]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/stabsread.c
2011-01-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22/* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28#include "defs.h"
29#include "gdb_string.h"
30#include "bfd.h"
04ea0df1 31#include "gdb_obstack.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbtypes.h"
34#include "expression.h"
35#include "symfile.h"
36#include "objfiles.h"
3e43a32a 37#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
38#include "libaout.h"
39#include "aout/aout64.h"
40#include "gdb-stabs.h"
41#include "buildsym.h"
42#include "complaints.h"
43#include "demangle.h"
44#include "language.h"
d16aafd8 45#include "doublest.h"
de17c821
DJ
46#include "cp-abi.h"
47#include "cp-support.h"
8fb822e0 48#include "gdb_assert.h"
c906108c
SS
49
50#include <ctype.h>
51
52/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
53#define EXTERN
54/**/
c906108c
SS
55#include "stabsread.h" /* Our own declarations */
56#undef EXTERN
57
a14ed312 58extern void _initialize_stabsread (void);
392a587b 59
c906108c
SS
60/* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66struct field_info
c5aa993b
JM
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
c906108c 71
c5aa993b
JM
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
c906108c 76
c5aa993b
JM
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
c906108c
SS
87
88static void
a14ed312
KB
89read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
c906108c 91
a14ed312 92static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 93
94e10a22 94static long read_huge_number (char **, int, int *, int);
c906108c 95
a14ed312 96static struct type *error_type (char **, struct objfile *);
c906108c
SS
97
98static void
a14ed312
KB
99patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
c906108c 101
a14ed312 102static void fix_common_block (struct symbol *, int);
c906108c 103
a14ed312 104static int read_type_number (char **, int *);
c906108c 105
a7a48797
EZ
106static struct type *read_type (char **, struct objfile *);
107
94e10a22 108static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 109
a14ed312 110static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 111
a14ed312
KB
112static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
c906108c 114
a14ed312 115static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 116
46bf5051 117static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
118
119static int
a14ed312
KB
120read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
c906108c
SS
122
123static int
a14ed312
KB
124read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
c906108c
SS
126
127static int
a14ed312
KB
128read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
c906108c
SS
130
131static int
a14ed312
KB
132read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
c906108c 134
a14ed312 135static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 136
570b8f7c
AC
137static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
c906108c 139
a14ed312 140static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 141 enum type_code,
a14ed312 142 struct objfile *);
c906108c 143
a14ed312
KB
144static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
c906108c 146
ad2f7632 147static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 148
bf362611 149static void add_undefined_type (struct type *, int[2]);
a7a48797 150
c906108c 151static int
a14ed312
KB
152read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
c906108c 154
7e1d63ec
AF
155static char *find_name_end (char *name);
156
a14ed312 157static int process_reference (char **string);
c906108c 158
a14ed312 159void stabsread_clear_cache (void);
7be570e7 160
8343f86c
DJ
161static const char vptr_name[] = "_vptr$";
162static const char vb_name[] = "_vb$";
c906108c 163
23136709
KB
164static void
165invalid_cpp_abbrev_complaint (const char *arg1)
166{
e2e0b3e5 167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 168}
c906108c 169
23136709 170static void
49b0b195 171reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
172{
173 complaint (&symfile_complaints,
e2e0b3e5 174 _("register number %d too large (max %d) in symbol %s"),
49b0b195 175 regnum, num_regs - 1, sym);
23136709 176}
c906108c 177
23136709
KB
178static void
179stabs_general_complaint (const char *arg1)
180{
181 complaint (&symfile_complaints, "%s", arg1);
182}
c906108c 183
c906108c
SS
184/* Make a list of forward references which haven't been defined. */
185
186static struct type **undef_types;
187static int undef_types_allocated;
188static int undef_types_length;
189static struct symbol *current_symbol = NULL;
190
bf362611
JB
191/* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196struct nat
197{
198 int typenums[2];
199 struct type *type;
200};
201static struct nat *noname_undefs;
202static int noname_undefs_allocated;
203static int noname_undefs_length;
204
c906108c
SS
205/* Check for and handle cretinous stabs symbol name continuation! */
206#define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211\f
c906108c
SS
212
213/* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
a7a48797 220static struct type **
46bf5051 221dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 222{
52f0bd74
AC
223 int filenum = typenums[0];
224 int index = typenums[1];
c906108c 225 unsigned old_len;
52f0bd74
AC
226 int real_filenum;
227 struct header_file *f;
c906108c
SS
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
23136709 235 complaint (&symfile_complaints,
3e43a32a
MS
236 _("Invalid symbol data: type number "
237 "(%d,%d) out of range at symtab pos %d."),
23136709 238 filenum, index, symnum);
c906108c
SS
239 goto error_return;
240 }
241
242 if (filenum == 0)
243 {
244 if (index < 0)
245 {
246 /* Caller wants address of address of type. We think
247 that negative (rs6k builtin) types will never appear as
248 "lvalues", (nor should they), so we stuff the real type
249 pointer into a temp, and return its address. If referenced,
250 this will do the right thing. */
251 static struct type *temp_type;
252
46bf5051 253 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
254 return &temp_type;
255 }
256
257 /* Type is defined outside of header files.
c5aa993b 258 Find it in this object file's type vector. */
c906108c
SS
259 if (index >= type_vector_length)
260 {
261 old_len = type_vector_length;
262 if (old_len == 0)
263 {
264 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
265 type_vector = (struct type **)
266 xmalloc (type_vector_length * sizeof (struct type *));
267 }
268 while (index >= type_vector_length)
269 {
270 type_vector_length *= 2;
271 }
272 type_vector = (struct type **)
273 xrealloc ((char *) type_vector,
274 (type_vector_length * sizeof (struct type *)));
275 memset (&type_vector[old_len], 0,
276 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
277 }
278 return (&type_vector[index]);
279 }
280 else
281 {
282 real_filenum = this_object_header_files[filenum];
283
46bf5051 284 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 285 {
46bf5051 286 static struct type *temp_type;
c906108c 287
8a3fe4f8 288 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
289
290 error_return:
46bf5051
UW
291 temp_type = objfile_type (objfile)->builtin_error;
292 return &temp_type;
c906108c
SS
293 }
294
46bf5051 295 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
296
297 f_orig_length = f->length;
298 if (index >= f_orig_length)
299 {
300 while (index >= f->length)
301 {
302 f->length *= 2;
303 }
304 f->vector = (struct type **)
305 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
306 memset (&f->vector[f_orig_length], 0,
307 (f->length - f_orig_length) * sizeof (struct type *));
308 }
309 return (&f->vector[index]);
310 }
311}
312
313/* Make sure there is a type allocated for type numbers TYPENUMS
314 and return the type object.
315 This can create an empty (zeroed) type object.
316 TYPENUMS may be (-1, -1) to return a new type object that is not
317 put into the type vector, and so may not be referred to by number. */
318
319static struct type *
35a2f538 320dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 321{
52f0bd74 322 struct type **type_addr;
c906108c
SS
323
324 if (typenums[0] == -1)
325 {
326 return (alloc_type (objfile));
327 }
328
46bf5051 329 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
330
331 /* If we are referring to a type not known at all yet,
332 allocate an empty type for it.
333 We will fill it in later if we find out how. */
334 if (*type_addr == 0)
335 {
336 *type_addr = alloc_type (objfile);
337 }
338
339 return (*type_addr);
340}
341
342/* for all the stabs in a given stab vector, build appropriate types
343 and fix their symbols in given symbol vector. */
344
345static void
fba45db2
KB
346patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
347 struct objfile *objfile)
c906108c
SS
348{
349 int ii;
350 char *name;
351 char *pp;
352 struct symbol *sym;
353
354 if (stabs)
355 {
c906108c 356 /* for all the stab entries, find their corresponding symbols and
c5aa993b
JM
357 patch their types! */
358
c906108c
SS
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
c5aa993b 362 pp = (char *) strchr (name, ':');
8fb822e0 363 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
364 while (pp[1] == ':')
365 {
c5aa993b
JM
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
c906108c 368 }
c5aa993b 369 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
c906108c
SS
379
380 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
c906108c 383 sym = (struct symbol *)
4a146b47 384 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
176620f1 388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3567439c
DJ
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
c906108c 393 pp += 2;
c5aa993b 394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
c5aa993b 411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423}
c906108c 424\f
c5aa993b 425
c906108c
SS
426/* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434static int
aa1ee363 435read_type_number (char **pp, int *typenums)
c906108c
SS
436{
437 int nbits;
433759f7 438
c906108c
SS
439 if (**pp == '(')
440 {
441 (*pp)++;
94e10a22 442 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
443 if (nbits != 0)
444 return -1;
94e10a22 445 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
446 if (nbits != 0)
447 return -1;
c906108c
SS
448 }
449 else
450 {
451 typenums[0] = 0;
94e10a22 452 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
453 if (nbits != 0)
454 return -1;
c906108c
SS
455 }
456 return 0;
457}
c906108c 458\f
c5aa993b 459
c906108c
SS
460#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
461#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
462#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
463#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464
c906108c
SS
465/* Structure for storing pointers to reference definitions for fast lookup
466 during "process_later". */
467
468struct ref_map
469{
470 char *stabs;
471 CORE_ADDR value;
472 struct symbol *sym;
473};
474
475#define MAX_CHUNK_REFS 100
476#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
477#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478
c5aa993b 479static struct ref_map *ref_map;
c906108c
SS
480
481/* Ptr to free cell in chunk's linked list. */
c5aa993b 482static int ref_count = 0;
c906108c
SS
483
484/* Number of chunks malloced. */
485static int ref_chunk = 0;
486
7be570e7
JM
487/* This file maintains a cache of stabs aliases found in the symbol
488 table. If the symbol table changes, this cache must be cleared
489 or we are left holding onto data in invalid obstacks. */
490void
fba45db2 491stabsread_clear_cache (void)
7be570e7
JM
492{
493 ref_count = 0;
494 ref_chunk = 0;
495}
496
c906108c
SS
497/* Create array of pointers mapping refids to symbols and stab strings.
498 Add pointers to reference definition symbols and/or their values as we
499 find them, using their reference numbers as our index.
500 These will be used later when we resolve references. */
501void
fba45db2 502ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
503{
504 if (ref_count == 0)
505 ref_chunk = 0;
506 if (refnum >= ref_count)
507 ref_count = refnum + 1;
508 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
509 {
c5aa993b 510 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 511 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 512
c906108c
SS
513 ref_map = (struct ref_map *)
514 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
515 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
516 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
517 ref_chunk += new_chunks;
518 }
519 ref_map[refnum].stabs = stabs;
520 ref_map[refnum].sym = sym;
521 ref_map[refnum].value = value;
522}
523
524/* Return defined sym for the reference REFNUM. */
525struct symbol *
fba45db2 526ref_search (int refnum)
c906108c
SS
527{
528 if (refnum < 0 || refnum > ref_count)
529 return 0;
530 return ref_map[refnum].sym;
531}
532
c906108c
SS
533/* Parse a reference id in STRING and return the resulting
534 reference number. Move STRING beyond the reference id. */
535
c5aa993b 536static int
fba45db2 537process_reference (char **string)
c906108c
SS
538{
539 char *p;
540 int refnum = 0;
541
c5aa993b
JM
542 if (**string != '#')
543 return 0;
544
c906108c
SS
545 /* Advance beyond the initial '#'. */
546 p = *string + 1;
547
548 /* Read number as reference id. */
549 while (*p && isdigit (*p))
550 {
551 refnum = refnum * 10 + *p - '0';
552 p++;
553 }
554 *string = p;
555 return refnum;
556}
557
558/* If STRING defines a reference, store away a pointer to the reference
559 definition for later use. Return the reference number. */
560
561int
fba45db2 562symbol_reference_defined (char **string)
c906108c
SS
563{
564 char *p = *string;
565 int refnum = 0;
566
567 refnum = process_reference (&p);
568
569 /* Defining symbols end in '=' */
c5aa993b 570 if (*p == '=')
c906108c 571 {
c5aa993b 572 /* Symbol is being defined here. */
c906108c
SS
573 *string = p + 1;
574 return refnum;
575 }
576 else
577 {
578 /* Must be a reference. Either the symbol has already been defined,
579 or this is a forward reference to it. */
580 *string = p;
581 return -1;
582 }
583}
584
768a979c
UW
585static int
586stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
587{
588 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
589
590 if (regno >= gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
592 {
593 reg_value_complaint (regno,
594 gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch),
596 SYMBOL_PRINT_NAME (sym));
597
598 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
599 }
600
601 return regno;
602}
603
604static const struct symbol_register_ops stab_register_funcs = {
605 stab_reg_to_regnum
606};
607
c906108c 608struct symbol *
fba45db2
KB
609define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 struct objfile *objfile)
c906108c 611{
5e2b427d 612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 613 struct symbol *sym;
7e1d63ec 614 char *p = (char *) find_name_end (string);
c906108c
SS
615 int deftype;
616 int synonym = 0;
52f0bd74 617 int i;
71c25dea 618 char *new_name = NULL;
c906108c
SS
619
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
624
625 int nameless;
626
627 /* Ignore syms with empty names. */
628 if (string[0] == 0)
629 return 0;
630
631 /* Ignore old-style symbols from cc -go */
632 if (p == 0)
633 return 0;
634
635 while (p[1] == ':')
636 {
c5aa993b
JM
637 p += 2;
638 p = strchr (p, ':');
c906108c
SS
639 }
640
641 /* If a nameless stab entry, all we need is the type, not the symbol.
