]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc-tdep.c
* win32-low.c (win32_add_one_solib): If the dll name is
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0fb0cc75 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
386c036b 224/* Check whether TYPE is "Structure or Union". */
c906108c 225
386c036b
MK
226static int
227sparc_structure_or_union_p (const struct type *type)
228{
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
233 return 1;
234 default:
235 break;
c906108c 236 }
386c036b
MK
237
238 return 0;
c906108c 239}
386c036b
MK
240
241/* Register information. */
242
243static const char *sparc32_register_names[] =
5af923b0 244{
386c036b
MK
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
249
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
254
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
256};
257
386c036b
MK
258/* Total number of registers. */
259#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 260
386c036b
MK
261/* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
263
264static const char *sparc32_pseudo_register_names[] =
265{
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
268};
269
270/* Total number of pseudo registers. */
271#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
272
273/* Return the name of register REGNUM. */
274
275static const char *
d93859e2 276sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
277{
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
280
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
283
284 return NULL;
285}
2d457077 286\f
209bd28e 287/* Construct types for ISA-specific registers. */
2d457077 288
209bd28e
UW
289static struct type *
290sparc_psr_type (struct gdbarch *gdbarch)
291{
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 293
209bd28e
UW
294 if (!tdep->sparc_psr_type)
295 {
296 struct type *type;
2d457077 297
e9bb382b 298 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
299 append_flags_type_flag (type, 5, "ET");
300 append_flags_type_flag (type, 6, "PS");
301 append_flags_type_flag (type, 7, "S");
302 append_flags_type_flag (type, 12, "EF");
303 append_flags_type_flag (type, 13, "EC");
2d457077 304
209bd28e
UW
305 tdep->sparc_psr_type = type;
306 }
307
308 return tdep->sparc_psr_type;
309}
310
311static struct type *
312sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 313{
209bd28e
UW
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315
316 if (!tdep->sparc_fsr_type)
317 {
318 struct type *type;
319
e9bb382b 320 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337
338 tdep->sparc_fsr_type = type;
339 }
340
341 return tdep->sparc_fsr_type;
2d457077 342}
386c036b
MK
343
344/* Return the GDB type object for the "standard" data type of data in
345 register REGNUM. */
346
347static struct type *
348sparc32_register_type (struct gdbarch *gdbarch, int regnum)
349{
350 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 351 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
352
353 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 354 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
355
356 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 357 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
358
359 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 360 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 361
2d457077 362 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 363 return sparc_psr_type (gdbarch);
2d457077
MK
364
365 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 366 return sparc_fsr_type (gdbarch);
2d457077 367
df4df182 368 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
369}
370
371static void
372sparc32_pseudo_register_read (struct gdbarch *gdbarch,
373 struct regcache *regcache,
e1613aba 374 int regnum, gdb_byte *buf)
386c036b
MK
375{
376 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
377
378 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
379 regcache_raw_read (regcache, regnum, buf);
e1613aba 380 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
381}
382
383static void
384sparc32_pseudo_register_write (struct gdbarch *gdbarch,
385 struct regcache *regcache,
e1613aba 386 int regnum, const gdb_byte *buf)
386c036b
MK
387{
388 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
389
390 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
391 regcache_raw_write (regcache, regnum, buf);
e1613aba 392 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
393}
394\f
395
396static CORE_ADDR
397sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 398 CORE_ADDR funcaddr,
386c036b
MK
399 struct value **args, int nargs,
400 struct type *value_type,
e4fd649a
UW
401 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
402 struct regcache *regcache)
c906108c 403{
e17a4113
UW
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
405
386c036b
MK
406 *bp_addr = sp - 4;
407 *real_pc = funcaddr;
408
d80b854b 409 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 410 {
e1613aba 411 gdb_byte buf[4];
386c036b
MK
412
413 /* This is an UNIMP instruction. */
e17a4113
UW
414 store_unsigned_integer (buf, 4, byte_order,
415 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
416 write_memory (sp - 8, buf, 4);
417 return sp - 8;
c906108c
SS
418 }
419
386c036b
MK
420 return sp - 4;
421}
422
423static CORE_ADDR
424sparc32_store_arguments (struct regcache *regcache, int nargs,
425 struct value **args, CORE_ADDR sp,
426 int struct_return, CORE_ADDR struct_addr)
427{
df4df182 428 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
430 /* Number of words in the "parameter array". */
431 int num_elements = 0;
432 int element = 0;
433 int i;
434
435 for (i = 0; i < nargs; i++)
c906108c 436 {
4991999e 437 struct type *type = value_type (args[i]);
386c036b
MK
438 int len = TYPE_LENGTH (type);
439
440 if (sparc_structure_or_union_p (type)
441 || (sparc_floating_p (type) && len == 16))
c906108c 442 {
386c036b
