]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/spu-tdep.c
* gdb.base/callfuncs.exp (do_get_all_registers): Remove.
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
6aba47ca 2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24#include "defs.h"
25#include "arch-utils.h"
26#include "gdbtypes.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "gdb_string.h"
30#include "gdb_assert.h"
31#include "frame.h"
32#include "frame-unwind.h"
33#include "frame-base.h"
34#include "trad-frame.h"
35#include "symtab.h"
36#include "symfile.h"
37#include "value.h"
38#include "inferior.h"
39#include "dis-asm.h"
40#include "objfiles.h"
41#include "language.h"
42#include "regcache.h"
43#include "reggroups.h"
44#include "floatformat.h"
45
46#include "spu-tdep.h"
47
f2d43c2c
UW
48/* SPU-specific vector type. */
49struct type *spu_builtin_type_vec128;
771b4502
UW
50
51/* Registers. */
52
53static const char *
54spu_register_name (int reg_nr)
55{
56 static char *register_names[] =
57 {
58 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
63 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
64 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
65 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
66 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
67 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
68 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
69 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
70 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
71 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
72 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
73 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
74 "id", "pc", "sp"
75 };
76
77 if (reg_nr < 0)
78 return NULL;
79 if (reg_nr >= sizeof register_names / sizeof *register_names)
80 return NULL;
81
82 return register_names[reg_nr];
83}
84
85static struct type *
86spu_register_type (struct gdbarch *gdbarch, int reg_nr)
87{
88 if (reg_nr < SPU_NUM_GPRS)
f2d43c2c 89 return spu_builtin_type_vec128;
771b4502
UW
90
91 switch (reg_nr)
92 {
93 case SPU_ID_REGNUM:
94 return builtin_type_uint32;
95
96 case SPU_PC_REGNUM:
97 return builtin_type_void_func_ptr;
98
99 case SPU_SP_REGNUM:
100 return builtin_type_void_data_ptr;
101
102 default:
103 internal_error (__FILE__, __LINE__, "invalid regnum");
104 }
105}
106
107/* Pseudo registers for preferred slots - stack pointer. */
108
109static void
110spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
111 int regnum, gdb_byte *buf)
112{
113 gdb_byte reg[16];
114
115 switch (regnum)
116 {
117 case SPU_SP_REGNUM:
118 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
119 memcpy (buf, reg, 4);
120 break;
121
122 default:
123 internal_error (__FILE__, __LINE__, _("invalid regnum"));
124 }
125}
126
127static void
128spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
129 int regnum, const gdb_byte *buf)
130{
131 gdb_byte reg[16];
132
133 switch (regnum)
134 {
135 case SPU_SP_REGNUM:
136 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
137 memcpy (reg, buf, 4);
138 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
139 break;
140
141 default:
142 internal_error (__FILE__, __LINE__, _("invalid regnum"));
143 }
144}
145
146/* Value conversion -- access scalar values at the preferred slot. */
147
9acbedc0
UW
148static struct value *
149spu_value_from_register (struct type *type, int regnum,
150 struct frame_info *frame)
771b4502 151{
9acbedc0
UW
152 struct value *value = default_value_from_register (type, regnum, frame);
153 int len = TYPE_LENGTH (type);
771b4502 154
9acbedc0
UW
155 if (regnum < SPU_NUM_GPRS && len < 16)
156 {
157 int preferred_slot = len < 4 ? 4 - len : 0;
158 set_value_offset (value, preferred_slot);
159 }
771b4502 160
9acbedc0 161 return value;
771b4502
UW
162}
163
164/* Register groups. */
165
166static int
167spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
168 struct reggroup *group)
169{
170 /* Registers displayed via 'info regs'. */
171 if (group == general_reggroup)
172 return 1;
173
174 /* Registers displayed via 'info float'. */
175 if (group == float_reggroup)
176 return 0;
177
178 /* Registers that need to be saved/restored in order to
179 push or pop frames. */
180 if (group == save_reggroup || group == restore_reggroup)
181 return 1;
182