642 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
643 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
644
c5aa993b 645 current_symbol = sym = (struct symbol *)
4a146b47 646 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
647 memset (sym, 0, sizeof (struct symbol));
648
649 switch (type & N_TYPE)
650 {
651 case N_TEXT:
b8fbeb18 652 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
c906108c
SS
653 break;
654 case N_DATA:
b8fbeb18 655 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
c906108c
SS
656 break;
657 case N_BSS:
b8fbeb18 658 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
c906108c
SS
659 break;
660 }
661
662 if (processing_gcc_compilation)
663 {
664 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
665 number of bytes occupied by a type or object, which we ignore. */
666 SYMBOL_LINE (sym) = desc;
c906108c
SS
667 }
668 else
669 {
c5aa993b 670 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
671 }
672
673 if (is_cplus_marker (string[0]))
674 {
675 /* Special GNU C++ names. */
676 switch (string[1])
677 {
c5aa993b 678 case 't':
1c9e8358 679 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 680 break;
c906108c 681
c5aa993b 682 case 'v': /* $vtbl_ptr_type */
c5aa993b 683 goto normal;
c906108c 684
c5aa993b 685 case 'e':
1c9e8358 686 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 687 break;
c906108c 688
c5aa993b
JM
689 case '_':
690 /* This was an anonymous type that was never fixed up. */
691 goto normal;
c906108c 692
c5aa993b
JM
693 case 'X':
694 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 695 if (gdbarch_static_transform_name_p (gdbarch))
149ad273
UW
696 goto normal;
697 /* ... fall through ... */
c906108c 698
c5aa993b 699 default:
e2e0b3e5 700 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 701 string);
c5aa993b 702 goto normal; /* Do *something* with it */
c906108c
SS
703 }
704 }
c906108c
SS
705 else
706 {
707 normal:
33e5013e 708 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
df8a16a1 709 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea
TT
710 {
711 char *name = alloca (p - string + 1);
433759f7 712
71c25dea
TT
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
71c25dea
TT
716 }
717 if (new_name != NULL)
718 {
04a679b8 719 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
720 xfree (new_name);
721 }
722 else
04a679b8 723 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
724
725 if (SYMBOL_LANGUAGE (sym) == language_cplus)
726 cp_scan_for_anonymous_namespaces (sym);
727
c906108c
SS
728 }
729 p++;
730
731 /* Determine the type of name being defined. */
732#if 0
733 /* Getting GDB to correctly skip the symbol on an undefined symbol
734 descriptor and not ever dump core is a very dodgy proposition if
735 we do things this way. I say the acorn RISC machine can just
736 fix their compiler. */
737 /* The Acorn RISC machine's compiler can put out locals that don't
738 start with "234=" or "(3,4)=", so assume anything other than the
739 deftypes we know how to handle is a local. */
740 if (!strchr ("cfFGpPrStTvVXCR", *p))
741#else
742 if (isdigit (*p) || *p == '(' || *p == '-')
743#endif
744 deftype = 'l';
745 else
746 deftype = *p++;
747
748 switch (deftype)
749 {
750 case 'c':
751 /* c is a special case, not followed by a type-number.
c5aa993b
JM
752 SYMBOL:c=iVALUE for an integer constant symbol.
753 SYMBOL:c=rVALUE for a floating constant symbol.
754 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
755 e.g. "b:c=e6,0" for "const b = blob1"
756 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
757 if (*p != '=')
758 {
759 SYMBOL_CLASS (sym) = LOC_CONST;
760 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 761 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
762 add_symbol_to_list (sym, &file_symbols);
763 return sym;
764 }
765 ++p;
766 switch (*p++)
767 {
768 case 'r':
769 {
770 double d = atof (p);
4e38b386 771 gdb_byte *dbl_valu;
6ccb9162 772 struct type *dbl_type;
c906108c
SS
773
774 /* FIXME-if-picky-about-floating-accuracy: Should be using
775 target arithmetic to get the value. real.c in GCC
776 probably has the necessary code. */
777
46bf5051 778 dbl_type = objfile_type (objfile)->builtin_double;
4e38b386 779 dbl_valu =
4a146b47 780 obstack_alloc (&objfile->objfile_obstack,
6ccb9162
UW
781 TYPE_LENGTH (dbl_type));
782 store_typed_floating (dbl_valu, dbl_type, d);
783
784 SYMBOL_TYPE (sym) = dbl_type;
c906108c
SS
785 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
786 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
787 }
788 break;
789 case 'i':
790 {
791 /* Defining integer constants this way is kind of silly,
792 since 'e' constants allows the compiler to give not
793 only the value, but the type as well. C has at least
794 int, long, unsigned int, and long long as constant
795 types; other languages probably should have at least
796 unsigned as well as signed constants. */
797
46bf5051 798 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c
SS
799 SYMBOL_VALUE (sym) = atoi (p);
800 SYMBOL_CLASS (sym) = LOC_CONST;
801 }
802 break;
ec8a089a
PM
803
804 case 'c':
805 {
806 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
807 SYMBOL_VALUE (sym) = atoi (p);
808 SYMBOL_CLASS (sym) = LOC_CONST;
809 }
810 break;
811
812 case 's':
813 {
814 struct type *range_type;
815 int ind = 0;
816 char quote = *p++;
ec8a089a
PM
817 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
818 gdb_byte *string_value;
819
820 if (quote != '\'' && quote != '"')
821 {
822 SYMBOL_CLASS (sym) = LOC_CONST;
823 SYMBOL_TYPE (sym) = error_type (&p, objfile);
824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
825 add_symbol_to_list (sym, &file_symbols);
826 return sym;
827 }
828
829 /* Find matching quote, rejecting escaped quotes. */
830 while (*p && *p != quote)
831 {
832 if (*p == '\\' && p[1] == quote)
833 {
834 string_local[ind] = (gdb_byte) quote;
835 ind++;
836 p += 2;
837 }
838 else if (*p)
839 {
840 string_local[ind] = (gdb_byte) (*p);
841 ind++;
842 p++;
843 }
844 }
845 if (*p != quote)
846 {
847 SYMBOL_CLASS (sym) = LOC_CONST;
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* NULL terminate the string. */
855 string_local[ind] = 0;
3e43a32a
MS
856 range_type
857 = create_range_type (NULL,
858 objfile_type (objfile)->builtin_int,
859 0, ind);
ec8a089a
PM
860 SYMBOL_TYPE (sym) = create_array_type (NULL,
861 objfile_type (objfile)->builtin_char,
862 range_type);
863 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
864 memcpy (string_value, string_local, ind + 1);
865 p++;
866
867 SYMBOL_VALUE_BYTES (sym) = string_value;
868 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
869 }
870 break;
871
c906108c
SS
872 case 'e':
873 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
874 can be represented as integral.
875 e.g. "b:c=e6,0" for "const b = blob1"
876 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
877 {
878 SYMBOL_CLASS (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = read_type (&p, objfile);
880
881 if (*p != ',')
882 {
883 SYMBOL_TYPE (sym) = error_type (&p, objfile);
884 break;
885 }
886 ++p;
887
888 /* If the value is too big to fit in an int (perhaps because
889 it is unsigned), or something like that, we silently get
890 a bogus value. The type and everything else about it is
891 correct. Ideally, we should be using whatever we have
892 available for parsing unsigned and long long values,
893 however. */
894 SYMBOL_VALUE (sym) = atoi (p);
895 }
896 break;
897 default:
898 {
899 SYMBOL_CLASS (sym) = LOC_CONST;
900 SYMBOL_TYPE (sym) = error_type (&p, objfile);
901 }
902 }
176620f1 903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
904 add_symbol_to_list (sym, &file_symbols);
905 return sym;
906
907 case 'C':
908 /* The name of a caught exception. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_LABEL;
176620f1 911 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
912 SYMBOL_VALUE_ADDRESS (sym) = valu;
913 add_symbol_to_list (sym, &local_symbols);
914 break;
915
916 case 'f':
917 /* A static function definition. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_CLASS (sym) = LOC_BLOCK;
176620f1 920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
921 add_symbol_to_list (sym, &file_symbols);
922 /* fall into process_function_types. */
923
924 process_function_types:
925 /* Function result types are described as the result type in stabs.
c5aa993b
JM
926 We need to convert this to the function-returning-type-X type
927 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
928 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
929 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
930
1e698235
DJ
931 /* All functions in C++ have prototypes. Stabs does not offer an
932 explicit way to identify prototyped or unprototyped functions,
933 but both GCC and Sun CC emit stabs for the "call-as" type rather
934 than the "declared-as" type for unprototyped functions, so
935 we treat all functions as if they were prototyped. This is used
936 primarily for promotion when calling the function from GDB. */
876cecd0 937 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c
SS
938
939 /* fall into process_prototype_types */
940
941 process_prototype_types:
942 /* Sun acc puts declared types of arguments here. */
943 if (*p == ';')
944 {
945 struct type *ftype = SYMBOL_TYPE (sym);
946 int nsemi = 0;
947 int nparams = 0;
948 char *p1 = p;
949
950 /* Obtain a worst case guess for the number of arguments
951 by counting the semicolons. */
952 while (*p1)
953 {
954 if (*p1++ == ';')
955 nsemi++;
956 }
957
958 /* Allocate parameter information fields and fill them in. */
959 TYPE_FIELDS (ftype) = (struct field *)
960 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
961 while (*p++ == ';')
962 {
963 struct type *ptype;
964
965 /* A type number of zero indicates the start of varargs.
c5aa993b 966 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
967 if (p[0] == '0' && p[1] == '\0')
968 break;
969 ptype = read_type (&p, objfile);
970
971 /* The Sun compilers mark integer arguments, which should
c5aa993b
JM
972 be promoted to the width of the calling conventions, with
973 a type which references itself. This type is turned into
974 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
975 it back into builtin_int here.
976 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 977 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 978 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
979 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
980 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
981 }
982 TYPE_NFIELDS (ftype) = nparams;
876cecd0 983 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
984 }
985 break;
986
987 case 'F':
988 /* A global function definition. */
989 SYMBOL_TYPE (sym) = read_type (&p, objfile);
990 SYMBOL_CLASS (sym) = LOC_BLOCK;
176620f1 991 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
992 add_symbol_to_list (sym, &global_symbols);
993 goto process_function_types;
994
995 case 'G':
996 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
997 value is not correct. It is necessary to search for the
998 corresponding linker definition to find the value.
999 These definitions appear at the end of the namelist. */
c906108c
SS
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 SYMBOL_CLASS (sym) = LOC_STATIC;
176620f1 1002 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1003 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1004 Symbol references don't have valid names and wont't match up with
1005 minimal symbols when the global_sym_chain is relocated.
1006 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1007 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1008 {
3567439c 1009 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1010 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1011 global_sym_chain[i] = sym;
c906108c
SS
1012 }
1013 add_symbol_to_list (sym, &global_symbols);
1014 break;
1015
1016 /* This case is faked by a conditional above,
c5aa993b
JM
1017 when there is no code letter in the dbx data.
1018 Dbx data never actually contains 'l'. */
c906108c
SS
1019 case 's':
1020 case 'l':
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_CLASS (sym) = LOC_LOCAL;
1023 SYMBOL_VALUE (sym) = valu;
176620f1 1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1025 add_symbol_to_list (sym, &local_symbols);
1026 break;
1027
1028 case 'p':
1029 if (*p == 'F')
1030 /* pF is a two-letter code that means a function parameter in Fortran.