MK
443 /* Structure, Union and Quad-Precision Arguments. */
444 sp -= len;
445
446 /* Use doubleword alignment for these values. That's always
447 correct, and wasting a few bytes shouldn't be a problem. */
448 sp &= ~0x7;
449
0fd88904 450 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
451 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
452 num_elements++;
453 }
454 else if (sparc_floating_p (type))
455 {
456 /* Floating arguments. */
457 gdb_assert (len == 4 || len == 8);
458 num_elements += (len / 4);
c906108c 459 }
c5aa993b
JM
460 else
461 {
386c036b
MK
462 /* Integral and pointer arguments. */
463 gdb_assert (sparc_integral_or_pointer_p (type));
464
465 if (len < 4)
df4df182
UW
466 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
467 args[i]);
386c036b 468 num_elements += ((len + 3) / 4);
c5aa993b 469 }
c906108c 470 }
c906108c 471
386c036b
MK
472 /* Always allocate at least six words. */
473 sp -= max (6, num_elements) * 4;
c906108c 474
386c036b
MK
475 /* The psABI says that "Software convention requires space for the
476 struct/union return value pointer, even if the word is unused." */
477 sp -= 4;
c906108c 478
386c036b
MK
479 /* The psABI says that "Although software convention and the
480 operating system require every stack frame to be doubleword
481 aligned." */
482 sp &= ~0x7;
c906108c 483
386c036b 484 for (i = 0; i < nargs; i++)
c906108c 485 {
0fd88904 486 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 487 struct type *type = value_type (args[i]);
386c036b 488 int len = TYPE_LENGTH (type);
c906108c 489
386c036b 490 gdb_assert (len == 4 || len == 8);
c906108c 491
386c036b
MK
492 if (element < 6)
493 {
494 int regnum = SPARC_O0_REGNUM + element;
c906108c 495
386c036b
MK
496 regcache_cooked_write (regcache, regnum, valbuf);
497 if (len > 4 && element < 5)
498 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
499 }
5af923b0 500
386c036b
MK
501 /* Always store the argument in memory. */
502 write_memory (sp + 4 + element * 4, valbuf, len);
503 element += len / 4;
504 }
c906108c 505
386c036b 506 gdb_assert (element == num_elements);
c906108c 507
386c036b 508 if (struct_return)
c906108c 509 {
e1613aba 510 gdb_byte buf[4];
c906108c 511
e17a4113 512 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
513 write_memory (sp, buf, 4);
514 }
c906108c 515
386c036b 516 return sp;
c906108c
SS
517}
518
386c036b 519static CORE_ADDR
7d9b040b 520sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
521 struct regcache *regcache, CORE_ADDR bp_addr,
522 int nargs, struct value **args, CORE_ADDR sp,
523 int struct_return, CORE_ADDR struct_addr)
c906108c 524{
386c036b
MK
525 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
526
527 /* Set return address. */
528 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
529
530 /* Set up function arguments. */
531 sp = sparc32_store_arguments (regcache, nargs, args, sp,
532 struct_return, struct_addr);
533
534 /* Allocate the 16-word window save area. */
535 sp -= 16 * 4;
c906108c 536
386c036b
MK
537 /* Stack should be doubleword aligned at this point. */
538 gdb_assert (sp % 8 == 0);
c906108c 539
386c036b
MK
540 /* Finally, update the stack pointer. */
541 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
542
543 return sp;
544}
545\f
c906108c 546
386c036b
MK
547/* Use the program counter to determine the contents and size of a
548 breakpoint instruction. Return a pointer to a string of bytes that
549 encode a breakpoint instruction, store the length of the string in
550 *LEN and optionally adjust *PC to point to the correct memory
551 location for inserting the breakpoint. */
552
e1613aba 553static const gdb_byte *
67d57894 554sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 555{
864a1a37 556 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 557
386c036b
MK
558 *len = sizeof (break_insn);
559 return break_insn;
c906108c 560}
386c036b 561\f
c906108c 562
386c036b 563/* Allocate and initialize a frame cache. */
c906108c 564
386c036b
MK
565static struct sparc_frame_cache *
566sparc_alloc_frame_cache (void)
567{
568 struct sparc_frame_cache *cache;
569 int i;
c906108c 570
386c036b 571 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 572
386c036b
MK
573 /* Base address. */
574 cache->base = 0;
575 cache->pc = 0;
c906108c 576
386c036b
MK
577 /* Frameless until proven otherwise. */
578 cache->frameless_p = 1;
579
580 cache->struct_return_p = 0;
581
582 return cache;
583}
584
b0b92586
JB
585/* GCC generates several well-known sequences of instructions at the begining
586 of each function prologue when compiling with -fstack-check. If one of
587 such sequences starts at START_PC, then return the address of the
588 instruction immediately past this sequence. Otherwise, return START_PC. */
589
590static CORE_ADDR
591sparc_skip_stack_check (const CORE_ADDR start_pc)
592{
593 CORE_ADDR pc = start_pc;
594 unsigned long insn;
595 int offset_stack_checking_sequence = 0;
596
597 /* With GCC, all stack checking sequences begin with the same two
598 instructions. */
599
600 /* sethi <some immediate>,%g1 */
601 insn = sparc_fetch_instruction (pc);
602 pc = pc + 4;
603 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
604 return start_pc;
605
606 /* sub %sp, %g1, %g1 */
607 insn = sparc_fetch_instruction (pc);
608 pc = pc + 4;
609 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
610 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
611 return start_pc;
612
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
615
616 /* First possible sequence:
617 [first two instructions above]
618 clr [%g1 - some immediate] */
619
620 /* clr [%g1 - some immediate] */
621 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
622 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
623 {
624 /* Valid stack-check sequence, return the new PC. */
625 return pc;
626 }
627
628 /* Second possible sequence: A small number of probes.