183 return default_register_reggroup_p (gdbarch, regnum, group);
184}
185
186
187/* Decoding SPU instructions. */
188
189enum
190 {
191 op_lqd = 0x34,
192 op_lqx = 0x3c4,
193 op_lqa = 0x61,
194 op_lqr = 0x67,
195 op_stqd = 0x24,
196 op_stqx = 0x144,
197 op_stqa = 0x41,
198 op_stqr = 0x47,
199
200 op_il = 0x081,
201 op_ila = 0x21,
202 op_a = 0x0c0,
203 op_ai = 0x1c,
204
205 op_selb = 0x4,
206
207 op_br = 0x64,
208 op_bra = 0x60,
209 op_brsl = 0x66,
210 op_brasl = 0x62,
211 op_brnz = 0x42,
212 op_brz = 0x40,
213 op_brhnz = 0x46,
214 op_brhz = 0x44,
215 op_bi = 0x1a8,
216 op_bisl = 0x1a9,
217 op_biz = 0x128,
218 op_binz = 0x129,
219 op_bihz = 0x12a,
220 op_bihnz = 0x12b,
221 };
222
223static int
224is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
225{
226 if ((insn >> 21) == op)
227 {
228 *rt = insn & 127;
229 *ra = (insn >> 7) & 127;
230 *rb = (insn >> 14) & 127;
231 return 1;
232 }
233
234 return 0;
235}
236
237static int
238is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
239{
240 if ((insn >> 28) == op)
241 {
242 *rt = (insn >> 21) & 127;
243 *ra = (insn >> 7) & 127;
244 *rb = (insn >> 14) & 127;
245 *rc = insn & 127;
246 return 1;
247 }
248
249 return 0;
250}
251
252static int
253is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
254{
255 if ((insn >> 21) == op)
256 {
257 *rt = insn & 127;
258 *ra = (insn >> 7) & 127;
259 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
260 return 1;
261 }
262
263 return 0;
264}
265
266static int
267is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
268{
269 if ((insn >> 24) == op)
270 {
271 *rt = insn & 127;
272 *ra = (insn >> 7) & 127;
273 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
274 return 1;
275 }
276
277 return 0;
278}
279
280static int
281is_ri16 (unsigned int insn, int op, int *rt, int *i16)
282{
283 if ((insn >> 23) == op)
284 {
285 *rt = insn & 127;
286 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
287 return 1;
288 }
289
290 return 0;
291}
292
293static int
294is_ri18 (unsigned int insn, int op, int *rt, int *i18)
295{
296 if ((insn >> 25) == op)
297 {
298 *rt = insn & 127;
299 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
300 return 1;
301 }
302
303 return 0;
304}
305
306static int
307is_branch (unsigned int insn, int *offset, int *reg)
308{
309 int rt, i7, i16;
310
311 if (is_ri16 (insn, op_br, &rt, &i16)
312 || is_ri16 (insn, op_brsl, &rt, &i16)
313 || is_ri16 (insn, op_brnz, &rt, &i16)
314 || is_ri16 (insn, op_brz, &rt, &i16)
315 || is_ri16 (insn, op_brhnz, &rt, &i16)
316 || is_ri16 (insn, op_brhz, &rt, &i16))
317 {
318 *reg = SPU_PC_REGNUM;
319 *offset = i16 << 2;
320 return 1;
321 }
322
323 if (is_ri16 (insn, op_bra, &rt, &i16)
324 || is_ri16 (insn, op_brasl, &rt, &i16))
325 {
326 *reg = -1;
327 *offset = i16 << 2;
328 return 1;
329 }
330
331 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
332 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
333 || is_ri7 (insn, op_biz, &rt, reg, &i7)
334 || is_ri7 (insn, op_binz, &rt, reg, &i7)
335 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
336 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
337 {
338 *offset = 0;
339 return 1;
340 }
341
342 return 0;
343}
344
345
346/* Prolog parsing. */
347
348struct spu_prologue_data
349 {
350 /* Stack frame size. -1 if analysis was unsuccessful. */
351 int size;
352
353 /* How to find the CFA. The CFA is equal to SP at function entry. */
354 int cfa_reg;
355 int cfa_offset;
356
357 /* Offset relative to CFA where a register is saved. -1 if invalid. */
358 int reg_offset[SPU_NUM_GPRS];
359 };
360
361static CORE_ADDR
362spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
363 struct spu_prologue_data *data)
364{
365 int found_sp = 0;
366 int found_fp = 0;
367 int found_lr = 0;
368 int reg_immed[SPU_NUM_GPRS];
369 gdb_byte buf[16];
370 CORE_ADDR prolog_pc = start_pc;
371 CORE_ADDR pc;
372 int i;
373
374
375 /* Initialize DATA to default values. */
376 data->size = -1;
377
378 data->cfa_reg = SPU_RAW_SP_REGNUM;
379 data->cfa_offset = 0;
380
381 for (i = 0; i < SPU_NUM_GPRS; i++)
382 data->reg_offset[i] = -1;
383
384 /* Set up REG_IMMED array. This is non-zero for a register if we know its
385 preferred slot currently holds this immediate value. */
386 for (i = 0; i < SPU_NUM_GPRS; i++)
387 reg_immed[i] = 0;
388
389 /* Scan instructions until the first branch.
