]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc-tdep.c
* block.h (struct block): Remove "gcc_compile_flag" member.
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
6aba47ca 3 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
43bd9a9e 38#include "gdb_assert.h"
386c036b 39#include "gdb_string.h"
c906108c 40
386c036b 41#include "sparc-tdep.h"
c906108c 42
a54124c5
MK
43struct regset;
44
9eb42ed1
MK
45/* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 48 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 49 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59/* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64/* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-recision format. */
8da61cc4 66#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
67
68/* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71#undef BIAS
72#define BIAS 2047
73
74/* Macros to extract fields from SPARC instructions. */
c906108c
SS
75#define X_OP(i) (((i) >> 30) & 0x3)
76#define X_RD(i) (((i) >> 25) & 0x1f)
77#define X_A(i) (((i) >> 29) & 1)
78#define X_COND(i) (((i) >> 25) & 0xf)
79#define X_OP2(i) (((i) >> 22) & 0x7)
80#define X_IMM22(i) ((i) & 0x3fffff)
81#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 82#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 83#define X_RS2(i) ((i) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 88#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 89
386c036b
MK
90/* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93unsigned long
94sparc_fetch_instruction (CORE_ADDR pc)
c906108c 95{
e1613aba 96 gdb_byte buf[4];
386c036b
MK
97 unsigned long insn;
98 int i;
99
690668cc 100 /* If we can't read the instruction at PC, return zero. */
b5bf31df 101 if (read_memory_nobpt (pc, buf, sizeof (buf)))
690668cc 102 return 0;
c906108c 103
386c036b
MK
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108}
42cdca6c
MK
109\f
110
5465445a
JB
111/* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114static int
115sparc_is_unimp_insn (CORE_ADDR pc)
116{
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120}
121
42cdca6c
MK
122/* OpenBSD/sparc includes StackGhost, which according to the author's
123 website http://stackghost.cerias.purdue.edu "... transparently and
124 automatically protects applications' stack frames; more
125 specifically, it guards the return pointers. The protection
126 mechanisms require no application source or binary modification and
127 imposes only a negligible performance penalty."
128
129 The same website provides the following description of how
130 StackGhost works:
131
132 "StackGhost interfaces with the kernel trap handler that would
133 normally write out registers to the stack and the handler that
134 would read them back in. By XORing a cookie into the
135 return-address saved in the user stack when it is actually written
136 to the stack, and then XOR it out when the return-address is pulled
137 from the stack, StackGhost can cause attacker corrupted return
138 pointers to behave in a manner the attacker cannot predict.
139 StackGhost can also use several unused bits in the return pointer
140 to detect a smashed return pointer and abort the process."
141
142 For GDB this means that whenever we're reading %i7 from a stack
143 frame's window save area, we'll have to XOR the cookie.
144
145 More information on StackGuard can be found on in:
146
147 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
148 Stack Protection." 2001. Published in USENIX Security Symposium
149 '01. */
150
151/* Fetch StackGhost Per-Process XOR cookie. */
152
153ULONGEST
154sparc_fetch_wcookie (void)
155{
baf92889 156 struct target_ops *ops = &current_target;
e1613aba 157 gdb_byte buf[8];
baf92889
MK
158 int len;
159
13547ab6 160 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
161 if (len == -1)
162 return 0;
42cdca6c 163
baf92889
MK
164 /* We should have either an 32-bit or an 64-bit cookie. */
165 gdb_assert (len == 4 || len == 8);
166
167 return extract_unsigned_integer (buf, len);
168}
386c036b 169\f
baf92889 170
386c036b
MK
171/* The functions on this page are intended to be used to classify
172 function arguments. */
c906108c 173
386c036b 174/* Check whether TYPE is "Integral or Pointer". */
c906108c 175
386c036b
MK
176static int
177sparc_integral_or_pointer_p (const struct type *type)
c906108c 178{
80ad1639
MK
179 int len = TYPE_LENGTH (type);
180
386c036b 181 switch (TYPE_CODE (type))
c906108c 182 {
386c036b
MK
183 case TYPE_CODE_INT:
184 case TYPE_CODE_BOOL:
185 case TYPE_CODE_CHAR:
186 case TYPE_CODE_ENUM:
187 case TYPE_CODE_RANGE:
80ad1639
MK
188 /* We have byte, half-word, word and extended-word/doubleword
189 integral types. The doubleword is an extension to the
190 original 32-bit ABI by the SCD 2.4.x. */
191 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
192 case TYPE_CODE_PTR:
193 case TYPE_CODE_REF:
80ad1639
MK
194 /* Allow either 32-bit or 64-bit pointers. */
195 return (len == 4 || len == 8);
386c036b
MK
196 default:
197 break;
198 }
c906108c 199
386c036b
MK
200 return 0;
201}
c906108c 202
386c036b 203/* Check whether TYPE is "Floating". */
c906108c 204
386c036b
MK
205static int
206sparc_floating_p (const struct type *type)
207{
208 switch (TYPE_CODE (type))
c906108c 209 {
386c036b
MK
210 case TYPE_CODE_FLT:
211 {
212 int len = TYPE_LENGTH (type);
213 return (len == 4 || len == 8 || len == 16);
214 }
215 default:
216 break;
217 }
218
219 return 0;
220}
c906108c 221
386c036b 222/* Check whether TYPE is "Structure or Union". */
c906108c 223
386c036b
MK
224static int
225sparc_structure_or_union_p (const struct type *type)
226{
227 switch (TYPE_CODE (type))
228 {
229 case TYPE_CODE_STRUCT:
230 case TYPE_CODE_UNION:
231 return 1;
232 default:
233 break;
c906108c 234 }
386c036b
MK
235
236 return 0;
c906108c 237}
386c036b
MK
238
239/* Register information. */
240
241static const char *sparc32_register_names[] =
5af923b0 242{
386c036b
MK
243 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
244 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
245 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
246 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
247
248 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