629 [first two instructions above]
630 clr [%g1]
631 add %g1, -<some immediate>, %g1
632 clr [%g1]
633 [repeat the two instructions above any (small) number of times]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1] */
637 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 while (1)
641 {
642 /* add %g1, -<some immediate>, %g1 */
643 insn = sparc_fetch_instruction (pc);
644 pc = pc + 4;
645 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
646 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
647 break;
648
649 /* clr [%g1] */
650 insn = sparc_fetch_instruction (pc);
651 pc = pc + 4;
652 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
654 return start_pc;
655 }
656
657 /* clr [%g1 - some immediate] */
658 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
659 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
660 return start_pc;
661
662 /* We found a valid stack-check sequence, return the new PC. */
663 return pc;
664 }
665
666 /* Third sequence: A probing loop.
667 [first two instructions above]
668 sethi <some immediate>, %g4
669 sub %g1, %g4, %g4
670 cmp %g1, %g4
671 be <disp>
672 add %g1, -<some immediate>, %g1
673 ba <disp>
674 clr [%g1]
675 clr [%g4 - some immediate] */
676
677 /* sethi <some immediate>, %g4 */
678 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
679 {
680 /* sub %g1, %g4, %g4 */
681 insn = sparc_fetch_instruction (pc);
682 pc = pc + 4;
683 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
684 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
685 return start_pc;
686
687 /* cmp %g1, %g4 */
688 insn = sparc_fetch_instruction (pc);
689 pc = pc + 4;
690 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
691 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
692 return start_pc;
693
694 /* be <disp> */
695 insn = sparc_fetch_instruction (pc);
696 pc = pc + 4;
697 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
698 return start_pc;
699
700 /* add %g1, -<some immediate>, %g1 */
701 insn = sparc_fetch_instruction (pc);
702 pc = pc + 4;
703 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
704 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
705 return start_pc;
706
707 /* ba <disp> */
708 insn = sparc_fetch_instruction (pc);
709 pc = pc + 4;
710 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
711 return start_pc;
712
713 /* clr [%g1] */
714 insn = sparc_fetch_instruction (pc);
715 pc = pc + 4;
716 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
717 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
718 return start_pc;
719
720 /* clr [%g4 - some immediate] */
721 insn = sparc_fetch_instruction (pc);
722 pc = pc + 4;
723 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
724 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
725 return start_pc;
726
727 /* We found a valid stack-check sequence, return the new PC. */
728 return pc;
729 }
730
731 /* No stack check code in our prologue, return the start_pc. */
732 return start_pc;
733}
734
386c036b 735CORE_ADDR
be8626e0
MD
736sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
737 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 738{
be8626e0 739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
740 unsigned long insn;
741 int offset = 0;
c906108c 742 int dest = -1;
c906108c 743
b0b92586
JB
744 pc = sparc_skip_stack_check (pc);
745
386c036b
MK
746 if (current_pc <= pc)
747 return current_pc;
748
749 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
750 SPARC the linker usually defines a symbol (typically
751 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
752 This symbol makes us end up here with PC pointing at the start of
753 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
754 would do our normal prologue analysis, we would probably conclude
755 that we've got a frame when in reality we don't, since the
756 dynamic linker patches up the first PLT with some code that
757 starts with a SAVE instruction. Patch up PC such that it points
758 at the start of our PLT entry. */
759 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
760 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 761
386c036b
MK
762 insn = sparc_fetch_instruction (pc);
763
764 /* Recognize a SETHI insn and record its destination. */
765 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
766 {
767 dest = X_RD (insn);
386c036b
MK
768 offset += 4;
769
770 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
771 }
772
386c036b
MK
773 /* Allow for an arithmetic operation on DEST or %g1. */
774 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
775 && (X_RD (insn) == 1 || X_RD (insn) == dest))
776 {
386c036b 777 offset += 4;
c906108c 778
386c036b 779 insn = sparc_fetch_instruction (pc + 8);
c906108c 780 }
c906108c 781
386c036b
MK
782 /* Check for the SAVE instruction that sets up the frame. */
783 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 784 {
386c036b
MK
785 cache->frameless_p = 0;
786 return pc + offset + 4;
c906108c
SS
787 }
788
789 return pc;
790}
791
386c036b 792static CORE_ADDR
236369e7 793sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
794{
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 796 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
797}
798
799/* Return PC of first real instruction of the function starting at
800 START_PC. */
f510d44e 801
386c036b 802static CORE_ADDR
6093d2eb 803sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 804{
f510d44e
DM
805 struct symtab_and_line sal;
806 CORE_ADDR func_start, func_end;
386c036b 807 struct sparc_frame_cache cache;
f510d44e
DM
808
809 /* This is the preferred method, find the end of the prologue by
810 using the debugging information. */
811 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
812 {
813 sal = find_pc_line (func_start, 0);
814
815 if (sal.end < func_end
816 && start_pc <= sal.end)
817 return sal.end;
818 }
819
be8626e0 820 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
821
822 /* The psABI says that "Although the first 6 words of arguments
823 reside in registers, the standard stack frame reserves space for
