1060 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1061*/
1062
1063static int
1064enable_break ()
bdbd5f50 1065{
a608f919 1066 int success = 0;
bdbd5f50 1067
d261ece7 1068#ifndef SVR4_SHARED_LIBS
bdbd5f50 1069
51b57ded 1070 int j;
f8b76e70 1071 int in_debugger;
51b57ded 1072
bdbd5f50 1073 /* Get link_dynamic structure */
f8b76e70
FF
1074
1075 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1076 sizeof (dynamic_copy));
1077 if (j)
1078 {
1079 /* unreadable */
1080 return (0);
1081 }
06b6c733 1082
bdbd5f50 1083 /* Calc address of debugger interface structure */
f8b76e70
FF
1084
1085 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1086
bdbd5f50 1087 /* Calc address of `in_debugger' member of debugger interface structure */
f8b76e70
FF
1088
1089 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1090 (char *) &debug_copy);
1091
bdbd5f50 1092 /* Write a value of 1 to this member. */
f8b76e70 1093
bdbd5f50 1094 in_debugger = 1;
b0246b3b 1095 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
a608f919 1096 success = 1;
f8b76e70 1097
d261ece7 1098#else /* SVR4_SHARED_LIBS */
f8b76e70 1099
a608f919 1100#ifdef BKPT_AT_SYMBOL
f8b76e70 1101
b0246b3b 1102 struct minimal_symbol *msymbol;
a608f919
FF
1103 char **bkpt_namep;
1104 CORE_ADDR bkpt_addr;
f8b76e70 1105
a608f919
FF
1106 /* Scan through the list of symbols, trying to look up the symbol and
1107 set a breakpoint there. Terminate loop when we/if we succeed. */
f8b76e70 1108
a608f919
FF
1109 breakpoint_addr = 0;
1110 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
f8b76e70 1111 {
a608f919
FF
1112 msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
1113 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1114 {
1115 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1116 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
1117 {
1118 breakpoint_addr = bkpt_addr;
1119 success = 1;
1120 break;
1121 }
1122 }
f8b76e70
FF
1123 }
1124
a608f919 1125#else /* !BKPT_AT_SYMBOL */
f8b76e70
FF
1126
1127 struct symtab_and_line sal;
1128
1129 /* Read the debugger interface structure directly. */
1130
1131 read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
1132
1133 /* Set breakpoint at the debugger interface stub routine that will
1134 be called just prior to each mapping change and again after the
1135 mapping change is complete. Set up the (nonexistent) handler to
1136 deal with hitting these breakpoints. (FIXME). */
1137
1138 warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
a608f919 1139 success = 1;
f8b76e70 1140
a608f919 1141#endif /* BKPT_AT_SYMBOL */
f8b76e70 1142
d261ece7 1143#endif /* !SVR4_SHARED_LIBS */
f8b76e70 1144
a608f919 1145 return (success);
f8b76e70
FF
1146}
1147
1148/*
1149
1150GLOBAL FUNCTION
1151
1152 solib_create_inferior_hook -- shared library startup support
1153
1154SYNOPSIS
1155
1156 void solib_create_inferior_hook()
1157
1158DESCRIPTION
1159
1160 When gdb starts up the inferior, it nurses it along (through the
1161 shell) until it is ready to execute it's first instruction. At this
1162 point, this function gets called via expansion of the macro
1163 SOLIB_CREATE_INFERIOR_HOOK.
1164
a608f919
FF
1165 For SunOS executables, this first instruction is typically the
1166 one at "_start", or a similar text label, regardless of whether
1167 the executable is statically or dynamically linked. The runtime
1168 startup code takes care of dynamically linking in any shared
1169 libraries, once gdb allows the inferior to continue.
1170
1171 For SVR4 executables, this first instruction is either the first
1172 instruction in the dynamic linker (for dynamically linked
1173 executables) or the instruction at "start" for statically linked
1174 executables. For dynamically linked executables, the system
1175 first exec's /lib/libc.so.N, which contains the dynamic linker,
1176 and starts it running. The dynamic linker maps in any needed
1177 shared libraries, maps in the actual user executable, and then
1178 jumps to "start" in the user executable.
1179
f8b76e70
FF
1180 For both SunOS shared libraries, and SVR4 shared libraries, we
1181 can arrange to cooperate with the dynamic linker to discover the
1182 names of shared libraries that are dynamically linked, and the
1183 base addresses to which they are linked.
1184
1185 This function is responsible for discovering those names and
1186 addresses, and saving sufficient information about them to allow
1187 their symbols to be read at a later time.
1188
1189FIXME
1190
1191 Between enable_break() and disable_break(), this code does not
1192 properly handle hitting breakpoints which the user might have
1193 set in the startup code or in the dynamic linker itself. Proper
1194 handling will probably have to wait until the implementation is
1195 changed to use the "breakpoint handler function" method.