249 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
250 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
251 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
252
253 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
254};
255
386c036b
MK
256/* Total number of registers. */
257#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 258
386c036b
MK
259/* We provide the aliases %d0..%d30 for the floating registers as
260 "psuedo" registers. */
261
262static const char *sparc32_pseudo_register_names[] =
263{
264 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
265 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
266};
267
268/* Total number of pseudo registers. */
269#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
270
271/* Return the name of register REGNUM. */
272
273static const char *
274sparc32_register_name (int regnum)
275{
276 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
277 return sparc32_register_names[regnum];
278
279 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
280 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
281
282 return NULL;
283}
2d457077
MK
284\f
285
286/* Type for %psr. */
287struct type *sparc_psr_type;
288
289/* Type for %fsr. */
290struct type *sparc_fsr_type;
291
292/* Construct types for ISA-specific registers. */
293
294static void
295sparc_init_types (void)
296{
297 struct type *type;
298
299 type = init_flags_type ("builtin_type_sparc_psr", 4);
300 append_flags_type_flag (type, 5, "ET");
301 append_flags_type_flag (type, 6, "PS");
302 append_flags_type_flag (type, 7, "S");
303 append_flags_type_flag (type, 12, "EF");
304 append_flags_type_flag (type, 13, "EC");
305 sparc_psr_type = type;
306
307 type = init_flags_type ("builtin_type_sparc_fsr", 4);
308 append_flags_type_flag (type, 0, "NXA");
309 append_flags_type_flag (type, 1, "DZA");
310 append_flags_type_flag (type, 2, "UFA");
311 append_flags_type_flag (type, 3, "OFA");
312 append_flags_type_flag (type, 4, "NVA");
313 append_flags_type_flag (type, 5, "NXC");
314 append_flags_type_flag (type, 6, "DZC");
315 append_flags_type_flag (type, 7, "UFC");
316 append_flags_type_flag (type, 8, "OFC");
317 append_flags_type_flag (type, 9, "NVC");
318 append_flags_type_flag (type, 22, "NS");
319 append_flags_type_flag (type, 23, "NXM");
320 append_flags_type_flag (type, 24, "DZM");
321 append_flags_type_flag (type, 25, "UFM");
322 append_flags_type_flag (type, 26, "OFM");
323 append_flags_type_flag (type, 27, "NVM");
324 sparc_fsr_type = type;
325}
386c036b
MK
326
327/* Return the GDB type object for the "standard" data type of data in
328 register REGNUM. */
329
330static struct type *
331sparc32_register_type (struct gdbarch *gdbarch, int regnum)
332{
333 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
334 return builtin_type_float;
335
336 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
337 return builtin_type_double;
338
339 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
340 return builtin_type_void_data_ptr;
341
342 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
343 return builtin_type_void_func_ptr;
344
2d457077
MK
345 if (regnum == SPARC32_PSR_REGNUM)
346 return sparc_psr_type;
347
348 if (regnum == SPARC32_FSR_REGNUM)
349 return sparc_fsr_type;
350
386c036b
MK
351 return builtin_type_int32;
352}
353
354static void
355sparc32_pseudo_register_read (struct gdbarch *gdbarch,
356 struct regcache *regcache,
e1613aba 357 int regnum, gdb_byte *buf)
386c036b
MK
358{
359 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
360
361 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
362 regcache_raw_read (regcache, regnum, buf);
e1613aba 363 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
364}
365
366static void
367sparc32_pseudo_register_write (struct gdbarch *gdbarch,
368 struct regcache *regcache,
e1613aba 369 int regnum, const gdb_byte *buf)
386c036b
MK
370{
371 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
372
373 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
374 regcache_raw_write (regcache, regnum, buf);
e1613aba 375 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
376}
377\f
378
379static CORE_ADDR
380sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 381 CORE_ADDR funcaddr,
386c036b
MK
382 struct value **args, int nargs,
383 struct type *value_type,
e4fd649a
UW
384 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
385 struct regcache *regcache)
c906108c 386{
386c036b
MK
387 *bp_addr = sp - 4;
388 *real_pc = funcaddr;
389
82585c72 390 if (using_struct_return (value_type))
c906108c 391 {
e1613aba 392 gdb_byte buf[4];
386c036b
MK
393
394 /* This is an UNIMP instruction. */
395 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
396 write_memory (sp - 8, buf, 4);
397 return sp - 8;
c906108c
SS
398 }
399
386c036b
MK
400 return sp - 4;
401}
402
403static CORE_ADDR
404sparc32_store_arguments (struct regcache *regcache, int nargs,
405 struct value **args, CORE_ADDR sp,
406 int struct_return, CORE_ADDR struct_addr)
407{
408 /* Number of words in the "parameter array". */
409 int num_elements = 0;
410 int element = 0;
411 int i;
412
413 for (i = 0; i < nargs; i++)
c906108c 414 {
4991999e 415 struct type *type = value_type (args[i]);
386c036b
MK
416 int len = TYPE_LENGTH (type);
417
418 if (sparc_structure_or_union_p (type)
419 || (sparc_floating_p (type) && len == 16))
c906108c 420 {
386c036b
MK
421 /* Structure, Union and Quad-Precision Arguments. */
422 sp -= len;
423
424 /* Use doubleword alignment for these values. That's always
425 correct, and wasting a few bytes shouldn't be a problem. */
426 sp &= ~0x7;
427
0fd88904 428 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
429 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
430 num_elements++;
431 }
432 else if (sparc_floating_p (type))
433 {
434 /* Floating arguments. */
435 gdb_assert (len == 4 || len == 8);
436 num_elements += (len / 4);
c906108c 437 }
c5aa993b
JM
438 else
439 {
386c036b
MK
440 /* Integral and pointer arguments. */
441 gdb_assert (sparc_integral_or_pointer_p (type));
442
443 if (len < 4)
444 args[i] = value_cast (builtin_type_int32, args[i]);
445 num_elements += ((len + 3) / 4);
c5aa993b 446 }