1031 The type-number specifies the type of the return value.
1032 Translate it into a pointer-to-function type. */
1033 {
1034 p++;
1035 SYMBOL_TYPE (sym)
1036 = lookup_pointer_type
c5aa993b 1037 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1038 }
1039 else
1040 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1041
7ca9f392 1042 SYMBOL_CLASS (sym) = LOC_ARG;
c906108c 1043 SYMBOL_VALUE (sym) = valu;
176620f1 1044 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1045 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1046 add_symbol_to_list (sym, &local_symbols);
1047
5e2b427d 1048 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1049 {
1050 /* On little-endian machines, this crud is never necessary,
1051 and, if the extra bytes contain garbage, is harmful. */
1052 break;
1053 }
1054
1055 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1056 if (processing_gcc_compilation
5e2b427d 1057 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1058 break;
1059
5e2b427d 1060 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1061 {
8ee56bcf
AC
1062 /* If PCC says a parameter is a short or a char, it is
1063 really an int. */
5e2b427d
UW
1064 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1065 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1066 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1067 {
8ee56bcf
AC
1068 SYMBOL_TYPE (sym) =
1069 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1070 ? objfile_type (objfile)->builtin_unsigned_int
1071 : objfile_type (objfile)->builtin_int;
7a292a7a 1072 }
8ee56bcf 1073 break;
7a292a7a 1074 }
c906108c
SS
1075
1076 case 'P':
1077 /* acc seems to use P to declare the prototypes of functions that
1078 are referenced by this file. gdb is not prepared to deal
1079 with this extra information. FIXME, it ought to. */
1080 if (type == N_FUN)
1081 {
1082 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1083 goto process_prototype_types;
1084 }
c5aa993b 1085 /*FALLTHROUGH */
c906108c
SS
1086
1087 case 'R':
1088 /* Parameter which is in a register. */
1089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2a2d4dc3 1090 SYMBOL_CLASS (sym) = LOC_REGISTER;
768a979c 1091 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
2a2d4dc3 1092 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1093 SYMBOL_VALUE (sym) = valu;
176620f1 1094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1095 add_symbol_to_list (sym, &local_symbols);
1096 break;
1097
1098 case 'r':
1099 /* Register variable (either global or local). */
1100 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1101 SYMBOL_CLASS (sym) = LOC_REGISTER;
768a979c
UW
1102 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1103 SYMBOL_VALUE (sym) = valu;
176620f1 1104 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1105 if (within_function)
1106 {
192cb3d4
MK
1107 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1108 the same name to represent an argument passed in a
1109 register. GCC uses 'P' for the same case. So if we find
1110 such a symbol pair we combine it into one 'P' symbol.
1111 For Sun cc we need to do this regardless of
1112 stabs_argument_has_addr, because the compiler puts out
1113 the 'p' symbol even if it never saves the argument onto
1114 the stack.
1115
1116 On most machines, we want to preserve both symbols, so
1117 that we can still get information about what is going on
1118 with the stack (VAX for computing args_printed, using
1119 stack slots instead of saved registers in backtraces,
1120 etc.).
c906108c
SS
1121
1122 Note that this code illegally combines
c5aa993b 1123 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1124 but this case is considered pathological and causes a warning
1125 from a decent compiler. */
1126
1127 if (local_symbols
1128 && local_symbols->nsyms > 0
5e2b427d 1129 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1130 {
1131 struct symbol *prev_sym;
433759f7 1132
c906108c
SS
1133 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1134 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1135 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1136 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1137 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1138 {
2a2d4dc3 1139 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
768a979c 1140 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
c906108c
SS
1141 /* Use the type from the LOC_REGISTER; that is the type
1142 that is actually in that register. */
1143 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1144 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1145 sym = prev_sym;
1146 break;
1147 }
1148 }
c5aa993b 1149 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1150 }
1151 else
c5aa993b 1152 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1153 break;
1154
1155 case 'S':
1156 /* Static symbol at top level of file */
1157 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1158 SYMBOL_CLASS (sym) = LOC_STATIC;
1159 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1160 if (gdbarch_static_transform_name_p (gdbarch)
1161 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1162 SYMBOL_LINKAGE_NAME (sym))
1163 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b
JM
1164 {
1165 struct minimal_symbol *msym;
433759f7 1166
3e43a32a
MS
1167 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1168 NULL, objfile);
c5aa993b
JM
1169 if (msym != NULL)
1170 {
3567439c
DJ
1171 char *new_name = gdbarch_static_transform_name
1172 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1173
3567439c 1174 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
c5aa993b
JM
1175 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1176 }
1177 }
176620f1 1178 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1179 add_symbol_to_list (sym, &file_symbols);
1180 break;
1181
1182 case 't':
52eea4ce
JB
1183 /* In Ada, there is no distinction between typedef and non-typedef;
1184 any type declaration implicitly has the equivalent of a typedef,
1185 and thus 't' is in fact equivalent to 'Tt'.
1186
1187 Therefore, for Ada units, we check the character immediately
1188 before the 't', and if we do not find a 'T', then make sure to
1189 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1190 will be stored in the VAR_DOMAIN). If the symbol was indeed
1191 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1192 elsewhere, so we don't need to take care of that.
1193
1194 This is important to do, because of forward references:
1195 The cleanup of undefined types stored in undef_types only uses
1196 STRUCT_DOMAIN symbols to perform the replacement. */
1197 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1198
e2cd42dd 1199 /* Typedef */
c906108c
SS
1200 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1201
1202 /* For a nameless type, we don't want a create a symbol, thus we
c5aa993b
JM
1203 did not use `sym'. Return without further processing. */
1204 if (nameless)
1205 return NULL;
c906108c
SS
1206
1207 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1208 SYMBOL_VALUE (sym) = valu;
176620f1 1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1210 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1211 a base type which did not have its name defined when the
1212 derived class was output. We fill in the derived class's
1213 base part member's name here in that case. */
c906108c
SS
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1215 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1216 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1217 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1218 {
1219 int j;
433759f7 1220
c906108c
SS
1221 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1222 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1223 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1224 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1225 }
1226
1227 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1228 {
1229 /* gcc-2.6 or later (when using -fvtable-thunks)
1230 emits a unique named type for a vtable entry.
1231 Some gdb code depends on that specific name. */
1232 extern const char vtbl_ptr_name[];
1233
1234 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1235 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1236 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
49d97c60
EZ
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char()
1260 typedef char *caddr_t;
1261 char *name2;
1262 struct x
1263 {
1264 char *name1;
1265 } xx;
1266 char *func()
1267 {
1268 }
1269 main () {}
1270 */
1271
1272 /* Pascal accepts names for pointer types. */
1273 if (current_subfile->language == language_pascal)
1274 {
3567439c 1275 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1276 }
c906108c
SS
1277 }
1278 else
3567439c 1279 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1280 }
1281
1282 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1283
1284 if (synonym)
1285 {
1286 /* Create the STRUCT_DOMAIN clone. */
1287 struct symbol *struct_sym = (struct symbol *)
1288 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1289
1290 *struct_sym = *sym;
1291 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1292 SYMBOL_VALUE (struct_sym) = valu;
1293 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1294 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1295 TYPE_NAME (SYMBOL_TYPE (sym))
1296 = obconcat (&objfile->objfile_obstack,
1297 SYMBOL_LINKAGE_NAME (sym),
1298 (char *) NULL);
52eea4ce
JB
1299 add_symbol_to_list (struct_sym, &file_symbols);
1300 }
1301
c906108c
SS
1302 break;
1303
1304 case 'T':
1305 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1306 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1307 synonym = *p == 't';
1308
1309 if (synonym)
1310 p++;
c906108c
SS
1311
1312 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1313
c906108c 1314 /* For a nameless type, we don't want a create a symbol, thus we
c5aa993b
JM
1315 did not use `sym'. Return without further processing. */
1316 if (nameless)
1317 return NULL;
c906108c
SS
1318
1319 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1320 SYMBOL_VALUE (sym) = valu;
176620f1 1321 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1322 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1323 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1324 = obconcat (&objfile->objfile_obstack,
1325 SYMBOL_LINKAGE_NAME (sym),
1326 (char *) NULL);
c906108c
SS
1327 add_symbol_to_list (sym, &file_symbols);
1328
1329 if (synonym)
1330 {
1331 /* Clone the sym and then modify it. */
aa1ee363 1332 struct symbol *typedef_sym = (struct symbol *)
433759f7
MS
1333 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1334
c906108c
SS
1335 *typedef_sym = *sym;
1336 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1337 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1338 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1339 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1340 TYPE_NAME (SYMBOL_TYPE (sym))
1341 = obconcat (&objfile->objfile_obstack,
1342 SYMBOL_LINKAGE_NAME (sym),
1343 (char *) NULL);
c906108c
SS
1344 add_symbol_to_list (typedef_sym, &file_symbols);
1345 }
1346 break;
1347
1348 case 'V':
1349 /* Static symbol of local scope */
1350 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1351 SYMBOL_CLASS (sym) = LOC_STATIC;
1352 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1353 if (gdbarch_static_transform_name_p (gdbarch)
1354 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1355 SYMBOL_LINKAGE_NAME (sym))
1356 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b
JM
1357 {
1358 struct minimal_symbol *msym;
433759f7
MS
1359
1360 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1361 NULL, objfile);
c5aa993b
JM
1362 if (msym != NULL)
1363 {
3567439c
DJ
1364 char *new_name = gdbarch_static_transform_name
1365 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1366
3567439c 1367 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
c5aa993b
JM
1368 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1369 }
1370 }
176620f1 1371 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1372 add_symbol_to_list (sym, &local_symbols);
1373 break;
1374
1375 case 'v':
1376 /* Reference parameter */
1377 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1378 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2a2d4dc3 1379 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1380 SYMBOL_VALUE (sym) = valu;
176620f1 1381 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1382 add_symbol_to_list (sym, &local_symbols);
1383 break;
1384
1385 case 'a':
1386 /* Reference parameter which is in a register. */
1387 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1388 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
768a979c 1389 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
2a2d4dc3 1390 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1391 SYMBOL_VALUE (sym) = valu;
176620f1 1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1393 add_symbol_to_list (sym, &local_symbols);
1394 break;
1395
1396 case 'X':
1397 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1398 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1399 that Pascal uses it too, but when I tried it Pascal used
1400 "x:3" (local symbol) instead. */
c906108c
SS
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_CLASS (sym) = LOC_LOCAL;
1403 SYMBOL_VALUE (sym) = valu;
176620f1 1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1405 add_symbol_to_list (sym, &local_symbols);
1406 break;
c906108c
SS
1407
1408 default:
1409 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1410 SYMBOL_CLASS (sym) = LOC_CONST;
1411 SYMBOL_VALUE (sym) = 0;
176620f1 1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1413 add_symbol_to_list (sym, &file_symbols);
1414 break;
1415 }
1416
192cb3d4
MK
1417 /* Some systems pass variables of certain types by reference instead
1418 of by value, i.e. they will pass the address of a structure (in a
1419 register or on the stack) instead of the structure itself. */
c906108c 1420
5e2b427d 1421 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1422 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1423 {
2a2d4dc3 1424 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1425 variables passed in a register). */
2a2d4dc3 1426 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
192cb3d4
MK
1427 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1428 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1429 and subsequent arguments on SPARC, for example). */
1430 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1431 SYMBOL_CLASS (sym) = LOC_REF_ARG;
c906108c
SS
1432 }
1433
c906108c
SS
1434 return sym;
1435}
1436
c906108c
SS
1437/* Skip rest of this symbol and return an error type.
1438
1439 General notes on error recovery: error_type always skips to the
1440 end of the symbol (modulo cretinous dbx symbol name continuation).
1441 Thus code like this:
1442
1443 if (*(*pp)++ != ';')
c5aa993b 1444 return error_type (pp, objfile);
c906108c
SS
1445
1446 is wrong because if *pp starts out pointing at '\0' (typically as the
1447 result of an earlier error), it will be incremented to point to the
1448 start of the next symbol, which might produce strange results, at least
1449 if you run off the end of the string table. Instead use
1450
1451 if (**pp != ';')
c5aa993b 1452 return error_type (pp, objfile);
c906108c
SS
1453 ++*pp;
1454
1455 or
1456
1457 if (**pp != ';')
c5aa993b 1458 foo = error_type (pp, objfile);
c906108c 1459 else
c5aa993b 1460 ++*pp;
c906108c
SS
1461
1462 And in case it isn't obvious, the point of all this hair is so the compiler
1463 can define new types and new syntaxes, and old versions of the
1464 debugger will be able to read the new symbol tables. */
1465
1466static struct type *
fba45db2 1467error_type (char **pp, struct objfile *objfile)
c906108c 1468{
3e43a32a
MS
1469 complaint (&symfile_complaints,
1470 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1471 while (1)
1472 {
1473 /* Skip to end of symbol. */
1474 while (**pp != '\0')
1475 {
1476 (*pp)++;
1477 }
1478
1479 /* Check for and handle cretinous dbx symbol name continuation! */
1480 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1481 {
1482 *pp = next_symbol_text (objfile);
1483 }
1484 else
1485 {
1486 break;
1487 }
1488 }
46bf5051 1489 return objfile_type (objfile)->builtin_error;
c906108c 1490}
c906108c 1491\f
c5aa993b 1492
c906108c
SS
1493/* Read type information or a type definition; return the type. Even
1494 though this routine accepts either type information or a type
1495 definition, the distinction is relevant--some parts of stabsread.c
1496 assume that type information starts with a digit, '-', or '(' in
1497 deciding whether to call read_type. */
1498
a7a48797 1499static struct type *
aa1ee363 1500read_type (char **pp, struct objfile *objfile)
c906108c 1501{
52f0bd74 1502 struct type *type = 0;
c906108c
SS
1503 struct type *type1;
1504 int typenums[2];
1505 char type_descriptor;
1506
1507 /* Size in bits of type if specified by a type attribute, or -1 if
1508 there is no size attribute. */
1509 int type_size = -1;
1510
1511 /* Used to distinguish string and bitstring from char-array and set. */
1512 int is_string = 0;
1513
e2cd42dd
MS
1514 /* Used to distinguish vector from array. */
1515 int is_vector = 0;
1516
c906108c
SS
1517 /* Read type number if present. The type number may be omitted.