390
391 The following instructions are important prolog components:
392
393 - The first instruction to set up the stack pointer.
394 - The first instruction to set up the frame pointer.
395 - The first instruction to save the link register.
396
397 We return the instruction after the latest of these three,
398 or the incoming PC if none is found. The first instruction
399 to set up the stack pointer also defines the frame size.
400
401 Note that instructions saving incoming arguments to their stack
402 slots are not counted as important, because they are hard to
403 identify with certainty. This should not matter much, because
404 arguments are relevant only in code compiled with debug data,
405 and in such code the GDB core will advance until the first source
406 line anyway, using SAL data.
407
408 For purposes of stack unwinding, we analyze the following types
409 of instructions in addition:
410
411 - Any instruction adding to the current frame pointer.
412 - Any instruction loading an immediate constant into a register.
413 - Any instruction storing a register onto the stack.
414
415 These are used to compute the CFA and REG_OFFSET output. */
416
417 for (pc = start_pc; pc < end_pc; pc += 4)
418 {
419 unsigned int insn;
420 int rt, ra, rb, rc, immed;
421
422 if (target_read_memory (pc, buf, 4))
423 break;
424 insn = extract_unsigned_integer (buf, 4);
425
426 /* AI is the typical instruction to set up a stack frame.
427 It is also used to initialize the frame pointer. */
428 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
429 {
430 if (rt == data->cfa_reg && ra == data->cfa_reg)
431 data->cfa_offset -= immed;
432
433 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
434 && !found_sp)
435 {
436 found_sp = 1;
437 prolog_pc = pc + 4;
438
439 data->size = -immed;
440 }
441 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
442 && !found_fp)
443 {
444 found_fp = 1;
445 prolog_pc = pc + 4;
446
447 data->cfa_reg = SPU_FP_REGNUM;
448 data->cfa_offset -= immed;
449 }
450 }
451
452 /* A is used to set up stack frames of size >= 512 bytes.
453 If we have tracked the contents of the addend register,
454 we can handle this as well. */
455 else if (is_rr (insn, op_a, &rt, &ra, &rb))
456 {
457 if (rt == data->cfa_reg && ra == data->cfa_reg)
458 {
459 if (reg_immed[rb] != 0)
460 data->cfa_offset -= reg_immed[rb];
461 else
462 data->cfa_reg = -1; /* We don't know the CFA any more. */
463 }
464
465 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
466 && !found_sp)
467 {
468 found_sp = 1;
469 prolog_pc = pc + 4;
470
471 if (reg_immed[rb] != 0)
472 data->size = -reg_immed[rb];
473 }
474 }
475
476 /* We need to track IL and ILA used to load immediate constants
477 in case they are later used as input to an A instruction. */
478 else if (is_ri16 (insn, op_il, &rt, &immed))
479 {
480 reg_immed[rt] = immed;
12102450
UW
481
482 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
483 found_sp = 1;
771b4502
UW
484 }
485
486 else if (is_ri18 (insn, op_ila, &rt, &immed))
487 {
488 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
489
490 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
491 found_sp = 1;
771b4502
UW
492 }
493
494 /* STQD is used to save registers to the stack. */
495 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
496 {
497 if (ra == data->cfa_reg)
498 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
499
500 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
501 && !found_lr)
502 {
503 found_lr = 1;
504 prolog_pc = pc + 4;
505 }
506 }
507
508 /* _start uses SELB to set up the stack pointer. */
509 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
510 {
511 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
512 found_sp = 1;
513 }
514
515 /* We terminate if we find a branch. */
516 else if (is_branch (insn, &immed, &ra))
517 break;
518 }
519
520
521 /* If we successfully parsed until here, and didn't find any instruction
522 modifying SP, we assume we have a frameless function. */