c906108c 447 }
c906108c 448
386c036b
MK
449 /* Always allocate at least six words. */
450 sp -= max (6, num_elements) * 4;
c906108c 451
386c036b
MK
452 /* The psABI says that "Software convention requires space for the
453 struct/union return value pointer, even if the word is unused." */
454 sp -= 4;
c906108c 455
386c036b
MK
456 /* The psABI says that "Although software convention and the
457 operating system require every stack frame to be doubleword
458 aligned." */
459 sp &= ~0x7;
c906108c 460
386c036b 461 for (i = 0; i < nargs; i++)
c906108c 462 {
0fd88904 463 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 464 struct type *type = value_type (args[i]);
386c036b 465 int len = TYPE_LENGTH (type);
c906108c 466
386c036b 467 gdb_assert (len == 4 || len == 8);
c906108c 468
386c036b
MK
469 if (element < 6)
470 {
471 int regnum = SPARC_O0_REGNUM + element;
c906108c 472
386c036b
MK
473 regcache_cooked_write (regcache, regnum, valbuf);
474 if (len > 4 && element < 5)
475 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
476 }
5af923b0 477
386c036b
MK
478 /* Always store the argument in memory. */
479 write_memory (sp + 4 + element * 4, valbuf, len);
480 element += len / 4;
481 }
c906108c 482
386c036b 483 gdb_assert (element == num_elements);
c906108c 484
386c036b 485 if (struct_return)
c906108c 486 {
e1613aba 487 gdb_byte buf[4];
c906108c 488
386c036b
MK
489 store_unsigned_integer (buf, 4, struct_addr);
490 write_memory (sp, buf, 4);
491 }
c906108c 492
386c036b 493 return sp;
c906108c
SS
494}
495
386c036b 496static CORE_ADDR
7d9b040b 497sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
498 struct regcache *regcache, CORE_ADDR bp_addr,
499 int nargs, struct value **args, CORE_ADDR sp,
500 int struct_return, CORE_ADDR struct_addr)
c906108c 501{
386c036b
MK
502 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
503
504 /* Set return address. */
505 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
506
507 /* Set up function arguments. */
508 sp = sparc32_store_arguments (regcache, nargs, args, sp,
509 struct_return, struct_addr);
510
511 /* Allocate the 16-word window save area. */
512 sp -= 16 * 4;
c906108c 513
386c036b
MK
514 /* Stack should be doubleword aligned at this point. */
515 gdb_assert (sp % 8 == 0);
c906108c 516
386c036b
MK
517 /* Finally, update the stack pointer. */
518 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
519
520 return sp;
521}
522\f
c906108c 523
386c036b
MK
524/* Use the program counter to determine the contents and size of a
525 breakpoint instruction. Return a pointer to a string of bytes that
526 encode a breakpoint instruction, store the length of the string in
527 *LEN and optionally adjust *PC to point to the correct memory
528 location for inserting the breakpoint. */
529
e1613aba 530static const gdb_byte *
386c036b
MK
531sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
532{
864a1a37 533 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 534
386c036b
MK
535 *len = sizeof (break_insn);
536 return break_insn;
c906108c 537}
386c036b 538\f
c906108c 539
386c036b 540/* Allocate and initialize a frame cache. */
c906108c 541
386c036b
MK
542static struct sparc_frame_cache *
543sparc_alloc_frame_cache (void)
544{
545 struct sparc_frame_cache *cache;
546 int i;
c906108c 547
386c036b 548 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 549
386c036b
MK
550 /* Base address. */
551 cache->base = 0;
552 cache->pc = 0;
c906108c 553
386c036b
MK
554 /* Frameless until proven otherwise. */
555 cache->frameless_p = 1;
556
557 cache->struct_return_p = 0;
558
559 return cache;
560}
561
b0b92586
JB
562/* GCC generates several well-known sequences of instructions at the begining
563 of each function prologue when compiling with -fstack-check. If one of
564 such sequences starts at START_PC, then return the address of the
565 instruction immediately past this sequence. Otherwise, return START_PC. */
566
567static CORE_ADDR
568sparc_skip_stack_check (const CORE_ADDR start_pc)
569{
570 CORE_ADDR pc = start_pc;
571 unsigned long insn;
572 int offset_stack_checking_sequence = 0;
573
574 /* With GCC, all stack checking sequences begin with the same two
575 instructions. */
576
577 /* sethi <some immediate>,%g1 */
578 insn = sparc_fetch_instruction (pc);
579 pc = pc + 4;
580 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
581 return start_pc;
582
583 /* sub %sp, %g1, %g1 */
584 insn = sparc_fetch_instruction (pc);
585 pc = pc + 4;
586 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
587 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
588 return start_pc;
589
590 insn = sparc_fetch_instruction (pc);
591 pc = pc + 4;
592
593 /* First possible sequence:
594 [first two instructions above]
595 clr [%g1 - some immediate] */
596
597 /* clr [%g1 - some immediate] */
598 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
599 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
600 {
601 /* Valid stack-check sequence, return the new PC. */
602 return pc;
603 }
604
605 /* Second possible sequence: A small number of probes.
606 [first two instructions above]
607 clr [%g1]
608 add %g1, -<some immediate>, %g1
609 clr [%g1]
610 [repeat the two instructions above any (small) number of times]
611 clr [%g1 - some immediate] */
612
613 /* clr [%g1] */
614 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
615 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
616 {
617 while (1)
618 {
619 /* add %g1, -<some immediate>, %g1 */
620 insn = sparc_fetch_instruction (pc);
621 pc = pc + 4;
622 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
623 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
624 break;
625
626 /* clr [%g1] */
627 insn = sparc_fetch_instruction (pc);
628 pc = pc + 4;
629 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
630 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
631 return start_pc;
632 }
633
634 /* clr [%g1 - some immediate] */
635 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
636 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
637 return start_pc;
638
639 /* We found a valid stack-check sequence, return the new PC. */
640 return pc;
641 }
642
643 /* Third sequence: A probing loop.