824 them.". It also suggests that a function may use that space to
825 "write incoming arguments 0 to 5" into that space, and that's
826 indeed what GCC seems to be doing. In that case GCC will
827 generate debug information that points to the stack slots instead
828 of the registers, so we should consider the instructions that
829 write out these incoming arguments onto the stack. Of course we
830 only need to do this if we have a stack frame. */
831
832 while (!cache.frameless_p)
833 {
834 unsigned long insn = sparc_fetch_instruction (start_pc);
835
836 /* Recognize instructions that store incoming arguments in
837 %i0...%i5 into the corresponding stack slot. */
838 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
839 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
840 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
841 {
842 start_pc += 4;
843 continue;
844 }
845
846 break;
847 }
848
849 return start_pc;
c906108c
SS
850}
851
386c036b 852/* Normal frames. */
9319a2fe 853
386c036b 854struct sparc_frame_cache *
236369e7 855sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 856{
386c036b 857 struct sparc_frame_cache *cache;
9319a2fe 858
386c036b
MK
859 if (*this_cache)
860 return *this_cache;
c906108c 861
386c036b
MK
862 cache = sparc_alloc_frame_cache ();
863 *this_cache = cache;
c906108c 864
236369e7 865 cache->pc = get_frame_func (this_frame);
386c036b 866 if (cache->pc != 0)
236369e7
JB
867 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
868 get_frame_pc (this_frame), cache);
386c036b
MK
869
870 if (cache->frameless_p)
c906108c 871 {
cbeae229
MK
872 /* This function is frameless, so %fp (%i6) holds the frame
873 pointer for our calling frame. Use %sp (%o6) as this frame's
874 base address. */
875 cache->base =
236369e7 876 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
877 }
878 else
879 {
880 /* For normal frames, %fp (%i6) holds the frame pointer, the
881 base address for the current stack frame. */
882 cache->base =
236369e7 883 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 884 }
c906108c 885
5b2d44a0
MK
886 if (cache->base & 1)
887 cache->base += BIAS;
888
386c036b 889 return cache;
c906108c 890}
c906108c 891
aff37fc1
DM
892static int
893sparc32_struct_return_from_sym (struct symbol *sym)
894{
895 struct type *type = check_typedef (SYMBOL_TYPE (sym));
896 enum type_code code = TYPE_CODE (type);
897
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
899 {
900 type = check_typedef (TYPE_TARGET_TYPE (type));
901 if (sparc_structure_or_union_p (type)
902 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
903 return 1;
904 }
905
906 return 0;
907}
908
386c036b 909struct sparc_frame_cache *
236369e7 910sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 911{
386c036b
MK
912 struct sparc_frame_cache *cache;
913 struct symbol *sym;
c906108c 914
386c036b
MK
915 if (*this_cache)
916 return *this_cache;
c906108c 917
236369e7 918 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 919
386c036b
MK
920 sym = find_pc_function (cache->pc);
921 if (sym)
c906108c 922 {
aff37fc1 923 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 924 }
5465445a
JB
925 else
926 {
927 /* There is no debugging information for this function to
928 help us determine whether this function returns a struct
929 or not. So we rely on another heuristic which is to check
930 the instruction at the return address and see if this is
931 an "unimp" instruction. If it is, then it is a struct-return
932 function. */
933 CORE_ADDR pc;
934 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
935
236369e7 936 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
937 if (sparc_is_unimp_insn (pc))
938 cache->struct_return_p = 1;
939 }
c906108c 940
386c036b
MK
941 return cache;
942}
943
944static void
236369e7 945sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
946 struct frame_id *this_id)
947{
948 struct sparc_frame_cache *cache =
236369e7 949 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
950
951 /* This marks the outermost frame. */
952 if (cache->base == 0)
953 return;
954
955 (*this_id) = frame_id_build (cache->base, cache->pc);
956}
c906108c 957
236369e7
JB
958static struct value *
959sparc32_frame_prev_register (struct frame_info *this_frame,
960 void **this_cache, int regnum)
386c036b 961{
e17a4113 962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 963 struct sparc_frame_cache *cache =
236369e7 964 sparc32_frame_cache (this_frame, this_cache);
c906108c 965
386c036b 966 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 967 {
236369e7 968 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 969
236369e7
JB
970 /* If this functions has a Structure, Union or Quad-Precision
971 return value, we have to skip the UNIMP instruction that encodes
972 the size of the structure. */
973 if (cache->struct_return_p)
974 pc += 4;
386c036b 975
236369e7
JB
976 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
977 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
978 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
979 }
980
42cdca6c
MK
981 /* Handle StackGhost. */
982 {
e17a4113 983 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
984
985 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
986 {
236369e7
JB
987 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
988 ULONGEST i7;
989
990 /* Read the value in from memory. */
991 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
992 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
993 }
994 }
995
386c036b
MK
996 /* The previous frame's `local' and `in' registers have been saved
997 in the register save area. */
998 if (!cache->frameless_p
999 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1000 {
236369e7 1001 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1002
236369e7 1003 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1004 }
c906108c 1005
236369e7 1006 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1007 current frame's `in' registers. */
1008 if (!cache->frameless_p
1009 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1010 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1011