523 if (!found_sp)
524 data->size = 0;
525
526 /* Return cooked instead of raw SP. */
527 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
528 data->cfa_reg = SPU_SP_REGNUM;
529
530 return prolog_pc;
531}
532
533/* Return the first instruction after the prologue starting at PC. */
534static CORE_ADDR
535spu_skip_prologue (CORE_ADDR pc)
536{
537 struct spu_prologue_data data;
538 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
539}
540
541/* Return the frame pointer in use at address PC. */
542static void
543spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
544{
545 struct spu_prologue_data data;
546 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
547
548 if (data.size != -1 && data.cfa_reg != -1)
549 {
550 /* The 'frame pointer' address is CFA minus frame size. */
551 *reg = data.cfa_reg;
552 *offset = data.cfa_offset - data.size;
553 }
554 else
555 {
556 /* ??? We don't really know ... */
557 *reg = SPU_SP_REGNUM;
558 *offset = 0;
559 }
560}
561
562/* Normal stack frames. */
563
564struct spu_unwind_cache
565{
566 CORE_ADDR func;
567 CORE_ADDR frame_base;
568 CORE_ADDR local_base;
569
570 struct trad_frame_saved_reg *saved_regs;
571};
572
573static struct spu_unwind_cache *
574spu_frame_unwind_cache (struct frame_info *next_frame,
575 void **this_prologue_cache)
576{
577 struct spu_unwind_cache *info;
578 struct spu_prologue_data data;
579
580 if (*this_prologue_cache)
581 return *this_prologue_cache;
582
583 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
584 *this_prologue_cache = info;
585 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
586 info->frame_base = 0;
587 info->local_base = 0;
588
589 /* Find the start of the current function, and analyze its prologue. */
93d42b30 590 info->func = frame_func_unwind (next_frame, NORMAL_FRAME);
771b4502
UW
591 if (info->func == 0)
592 {
593 /* Fall back to using the current PC as frame ID. */
594 info->func = frame_pc_unwind (next_frame);
595 data.size = -1;
596 }
597 else
598 spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);
599
600
601 /* If successful, use prologue analysis data. */
602 if (data.size != -1 && data.cfa_reg != -1)
603 {
604 CORE_ADDR cfa;
605 int i;
606 gdb_byte buf[16];
607
608 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
609 frame_unwind_register (next_frame, data.cfa_reg, buf);
610 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
611
612 /* Call-saved register slots. */
613 for (i = 0; i < SPU_NUM_GPRS; i++)
614 if (i == SPU_LR_REGNUM
615 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
616 if (data.reg_offset[i] != -1)
617 info->saved_regs[i].addr = cfa - data.reg_offset[i];
618
619 /* The previous PC comes from the link register. */
620 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
621 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
622 else
623 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
624
625 /* The previous SP is equal to the CFA. */
626 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, cfa);
627
628 /* Frame bases. */
629 info->frame_base = cfa;
630 info->local_base = cfa - data.size;
631 }
632
633 /* Otherwise, fall back to reading the backchain link. */
634 else
635 {
636 CORE_ADDR reg, backchain;
637
638 /* Get the backchain. */
639 reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
640 backchain = read_memory_unsigned_integer (reg, 4);
641
642 /* A zero backchain terminates the frame chain. Also, sanity
643 check against the local store size limit. */
644 if (backchain != 0 && backchain < SPU_LS_SIZE)
645 {
646 /* Assume the link register is saved into its slot. */
647 if (backchain + 16 < SPU_LS_SIZE)
648 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
649
650 /* This will also be the previous PC. */
651 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
652 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
653 else
654 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
655
656 /* The previous SP will equal the backchain value. */