644 [first two instructions above]
645 sethi <some immediate>, %g4
646 sub %g1, %g4, %g4
647 cmp %g1, %g4
648 be <disp>
649 add %g1, -<some immediate>, %g1
650 ba <disp>
651 clr [%g1]
652 clr [%g4 - some immediate] */
653
654 /* sethi <some immediate>, %g4 */
655 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
656 {
657 /* sub %g1, %g4, %g4 */
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
661 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
662 return start_pc;
663
664 /* cmp %g1, %g4 */
665 insn = sparc_fetch_instruction (pc);
666 pc = pc + 4;
667 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
668 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
669 return start_pc;
670
671 /* be <disp> */
672 insn = sparc_fetch_instruction (pc);
673 pc = pc + 4;
674 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
675 return start_pc;
676
677 /* add %g1, -<some immediate>, %g1 */
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
681 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
682 return start_pc;
683
684 /* ba <disp> */
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
688 return start_pc;
689
690 /* clr [%g1] */
691 insn = sparc_fetch_instruction (pc);
692 pc = pc + 4;
693 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
694 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
695 return start_pc;
696
697 /* clr [%g4 - some immediate] */
698 insn = sparc_fetch_instruction (pc);
699 pc = pc + 4;
700 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
701 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
702 return start_pc;
703
704 /* We found a valid stack-check sequence, return the new PC. */
705 return pc;
706 }
707
708 /* No stack check code in our prologue, return the start_pc. */
709 return start_pc;
710}
711
386c036b
MK
712CORE_ADDR
713sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
714 struct sparc_frame_cache *cache)
c906108c 715{
386c036b
MK
716 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
717 unsigned long insn;
718 int offset = 0;
c906108c 719 int dest = -1;
c906108c 720
b0b92586
JB
721 pc = sparc_skip_stack_check (pc);
722
386c036b
MK
723 if (current_pc <= pc)
724 return current_pc;
725
726 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
727 SPARC the linker usually defines a symbol (typically
728 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
729 This symbol makes us end up here with PC pointing at the start of
730 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
731 would do our normal prologue analysis, we would probably conclude
732 that we've got a frame when in reality we don't, since the
733 dynamic linker patches up the first PLT with some code that
734 starts with a SAVE instruction. Patch up PC such that it points
735 at the start of our PLT entry. */
736 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
737 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 738
386c036b
MK
739 insn = sparc_fetch_instruction (pc);
740
741 /* Recognize a SETHI insn and record its destination. */
742 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
743 {
744 dest = X_RD (insn);
386c036b
MK
745 offset += 4;
746
747 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
748 }
749
386c036b
MK
750 /* Allow for an arithmetic operation on DEST or %g1. */
751 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
752 && (X_RD (insn) == 1 || X_RD (insn) == dest))
753 {
386c036b 754 offset += 4;
c906108c 755
386c036b 756 insn = sparc_fetch_instruction (pc + 8);
c906108c 757 }
c906108c 758
386c036b
MK
759 /* Check for the SAVE instruction that sets up the frame. */
760 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 761 {
386c036b
MK
762 cache->frameless_p = 0;
763 return pc + offset + 4;
c906108c
SS
764 }
765
766 return pc;
767}
768
386c036b
MK
769static CORE_ADDR
770sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
771{
772 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
773 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
774}
775
776/* Return PC of first real instruction of the function starting at
777 START_PC. */
f510d44e 778
386c036b
MK
779static CORE_ADDR
780sparc32_skip_prologue (CORE_ADDR start_pc)
c906108c 781{
f510d44e
DM
782 struct symtab_and_line sal;
783 CORE_ADDR func_start, func_end;
386c036b 784 struct sparc_frame_cache cache;
f510d44e
DM
785
786 /* This is the preferred method, find the end of the prologue by
787 using the debugging information. */
788 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
789 {
790 sal = find_pc_line (func_start, 0);
791
792 if (sal.end < func_end
793 && start_pc <= sal.end)
794 return sal.end;
795 }
796
075ccec8
MK
797 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
798
799 /* The psABI says that "Although the first 6 words of arguments
800 reside in registers, the standard stack frame reserves space for
801 them.". It also suggests that a function may use that space to
802 "write incoming arguments 0 to 5" into that space, and that's
803 indeed what GCC seems to be doing. In that case GCC will
804 generate debug information that points to the stack slots instead
805 of the registers, so we should consider the instructions that
806 write out these incoming arguments onto the stack. Of course we
807 only need to do this if we have a stack frame. */
808
809 while (!cache.frameless_p)
810 {
811 unsigned long insn = sparc_fetch_instruction (start_pc);
812
813 /* Recognize instructions that store incoming arguments in
814 %i0...%i5 into the corresponding stack slot. */
815 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
816 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
817 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
818 {
819 start_pc += 4;
820 continue;
821 }
822
823 break;
824 }
825
826 return start_pc;
c906108c
SS
827}
828
386c036b 829/* Normal frames. */
9319a2fe 830
386c036b
MK
831struct sparc_frame_cache *
832sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
9319a2fe 833{
386c036b 834 struct sparc_frame_cache *cache;
9319a2fe 835
386c036b
MK
836 if (*this_cache)
837 return *this_cache;
c906108c 838
386c036b
MK
839 cache = sparc_alloc_frame_cache ();
840 *this_cache = cache;
c906108c 841
93d42b30 842 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
386c036b 843 if (cache->pc != 0)
93d42b30 844 sparc_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
386c036b
MK
845
846 if (cache->frameless_p)
c906108c 847 {
cbeae229
MK
848 /* This function is frameless, so %fp (%i6) holds the frame
849 pointer for our calling frame. Use %sp (%o6) as this frame's
850 base address. */
851 cache->base =
852 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
853 }
854 else
855 {
856 /* For normal frames, %fp (%i6) holds the frame pointer, the
857 base address for the current stack frame. */
858 cache->base =
859 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
c906108c 860 }
c906108c 861
5b2d44a0
MK
862 if (cache->base & 1)
863 cache->base += BIAS;
864
386c036b 865 return cache;
c906108c 866}
c906108c 867
aff37fc1
DM
868static int
869sparc32_struct_return_from_sym (struct symbol *sym)
870{
871 struct type *type = check_typedef (SYMBOL_TYPE (sym));
872 enum type_code code = TYPE_CODE (type);
873
874 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
875 {
876 type = check_typedef (TYPE_TARGET_TYPE (type));
877 if (sparc_structure_or_union_p (type)
878 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