1196
1197 Also, what if child has exit()ed? Must exit loop somehow.
1198 */
1199
1200void
1201solib_create_inferior_hook()
1202{
ff56144e
JK
1203 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1204 yet. In fact, in the case of a SunOS4 executable being run on
1205 Solaris, we can't get it yet. find_solib will get it when it needs
1206 it. */
1207#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
f8b76e70
FF
1208 if ((debug_base = locate_base ()) == 0)
1209 {
1210 /* Can't find the symbol or the executable is statically linked. */
1211 return;
1212 }
ff56144e 1213#endif
f8b76e70
FF
1214
1215 if (!enable_break ())
1216 {
1217 warning ("shared library handler failed to enable breakpoint");
1218 return;
1219 }
1220
1221 /* Now run the target. It will eventually hit the breakpoint, at
1222 which point all of the libraries will have been mapped in and we
1223 can go groveling around in the dynamic linker structures to find
1224 out what we need to know about them. */
bdbd5f50
JG
1225
1226 clear_proceed_status ();
1227 stop_soon_quietly = 1;
4ad0021e 1228 stop_signal = TARGET_SIGNAL_0;
f8b76e70 1229 do
bdbd5f50 1230 {
8d60affd 1231 target_resume (-1, 0, stop_signal);
bdbd5f50
JG
1232 wait_for_inferior ();
1233 }
4ad0021e 1234 while (stop_signal != TARGET_SIGNAL_TRAP);
bdbd5f50 1235 stop_soon_quietly = 0;
f8b76e70
FF
1236
1237 /* We are now either at the "mapping complete" breakpoint (or somewhere
1238 else, a condition we aren't prepared to deal with anyway), so adjust
1239 the PC as necessary after a breakpoint, disable the breakpoint, and
1240 add any shared libraries that were mapped in. */
bdbd5f50 1241
f8b76e70
FF
1242 if (DECR_PC_AFTER_BREAK)
1243 {
1244 stop_pc -= DECR_PC_AFTER_BREAK;
1245 write_register (PC_REGNUM, stop_pc);
1246 }
1247
1248 if (!disable_break ())
1249 {
1250 warning ("shared library handler failed to disable breakpoint");
1251 }
1252
1253 solib_add ((char *) 0, 0, (struct target_ops *) 0);
bdbd5f50
JG
1254}
1255
f8b76e70
FF
1256/*
1257
b0246b3b
FF
1258LOCAL FUNCTION
1259
1260 special_symbol_handling -- additional shared library symbol handling
1261
1262SYNOPSIS
1263
1264 void special_symbol_handling (struct so_list *so)
1265
1266DESCRIPTION
1267
1268 Once the symbols from a shared object have been loaded in the usual
1269 way, we are called to do any system specific symbol handling that
1270 is needed.
1271
1272 For Suns, this consists of grunging around in the dynamic linkers
1273 structures to find symbol definitions for "common" symbols and
1274 adding them to the minimal symbol table for the corresponding
1275 objfile.
1276
1277*/
1278
1279static void
1280special_symbol_handling (so)
1281struct so_list *so;
1282{
1283#ifndef SVR4_SHARED_LIBS
51b57ded
FF
1284 int j;
1285
1286 if (debug_addr == 0)
1287 {
1288 /* Get link_dynamic structure */
1289
1290 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1291 sizeof (dynamic_copy));
1292 if (j)
1293 {
1294 /* unreadable */
1295 return;
1296 }
1297
1298 /* Calc address of debugger interface structure */
1299 /* FIXME, this needs work for cross-debugging of core files
1300 (byteorder, size, alignment, etc). */
1301
1302 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1303 }
b0246b3b
FF
1304
1305 /* Read the debugger structure from the inferior, just to make sure
1306 we have a current copy. */
1307
51b57ded
FF
1308 j = target_read_memory (debug_addr, (char *) &debug_copy,
1309 sizeof (debug_copy));
1310 if (j)
1311 return; /* unreadable */
b0246b3b
FF
1312
1313 /* Get common symbol definitions for the loaded object. */
1314
1315 if (debug_copy.ldd_cp)
1316 {
1317 solib_add_common_symbols (debug_copy.ldd_cp, so -> objfile);
1318 }
1319
1320#endif /* !SVR4_SHARED_LIBS */
1321}
1322
1323
1324/*
1325
1326LOCAL FUNCTION
f8b76e70
FF
1327
1328 sharedlibrary_command -- handle command to explicitly add library
1329
1330SYNOPSIS
1331
b0246b3b 1332 static void sharedlibrary_command (char *args, int from_tty)
f8b76e70
FF
1333
1334DESCRIPTION
1335
1336*/
1337
b0246b3b 1338static void
bdbd5f50 1339sharedlibrary_command (args, from_tty)
f8b76e70
FF
1340char *args;
1341int from_tty;
bdbd5f50 1342{
f8b76e70
FF
1343 dont_repeat ();
1344 solib_add (args, from_tty, (struct target_ops *) 0);
bd5635a1
RP
1345}
1346
1347void
1348_initialize_solib()
1349{
f8b76e70
FF
1350
1351 add_com ("sharedlibrary", class_files, sharedlibrary_command,
bd5635a1 1352 "Load shared object library symbols for files matching REGEXP.");
f8b76e70
FF
1353 add_info ("sharedlibrary", info_sharedlibrary_command,
1354 "Status of loaded shared object libraries.");
bd5635a1 1355}