236369e7 1012 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1013}
c906108c 1014
386c036b
MK
1015static const struct frame_unwind sparc32_frame_unwind =
1016{
1017 NORMAL_FRAME,
1018 sparc32_frame_this_id,
236369e7
JB
1019 sparc32_frame_prev_register,
1020 NULL,
1021 default_frame_sniffer
386c036b 1022};
386c036b 1023\f
c906108c 1024
386c036b 1025static CORE_ADDR
236369e7 1026sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1027{
1028 struct sparc_frame_cache *cache =
236369e7 1029 sparc32_frame_cache (this_frame, this_cache);
c906108c 1030
386c036b
MK
1031 return cache->base;
1032}
c906108c 1033
386c036b
MK
1034static const struct frame_base sparc32_frame_base =
1035{
1036 &sparc32_frame_unwind,
1037 sparc32_frame_base_address,
1038 sparc32_frame_base_address,
1039 sparc32_frame_base_address
1040};
c906108c 1041
386c036b 1042static struct frame_id
236369e7 1043sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1044{
1045 CORE_ADDR sp;
5af923b0 1046
236369e7 1047 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1048 if (sp & 1)
1049 sp += BIAS;
236369e7 1050 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1051}
1052\f
c906108c 1053
3923a2b2
MK
1054/* Extract a function return value of TYPE from REGCACHE, and copy
1055 that into VALBUF. */
5af923b0 1056
386c036b
MK
1057static void
1058sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1059 gdb_byte *valbuf)
386c036b
MK
1060{
1061 int len = TYPE_LENGTH (type);
e1613aba 1062 gdb_byte buf[8];
c906108c 1063
386c036b
MK
1064 gdb_assert (!sparc_structure_or_union_p (type));
1065 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1066
386c036b 1067 if (sparc_floating_p (type))
5af923b0 1068 {
386c036b
MK
1069 /* Floating return values. */
1070 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1071 if (len > 4)
1072 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1073 memcpy (valbuf, buf, len);
5af923b0
MS
1074 }
1075 else
1076 {
386c036b
MK
1077 /* Integral and pointer return values. */
1078 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1079
386c036b
MK
1080 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1081 if (len > 4)
1082 {
1083 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1084 gdb_assert (len == 8);
1085 memcpy (valbuf, buf, 8);
1086 }
1087 else
1088 {
1089 /* Just stripping off any unused bytes should preserve the
1090 signed-ness just fine. */
1091 memcpy (valbuf, buf + 4 - len, len);
1092 }
1093 }
1094}
c906108c 1095
3923a2b2
MK
1096/* Store the function return value of type TYPE from VALBUF into
1097 REGCACHE. */
c906108c 1098
386c036b
MK
1099static void
1100sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1101 const gdb_byte *valbuf)
386c036b
MK
1102{
1103 int len = TYPE_LENGTH (type);
e1613aba 1104 gdb_byte buf[8];
c906108c 1105
386c036b
MK
1106 gdb_assert (!sparc_structure_or_union_p (type));
1107 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1108
386c036b
MK
1109 if (sparc_floating_p (type))
1110 {
1111 /* Floating return values. */
1112 memcpy (buf, valbuf, len);
1113 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1114 if (len > 4)
1115 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1116 }
1117 else
c906108c 1118 {
386c036b
MK
1119 /* Integral and pointer return values. */
1120 gdb_assert (sparc_integral_or_pointer_p (type));
1121
1122 if (len > 4)
2757dd86 1123 {
386c036b
MK
1124 gdb_assert (len == 8);
1125 memcpy (buf, valbuf, 8);
1126 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1127 }
1128 else
1129 {
386c036b
MK
1130 /* ??? Do we need to do any sign-extension here? */
1131 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1132 }
386c036b 1133 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1134 }
1135}
1136
b9d4c5ed 1137static enum return_value_convention
c055b101
CV
1138sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1139 struct type *type, struct regcache *regcache,
1140 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1141{
e17a4113
UW
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143
0a8f48b9
MK
1144 /* The psABI says that "...every stack frame reserves the word at
1145 %fp+64. If a function returns a structure, union, or
1146 quad-precision value, this word should hold the address of the
1147 object into which the return value should be copied." This
1148 guarantees that we can always find the return value, not just
1149 before the function returns. */
1150
b9d4c5ed
MK
1151 if (sparc_structure_or_union_p (type)
1152 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1153 {
1154 if (readbuf)
1155 {
1156 ULONGEST sp;
1157 CORE_ADDR addr;
1158
1159 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1160 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1161 read_memory (addr, readbuf, TYPE_LENGTH (type));
1162 }
1163
1164 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1165 }
b9d4c5ed
MK
1166
1167 if (readbuf)
1168 sparc32_extract_return_value (type, regcache, readbuf);
1169 if (writebuf)
1170 sparc32_store_return_value (type, regcache, writebuf);
1171
1172 return RETURN_VALUE_REGISTER_CONVENTION;
1173}
1174
386c036b
MK
1175static int
1176sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1177{
386c036b
MK
1178 return (sparc_structure_or_union_p (type)
1179 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1180}
c906108c 1181
aff37fc1 1182static int
4a4e5149 1183sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1184{
236369e7 1185 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1186 struct symbol *sym = find_pc_function (pc);
1187
1188 if (sym)
1189 return sparc32_struct_return_from_sym (sym);
1190 return 0;
1191}
1192
f5a9b87d
DM
1193static void
1194sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1195 struct dwarf2_frame_state_reg *reg,
4a4e5149 1196 struct frame_info *this_frame)
f5a9b87d 1197{
aff37fc1
DM
1198 int off;
1199
f5a9b87d
DM
1200 switch (regnum)
1201 {
1202 case SPARC_G0_REGNUM:
1203 /* Since %g0 is always zero, there is no point in saving it, and
1204 people will be inclined omit it from the CFI. Make sure we
1205 don't warn about that. */