879 return 1;
880 }
881
882 return 0;
883}
884
386c036b
MK
885struct sparc_frame_cache *
886sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 887{
386c036b
MK
888 struct sparc_frame_cache *cache;
889 struct symbol *sym;
c906108c 890
386c036b
MK
891 if (*this_cache)
892 return *this_cache;
c906108c 893
386c036b 894 cache = sparc_frame_cache (next_frame, this_cache);
c906108c 895
386c036b
MK
896 sym = find_pc_function (cache->pc);
897 if (sym)
c906108c 898 {
aff37fc1 899 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 900 }
5465445a
JB
901 else
902 {
903 /* There is no debugging information for this function to
904 help us determine whether this function returns a struct
905 or not. So we rely on another heuristic which is to check
906 the instruction at the return address and see if this is
907 an "unimp" instruction. If it is, then it is a struct-return
908 function. */
909 CORE_ADDR pc;
910 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
911
912 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
913 if (sparc_is_unimp_insn (pc))
914 cache->struct_return_p = 1;
915 }
c906108c 916
386c036b
MK
917 return cache;
918}
919
920static void
921sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
922 struct frame_id *this_id)
923{
924 struct sparc_frame_cache *cache =
925 sparc32_frame_cache (next_frame, this_cache);
926
927 /* This marks the outermost frame. */
928 if (cache->base == 0)
929 return;
930
931 (*this_id) = frame_id_build (cache->base, cache->pc);
932}
c906108c 933
386c036b
MK
934static void
935sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
936 int regnum, int *optimizedp,
937 enum lval_type *lvalp, CORE_ADDR *addrp,
47ef841b 938 int *realnump, gdb_byte *valuep)
386c036b
MK
939{
940 struct sparc_frame_cache *cache =
941 sparc32_frame_cache (next_frame, this_cache);
c906108c 942
386c036b 943 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 944 {
386c036b
MK
945 *optimizedp = 0;
946 *lvalp = not_lval;
947 *addrp = 0;
948 *realnump = -1;
949 if (valuep)
c906108c 950 {
386c036b
MK
951 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
952
953 /* If this functions has a Structure, Union or
954 Quad-Precision return value, we have to skip the UNIMP
955 instruction that encodes the size of the structure. */
956 if (cache->struct_return_p)
957 pc += 4;
958
959 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
960 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
961 store_unsigned_integer (valuep, 4, pc);
c906108c 962 }
c906108c
SS
963 return;
964 }
965
42cdca6c
MK
966 /* Handle StackGhost. */
967 {
968 ULONGEST wcookie = sparc_fetch_wcookie ();
969
970 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
971 {
972 *optimizedp = 0;
973 *lvalp = not_lval;
974 *addrp = 0;
975 *realnump = -1;
976 if (valuep)
977 {
978 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
7d34766b 979 ULONGEST i7;
42cdca6c
MK
980
981 /* Read the value in from memory. */
7d34766b
MK
982 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
983 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
42cdca6c
MK
984 }
985 return;
986 }
987 }
988
386c036b
MK
989 /* The previous frame's `local' and `in' registers have been saved
990 in the register save area. */
991 if (!cache->frameless_p
992 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 993 {
386c036b
MK
994 *optimizedp = 0;
995 *lvalp = lval_memory;
996 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
997 *realnump = -1;
998 if (valuep)
c906108c 999 {
386c036b
MK
1000 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1001
1002 /* Read the value in from memory. */
1003 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
c906108c 1004 }
386c036b
MK
1005 return;
1006 }
c906108c 1007
386c036b
MK
1008 /* The previous frame's `out' registers are accessable as the
1009 current frame's `in' registers. */
1010 if (!cache->frameless_p
1011 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1012 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1013
00b25ff3
AC
1014 *optimizedp = 0;
1015 *lvalp = lval_register;
1016 *addrp = 0;
1017 *realnump = regnum;
1018 if (valuep)
1019 frame_unwind_register (next_frame, (*realnump), valuep);
386c036b 1020}
c906108c 1021
386c036b
MK
1022static const struct frame_unwind sparc32_frame_unwind =
1023{
1024 NORMAL_FRAME,
1025 sparc32_frame_this_id,
1026 sparc32_frame_prev_register
1027};
1028
1029static const struct frame_unwind *
1030sparc32_frame_sniffer (struct frame_info *next_frame)
1031{
1032 return &sparc32_frame_unwind;
c906108c 1033}
386c036b 1034\f
c906108c 1035
386c036b
MK
1036static CORE_ADDR
1037sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
1038{
1039 struct sparc_frame_cache *cache =
1040 sparc32_frame_cache (next_frame, this_cache);
c906108c 1041
386c036b
MK
1042 return cache->base;
1043}
c906108c 1044
386c036b
MK
1045static const struct frame_base sparc32_frame_base =
1046{
1047 &sparc32_frame_unwind,
1048 sparc32_frame_base_address,
1049 sparc32_frame_base_address,
1050 sparc32_frame_base_address
1051};
c906108c 1052
386c036b
MK
1053static struct frame_id
1054sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1055{
1056 CORE_ADDR sp;
5af923b0 1057
386c036b 1058 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1059 if (sp & 1)
1060 sp += BIAS;
386c036b
MK
1061 return frame_id_build (sp, frame_pc_unwind (next_frame));
1062}
1063\f
c906108c 1064
386c036b
MK
1065/* Extract from an array REGBUF containing the (raw) register state, a
1066 function return value of TYPE, and copy that into VALBUF. */
5af923b0 1067
386c036b
MK
1068static void
1069sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1070 gdb_byte *valbuf)
386c036b
MK
1071{
1072 int len = TYPE_LENGTH (type);
e1613aba 1073 gdb_byte buf[8];
c906108c 1074
386c036b
MK
1075 gdb_assert (!sparc_structure_or_union_p (type));
1076 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1077
386c036b 1078 if (sparc_floating_p (type))
5af923b0 1079 {
386c036b
MK
1080 /* Floating return values. */
1081 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1082 if (len > 4)
1083 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1084 memcpy (valbuf, buf, len);
5af923b0
MS
1085 }
1086 else
1087 {
386c036b
MK
1088 /* Integral and pointer return values. */
1089 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1090
386c036b
MK
1091 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1092 if (len > 4)
1093 {
1094 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1095 gdb_assert (len == 8);
1096 memcpy (valbuf, buf, 8);
1097 }
1098 else
1099 {
1100 /* Just stripping off any unused bytes should preserve the
1101 signed-ness just fine. */
1102 memcpy (valbuf, buf + 4 - len, len);
1103 }
1104 }
1105}
c906108c 1106
386c036b
MK
1107/* Write into the appropriate registers a function return value stored
1108 in VALBUF of type TYPE. */
c906108c 1109
386c036b
MK
1110static void
1111sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1112 const gdb_byte *valbuf)
386c036b
MK
1113{
1114 int len = TYPE_LENGTH (type);
e1613aba 1115 gdb_byte buf[8];
c906108c 1116
386c036b
MK
1117 gdb_assert (!sparc_structure_or_union_p (type));
1118 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1119
386c036b
MK
1120 if (sparc_floating_p (type))
1121 {
1122 /* Floating return values. */
1123 memcpy (buf, valbuf, len);
1124 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1125 if (len > 4)