1518 for instance in a two-dimensional array declared with type
1519 "ar1;1;10;ar1;1;10;4". */
1520 if ((**pp >= '0' && **pp <= '9')
1521 || **pp == '('
1522 || **pp == '-')
1523 {
1524 if (read_type_number (pp, typenums) != 0)
1525 return error_type (pp, objfile);
c5aa993b 1526
c906108c 1527 if (**pp != '=')
8cfe231d
JB
1528 {
1529 /* Type is not being defined here. Either it already
1530 exists, or this is a forward reference to it.
1531 dbx_alloc_type handles both cases. */
1532 type = dbx_alloc_type (typenums, objfile);
1533
1534 /* If this is a forward reference, arrange to complain if it
1535 doesn't get patched up by the time we're done
1536 reading. */
1537 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1538 add_undefined_type (type, typenums);
8cfe231d
JB
1539
1540 return type;
1541 }
c906108c
SS
1542
1543 /* Type is being defined here. */
1544 /* Skip the '='.
c5aa993b
JM
1545 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1546 (*pp) += 2;
c906108c
SS
1547 }
1548 else
1549 {
1550 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1551 the definition, but don't put it in the type vector. */
c906108c
SS
1552 typenums[0] = typenums[1] = -1;
1553 (*pp)++;
1554 }
1555
c5aa993b 1556again:
c906108c
SS
1557 type_descriptor = (*pp)[-1];
1558 switch (type_descriptor)
1559 {
1560 case 'x':
1561 {
1562 enum type_code code;
1563
1564 /* Used to index through file_symbols. */
1565 struct pending *ppt;
1566 int i;
c5aa993b 1567
c906108c
SS
1568 /* Name including "struct", etc. */
1569 char *type_name;
c5aa993b 1570
c906108c
SS
1571 {
1572 char *from, *to, *p, *q1, *q2;
c5aa993b 1573
c906108c
SS
1574 /* Set the type code according to the following letter. */
1575 switch ((*pp)[0])
1576 {
1577 case 's':
1578 code = TYPE_CODE_STRUCT;
1579 break;
1580 case 'u':
1581 code = TYPE_CODE_UNION;
1582 break;
1583 case 'e':
1584 code = TYPE_CODE_ENUM;
1585 break;
1586 default:
1587 {
1588 /* Complain and keep going, so compilers can invent new
1589 cross-reference types. */
23136709 1590 complaint (&symfile_complaints,
3e43a32a
MS
1591 _("Unrecognized cross-reference type `%c'"),
1592 (*pp)[0]);
c906108c
SS
1593 code = TYPE_CODE_STRUCT;
1594 break;
1595 }
1596 }
c5aa993b 1597
c906108c
SS
1598 q1 = strchr (*pp, '<');
1599 p = strchr (*pp, ':');
1600 if (p == NULL)
1601 return error_type (pp, objfile);
1602 if (q1 && p > q1 && p[1] == ':')
1603 {
1604 int nesting_level = 0;
433759f7 1605
c906108c
SS
1606 for (q2 = q1; *q2; q2++)
1607 {
1608 if (*q2 == '<')
1609 nesting_level++;
1610 else if (*q2 == '>')
1611 nesting_level--;
1612 else if (*q2 == ':' && nesting_level == 0)
1613 break;
1614 }
1615 p = q2;
1616 if (*p != ':')
1617 return error_type (pp, objfile);
1618 }
71c25dea
TT
1619 type_name = NULL;
1620 if (current_subfile->language == language_cplus)
1621 {
1622 char *new_name, *name = alloca (p - *pp + 1);
433759f7 1623
71c25dea
TT
1624 memcpy (name, *pp, p - *pp);
1625 name[p - *pp] = '\0';
1626 new_name = cp_canonicalize_string (name);
1627 if (new_name != NULL)
1628 {
1629 type_name = obsavestring (new_name, strlen (new_name),
1630 &objfile->objfile_obstack);
1631 xfree (new_name);
1632 }
1633 }
1634 if (type_name == NULL)
1635 {
3e43a32a
MS
1636 to = type_name = (char *)
1637 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1638
1639 /* Copy the name. */
1640 from = *pp + 1;
1641 while (from < p)
1642 *to++ = *from++;
1643 *to = '\0';
1644 }
c5aa993b 1645
c906108c
SS
1646 /* Set the pointer ahead of the name which we just read, and
1647 the colon. */
71c25dea 1648 *pp = p + 1;
c906108c
SS
1649 }
1650
149d821b
JB
1651 /* If this type has already been declared, then reuse the same
1652 type, rather than allocating a new one. This saves some
1653 memory. */
c906108c
SS
1654
1655 for (ppt = file_symbols; ppt; ppt = ppt->next)
1656 for (i = 0; i < ppt->nsyms; i++)
1657 {
1658 struct symbol *sym = ppt->symbol[i];
1659
1660 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1661 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1662 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1663 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1664 {
b99607ea 1665 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1666 type = SYMBOL_TYPE (sym);
149d821b 1667 if (typenums[0] != -1)
46bf5051 1668 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1669 return type;
1670 }
1671 }
1672
1673 /* Didn't find the type to which this refers, so we must
1674 be dealing with a forward reference. Allocate a type
1675 structure for it, and keep track of it so we can
1676 fill in the rest of the fields when we get the full
1677 type. */
1678 type = dbx_alloc_type (typenums, objfile);
1679 TYPE_CODE (type) = code;
1680 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1681 INIT_CPLUS_SPECIFIC (type);
876cecd0 1682 TYPE_STUB (type) = 1;
c906108c 1683
bf362611 1684 add_undefined_type (type, typenums);
c906108c
SS
1685 return type;
1686 }
1687
c5aa993b 1688 case '-': /* RS/6000 built-in type */
c906108c
SS
1689 case '0':
1690 case '1':
1691 case '2':
1692 case '3':
1693 case '4':
1694 case '5':
1695 case '6':
1696 case '7':
1697 case '8':
1698 case '9':
1699 case '(':
1700 (*pp)--;
1701
1702 /* We deal with something like t(1,2)=(3,4)=... which
c5aa993b 1703 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1704
1705 /* Allocate and enter the typedef type first.
c5aa993b 1706 This handles recursive types. */
c906108c
SS
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1709 {
1710 struct type *xtype = read_type (pp, objfile);
433759f7 1711
c906108c
SS
1712 if (type == xtype)
1713 {
1714 /* It's being defined as itself. That means it is "void". */
1715 TYPE_CODE (type) = TYPE_CODE_VOID;
1716 TYPE_LENGTH (type) = 1;
1717 }
1718 else if (type_size >= 0 || is_string)
1719 {
dd6bda65
DJ
1720 /* This is the absolute wrong way to construct types. Every
1721 other debug format has found a way around this problem and
1722 the related problems with unnecessarily stubbed types;
1723 someone motivated should attempt to clean up the issue
1724 here as well. Once a type pointed to has been created it
13a393b0
JB
1725 should not be modified.
1726
1727 Well, it's not *absolutely* wrong. Constructing recursive
1728 types (trees, linked lists) necessarily entails modifying
1729 types after creating them. Constructing any loop structure
1730 entails side effects. The Dwarf 2 reader does handle this
1731 more gracefully (it never constructs more than once
1732 instance of a type object, so it doesn't have to copy type
1733 objects wholesale), but it still mutates type objects after
1734 other folks have references to them.
1735
1736 Keep in mind that this circularity/mutation issue shows up
1737 at the source language level, too: C's "incomplete types",
1738 for example. So the proper cleanup, I think, would be to
1739 limit GDB's type smashing to match exactly those required
1740 by the source language. So GDB could have a
1741 "complete_this_type" function, but never create unnecessary
1742 copies of a type otherwise. */
dd6bda65 1743 replace_type (type, xtype);
c906108c
SS
1744 TYPE_NAME (type) = NULL;
1745 TYPE_TAG_NAME (type) = NULL;
1746 }
1747 else
1748 {
876cecd0 1749 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1750 TYPE_TARGET_TYPE (type) = xtype;
1751 }
1752 }
1753 break;
1754
c5aa993b
JM
1755 /* In the following types, we must be sure to overwrite any existing
1756 type that the typenums refer to, rather than allocating a new one
1757 and making the typenums point to the new one. This is because there
1758 may already be pointers to the existing type (if it had been
1759 forward-referenced), and we must change it to a pointer, function,
1760 reference, or whatever, *in-place*. */
c906108c 1761
e2cd42dd 1762 case '*': /* Pointer to another type */
c906108c 1763 type1 = read_type (pp, objfile);
46bf5051 1764 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1765 break;
1766
c5aa993b 1767 case '&': /* Reference to another type */
c906108c 1768 type1 = read_type (pp, objfile);
46bf5051 1769 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1770 break;
1771
c5aa993b 1772 case 'f': /* Function returning another type */
c906108c 1773 type1 = read_type (pp, objfile);
0c8b41f1 1774 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1775 break;
1776
da966255
JB
1777 case 'g': /* Prototyped function. (Sun) */
1778 {
1779 /* Unresolved questions:
1780
1781 - According to Sun's ``STABS Interface Manual'', for 'f'
1782 and 'F' symbol descriptors, a `0' in the argument type list
1783 indicates a varargs function. But it doesn't say how 'g'
1784 type descriptors represent that info. Someone with access
1785 to Sun's toolchain should try it out.