1206 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1207 break;
1208 case SPARC_SP_REGNUM:
1209 reg->how = DWARF2_FRAME_REG_CFA;
1210 break;
1211 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1212 case SPARC32_NPC_REGNUM:
1213 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1214 off = 8;
4a4e5149 1215 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1216 off += 4;
1217 if (regnum == SPARC32_NPC_REGNUM)
1218 off += 4;
1219 reg->loc.offset = off;
f5a9b87d
DM
1220 break;
1221 }
1222}
1223
386c036b
MK
1224\f
1225/* The SPARC Architecture doesn't have hardware single-step support,
1226 and most operating systems don't implement it either, so we provide
1227 software single-step mechanism. */
c906108c 1228
386c036b 1229static CORE_ADDR
0b1b3e42 1230sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1231 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1232{
1233 unsigned long insn = sparc_fetch_instruction (pc);
1234 int conditional_p = X_COND (insn) & 0x7;
1235 int branch_p = 0;
1236 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1237
386c036b 1238 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1239 {
386c036b
MK
1240 /* Branch on Integer Register with Prediction (BPr). */
1241 branch_p = 1;
1242 conditional_p = 1;
c906108c 1243 }
386c036b 1244 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1245 {
386c036b
MK
1246 /* Branch on Floating-Point Condition Codes (FBfcc). */
1247 branch_p = 1;
1248 offset = 4 * X_DISP22 (insn);
c906108c 1249 }
386c036b
MK
1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1251 {
1252 /* Branch on Floating-Point Condition Codes with Prediction
1253 (FBPfcc). */
1254 branch_p = 1;
1255 offset = 4 * X_DISP19 (insn);
1256 }
1257 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1258 {
1259 /* Branch on Integer Condition Codes (Bicc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP22 (insn);
1262 }
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1264 {
386c036b
MK
1265 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1266 branch_p = 1;
1267 offset = 4 * X_DISP19 (insn);
c906108c 1268 }
c893be75
MK
1269 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1270 {
1271 /* Trap instruction (TRAP). */
0b1b3e42 1272 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1273 }
386c036b
MK
1274
1275 /* FIXME: Handle DONE and RETRY instructions. */
1276
386c036b 1277 if (branch_p)
c906108c 1278 {
386c036b 1279 if (conditional_p)
c906108c 1280 {
386c036b
MK
1281 /* For conditional branches, return nPC + 4 iff the annul
1282 bit is 1. */
1283 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1284 }
1285 else
1286 {
386c036b
MK
1287 /* For unconditional branches, return the target if its
1288 specified condition is "always" and return nPC + 4 if the
1289 condition is "never". If the annul bit is 1, set *NPC to
1290 zero. */
1291 if (X_COND (insn) == 0x0)
1292 pc = *npc, offset = 4;
1293 if (X_A (insn))
1294 *npc = 0;
1295
1296 gdb_assert (offset != 0);
1297 return pc + offset;
c906108c
SS
1298 }
1299 }
386c036b
MK
1300
1301 return 0;
c906108c
SS
1302}
1303
c893be75 1304static CORE_ADDR
0b1b3e42 1305sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1306{
1307 return 0;
1308}
1309
e6590a1b 1310int
0b1b3e42 1311sparc_software_single_step (struct frame_info *frame)
386c036b 1312{
0b1b3e42 1313 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1314 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1315 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1316 CORE_ADDR npc, nnpc;
c906108c 1317
e0cd558a 1318 CORE_ADDR pc, orig_npc;
c906108c 1319
0b1b3e42
UW
1320 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1321 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1322
e0cd558a 1323 /* Analyze the instruction at PC. */
0b1b3e42 1324 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1325 if (npc != 0)
6c95b8df 1326 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1327
e0cd558a 1328 if (nnpc != 0)
6c95b8df 1329 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1330
e0cd558a
UW
1331 /* Assert that we have set at least one breakpoint, and that
1332 they're not set at the same spot - unless we're going
1333 from here straight to NULL, i.e. a call or jump to 0. */
1334 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1335 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1336
1337 return 1;
386c036b
MK
1338}
1339
1340static void
61a1198a 1341sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1342{
61a1198a 1343 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1344
61a1198a
UW
1345 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1346 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1347}
1348\f
5af923b0 1349
a54124c5
MK
1350/* Return the appropriate register set for the core section identified
1351 by SECT_NAME and SECT_SIZE. */
1352
63807e1d 1353static const struct regset *
a54124c5
MK
1354sparc_regset_from_core_section (struct gdbarch *gdbarch,
1355 const char *sect_name, size_t sect_size)
1356{
1357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1358
c558d81a 1359 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1360 return tdep->gregset;
1361
c558d81a 1362 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1363 return tdep->fpregset;
1364
1365 return NULL;
1366}
1367\f
1368
386c036b
MK
1369static struct gdbarch *
1370sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1371{
1372 struct gdbarch_tdep *tdep;
1373 struct gdbarch *gdbarch;
c906108c 1374
386c036b
MK
1375 /* If there is already a candidate, use it. */
1376 arches = gdbarch_list_lookup_by_info (arches, &info);
1377 if (arches != NULL)
1378 return arches->gdbarch;
c906108c 1379
386c036b 1380 /* Allocate space for the new architecture. */
1390fcc2 1381 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1382 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1383
386c036b
MK
1384 tdep->pc_regnum = SPARC32_PC_REGNUM;
1385 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1386 tdep->step_trap = sparc_step_trap;
386c036b
MK
1387
1388 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1389 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1390