1126 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1127 }
1128 else
c906108c 1129 {
386c036b
MK
1130 /* Integral and pointer return values. */
1131 gdb_assert (sparc_integral_or_pointer_p (type));
1132
1133 if (len > 4)
2757dd86 1134 {
386c036b
MK
1135 gdb_assert (len == 8);
1136 memcpy (buf, valbuf, 8);
1137 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1138 }
1139 else
1140 {
386c036b
MK
1141 /* ??? Do we need to do any sign-extension here? */
1142 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1143 }
386c036b 1144 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1145 }
1146}
1147
b9d4c5ed
MK
1148static enum return_value_convention
1149sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
e1613aba
MK
1150 struct regcache *regcache, gdb_byte *readbuf,
1151 const gdb_byte *writebuf)
b9d4c5ed 1152{
0a8f48b9
MK
1153 /* The psABI says that "...every stack frame reserves the word at
1154 %fp+64. If a function returns a structure, union, or
1155 quad-precision value, this word should hold the address of the
1156 object into which the return value should be copied." This
1157 guarantees that we can always find the return value, not just
1158 before the function returns. */
1159
b9d4c5ed
MK
1160 if (sparc_structure_or_union_p (type)
1161 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1162 {
1163 if (readbuf)
1164 {
1165 ULONGEST sp;
1166 CORE_ADDR addr;
1167
1168 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1169 addr = read_memory_unsigned_integer (sp + 64, 4);
1170 read_memory (addr, readbuf, TYPE_LENGTH (type));
1171 }
1172
1173 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1174 }
b9d4c5ed
MK
1175
1176 if (readbuf)
1177 sparc32_extract_return_value (type, regcache, readbuf);
1178 if (writebuf)
1179 sparc32_store_return_value (type, regcache, writebuf);
1180
1181 return RETURN_VALUE_REGISTER_CONVENTION;
1182}
1183
386c036b
MK
1184static int
1185sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1186{
386c036b
MK
1187 return (sparc_structure_or_union_p (type)
1188 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1189}
c906108c 1190
aff37fc1
DM
1191static int
1192sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1193{
93d42b30 1194 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
aff37fc1
DM
1195 struct symbol *sym = find_pc_function (pc);
1196
1197 if (sym)
1198 return sparc32_struct_return_from_sym (sym);
1199 return 0;
1200}
1201
f5a9b87d
DM
1202static void
1203sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
1204 struct dwarf2_frame_state_reg *reg,
1205 struct frame_info *next_frame)
f5a9b87d 1206{
aff37fc1
DM
1207 int off;
1208
f5a9b87d
DM
1209 switch (regnum)
1210 {
1211 case SPARC_G0_REGNUM:
1212 /* Since %g0 is always zero, there is no point in saving it, and
1213 people will be inclined omit it from the CFI. Make sure we
1214 don't warn about that. */
1215 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1216 break;
1217 case SPARC_SP_REGNUM:
1218 reg->how = DWARF2_FRAME_REG_CFA;
1219 break;
1220 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1221 case SPARC32_NPC_REGNUM:
1222 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1
DM
1223 off = 8;
1224 if (sparc32_dwarf2_struct_return_p (next_frame))
1225 off += 4;
1226 if (regnum == SPARC32_NPC_REGNUM)
1227 off += 4;
1228 reg->loc.offset = off;
f5a9b87d
DM
1229 break;
1230 }
1231}
1232
386c036b
MK
1233\f
1234/* The SPARC Architecture doesn't have hardware single-step support,
1235 and most operating systems don't implement it either, so we provide
1236 software single-step mechanism. */
c906108c 1237
386c036b 1238static CORE_ADDR
0b1b3e42 1239sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1240 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1241{
1242 unsigned long insn = sparc_fetch_instruction (pc);
1243 int conditional_p = X_COND (insn) & 0x7;
1244 int branch_p = 0;
1245 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1246
386c036b 1247 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1248 {
386c036b
MK
1249 /* Branch on Integer Register with Prediction (BPr). */
1250 branch_p = 1;
1251 conditional_p = 1;
c906108c 1252 }
386c036b 1253 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1254 {
386c036b
MK
1255 /* Branch on Floating-Point Condition Codes (FBfcc). */
1256 branch_p = 1;
1257 offset = 4 * X_DISP22 (insn);
c906108c 1258 }
386c036b
MK
1259 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1260 {
1261 /* Branch on Floating-Point Condition Codes with Prediction
1262 (FBPfcc). */
1263 branch_p = 1;
1264 offset = 4 * X_DISP19 (insn);
1265 }
1266 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1267 {
1268 /* Branch on Integer Condition Codes (Bicc). */
1269 branch_p = 1;
1270 offset = 4 * X_DISP22 (insn);
1271 }
1272 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1273 {
386c036b
MK
1274 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1275 branch_p = 1;
1276 offset = 4 * X_DISP19 (insn);
c906108c 1277 }
c893be75
MK
1278 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1279 {
1280 /* Trap instruction (TRAP). */
0b1b3e42 1281 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1282 }
386c036b
MK
1283
1284 /* FIXME: Handle DONE and RETRY instructions. */
1285
386c036b 1286 if (branch_p)
c906108c 1287 {
386c036b 1288 if (conditional_p)
c906108c 1289 {
386c036b
MK
1290 /* For conditional branches, return nPC + 4 iff the annul
1291 bit is 1. */
1292 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1293 }
1294 else
1295 {
386c036b
MK
1296 /* For unconditional branches, return the target if its
1297 specified condition is "always" and return nPC + 4 if the
1298 condition is "never". If the annul bit is 1, set *NPC to
1299 zero. */
1300 if (X_COND (insn) == 0x0)
1301 pc = *npc, offset = 4;
1302 if (X_A (insn))
1303 *npc = 0;
1304
1305 gdb_assert (offset != 0);
1306 return pc + offset;
c906108c
SS
1307 }
1308 }
386c036b
MK
1309
1310 return 0;
c906108c
SS
1311}
1312
c893be75 1313static CORE_ADDR
0b1b3e42 1314sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1315{
1316 return 0;
1317}
1318
e6590a1b 1319int
0b1b3e42 1320sparc_software_single_step (struct frame_info *frame)
386c036b 1321{
0b1b3e42 1322 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1323 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1324 CORE_ADDR npc, nnpc;
c906108c 1325
e0cd558a 1326 CORE_ADDR pc, orig_npc;
c906108c 1327
0b1b3e42
UW
1328 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1329 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1330
e0cd558a 1331 /* Analyze the instruction at PC. */
0b1b3e42 1332 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a
UW
1333 if (npc != 0)
1334 insert_single_step_breakpoint (npc);
8181d85f 1335
e0cd558a
UW
1336 if (nnpc != 0)
1337 insert_single_step_breakpoint (nnpc);
c906108c 1338
e0cd558a
UW
1339 /* Assert that we have set at least one breakpoint, and that
1340 they're not set at the same spot - unless we're going
1341 from here straight to NULL, i.e. a call or jump to 0. */
1342 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1343 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1344
1345 return 1;
386c036b
MK
1346}
1347
1348static void
61a1198a 1349sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1350{
61a1198a 1351 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1352
61a1198a
UW
1353 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1354 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1355}