1786
1787 - According to the comment in define_symbol (search for
1788 `process_prototype_types:'), Sun emits integer arguments as
1789 types which ref themselves --- like `void' types. Do we
1790 have to deal with that here, too? Again, someone with
1791 access to Sun's toolchain should try it out and let us
1792 know. */
1793
1794 const char *type_start = (*pp) - 1;
1795 struct type *return_type = read_type (pp, objfile);
1796 struct type *func_type
46bf5051 1797 = make_function_type (return_type,
0c8b41f1 1798 dbx_lookup_type (typenums, objfile));
da966255
JB
1799 struct type_list {
1800 struct type *type;
1801 struct type_list *next;
1802 } *arg_types = 0;
1803 int num_args = 0;
1804
1805 while (**pp && **pp != '#')
1806 {
1807 struct type *arg_type = read_type (pp, objfile);
1808 struct type_list *new = alloca (sizeof (*new));
1809 new->type = arg_type;
1810 new->next = arg_types;
1811 arg_types = new;
1812 num_args++;
1813 }
1814 if (**pp == '#')
1815 ++*pp;
1816 else
1817 {
23136709 1818 complaint (&symfile_complaints,
3e43a32a
MS
1819 _("Prototyped function type didn't "
1820 "end arguments with `#':\n%s"),
23136709 1821 type_start);
da966255
JB
1822 }
1823
1824 /* If there is just one argument whose type is `void', then
1825 that's just an empty argument list. */
1826 if (arg_types
1827 && ! arg_types->next
1828 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1829 num_args = 0;
1830
1831 TYPE_FIELDS (func_type)
1832 = (struct field *) TYPE_ALLOC (func_type,
1833 num_args * sizeof (struct field));
1834 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1835 {
1836 int i;
1837 struct type_list *t;
1838
1839 /* We stuck each argument type onto the front of the list
1840 when we read it, so the list is reversed. Build the
1841 fields array right-to-left. */
1842 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1843 TYPE_FIELD_TYPE (func_type, i) = t->type;
1844 }
1845 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1846 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1847
1848 type = func_type;
1849 break;
1850 }
1851
c5aa993b 1852 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1853 type = read_type (pp, objfile);
d7242108 1854 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1855 dbx_lookup_type (typenums, objfile));
c906108c
SS
1856 break;
1857
c5aa993b 1858 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1859 type = read_type (pp, objfile);
d7242108 1860 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1861 dbx_lookup_type (typenums, objfile));
c906108c
SS
1862 break;
1863
1864 case '@':
c5aa993b
JM
1865 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1866 { /* Member (class & variable) type */
c906108c
SS
1867 /* FIXME -- we should be doing smash_to_XXX types here. */
1868
1869 struct type *domain = read_type (pp, objfile);
1870 struct type *memtype;
1871
1872 if (**pp != ',')
1873 /* Invalid member type data format. */
1874 return error_type (pp, objfile);
1875 ++*pp;
1876
1877 memtype = read_type (pp, objfile);
1878 type = dbx_alloc_type (typenums, objfile);
0d5de010 1879 smash_to_memberptr_type (type, domain, memtype);
c906108c 1880 }
c5aa993b
JM
1881 else
1882 /* type attribute */
c906108c
SS
1883 {
1884 char *attr = *pp;
433759f7 1885
c906108c
SS
1886 /* Skip to the semicolon. */
1887 while (**pp != ';' && **pp != '\0')
1888 ++(*pp);
1889 if (**pp == '\0')
1890 return error_type (pp, objfile);
1891 else
c5aa993b 1892 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1893
1894 switch (*attr)
1895 {
e2cd42dd 1896 case 's': /* Size attribute */
c906108c
SS
1897 type_size = atoi (attr + 1);
1898 if (type_size <= 0)
1899 type_size = -1;
1900 break;
1901
e2cd42dd
MS
1902 case 'S': /* String attribute */
1903 /* FIXME: check to see if following type is array? */
c906108c
SS
1904 is_string = 1;
1905 break;
1906
e2cd42dd
MS
1907 case 'V': /* Vector attribute */
1908 /* FIXME: check to see if following type is array? */
1909 is_vector = 1;
1910 break;
1911
c906108c
SS
1912 default:
1913 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1914 can invent new ones. */
c906108c
SS
1915 break;
1916 }
1917 ++*pp;
1918 goto again;
1919 }
1920 break;
1921
c5aa993b 1922 case '#': /* Method (class & fn) type */
c906108c
SS
1923 if ((*pp)[0] == '#')
1924 {
1925 /* We'll get the parameter types from the name. */
1926 struct type *return_type;
1927
1928 (*pp)++;
1929 return_type = read_type (pp, objfile);
1930 if (*(*pp)++ != ';')
23136709 1931 complaint (&symfile_complaints,
3e43a32a
MS
1932 _("invalid (minimal) member type "
1933 "data format at symtab pos %d."),
23136709 1934 symnum);
c906108c
SS
1935 type = allocate_stub_method (return_type);
1936 if (typenums[0] != -1)
46bf5051 1937 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1938 }
1939 else
1940 {
1941 struct type *domain = read_type (pp, objfile);
1942 struct type *return_type;
ad2f7632
DJ
1943 struct field *args;
1944 int nargs, varargs;
c906108c
SS
1945
1946 if (**pp != ',')
1947 /* Invalid member type data format. */
1948 return error_type (pp, objfile);
1949 else
1950 ++(*pp);
1951
1952 return_type = read_type (pp, objfile);
ad2f7632 1953 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1954 if (args == NULL)
1955 return error_type (pp, objfile);
c906108c 1956 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1957 smash_to_method_type (type, domain, return_type, args,
1958 nargs, varargs);
c906108c
SS
1959 }
1960 break;
1961
c5aa993b 1962 case 'r': /* Range type */
94e10a22 1963 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1964 if (typenums[0] != -1)
46bf5051 1965 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1966 break;
1967
1968 case 'b':
c906108c
SS
1969 {
1970 /* Sun ACC builtin int type */
1971 type = read_sun_builtin_type (pp, typenums, objfile);
1972 if (typenums[0] != -1)
46bf5051 1973 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1974 }
1975 break;
1976
c5aa993b 1977 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1978 type = read_sun_floating_type (pp, typenums, objfile);
1979 if (typenums[0] != -1)
46bf5051 1980 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1981 break;
c5aa993b
JM
1982
1983 case 'e': /* Enumeration type */
c906108c
SS
1984 type = dbx_alloc_type (typenums, objfile);
1985 type = read_enum_type (pp, type, objfile);
1986 if (typenums[0] != -1)
46bf5051 1987 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1988 break;
1989
c5aa993b
JM
1990 case 's': /* Struct type */
1991 case 'u': /* Union type */
2ae1c2d2
JB
1992 {
1993 enum type_code type_code = TYPE_CODE_UNDEF;
1994 type = dbx_alloc_type (typenums, objfile);
1995 switch (type_descriptor)
1996 {
1997 case 's':
1998 type_code = TYPE_CODE_STRUCT;
1999 break;
2000 case 'u':
2001 type_code = TYPE_CODE_UNION;
2002 break;
2003 }
2004 type = read_struct_type (pp, type, type_code, objfile);
2005 break;
2006 }
c906108c 2007
c5aa993b 2008 case 'a': /* Array type */
c906108c
SS
2009 if (**pp != 'r')
2010 return error_type (pp, objfile);
2011 ++*pp;
c5aa993b 2012
c906108c
SS
2013 type = dbx_alloc_type (typenums, objfile);
2014 type = read_array_type (pp, type, objfile);
2015 if (is_string)
2016 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2017 if (is_vector)
ea37ba09 2018 make_vector_type (type);
c906108c
SS
2019 break;
2020
e2cd42dd 2021 case 'S': /* Set or bitstring type */
c906108c 2022 type1 = read_type (pp, objfile);
c5aa993b 2023 type = create_set_type ((struct type *) NULL, type1);
c906108c
SS
2024 if (is_string)
2025 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2026 if (typenums[0] != -1)
46bf5051 2027 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2028 break;
2029
2030 default:
2031 --*pp; /* Go back to the symbol in error */
c5aa993b 2032 /* Particularly important if it was \0! */
c906108c
SS
2033 return error_type (pp, objfile);
2034 }
2035
2036 if (type == 0)
2037 {
8a3fe4f8 2038 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2039 return error_type (pp, objfile);
2040 }
2041
2042 /* Size specified in a type attribute overrides any other size. */
2043 if (type_size != -1)
2044 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2045
2046 return type;
2047}
2048\f
2049/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2050 Return the proper type node for a given builtin type number. */
2051
46bf5051
UW
2052static const struct objfile_data *rs6000_builtin_type_data;
2053
c906108c 2054static struct type *
46bf5051 2055rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2056{
3e43a32a
MS
2057 struct type **negative_types = objfile_data (objfile,
2058 rs6000_builtin_type_data);
46bf5051 2059
c906108c
SS
2060 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2061#define NUMBER_RECOGNIZED 34
c906108c
SS
2062 struct type *rettype = NULL;
2063
2064 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2065 {
e2e0b3e5 2066 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2067 return objfile_type (objfile)->builtin_error;
c906108c 2068 }
46bf5051
UW
2069
2070 if (!negative_types)
2071 {
2072 /* This includes an empty slot for type number -0. */
2073 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2074 NUMBER_RECOGNIZED + 1, struct type *);
2075 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2076 }
2077
c906108c
SS
2078 if (negative_types[-typenum] != NULL)
2079 return negative_types[-typenum];
2080
2081#if TARGET_CHAR_BIT != 8
c5aa993b 2082#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2083 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2084 that if that ever becomes not true, the correct fix will be to
2085 make the size in the struct type to be in bits, not in units of
2086 TARGET_CHAR_BIT. */
2087#endif
2088
2089 switch (-typenum)
2090 {
2091 case 1:
2092 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2093 by the debugging format. If there is a type called "int" which
2094 is other than 32 bits, then it should use a new negative type
2095 number (or avoid negative type numbers for that case).
2096 See stabs.texinfo. */
46bf5051 2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
c906108c
SS
2098 break;
2099 case 2:
46bf5051 2100 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
c906108c
SS
2101 break;
2102 case 3:
46bf5051 2103 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
c906108c
SS
2104 break;
2105 case 4:
46bf5051 2106 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
c906108c
SS
2107 break;
2108 case 5:
2109 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2110 "unsigned char", objfile);
c906108c
SS
2111 break;
2112 case 6:
46bf5051 2113 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
c906108c
SS
2114 break;
2115 case 7:
2116 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2117 "unsigned short", objfile);
c906108c
SS
2118 break;
2119 case 8:
2120 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2121 "unsigned int", objfile);
c906108c
SS
2122 break;
2123 case 9:
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2125 "unsigned", objfile);
c906108c
SS
2126 case 10:
2127 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2128 "unsigned long", objfile);
c906108c
SS
2129 break;
2130 case 11:
46bf5051 2131 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
c906108c
SS
2132 break;
2133 case 12:
2134 /* IEEE single precision (32 bit). */
46bf5051 2135 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
c906108c
SS
2136 break;
2137 case 13:
2138 /* IEEE double precision (64 bit). */
46bf5051 2139 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
c906108c
SS
2140 break;
2141 case 14:
2142 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2143 different sizes for "long double" should use different negative
2144 type numbers. See stabs.texinfo. */
46bf5051 2145 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
c906108c
SS
2146 break;
2147 case 15:
46bf5051 2148 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
c906108c
SS
2149 break;
2150 case 16:
2151 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2152 "boolean", objfile);
c906108c
SS
2153 break;
2154 case 17:
46bf5051 2155 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
c906108c
SS
2156 break;
2157 case 18:
46bf5051 2158 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
c906108c
SS
2159 break;
2160 case 19:
46bf5051 2161 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
c906108c
SS
2162 break;
2163 case 20:
2164 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2165 "character", objfile);
c906108c
SS
2166 break;
2167 case 21:
2168 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2169 "logical*1", objfile);
c906108c
SS
2170 break;
2171 case 22:
2172 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2173 "logical*2", objfile);
c906108c
SS
2174 break;
2175 case 23:
2176 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2177 "logical*4", objfile);
c906108c
SS
2178 break;
2179 case 24:
2180 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2181 "logical", objfile);
c906108c
SS
2182 break;
2183 case 25:
2184 /* Complex type consisting of two IEEE single precision values. */
46bf5051 2185 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
f65ca430 2186 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
46bf5051 2187 objfile);
c906108c
SS
2188 break;
2189 case 26:
2190 /* Complex type consisting of two IEEE double precision values. */
2191 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
f65ca430 2192 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
46bf5051 2193 objfile);
c906108c
SS
2194 break;
2195 case 27:
46bf5051 2196 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
c906108c
SS
2197 break;
2198 case 28:
46bf5051 2199 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
c906108c
SS
2200 break;
2201 case 29:
46bf5051 2202 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
c906108c
SS
2203 break;
2204 case 30:
46bf5051 2205 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
c906108c
SS
2206 break;
2207 case 31:
46bf5051 2208 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
c906108c
SS
2209 break;
2210 case 32:
2211 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2212 "unsigned long long", objfile);
c906108c
SS
2213 break;
2214 case 33:
2215 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2216 "logical*8", objfile);
c906108c
SS
2217 break;
2218 case 34:
46bf5051 2219 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
c906108c
SS
2220 break;
2221 }
2222 negative_types[-typenum] = rettype;
2223 return rettype;
2224}
2225\f
2226/* This page contains subroutines of read_type. */
2227
de17c821
DJ
2228/* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2229
2230static void
2231update_method_name_from_physname (char **old_name, char *physname)
2232{
2233 char *method_name;
2234
2235 method_name = method_name_from_physname (physname);
2236
2237 if (method_name == NULL)
c263362b
DJ
2238 {
2239 complaint (&symfile_complaints,
e2e0b3e5 2240 _("Method has bad physname %s\n"), physname);
c263362b
DJ
2241 return;
2242 }
de17c821
DJ
2243
2244 if (strcmp (*old_name, method_name) != 0)
2245 {
2246 xfree (*old_name);
2247 *old_name = method_name;
2248 }
2249 else
2250 xfree (method_name);
2251}
2252
c906108c
SS
2253/* Read member function stabs info for C++ classes. The form of each member
2254 function data is:
2255
c5aa993b 2256 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2257
2258 An example with two member functions is:
2259
c5aa993b 2260 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2261
2262 For the case of overloaded operators, the format is op$::*.funcs, where
2263 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2264 name (such as `+=') and `.' marks the end of the operator name.