657 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, backchain);
658
659 /* Frame bases. */
660 info->frame_base = backchain;
661 info->local_base = reg;
662 }
663 }
664
665 return info;
666}
667
668static void
669spu_frame_this_id (struct frame_info *next_frame,
670 void **this_prologue_cache, struct frame_id *this_id)
671{
672 struct spu_unwind_cache *info =
673 spu_frame_unwind_cache (next_frame, this_prologue_cache);
674
675 if (info->frame_base == 0)
676 return;
677
678 *this_id = frame_id_build (info->frame_base, info->func);
679}
680
681static void
682spu_frame_prev_register (struct frame_info *next_frame,
683 void **this_prologue_cache,
684 int regnum, int *optimizedp,
685 enum lval_type *lvalp, CORE_ADDR * addrp,
686 int *realnump, gdb_byte *bufferp)
687{
688 struct spu_unwind_cache *info
689 = spu_frame_unwind_cache (next_frame, this_prologue_cache);
690
691 /* Special-case the stack pointer. */
692 if (regnum == SPU_RAW_SP_REGNUM)
693 regnum = SPU_SP_REGNUM;
694
695 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
696 optimizedp, lvalp, addrp, realnump, bufferp);
697}
698
699static const struct frame_unwind spu_frame_unwind = {
700 NORMAL_FRAME,
701 spu_frame_this_id,
702 spu_frame_prev_register
703};
704
705const struct frame_unwind *
706spu_frame_sniffer (struct frame_info *next_frame)
707{
708 return &spu_frame_unwind;
709}
710
711static CORE_ADDR
712spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
713{
714 struct spu_unwind_cache *info
715 = spu_frame_unwind_cache (next_frame, this_cache);
716 return info->local_base;
717}
718
719static const struct frame_base spu_frame_base = {
720 &spu_frame_unwind,
721 spu_frame_base_address,
722 spu_frame_base_address,
723 spu_frame_base_address
724};
725
726static CORE_ADDR
727spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
728{
729 return frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
730}
731
732static CORE_ADDR
733spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
734{
735 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
736}
737
738
739/* Function calling convention. */
740
741static int
742spu_scalar_value_p (struct type *type)
743{
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_INT:
747 case TYPE_CODE_ENUM:
748 case TYPE_CODE_RANGE:
749 case TYPE_CODE_CHAR:
750 case TYPE_CODE_BOOL:
751 case TYPE_CODE_PTR:
752 case TYPE_CODE_REF:
753 return TYPE_LENGTH (type) <= 16;
754
755 default:
756 return 0;
757 }
758}
759
760static void
761spu_value_to_regcache (struct regcache *regcache, int regnum,
762 struct type *type, const gdb_byte *in)
763{
764 int len = TYPE_LENGTH (type);
765
766 if (spu_scalar_value_p (type))
767 {
768 int preferred_slot = len < 4 ? 4 - len : 0;
769 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
770 }
771 else
772 {
773 while (len >= 16)
774 {
775 regcache_cooked_write (regcache, regnum++, in);
776 in += 16;
777 len -= 16;
778 }
779
780 if (len > 0)
781 regcache_cooked_write_part (regcache, regnum, 0, len, in);
782 }
783}
784
785static void
786spu_regcache_to_value (struct regcache *regcache, int regnum,
787 struct type *type, gdb_byte *out)
788{
789 int len = TYPE_LENGTH (type);
790
791 if (spu_scalar_value_p (type))
792 {
793 int preferred_slot = len < 4 ? 4 - len : 0;
794 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
795 }
796 else
797 {
798 while (len >= 16)
799 {
800 regcache_cooked_read (regcache, regnum++, out);
801 out += 16;
802 len -= 16;
803 }
804
805 if (len > 0)
806 regcache_cooked_read_part (regcache, regnum, 0, len, out);
807 }
808}
809
810static CORE_ADDR
811spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
812 struct regcache *regcache, CORE_ADDR bp_addr,
813 int nargs, struct value **args, CORE_ADDR sp,
814 int struct_return, CORE_ADDR struct_addr)
815{
816 int i;
817 int regnum = SPU_ARG1_REGNUM;
818 int stack_arg = -1;
819 gdb_byte buf[16];
820
821 /* Set the return address. */
822 memset (buf, 0, sizeof buf);
823 store_unsigned_integer (buf, 4, bp_addr);