1356\f
1357/* Unglobalize NAME. */
1358
1359char *
1360sparc_stabs_unglobalize_name (char *name)
1361{
1362 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1363 SunPRO) convert file static variables into global values, a
1364 process known as globalization. In order to do this, the
1365 compiler will create a unique prefix and prepend it to each file
1366 static variable. For static variables within a function, this
1367 globalization prefix is followed by the function name (nested
1368 static variables within a function are supposed to generate a
1369 warning message, and are left alone). The procedure is
1370 documented in the Stabs Interface Manual, which is distrubuted
1371 with the compilers, although version 4.0 of the manual seems to
1372 be incorrect in some places, at least for SPARC. The
1373 globalization prefix is encoded into an N_OPT stab, with the form
1374 "G=<prefix>". The globalization prefix always seems to start
1375 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1376 simply strip everything up until the last dot. */
c906108c 1377
386c036b 1378 if (name[0] == '$')
c906108c 1379 {
386c036b
MK
1380 char *p = strrchr (name, '.');
1381 if (p)
1382 return p + 1;
c906108c 1383 }
c906108c 1384
386c036b
MK
1385 return name;
1386}
1387\f
5af923b0 1388
a54124c5
MK
1389/* Return the appropriate register set for the core section identified
1390 by SECT_NAME and SECT_SIZE. */
1391
1392const struct regset *
1393sparc_regset_from_core_section (struct gdbarch *gdbarch,
1394 const char *sect_name, size_t sect_size)
1395{
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1397
c558d81a 1398 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1399 return tdep->gregset;
1400
c558d81a 1401 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1402 return tdep->fpregset;
1403
1404 return NULL;
1405}
1406\f
1407
386c036b
MK
1408static struct gdbarch *
1409sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1410{
1411 struct gdbarch_tdep *tdep;
1412 struct gdbarch *gdbarch;
c906108c 1413
386c036b
MK
1414 /* If there is already a candidate, use it. */
1415 arches = gdbarch_list_lookup_by_info (arches, &info);
1416 if (arches != NULL)
1417 return arches->gdbarch;
c906108c 1418
386c036b
MK
1419 /* Allocate space for the new architecture. */
1420 tdep = XMALLOC (struct gdbarch_tdep);
1421 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1422
386c036b
MK
1423 tdep->pc_regnum = SPARC32_PC_REGNUM;
1424 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1425 tdep->gregset = NULL;
c558d81a 1426 tdep->sizeof_gregset = 0;
a54124c5 1427 tdep->fpregset = NULL;
c558d81a 1428 tdep->sizeof_fpregset = 0;
386c036b 1429 tdep->plt_entry_size = 0;
c893be75 1430 tdep->step_trap = sparc_step_trap;
386c036b
MK
1431
1432 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1433 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1434
1435 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1436 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1437 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1438 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1439 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1440 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1441
1442 /* Register numbers of various important registers. */
1443 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1444 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1445 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1446
1447 /* Call dummy code. */
1448 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1449 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1450 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1451
b9d4c5ed 1452 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1453 set_gdbarch_stabs_argument_has_addr
1454 (gdbarch, sparc32_stabs_argument_has_addr);
1455
1456 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1457
1458 /* Stack grows downward. */
1459 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1460
386c036b 1461 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1462
386c036b 1463 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1464
386c036b 1465 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1466
386c036b
MK
1467 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1468 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1469
386c036b 1470 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
c906108c 1471
386c036b 1472 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1473
386c036b
MK
1474 frame_base_set_default (gdbarch, &sparc32_frame_base);
1475
f5a9b87d
DM
1476 /* Hook in the DWARF CFI frame unwinder. */
1477 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1478 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1479 StackGhost issues have been resolved. */
1480
b2a0b9b2
DM
1481 /* Hook in ABI-specific overrides, if they have been registered. */
1482 gdbarch_init_osabi (info, gdbarch);
1483
386c036b 1484 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
c906108c 1485
a54124c5 1486 /* If we have register sets, enable the generic core file support. */
4c72d57a 1487 if (tdep->gregset)
a54124c5
MK
1488 set_gdbarch_regset_from_core_section (gdbarch,
1489 sparc_regset_from_core_section);
1490
386c036b
MK
1491 return gdbarch;
1492}
1493\f
1494/* Helper functions for dealing with register windows. */
1495
1496void
1497sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1498{
386c036b 1499 int offset = 0;
e1613aba 1500 gdb_byte buf[8];
386c036b
MK
1501 int i;
1502
1503 if (sp & 1)
1504 {
1505 /* Registers are 64-bit. */
1506 sp += BIAS;
c906108c 1507
386c036b
MK
1508 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1509 {
1510 if (regnum == i || regnum == -1)
1511 {
1512 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1513
1514 /* Handle StackGhost. */
1515 if (i == SPARC_I7_REGNUM)
1516 {
1517 ULONGEST wcookie = sparc_fetch_wcookie ();
1518 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1519
1520 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1521 }
1522
386c036b
MK
1523 regcache_raw_supply (regcache, i, buf);
1524 }
1525 }
1526 }
1527 else
c906108c 1528 {
386c036b
MK
1529 /* Registers are 32-bit. Toss any sign-extension of the stack
1530 pointer. */
1531 sp &= 0xffffffffUL;
c906108c 1532
386c036b
MK
1533 /* Clear out the top half of the temporary buffer, and put the
1534 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1535 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1536 {
386c036b
MK
1537 memset (buf, 0, 4);
1538 offset = 4;
1539 }
c906108c 1540
386c036b
MK
1541 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1542 {
1543 if (regnum == i || regnum == -1)
1544 {
1545 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1546 buf + offset, 4);
42cdca6c
MK
1547
1548 /* Handle StackGhost. */
1549 if (i == SPARC_I7_REGNUM)
1550 {
1551 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1552 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1553
7d34766b 1554 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1555 }
1556
386c036b
MK
1557 regcache_raw_supply (regcache, i, buf);
1558 }
c906108c
SS
1559 }
1560 }
c906108c 1561}
c906108c
SS
1562
1563void
386c036b
MK
1564sparc_collect_rwindow (const struct regcache *regcache,
1565 CORE_ADDR sp, int regnum)
c906108c 1566{
386c036b 1567 int offset = 0;
e1613aba 1568 gdb_byte buf[8];
386c036b 1569 int i;
5af923b0 1570