1391 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1392 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1393 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1394 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1395 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1396 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1397
1398 /* Register numbers of various important registers. */
1399 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1400 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1401 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1402
1403 /* Call dummy code. */
1404 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1405 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1406 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1407
b9d4c5ed 1408 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1409 set_gdbarch_stabs_argument_has_addr
1410 (gdbarch, sparc32_stabs_argument_has_addr);
1411
1412 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1413
1414 /* Stack grows downward. */
1415 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1416
386c036b 1417 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1418
386c036b 1419 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1420
386c036b 1421 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1422
386c036b
MK
1423 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1424 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1425
236369e7 1426 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1427
386c036b 1428 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1429
386c036b
MK
1430 frame_base_set_default (gdbarch, &sparc32_frame_base);
1431
f5a9b87d
DM
1432 /* Hook in the DWARF CFI frame unwinder. */
1433 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1434 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1435 StackGhost issues have been resolved. */
1436
b2a0b9b2
DM
1437 /* Hook in ABI-specific overrides, if they have been registered. */
1438 gdbarch_init_osabi (info, gdbarch);
1439
236369e7 1440 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1441
a54124c5 1442 /* If we have register sets, enable the generic core file support. */
4c72d57a 1443 if (tdep->gregset)
a54124c5
MK
1444 set_gdbarch_regset_from_core_section (gdbarch,
1445 sparc_regset_from_core_section);
1446
386c036b
MK
1447 return gdbarch;
1448}
1449\f
1450/* Helper functions for dealing with register windows. */
1451
1452void
1453sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1454{
e17a4113
UW
1455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1457 int offset = 0;
e1613aba 1458 gdb_byte buf[8];
386c036b
MK
1459 int i;
1460
1461 if (sp & 1)
1462 {
1463 /* Registers are 64-bit. */
1464 sp += BIAS;
c906108c 1465
386c036b
MK
1466 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1467 {
1468 if (regnum == i || regnum == -1)
1469 {
1470 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1471
1472 /* Handle StackGhost. */
1473 if (i == SPARC_I7_REGNUM)
1474 {
e17a4113
UW
1475 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1476 ULONGEST i7;
f700a364 1477
e17a4113
UW
1478 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1479 store_unsigned_integer (buf + offset, 8, byte_order,
1480 i7 ^ wcookie);
f700a364
MK
1481 }
1482
386c036b
MK
1483 regcache_raw_supply (regcache, i, buf);
1484 }
1485 }
1486 }
1487 else
c906108c 1488 {
386c036b
MK
1489 /* Registers are 32-bit. Toss any sign-extension of the stack
1490 pointer. */
1491 sp &= 0xffffffffUL;
c906108c 1492
386c036b
MK
1493 /* Clear out the top half of the temporary buffer, and put the
1494 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1495 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1496 {
386c036b
MK
1497 memset (buf, 0, 4);
1498 offset = 4;
1499 }
c906108c 1500
386c036b
MK
1501 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1502 {
1503 if (regnum == i || regnum == -1)
1504 {
1505 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1506 buf + offset, 4);
42cdca6c
MK
1507
1508 /* Handle StackGhost. */
1509 if (i == SPARC_I7_REGNUM)
1510 {
e17a4113
UW
1511 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1512 ULONGEST i7;
42cdca6c 1513
e17a4113
UW
1514 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1515 store_unsigned_integer (buf + offset, 4, byte_order,
1516 i7 ^ wcookie);
42cdca6c
MK
1517 }
1518
386c036b
MK
1519 regcache_raw_supply (regcache, i, buf);
1520 }
c906108c
SS
1521 }
1522 }
c906108c 1523}
c906108c
SS
1524
1525void
386c036b
MK
1526sparc_collect_rwindow (const struct regcache *regcache,
1527 CORE_ADDR sp, int regnum)
c906108c 1528{
e17a4113
UW
1529 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1531 int offset = 0;
e1613aba 1532 gdb_byte buf[8];
386c036b 1533 int i;
5af923b0 1534
386c036b 1535 if (sp & 1)
5af923b0 1536 {
386c036b
MK
1537 /* Registers are 64-bit. */
1538 sp += BIAS;
c906108c 1539
386c036b
MK
1540 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1541 {
1542 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1543 {
1544 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1545
1546 /* Handle StackGhost. */
1547 if (i == SPARC_I7_REGNUM)
1548 {
e17a4113
UW
1549 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1550 ULONGEST i7;
f700a364 1551
e17a4113
UW
1552 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1553 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1554 }
1555
386c036b
MK
1556 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1557 }
1558 }
5af923b0
MS
1559 }
1560 else
1561 {
386c036b
MK
1562 /* Registers are 32-bit. Toss any sign-extension of the stack
1563 pointer. */
1564 sp &= 0xffffffffUL;
1565
1566 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1567 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1568 offset = 4;
1569
1570 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1571 {
1572 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1573 {
1574 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1575
1576 /* Handle StackGhost. */
1577 if (i == SPARC_I7_REGNUM)
1578 {
e17a4113
UW