2265
2266 Returns 1 for success, 0 for failure. */
2267
2268static int
fba45db2
KB
2269read_member_functions (struct field_info *fip, char **pp, struct type *type,
2270 struct objfile *objfile)
c906108c
SS
2271{
2272 int nfn_fields = 0;
2273 int length = 0;
2274 /* Total number of member functions defined in this class. If the class
2275 defines two `f' functions, and one `g' function, then this will have
2276 the value 3. */
2277 int total_length = 0;
2278 int i;
2279 struct next_fnfield
2280 {
2281 struct next_fnfield *next;
2282 struct fn_field fn_field;
c5aa993b
JM
2283 }
2284 *sublist;
c906108c
SS
2285 struct type *look_ahead_type;
2286 struct next_fnfieldlist *new_fnlist;
2287 struct next_fnfield *new_sublist;
2288 char *main_fn_name;
52f0bd74 2289 char *p;
c5aa993b 2290
c906108c
SS
2291 /* Process each list until we find something that is not a member function
2292 or find the end of the functions. */
2293
2294 while (**pp != ';')
2295 {
2296 /* We should be positioned at the start of the function name.
c5aa993b
JM
2297 Scan forward to find the first ':' and if it is not the
2298 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2299 p = *pp;
2300 while (*p != ':')
2301 {
2302 p++;
2303 }
2304 if (p[1] != ':')
2305 {
2306 break;
2307 }
2308
2309 sublist = NULL;
2310 look_ahead_type = NULL;
2311 length = 0;
c5aa993b 2312
c906108c
SS
2313 new_fnlist = (struct next_fnfieldlist *)
2314 xmalloc (sizeof (struct next_fnfieldlist));
b8c9b27d 2315 make_cleanup (xfree, new_fnlist);
c906108c 2316 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
c5aa993b 2317
c906108c
SS
2318 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2319 {
2320 /* This is a completely wierd case. In order to stuff in the
2321 names that might contain colons (the usual name delimiter),
2322 Mike Tiemann defined a different name format which is
2323 signalled if the identifier is "op$". In that case, the
2324 format is "op$::XXXX." where XXXX is the name. This is
2325 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2326 /* This lets the user type "break operator+".
2327 We could just put in "+" as the name, but that wouldn't
2328 work for "*". */
8343f86c 2329 static char opname[32] = "op$";
c906108c 2330 char *o = opname + 3;
c5aa993b 2331
c906108c
SS
2332 /* Skip past '::'. */
2333 *pp = p + 2;
2334
2335 STABS_CONTINUE (pp, objfile);
2336 p = *pp;
2337 while (*p != '.')
2338 {
2339 *o++ = *p++;
2340 }
2341 main_fn_name = savestring (opname, o - opname);
2342 /* Skip past '.' */
2343 *pp = p + 1;
2344 }
2345 else
2346 {
2347 main_fn_name = savestring (*pp, p - *pp);
2348 /* Skip past '::'. */
2349 *pp = p + 2;
2350 }
c5aa993b
JM
2351 new_fnlist->fn_fieldlist.name = main_fn_name;
2352
c906108c
SS
2353 do
2354 {
2355 new_sublist =
2356 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
b8c9b27d 2357 make_cleanup (xfree, new_sublist);
c906108c 2358 memset (new_sublist, 0, sizeof (struct next_fnfield));
c5aa993b 2359
c906108c
SS
2360 /* Check for and handle cretinous dbx symbol name continuation! */
2361 if (look_ahead_type == NULL)
2362 {
2363 /* Normal case. */
2364 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2365
2366 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2367 if (**pp != ':')
2368 {
2369 /* Invalid symtab info for member function. */
2370 return 0;
2371 }
2372 }
2373 else
2374 {
2375 /* g++ version 1 kludge */
c5aa993b 2376 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2377 look_ahead_type = NULL;
2378 }
c5aa993b 2379
c906108c
SS
2380 (*pp)++;
2381 p = *pp;
2382 while (*p != ';')
2383 {
2384 p++;
2385 }
c5aa993b 2386
c906108c
SS
2387 /* If this is just a stub, then we don't have the real name here. */
2388
74a9bb82 2389 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2390 {
c5aa993b
JM
2391 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2392 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2393 new_sublist->fn_field.is_stub = 1;
c906108c 2394 }
c5aa993b 2395 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2396 *pp = p + 1;
c5aa993b 2397
c906108c
SS
2398 /* Set this member function's visibility fields. */
2399 switch (*(*pp)++)
2400 {
c5aa993b
JM
2401 case VISIBILITY_PRIVATE:
2402 new_sublist->fn_field.is_private = 1;
2403 break;
2404 case VISIBILITY_PROTECTED:
2405 new_sublist->fn_field.is_protected = 1;
2406 break;
c906108c 2407 }
c5aa993b 2408
c906108c
SS
2409 STABS_CONTINUE (pp, objfile);
2410 switch (**pp)
2411 {
c5aa993b
JM
2412 case 'A': /* Normal functions. */
2413 new_sublist->fn_field.is_const = 0;
2414 new_sublist->fn_field.is_volatile = 0;
2415 (*pp)++;
2416 break;
2417 case 'B': /* `const' member functions. */
2418 new_sublist->fn_field.is_const = 1;
2419 new_sublist->fn_field.is_volatile = 0;
2420 (*pp)++;
2421 break;
2422 case 'C': /* `volatile' member function. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 1;
2425 (*pp)++;
2426 break;
2427 case 'D': /* `const volatile' member function. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 1;
2430 (*pp)++;
2431 break;
3e43a32a
MS
2432 case '*': /* File compiled with g++ version 1 --
2433 no info */
c5aa993b
JM
2434 case '?':
2435 case '.':
2436 break;
2437 default:
23136709 2438 complaint (&symfile_complaints,
3e43a32a
MS
2439 _("const/volatile indicator missing, got '%c'"),
2440 **pp);
c5aa993b 2441 break;
c906108c 2442 }
c5aa993b 2443
c906108c
SS
2444 switch (*(*pp)++)
2445 {
c5aa993b 2446 case '*':
c906108c
SS
2447 {
2448 int nbits;
c5aa993b 2449 /* virtual member function, followed by index.
c906108c
SS
2450 The sign bit is set to distinguish pointers-to-methods
2451 from virtual function indicies. Since the array is
2452 in words, the quantity must be shifted left by 1
2453 on 16 bit machine, and by 2 on 32 bit machine, forcing
2454 the sign bit out, and usable as a valid index into
2455 the array. Remove the sign bit here. */
c5aa993b 2456 new_sublist->fn_field.voffset =
94e10a22 2457 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2458 if (nbits != 0)
2459 return 0;
c5aa993b 2460
c906108c
SS
2461 STABS_CONTINUE (pp, objfile);
2462 if (**pp == ';' || **pp == '\0')
2463 {
2464 /* Must be g++ version 1. */
c5aa993b 2465 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2466 }
2467 else
2468 {
2469 /* Figure out from whence this virtual function came.
2470 It may belong to virtual function table of
2471 one of its baseclasses. */
2472 look_ahead_type = read_type (pp, objfile);
2473 if (**pp == ':')
2474 {
2475 /* g++ version 1 overloaded methods. */
2476 }
2477 else
2478 {
c5aa993b 2479 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2480 if (**pp != ';')
2481 {
2482 return 0;
2483 }
2484 else
2485 {
2486 ++*pp;
2487 }
2488 look_ahead_type = NULL;
2489 }
2490 }
2491 break;
2492 }
c5aa993b
JM
2493 case '?':
2494 /* static member function. */
4ea09c10
PS
2495 {
2496 int slen = strlen (main_fn_name);
2497
2498 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2499
2500 /* For static member functions, we can't tell if they
2501 are stubbed, as they are put out as functions, and not as
2502 methods.
2503 GCC v2 emits the fully mangled name if
2504 dbxout.c:flag_minimal_debug is not set, so we have to
2505 detect a fully mangled physname here and set is_stub
2506 accordingly. Fully mangled physnames in v2 start with
2507 the member function name, followed by two underscores.
2508 GCC v3 currently always emits stubbed member functions,
2509 but with fully mangled physnames, which start with _Z. */
2510 if (!(strncmp (new_sublist->fn_field.physname,
2511 main_fn_name, slen) == 0
2512 && new_sublist->fn_field.physname[slen] == '_'
2513 && new_sublist->fn_field.physname[slen + 1] == '_'))
2514 {
2515 new_sublist->fn_field.is_stub = 1;
2516 }
2517 break;
2518 }
c5aa993b
JM
2519
2520 default:
2521 /* error */
23136709 2522 complaint (&symfile_complaints,
3e43a32a
MS
2523 _("member function type missing, got '%c'"),
2524 (*pp)[-1]);
c5aa993b
JM
2525 /* Fall through into normal member function. */
2526
2527 case '.':
2528 /* normal member function. */
2529 new_sublist->fn_field.voffset = 0;
2530 new_sublist->fn_field.fcontext = 0;
2531 break;
c906108c 2532 }
c5aa993b
JM
2533
2534 new_sublist->next = sublist;
c906108c
SS
2535 sublist = new_sublist;
2536 length++;
2537 STABS_CONTINUE (pp, objfile);
2538 }
2539 while (**pp != ';' && **pp != '\0');
c5aa993b 2540
c906108c 2541 (*pp)++;
0c867556 2542 STABS_CONTINUE (pp, objfile);
c5aa993b 2543
0c867556
PS
2544 /* Skip GCC 3.X member functions which are duplicates of the callable
2545 constructor/destructor. */
6cbbcdfe
KS
2546 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2547 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2548 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2549 {
0c867556 2550 xfree (main_fn_name);
c906108c 2551 }
0c867556
PS
2552 else
2553 {
de17c821
DJ
2554 int has_stub = 0;
2555 int has_destructor = 0, has_other = 0;
2556 int is_v3 = 0;
2557 struct next_fnfield *tmp_sublist;
2558
2559 /* Various versions of GCC emit various mostly-useless
2560 strings in the name field for special member functions.
2561
2562 For stub methods, we need to defer correcting the name
2563 until we are ready to unstub the method, because the current
2564 name string is used by gdb_mangle_name. The only stub methods
2565 of concern here are GNU v2 operators; other methods have their
2566 names correct (see caveat below).
2567
2568 For non-stub methods, in GNU v3, we have a complete physname.
2569 Therefore we can safely correct the name now. This primarily
2570 affects constructors and destructors, whose name will be
2571 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2572 operators will also have incorrect names; for instance,
2573 "operator int" will be named "operator i" (i.e. the type is
2574 mangled).
2575
2576 For non-stub methods in GNU v2, we have no easy way to
2577 know if we have a complete physname or not. For most
2578 methods the result depends on the platform (if CPLUS_MARKER
2579 can be `$' or `.', it will use minimal debug information, or
2580 otherwise the full physname will be included).
2581
2582 Rather than dealing with this, we take a different approach.
2583 For v3 mangled names, we can use the full physname; for v2,
2584 we use cplus_demangle_opname (which is actually v2 specific),
2585 because the only interesting names are all operators - once again
2586 barring the caveat below. Skip this process if any method in the
2587 group is a stub, to prevent our fouling up the workings of
2588 gdb_mangle_name.
2589
2590 The caveat: GCC 2.95.x (and earlier?) put constructors and
2591 destructors in the same method group. We need to split this
2592 into two groups, because they should have different names.
2593 So for each method group we check whether it contains both
2594 routines whose physname appears to be a destructor (the physnames
2595 for and destructors are always provided, due to quirks in v2
2596 mangling) and routines whose physname does not appear to be a
2597 destructor. If so then we break up the list into two halves.
2598 Even if the constructors and destructors aren't in the same group
2599 the destructor will still lack the leading tilde, so that also
2600 needs to be fixed.