386c036b 1571 if (sp & 1)
5af923b0 1572 {
386c036b
MK
1573 /* Registers are 64-bit. */
1574 sp += BIAS;
c906108c 1575
386c036b
MK
1576 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1577 {
1578 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1579 {
1580 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1581
1582 /* Handle StackGhost. */
1583 if (i == SPARC_I7_REGNUM)
1584 {
1585 ULONGEST wcookie = sparc_fetch_wcookie ();
1586 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1587
1588 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1589 }
1590
386c036b
MK
1591 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1592 }
1593 }
5af923b0
MS
1594 }
1595 else
1596 {
386c036b
MK
1597 /* Registers are 32-bit. Toss any sign-extension of the stack
1598 pointer. */
1599 sp &= 0xffffffffUL;
1600
1601 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1602 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1603 offset = 4;
1604
1605 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1606 {
1607 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1608 {
1609 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1610
1611 /* Handle StackGhost. */
1612 if (i == SPARC_I7_REGNUM)
1613 {
1614 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1615 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1616
7d34766b 1617 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1618 }
1619
386c036b
MK
1620 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1621 buf + offset, 4);
1622 }
1623 }
5af923b0 1624 }
c906108c
SS
1625}
1626
386c036b
MK
1627/* Helper functions for dealing with register sets. */
1628
c906108c 1629void
386c036b
MK
1630sparc32_supply_gregset (const struct sparc_gregset *gregset,
1631 struct regcache *regcache,
1632 int regnum, const void *gregs)
c906108c 1633{
e1613aba 1634 const gdb_byte *regs = gregs;
386c036b 1635 int i;
5af923b0 1636
386c036b
MK
1637 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1638 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1639 regs + gregset->r_psr_offset);
c906108c 1640
386c036b
MK
1641 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1642 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1643 regs + gregset->r_pc_offset);
5af923b0 1644
386c036b
MK
1645 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1646 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1647 regs + gregset->r_npc_offset);
5af923b0 1648
386c036b
MK
1649 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1650 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1651 regs + gregset->r_y_offset);
5af923b0 1652
386c036b
MK
1653 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1654 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1655
386c036b 1656 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1657 {
386c036b
MK
1658 int offset = gregset->r_g1_offset;
1659
1660 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1661 {
1662 if (regnum == i || regnum == -1)
1663 regcache_raw_supply (regcache, i, regs + offset);
1664 offset += 4;
1665 }
c906108c 1666 }
386c036b
MK
1667
1668 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1669 {
386c036b
MK
1670 /* Not all of the register set variants include Locals and
1671 Inputs. For those that don't, we read them off the stack. */
1672 if (gregset->r_l0_offset == -1)
1673 {
1674 ULONGEST sp;
1675
1676 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1677 sparc_supply_rwindow (regcache, sp, regnum);
1678 }
1679 else
1680 {
1681 int offset = gregset->r_l0_offset;
1682
1683 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1684 {
1685 if (regnum == i || regnum == -1)
1686 regcache_raw_supply (regcache, i, regs + offset);
1687 offset += 4;
1688 }
1689 }
c906108c
SS
1690 }
1691}
1692
c5aa993b 1693void
386c036b
MK
1694sparc32_collect_gregset (const struct sparc_gregset *gregset,
1695 const struct regcache *regcache,
1696 int regnum, void *gregs)
c906108c 1697{
e1613aba 1698 gdb_byte *regs = gregs;
386c036b 1699 int i;
c5aa993b 1700
386c036b
MK
1701 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1702 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1703 regs + gregset->r_psr_offset);
60054393 1704
386c036b
MK
1705 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1706 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1707 regs + gregset->r_pc_offset);
1708
1709 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1710 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1711 regs + gregset->r_npc_offset);
5af923b0 1712
386c036b
MK
1713 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1714 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1715 regs + gregset->r_y_offset);
1716
1717 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1718 {
386c036b
MK
1719 int offset = gregset->r_g1_offset;
1720
1721 /* %g0 is always zero. */
1722 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1723 {
1724 if (regnum == i || regnum == -1)
1725 regcache_raw_collect (regcache, i, regs + offset);
1726 offset += 4;
1727 }
5af923b0 1728 }
386c036b
MK
1729
1730 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1731 {
386c036b
MK
1732 /* Not all of the register set variants include Locals and
1733 Inputs. For those that don't, we read them off the stack. */
1734 if (gregset->r_l0_offset != -1)
1735 {
1736 int offset = gregset->r_l0_offset;
1737
1738 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1739 {
1740 if (regnum == i || regnum == -1)
1741 regcache_raw_collect (regcache, i, regs + offset);
1742 offset += 4;
1743 }
1744 }
5af923b0 1745 }
c906108c
SS
1746}
1747
c906108c 1748void
386c036b
MK
1749sparc32_supply_fpregset (struct regcache *regcache,
1750 int regnum, const void *fpregs)
c906108c 1751{
e1613aba 1752 const gdb_byte *regs = fpregs;
386c036b 1753 int i;
60054393 1754
386c036b 1755 for (i = 0; i < 32; i++)
c906108c 1756 {
386c036b
MK
1757 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1758 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1759 }
5af923b0 1760
386c036b
MK
1761 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1762 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1763}
1764
386c036b
MK
1765void
1766sparc32_collect_fpregset (const struct regcache *regcache,
1767 int regnum, void *fpregs)
c906108c 1768{
e1613aba 1769 gdb_byte *regs = fpregs;
386c036b 1770 int i;
c906108c 1771
386c036b
MK
1772 for (i = 0; i < 32; i++)
1773 {
1774 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1775 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1776 }
c906108c 1777
386c036b
MK
1778 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1779 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1780}
c906108c 1781\f
c906108c 1782
386c036b 1783/* SunOS 4. */
c906108c 1784
386c036b
MK
1785/* From <machine/reg.h>. */
1786const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1787{
386c036b
MK
1788 0 * 4, /* %psr */
1789 1 * 4, /* %pc */
1790 2 * 4, /* %npc */
1791 3 * 4, /* %y */
1792 -1, /* %wim */
1793 -1, /* %tbr */
1794 4 * 4, /* %g1 */
1795 -1 /* %l0 */
1796};
1797\f
c906108c 1798
386c036b
MK
1799/* Provide a prototype to silence -Wmissing-prototypes. */
1800void _initialize_sparc_tdep (void);
c906108c
SS
1801
1802void
386c036b 1803_initialize_sparc_tdep (void)
c906108c 1804{
386c036b 1805 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2d457077
MK
1806
1807 /* Initialize the SPARC-specific register types. */
1808 sparc_init_types();
ef3cf062 1809}