824 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
825
826 /* If STRUCT_RETURN is true, then the struct return address (in
827 STRUCT_ADDR) will consume the first argument-passing register.
828 Both adjust the register count and store that value. */
829 if (struct_return)
830 {
831 memset (buf, 0, sizeof buf);
832 store_unsigned_integer (buf, 4, struct_addr);
833 regcache_cooked_write (regcache, regnum++, buf);
834 }
835
836 /* Fill in argument registers. */
837 for (i = 0; i < nargs; i++)
838 {
839 struct value *arg = args[i];
840 struct type *type = check_typedef (value_type (arg));
841 const gdb_byte *contents = value_contents (arg);
842 int len = TYPE_LENGTH (type);
843 int n_regs = align_up (len, 16) / 16;
844
845 /* If the argument doesn't wholly fit into registers, it and
846 all subsequent arguments go to the stack. */
847 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
848 {
849 stack_arg = i;
850 break;
851 }
852
853 spu_value_to_regcache (regcache, regnum, type, contents);
854 regnum += n_regs;
855 }
856
857 /* Overflow arguments go to the stack. */
858 if (stack_arg != -1)
859 {
860 CORE_ADDR ap;
861
862 /* Allocate all required stack size. */
863 for (i = stack_arg; i < nargs; i++)
864 {
865 struct type *type = check_typedef (value_type (args[i]));
866 sp -= align_up (TYPE_LENGTH (type), 16);
867 }
868
869 /* Fill in stack arguments. */
870 ap = sp;
871 for (i = stack_arg; i < nargs; i++)
872 {
873 struct value *arg = args[i];
874 struct type *type = check_typedef (value_type (arg));
875 int len = TYPE_LENGTH (type);
876 int preferred_slot;
877
878 if (spu_scalar_value_p (type))
879 preferred_slot = len < 4 ? 4 - len : 0;
880 else
881 preferred_slot = 0;
882
883 target_write_memory (ap + preferred_slot, value_contents (arg), len);
884 ap += align_up (TYPE_LENGTH (type), 16);
885 }
886 }
887
888 /* Allocate stack frame header. */
889 sp -= 32;
890
891 /* Finally, update the SP register. */
892 regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
893
894 return sp;
895}
896
897static struct frame_id
898spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
899{
900 return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
901 spu_unwind_pc (gdbarch, next_frame));
902}
903
904/* Function return value access. */
905
906static enum return_value_convention
907spu_return_value (struct gdbarch *gdbarch, struct type *type,
908 struct regcache *regcache, gdb_byte *out, const gdb_byte *in)
909{
910 enum return_value_convention rvc;
911
912 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
913 rvc = RETURN_VALUE_REGISTER_CONVENTION;
914 else
915 rvc = RETURN_VALUE_STRUCT_CONVENTION;
916
917 if (in)
918 {
919 switch (rvc)
920 {
921 case RETURN_VALUE_REGISTER_CONVENTION:
922 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
923 break;
924
925 case RETURN_VALUE_STRUCT_CONVENTION:
926 error ("Cannot set function return value.");
927 break;
928 }
929 }
930 else if (out)
931 {
932 switch (rvc)
933 {
934 case RETURN_VALUE_REGISTER_CONVENTION:
935 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
936 break;
937
938 case RETURN_VALUE_STRUCT_CONVENTION:
939 error ("Function return value unknown.");
940 break;
941 }
942 }
943
944 return rvc;
945}
946
947
948/* Breakpoints. */
949
950static const gdb_byte *
951spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
952{
953 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
954
955 *lenptr = sizeof breakpoint;
956 return breakpoint;
957}
958
959
960/* Software single-stepping support. */
961
962void
963spu_software_single_step (enum target_signal signal, int insert_breakpoints_p)
964{
965 if (insert_breakpoints_p)
966 {
967 CORE_ADDR pc, next_pc;
968 unsigned int insn;
969 int offset, reg;
970 gdb_byte buf[4];
971
972 regcache_cooked_read (current_regcache, SPU_PC_REGNUM, buf);
973 pc = extract_unsigned_integer (buf, 4);
974
975 if (target_read_memory (pc, buf, 4))
976 return;
977 insn = extract_unsigned_integer (buf, 4);
978
979 /* Next sequential instruction is at PC + 4, except if the current
980 instruction is a PPE-assisted call, in which case it is at PC + 8.