2601
2602 So, to summarize what we expect and handle here:
2603
2604 Given Given Real Real Action
2605 method name physname physname method name
2606
2607 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2608 [now or later]
2609 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2610 rename
2611 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2612 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2613 */
2614
2615 tmp_sublist = sublist;
2616 while (tmp_sublist != NULL)
2617 {
2618 if (tmp_sublist->fn_field.is_stub)
2619 has_stub = 1;
2620 if (tmp_sublist->fn_field.physname[0] == '_'
2621 && tmp_sublist->fn_field.physname[1] == 'Z')
2622 is_v3 = 1;
2623
2624 if (is_destructor_name (tmp_sublist->fn_field.physname))
2625 has_destructor++;
2626 else
2627 has_other++;
2628
2629 tmp_sublist = tmp_sublist->next;
2630 }
2631
2632 if (has_destructor && has_other)
2633 {
2634 struct next_fnfieldlist *destr_fnlist;
2635 struct next_fnfield *last_sublist;
2636
2637 /* Create a new fn_fieldlist for the destructors. */
2638
2639 destr_fnlist = (struct next_fnfieldlist *)
2640 xmalloc (sizeof (struct next_fnfieldlist));
2641 make_cleanup (xfree, destr_fnlist);
2642 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2643 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2644 = obconcat (&objfile->objfile_obstack, "~",
2645 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821
DJ
2646
2647 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2648 obstack_alloc (&objfile->objfile_obstack,
de17c821
DJ
2649 sizeof (struct fn_field) * has_destructor);
2650 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2651 sizeof (struct fn_field) * has_destructor);
2652 tmp_sublist = sublist;
2653 last_sublist = NULL;
2654 i = 0;
2655 while (tmp_sublist != NULL)
2656 {
2657 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2658 {
2659 tmp_sublist = tmp_sublist->next;
2660 continue;
2661 }
2662
2663 destr_fnlist->fn_fieldlist.fn_fields[i++]
2664 = tmp_sublist->fn_field;
2665 if (last_sublist)
2666 last_sublist->next = tmp_sublist->next;
2667 else
2668 sublist = tmp_sublist->next;
2669 last_sublist = tmp_sublist;
2670 tmp_sublist = tmp_sublist->next;
2671 }
2672
2673 destr_fnlist->fn_fieldlist.length = has_destructor;
2674 destr_fnlist->next = fip->fnlist;
2675 fip->fnlist = destr_fnlist;
2676 nfn_fields++;
2677 total_length += has_destructor;
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
2688
2689 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2690 sublist->fn_field.physname);
2691 }
2692 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2693 {
1754f103
MK
2694 new_fnlist->fn_fieldlist.name =
2695 concat ("~", main_fn_name, (char *)NULL);
de17c821
DJ
2696 xfree (main_fn_name);
2697 }
2698 else if (!has_stub)
2699 {
2700 char dem_opname[256];
2701 int ret;
433759f7 2702
de17c821
DJ
2703 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2704 dem_opname, DMGL_ANSI);
2705 if (!ret)
2706 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2707 dem_opname, 0);
2708 if (ret)
2709 new_fnlist->fn_fieldlist.name
2710 = obsavestring (dem_opname, strlen (dem_opname),
b99607ea 2711 &objfile->objfile_obstack);
de17c821
DJ
2712 }
2713
0c867556 2714 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2715 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2716 sizeof (struct fn_field) * length);
2717 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2718 sizeof (struct fn_field) * length);
2719 for (i = length; (i--, sublist); sublist = sublist->next)
2720 {
2721 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2722 }
c5aa993b 2723
0c867556
PS
2724 new_fnlist->fn_fieldlist.length = length;
2725 new_fnlist->next = fip->fnlist;
2726 fip->fnlist = new_fnlist;
2727 nfn_fields++;
2728 total_length += length;
2729 }
c906108c
SS
2730 }
2731
2732 if (nfn_fields)
2733 {
2734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2735 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2736 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2737 memset (TYPE_FN_FIELDLISTS (type), 0,
2738 sizeof (struct fn_fieldlist) * nfn_fields);
2739 TYPE_NFN_FIELDS (type) = nfn_fields;
2740 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2741 }
2742
2743 return 1;
2744}
2745
2746/* Special GNU C++ name.
2747
2748 Returns 1 for success, 0 for failure. "failure" means that we can't
2749 keep parsing and it's time for error_type(). */
2750
2751static int
fba45db2
KB
2752read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2753 struct objfile *objfile)
c906108c 2754{
52f0bd74 2755 char *p;
c906108c
SS
2756 char *name;
2757 char cpp_abbrev;
2758 struct type *context;
2759
2760 p = *pp;
2761 if (*++p == 'v')
2762 {
2763 name = NULL;
2764 cpp_abbrev = *++p;
2765
2766 *pp = p + 1;
2767
2768 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2769 where the type number before the ':' is the "context" and
2770 everything after is a regular type definition. Lookup the
2771 type, find it's name, and construct the field name. */
c906108c
SS
2772
2773 context = read_type (pp, objfile);
2774
2775 switch (cpp_abbrev)
2776 {
c5aa993b 2777 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2778 name = type_name_no_tag (context);
2779 if (name == NULL)
433759f7
MS
2780 {
2781 name = "";
2782 }
48cb83fd
JK
2783 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2784 vptr_name, name, (char *) NULL);
c5aa993b 2785 break;
c906108c 2786
c5aa993b
JM
2787 case 'b': /* $vb -- a virtual bsomethingorother */
2788 name = type_name_no_tag (context);
2789 if (name == NULL)
2790 {
23136709 2791 complaint (&symfile_complaints,
3e43a32a
MS
2792 _("C++ abbreviated type name "
2793 "unknown at symtab pos %d"),
23136709 2794 symnum);
c5aa993b
JM
2795 name = "FOO";
2796 }
48cb83fd
JK
2797 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2798 name, (char *) NULL);
c5aa993b 2799 break;
c906108c 2800
c5aa993b 2801 default:
23136709 2802 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 "INVALID_CPLUSPLUS_ABBREV",
2805 (char *) NULL);
c5aa993b 2806 break;
c906108c
SS
2807 }
2808
2809 /* At this point, *pp points to the ':'. Skip it and read the
c5aa993b 2810 field type. */
c906108c
SS
2811
2812 p = ++(*pp);
2813 if (p[-1] != ':')
2814 {
23136709 2815 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2816 return 0;
2817 }
2818 fip->list->field.type = read_type (pp, objfile);
2819 if (**pp == ',')
c5aa993b 2820 (*pp)++; /* Skip the comma. */
c906108c
SS
2821 else
2822 return 0;
2823
2824 {
2825 int nbits;
433759f7 2826
94e10a22
JG
2827 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2828 0);
c906108c
SS
2829 if (nbits != 0)
2830 return 0;
2831 }
2832 /* This field is unpacked. */
2833 FIELD_BITSIZE (fip->list->field) = 0;
2834 fip->list->visibility = VISIBILITY_PRIVATE;
2835 }
2836 else
2837 {
23136709 2838 invalid_cpp_abbrev_complaint (*pp);
c906108c 2839 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2840 better return 0. If we returned 1, we would need to at least advance
2841 *pp to avoid an infinite loop. */
c906108c
SS
2842 return 0;
2843 }
2844 return 1;
2845}
2846
2847static void
fba45db2
KB
2848read_one_struct_field (struct field_info *fip, char **pp, char *p,
2849 struct type *type, struct objfile *objfile)
c906108c 2850{
5e2b427d
UW
2851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2852
41989fcd 2853 fip->list->field.name =
b99607ea 2854 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
c906108c
SS
2855 *pp = p + 1;
2856
2857 /* This means we have a visibility for a field coming. */
2858 if (**pp == '/')
2859 {
2860 (*pp)++;
c5aa993b 2861 fip->list->visibility = *(*pp)++;
c906108c
SS
2862 }
2863 else
2864 {
2865 /* normal dbx-style format, no explicit visibility */
c5aa993b 2866 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2867 }
2868
c5aa993b 2869 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2870 if (**pp == ':')
2871 {
2872 p = ++(*pp);
2873#if 0
2874 /* Possible future hook for nested types. */
2875 if (**pp == '!')
2876 {
c5aa993b 2877 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2878 p = ++(*pp);
2879 }
c5aa993b
JM
2880 else
2881 ...;
c906108c 2882#endif
c5aa993b 2883 while (*p != ';')
c906108c
SS
2884 {
2885 p++;
2886 }
2887 /* Static class member. */
2888 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2889 *pp = p + 1;
2890 return;
2891 }
2892 else if (**pp != ',')
2893 {
2894 /* Bad structure-type format. */
23136709 2895 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2896 return;
2897 }
2898
2899 (*pp)++; /* Skip the comma. */
2900
2901 {
2902 int nbits;
433759f7 2903
94e10a22 2904 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
2905 if (nbits != 0)
2906 {
23136709 2907 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2908 return;
2909 }
94e10a22 2910 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2911 if (nbits != 0)
2912 {
23136709 2913 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2914 return;
2915 }
2916 }
2917
2918 if (FIELD_BITPOS (fip->list->field) == 0
2919 && FIELD_BITSIZE (fip->list->field) == 0)
2920 {
2921 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2922 it is a field which has been optimized out. The correct stab for
2923 this case is to use VISIBILITY_IGNORE, but that is a recent
2924 invention. (2) It is a 0-size array. For example
e2e0b3e5 2925 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2926 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2927 will continue to work, and a 0-size array as a whole doesn't
2928 have any contents to print.
2929
2930 I suspect this probably could also happen with gcc -gstabs (not
2931 -gstabs+) for static fields, and perhaps other C++ extensions.
2932 Hopefully few people use -gstabs with gdb, since it is intended
2933 for dbx compatibility. */
c906108c
SS
2934
2935 /* Ignore this field. */
c5aa993b 2936 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2937 }
2938 else
2939 {
2940 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2941 dbx gives a bit size for all fields.
2942 Note that forward refs cannot be packed,
2943 and treat enums as if they had the width of ints. */
c906108c
SS
2944
2945 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2946
2947 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2948 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2949 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2950 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2951 {
2952 FIELD_BITSIZE (fip->list->field) = 0;
2953 }
c5aa993b 2954 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2955 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2956 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2957 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2958 == gdbarch_int_bit (gdbarch))
c5aa993b 2959 )
c906108c
SS
2960 &&
2961 FIELD_BITPOS (fip->list->field) % 8 == 0)
2962 {
2963 FIELD_BITSIZE (fip->list->field) = 0;
2964 }
2965 }
2966}
2967
2968
2969/* Read struct or class data fields. They have the form:
2970
c5aa993b 2971 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2972
2973 At the end, we see a semicolon instead of a field.
2974
2975 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2976 a static field.
2977
2978 The optional VISIBILITY is one of:
2979
c5aa993b
JM
2980 '/0' (VISIBILITY_PRIVATE)
2981 '/1' (VISIBILITY_PROTECTED)
2982 '/2' (VISIBILITY_PUBLIC)
2983 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2984
2985 or nothing, for C style fields with public visibility.
2986
2987 Returns 1 for success, 0 for failure. */
2988
2989static int
fba45db2
KB
2990read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2991 struct objfile *objfile)
c906108c 2992{
52f0bd74 2993 char *p;
c906108c
SS
2994 struct nextfield *new;
2995
2996 /* We better set p right now, in case there are no fields at all... */
2997
2998 p = *pp;
2999
3000 /* Read each data member type until we find the terminating ';' at the end of
3001 the data member list, or break for some other reason such as finding the
3002 start of the member function list. */
fedbd091
EZ
3003 /* Stab string for structure/union does not end with two ';' in
3004 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3005
fedbd091 3006 while (**pp != ';' && **pp != '\0')
c906108c 3007 {
c906108c
SS
3008 STABS_CONTINUE (pp, objfile);
3009 /* Get space to record the next field's data. */
3010 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3011 make_cleanup (xfree, new);
c906108c 3012 memset (new, 0, sizeof (struct nextfield));
c5aa993b
JM
3013 new->next = fip->list;
3014 fip->list = new;
c906108c
SS
3015
3016 /* Get the field name. */
3017 p = *pp;
3018
3019 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3020 unless the CPLUS_MARKER is followed by an underscore, in
3021 which case it is just the name of an anonymous type, which we
3022 should handle like any other type name. */
c906108c
SS
3023
3024 if (is_cplus_marker (p[0]) && p[1] != '_')
3025 {
3026 if (!read_cpp_abbrev (fip, pp, type, objfile))
3027 return 0;
3028 continue;
3029 }
3030
3031 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3032 values. Data members are delimited by a single ':', while member
3033 functions are delimited by a pair of ':'s. When we hit the member
3034 functions (if any), terminate scan loop and return. */
c906108c 3035
c5aa993b 3036 while (*p != ':' && *p != '\0')
c906108c
SS
3037 {
3038 p++;
3039 }
3040 if (*p == '\0')
3041 return 0;
3042
3043 /* Check to see if we have hit the member functions yet. */
3044 if (p[1] == ':')
3045 {
3046 break;
3047 }
3048 read_one_struct_field (fip, pp, p, type, objfile);
3049 }
3050 if (p[0] == ':' && p[1] == ':')
3051 {
1b831c93
AC
3052 /* (the deleted) chill the list of fields: the last entry (at
3053 the head) is a partially constructed entry which we now
3054 scrub. */
c5aa993b 3055 fip->list = fip->list->next;
c906108c
SS
3056 }
3057 return 1;
3058}
9846de1b 3059/* *INDENT-OFF* */
c906108c
SS
3060/* The stabs for C++ derived classes contain baseclass information which
3061 is marked by a '!' character after the total size. This function is
3062 called when we encounter the baseclass marker, and slurps up all the
3063 baseclass information.
3064
3065 Immediately following the '!' marker is the number of base classes that
3066 the class is derived from, followed by information for each base class.