1579 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1580 ULONGEST i7;
42cdca6c 1581
e17a4113
UW
1582 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1583 store_unsigned_integer (buf + offset, 4, byte_order,
1584 i7 ^ wcookie);
42cdca6c
MK
1585 }
1586
386c036b
MK
1587 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1588 buf + offset, 4);
1589 }
1590 }
5af923b0 1591 }
c906108c
SS
1592}
1593
386c036b
MK
1594/* Helper functions for dealing with register sets. */
1595
c906108c 1596void
386c036b
MK
1597sparc32_supply_gregset (const struct sparc_gregset *gregset,
1598 struct regcache *regcache,
1599 int regnum, const void *gregs)
c906108c 1600{
e1613aba 1601 const gdb_byte *regs = gregs;
386c036b 1602 int i;
5af923b0 1603
386c036b
MK
1604 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1605 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1606 regs + gregset->r_psr_offset);
c906108c 1607
386c036b
MK
1608 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1609 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1610 regs + gregset->r_pc_offset);
5af923b0 1611
386c036b
MK
1612 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1613 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1614 regs + gregset->r_npc_offset);
5af923b0 1615
386c036b
MK
1616 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1617 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1618 regs + gregset->r_y_offset);
5af923b0 1619
386c036b
MK
1620 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1622
386c036b 1623 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1624 {
386c036b
MK
1625 int offset = gregset->r_g1_offset;
1626
1627 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1628 {
1629 if (regnum == i || regnum == -1)
1630 regcache_raw_supply (regcache, i, regs + offset);
1631 offset += 4;
1632 }
c906108c 1633 }
386c036b
MK
1634
1635 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1636 {
386c036b
MK
1637 /* Not all of the register set variants include Locals and
1638 Inputs. For those that don't, we read them off the stack. */
1639 if (gregset->r_l0_offset == -1)
1640 {
1641 ULONGEST sp;
1642
1643 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1644 sparc_supply_rwindow (regcache, sp, regnum);
1645 }
1646 else
1647 {
1648 int offset = gregset->r_l0_offset;
1649
1650 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1651 {
1652 if (regnum == i || regnum == -1)
1653 regcache_raw_supply (regcache, i, regs + offset);
1654 offset += 4;
1655 }
1656 }
c906108c
SS
1657 }
1658}
1659
c5aa993b 1660void
386c036b
MK
1661sparc32_collect_gregset (const struct sparc_gregset *gregset,
1662 const struct regcache *regcache,
1663 int regnum, void *gregs)
c906108c 1664{
e1613aba 1665 gdb_byte *regs = gregs;
386c036b 1666 int i;
c5aa993b 1667
386c036b
MK
1668 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1669 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1670 regs + gregset->r_psr_offset);
60054393 1671
386c036b
MK
1672 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1673 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1674 regs + gregset->r_pc_offset);
1675
1676 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1677 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1678 regs + gregset->r_npc_offset);
5af923b0 1679
386c036b
MK
1680 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1681 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1682 regs + gregset->r_y_offset);
1683
1684 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1685 {
386c036b
MK
1686 int offset = gregset->r_g1_offset;
1687
1688 /* %g0 is always zero. */
1689 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1690 {
1691 if (regnum == i || regnum == -1)
1692 regcache_raw_collect (regcache, i, regs + offset);
1693 offset += 4;
1694 }
5af923b0 1695 }
386c036b
MK
1696
1697 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1698 {
386c036b
MK
1699 /* Not all of the register set variants include Locals and
1700 Inputs. For those that don't, we read them off the stack. */
1701 if (gregset->r_l0_offset != -1)
1702 {
1703 int offset = gregset->r_l0_offset;
1704
1705 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1706 {
1707 if (regnum == i || regnum == -1)
1708 regcache_raw_collect (regcache, i, regs + offset);
1709 offset += 4;
1710 }
1711 }
5af923b0 1712 }
c906108c
SS
1713}
1714
c906108c 1715void
386c036b
MK
1716sparc32_supply_fpregset (struct regcache *regcache,
1717 int regnum, const void *fpregs)
c906108c 1718{
e1613aba 1719 const gdb_byte *regs = fpregs;
386c036b 1720 int i;
60054393 1721
386c036b 1722 for (i = 0; i < 32; i++)
c906108c 1723 {
386c036b
MK
1724 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1725 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1726 }
5af923b0 1727
386c036b
MK
1728 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1729 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1730}
1731
386c036b
MK
1732void
1733sparc32_collect_fpregset (const struct regcache *regcache,
1734 int regnum, void *fpregs)
c906108c 1735{
e1613aba 1736 gdb_byte *regs = fpregs;
386c036b 1737 int i;
c906108c 1738
386c036b
MK
1739 for (i = 0; i < 32; i++)
1740 {
1741 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1742 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1743 }
c906108c 1744
386c036b
MK
1745 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1746 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1747}
c906108c 1748\f
c906108c 1749
386c036b 1750/* SunOS 4. */
c906108c 1751
386c036b
MK
1752/* From <machine/reg.h>. */
1753const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1754{
386c036b
MK
1755 0 * 4, /* %psr */
1756 1 * 4, /* %pc */
1757 2 * 4, /* %npc */
1758 3 * 4, /* %y */
1759 -1, /* %wim */
1760 -1, /* %tbr */
1761 4 * 4, /* %g1 */
1762 -1 /* %l0 */
1763};
1764\f
c906108c 1765
386c036b
MK
1766/* Provide a prototype to silence -Wmissing-prototypes. */
1767void _initialize_sparc_tdep (void);
c906108c
SS
1768
1769void
386c036b 1770_initialize_sparc_tdep (void)
c906108c 1771{
386c036b 1772 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1773}