981 Wrap around LS limit to be on the safe side. */
982 if ((insn & 0xffffff00) == 0x00002100)
983 next_pc = (pc + 8) & (SPU_LS_SIZE - 1) & -4;
984 else
985 next_pc = (pc + 4) & (SPU_LS_SIZE - 1) & -4;
986
987 insert_single_step_breakpoint (next_pc);
988
989 if (is_branch (insn, &offset, &reg))
990 {
991 CORE_ADDR target = offset;
992
993 if (reg == SPU_PC_REGNUM)
994 target += pc;
995 else if (reg != -1)
996 {
997 regcache_cooked_read_part (current_regcache, reg, 0, 4, buf);
998 target += extract_unsigned_integer (buf, 4);
999 }
1000
1001 target = target & (SPU_LS_SIZE - 1) & -4;
1002 if (target != next_pc)
1003 insert_single_step_breakpoint (target);
1004 }
1005 }
1006 else
1007 remove_single_step_breakpoints ();
1008}
1009
1010
1011/* Set up gdbarch struct. */
1012
1013static struct gdbarch *
1014spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1015{
1016 struct gdbarch *gdbarch;
1017
1018 /* Find a candidate among the list of pre-declared architectures. */
1019 arches = gdbarch_list_lookup_by_info (arches, &info);
1020 if (arches != NULL)
1021 return arches->gdbarch;
1022
1023 /* Is is for us? */
1024 if (info.bfd_arch_info->mach != bfd_mach_spu)
1025 return NULL;
1026
1027 /* Yes, create a new architecture. */
1028 gdbarch = gdbarch_alloc (&info, NULL);
1029
1030 /* Disassembler. */
1031 set_gdbarch_print_insn (gdbarch, print_insn_spu);
1032
1033 /* Registers. */
1034 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
1035 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
1036 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
1037 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
1038 set_gdbarch_register_name (gdbarch, spu_register_name);
1039 set_gdbarch_register_type (gdbarch, spu_register_type);
1040 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
1041 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 1042 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502
UW
1043 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
1044
1045 /* Data types. */
1046 set_gdbarch_char_signed (gdbarch, 0);
1047 set_gdbarch_ptr_bit (gdbarch, 32);
1048 set_gdbarch_addr_bit (gdbarch, 32);
1049 set_gdbarch_short_bit (gdbarch, 16);
1050 set_gdbarch_int_bit (gdbarch, 32);
1051 set_gdbarch_long_bit (gdbarch, 32);
1052 set_gdbarch_long_long_bit (gdbarch, 64);
1053 set_gdbarch_float_bit (gdbarch, 32);
1054 set_gdbarch_double_bit (gdbarch, 64);
1055 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
1056 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1057 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1058 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502
UW
1059
1060 /* Inferior function calls. */
1061 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
1062 set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
1063 set_gdbarch_return_value (gdbarch, spu_return_value);
1064
1065 /* Frame handling. */
1066 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1067 frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
1068 frame_base_set_default (gdbarch, &spu_frame_base);
1069 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
1070 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
1071 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
1072 set_gdbarch_frame_args_skip (gdbarch, 0);
1073 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
1074
1075 /* Breakpoints. */
1076 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1077 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
1078 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1079 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
1080
1081 return gdbarch;
1082}
1083
f2d43c2c
UW
1084/* Implement a SPU-specific vector type as replacement
1085 for __gdb_builtin_type_vec128. */
1086static void
1087spu_init_vector_type (void)
1088{
1089 struct type *type;
1090
1091 type = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
1092 append_composite_type_field (type, "uint128", builtin_type_int128);
1093 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1094 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1095 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1096 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1097 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1098 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1099
1100 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1101 TYPE_NAME (type) = "spu_builtin_type_vec128";
1102 spu_builtin_type_vec128 = type;
1103}
1104
771b4502
UW
1105void
1106_initialize_spu_tdep (void)
1107{
1108 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c
UW
1109
1110 spu_init_vector_type ();
771b4502 1111}