3067 For each base class, there are two visibility specifiers, a bit offset
3068 to the base class information within the derived class, a reference to
3069 the type for the base class, and a terminating semicolon.
3070
3071 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3072 ^^ ^ ^ ^ ^ ^ ^
3073 Baseclass information marker __________________|| | | | | | |
3074 Number of baseclasses __________________________| | | | | | |
3075 Visibility specifiers (2) ________________________| | | | | |
3076 Offset in bits from start of class _________________| | | | |
3077 Type number for base class ___________________________| | | |
3078 Visibility specifiers (2) _______________________________| | |
3079 Offset in bits from start of class ________________________| |
3080 Type number of base class ____________________________________|
3081
3082 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3083/* *INDENT-ON* */
c906108c 3084
c5aa993b
JM
3085
3086
c906108c 3087static int
fba45db2
KB
3088read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3089 struct objfile *objfile)
c906108c
SS
3090{
3091 int i;
3092 struct nextfield *new;
3093
3094 if (**pp != '!')
3095 {
3096 return 1;
3097 }
3098 else
3099 {
3100 /* Skip the '!' baseclass information marker. */
3101 (*pp)++;
3102 }
3103
3104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3105 {
3106 int nbits;
433759f7 3107
94e10a22 3108 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3109 if (nbits != 0)
3110 return 0;
3111 }
3112
3113#if 0
3114 /* Some stupid compilers have trouble with the following, so break
3115 it up into simpler expressions. */
3116 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3117 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3118#else
3119 {
3120 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3121 char *pointer;
3122
3123 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3125 }
3126#endif /* 0 */
3127
3128 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3129
3130 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3131 {
3132 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3133 make_cleanup (xfree, new);
c906108c 3134 memset (new, 0, sizeof (struct nextfield));
c5aa993b
JM
3135 new->next = fip->list;
3136 fip->list = new;
c906108c
SS
3137 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3138
3139 STABS_CONTINUE (pp, objfile);
3140 switch (**pp)
3141 {
c5aa993b
JM
3142 case '0':
3143 /* Nothing to do. */
3144 break;
3145 case '1':
3146 SET_TYPE_FIELD_VIRTUAL (type, i);
3147 break;
3148 default:
3149 /* Unknown character. Complain and treat it as non-virtual. */
3150 {
23136709 3151 complaint (&symfile_complaints,
3e43a32a
MS
3152 _("Unknown virtual character `%c' for baseclass"),
3153 **pp);
c5aa993b 3154 }
c906108c
SS
3155 }
3156 ++(*pp);
3157
c5aa993b
JM
3158 new->visibility = *(*pp)++;
3159 switch (new->visibility)
c906108c 3160 {
c5aa993b
JM
3161 case VISIBILITY_PRIVATE:
3162 case VISIBILITY_PROTECTED:
3163 case VISIBILITY_PUBLIC:
3164 break;
3165 default:
3166 /* Bad visibility format. Complain and treat it as
3167 public. */
3168 {
23136709 3169 complaint (&symfile_complaints,
e2e0b3e5 3170 _("Unknown visibility `%c' for baseclass"),
23136709 3171 new->visibility);
c5aa993b
JM
3172 new->visibility = VISIBILITY_PUBLIC;
3173 }
c906108c
SS
3174 }
3175
3176 {
3177 int nbits;
c5aa993b 3178
c906108c
SS
3179 /* The remaining value is the bit offset of the portion of the object
3180 corresponding to this baseclass. Always zero in the absence of
3181 multiple inheritance. */
3182
94e10a22 3183 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3184 if (nbits != 0)
3185 return 0;
3186 }
3187
3188 /* The last piece of baseclass information is the type of the
c5aa993b
JM
3189 base class. Read it, and remember it's type name as this
3190 field's name. */
c906108c 3191
c5aa993b
JM
3192 new->field.type = read_type (pp, objfile);
3193 new->field.name = type_name_no_tag (new->field.type);
c906108c
SS
3194
3195 /* skip trailing ';' and bump count of number of fields seen */
3196 if (**pp == ';')
3197 (*pp)++;
3198 else
3199 return 0;
3200 }
3201 return 1;
3202}
3203
3204/* The tail end of stabs for C++ classes that contain a virtual function
3205 pointer contains a tilde, a %, and a type number.
3206 The type number refers to the base class (possibly this class itself) which
3207 contains the vtable pointer for the current class.
3208
3209 This function is called when we have parsed all the method declarations,
3210 so we can look for the vptr base class info. */
3211
3212static int
fba45db2
KB
3213read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3214 struct objfile *objfile)
c906108c 3215{
52f0bd74 3216 char *p;
c906108c
SS
3217
3218 STABS_CONTINUE (pp, objfile);
3219
3220 /* If we are positioned at a ';', then skip it. */
3221 if (**pp == ';')
3222 {
3223 (*pp)++;
3224 }
3225
3226 if (**pp == '~')
3227 {
3228 (*pp)++;
3229
3230 if (**pp == '=' || **pp == '+' || **pp == '-')
3231 {
3232 /* Obsolete flags that used to indicate the presence
3233 of constructors and/or destructors. */
3234 (*pp)++;
3235 }
3236
3237 /* Read either a '%' or the final ';'. */
3238 if (*(*pp)++ == '%')
3239 {
3240 /* The next number is the type number of the base class
3241 (possibly our own class) which supplies the vtable for
3242 this class. Parse it out, and search that class to find
3243 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3244 and TYPE_VPTR_FIELDNO. */
3245
3246 struct type *t;
3247 int i;
3248
3249 t = read_type (pp, objfile);
3250 p = (*pp)++;
3251 while (*p != '\0' && *p != ';')
3252 {
3253 p++;
3254 }
3255 if (*p == '\0')
3256 {
3257 /* Premature end of symbol. */
3258 return 0;
3259 }
c5aa993b 3260
c906108c 3261 TYPE_VPTR_BASETYPE (type) = t;
c5aa993b 3262 if (type == t) /* Our own class provides vtbl ptr */
c906108c
SS
3263 {
3264 for (i = TYPE_NFIELDS (t) - 1;
3265 i >= TYPE_N_BASECLASSES (t);
3266 --i)
3267 {
8343f86c 3268 char *name = TYPE_FIELD_NAME (t, i);
433759f7 3269
8343f86c 3270 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3271 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c
SS
3272 {
3273 TYPE_VPTR_FIELDNO (type) = i;
3274 goto gotit;
3275 }
3276 }
3277 /* Virtual function table field not found. */
23136709 3278 complaint (&symfile_complaints,
3e43a32a
MS
3279 _("virtual function table pointer "
3280 "not found when defining class `%s'"),
23136709 3281 TYPE_NAME (type));
c906108c
SS
3282 return 0;
3283 }
3284 else
3285 {
3286 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3287 }
3288
c5aa993b 3289 gotit:
c906108c
SS
3290 *pp = p + 1;
3291 }
3292 }
3293 return 1;
3294}
3295
3296static int
aa1ee363 3297attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3298{
52f0bd74 3299 int n;
c906108c
SS
3300
3301 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3302 fip->fnlist != NULL;
3303 fip->fnlist = fip->fnlist->next)
c906108c 3304 {
c5aa993b
JM
3305 --n; /* Circumvent Sun3 compiler bug */
3306 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3307 }
3308 return 1;
3309}
3310
c906108c
SS
3311/* Create the vector of fields, and record how big it is.
3312 We need this info to record proper virtual function table information
3313 for this class's virtual functions. */
3314
3315static int
aa1ee363 3316attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3317 struct objfile *objfile)
c906108c 3318{
52f0bd74
AC
3319 int nfields = 0;
3320 int non_public_fields = 0;
3321 struct nextfield *scan;
c906108c
SS
3322
3323 /* Count up the number of fields that we have, as well as taking note of
3324 whether or not there are any non-public fields, which requires us to
3325 allocate and build the private_field_bits and protected_field_bits
3326 bitfields. */
3327
c5aa993b 3328 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3329 {
3330 nfields++;
c5aa993b 3331 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3332 {
3333 non_public_fields++;
3334 }
3335 }
3336
3337 /* Now we know how many fields there are, and whether or not there are any
3338 non-public fields. Record the field count, allocate space for the
3339 array of fields, and create blank visibility bitfields if necessary. */
3340
3341 TYPE_NFIELDS (type) = nfields;
3342 TYPE_FIELDS (type) = (struct field *)
3343 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3344 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3345
3346 if (non_public_fields)
3347 {
3348 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3349
3350 TYPE_FIELD_PRIVATE_BITS (type) =
3351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3352 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3353
3354 TYPE_FIELD_PROTECTED_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3357
3358 TYPE_FIELD_IGNORE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3361 }
3362
3363 /* Copy the saved-up fields into the field vector. Start from the head
3364 of the list, adding to the tail of the field array, so that they end
3365 up in the same order in the array in which they were added to the list. */
3366
3367 while (nfields-- > 0)
3368 {
c5aa993b
JM
3369 TYPE_FIELD (type, nfields) = fip->list->field;
3370 switch (fip->list->visibility)
c906108c 3371 {
c5aa993b
JM
3372 case VISIBILITY_PRIVATE:
3373 SET_TYPE_FIELD_PRIVATE (type, nfields);
3374 break;
c906108c 3375
c5aa993b
JM
3376 case VISIBILITY_PROTECTED:
3377 SET_TYPE_FIELD_PROTECTED (type, nfields);
3378 break;
c906108c 3379
c5aa993b
JM
3380 case VISIBILITY_IGNORE:
3381 SET_TYPE_FIELD_IGNORE (type, nfields);
3382 break;
c906108c 3383
c5aa993b
JM
3384 case VISIBILITY_PUBLIC:
3385 break;
c906108c 3386
c5aa993b
JM
3387 default:
3388 /* Unknown visibility. Complain and treat it as public. */
3389 {
3e43a32a
MS
3390 complaint (&symfile_complaints,
3391 _("Unknown visibility `%c' for field"),
23136709 3392 fip->list->visibility);
c5aa993b
JM
3393 }
3394 break;
c906108c 3395 }
c5aa993b 3396 fip->list = fip->list->next;
c906108c
SS
3397 }
3398 return 1;
3399}
3400
2ae1c2d2 3401
2ae1c2d2
JB
3402/* Complain that the compiler has emitted more than one definition for the
3403 structure type TYPE. */
3404static void
3405complain_about_struct_wipeout (struct type *type)
3406{
3407 char *name = "";
3408 char *kind = "";
3409
3410 if (TYPE_TAG_NAME (type))
3411 {
3412 name = TYPE_TAG_NAME (type);
3413 switch (TYPE_CODE (type))
3414 {
3415 case TYPE_CODE_STRUCT: kind = "struct "; break;
3416 case TYPE_CODE_UNION: kind = "union "; break;
3417 case TYPE_CODE_ENUM: kind = "enum "; break;
3418 default: kind = "";
3419 }
3420 }
3421 else if (TYPE_NAME (type))
3422 {
3423 name = TYPE_NAME (type);
3424 kind = "";
3425 }
3426 else
3427 {
3428 name = "<unknown>";
3429 kind = "";
3430 }
3431
23136709 3432 complaint (&symfile_complaints,
e2e0b3e5 3433 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3434}
3435
621791b8
PM
3436/* Set the length for all variants of a same main_type, which are
3437 connected in the closed chain.
3438
3439 This is something that needs to be done when a type is defined *after*
3440 some cross references to this type have already been read. Consider
3441 for instance the following scenario where we have the following two
3442 stabs entries:
3443
3444 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3445 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3446
3447 A stubbed version of type dummy is created while processing the first
3448 stabs entry. The length of that type is initially set to zero, since
3449 it is unknown at this point. Also, a "constant" variation of type
3450 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3451 the stabs line).
3452
3453 The second stabs entry allows us to replace the stubbed definition
3454 with the real definition. However, we still need to adjust the length
3455 of the "constant" variation of that type, as its length was left
3456 untouched during the main type replacement... */
3457
3458static void
9e69f3b6 3459set_length_in_type_chain (struct type *type)
621791b8
PM
3460{
3461 struct type *ntype = TYPE_CHAIN (type);
3462
3463 while (ntype != type)
3464 {
3465 if (TYPE_LENGTH(ntype) == 0)
3466 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3467 else
3468 complain_about_struct_wipeout (ntype);
3469 ntype = TYPE_CHAIN (ntype);
3470 }
3471}
2ae1c2d2 3472
c906108c
SS
3473/* Read the description of a structure (or union type) and return an object
3474 describing the type.
3475
3476 PP points to a character pointer that points to the next unconsumed token
3477 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3478 *PP will point to "4a:1,0,32;;".
3479
3480 TYPE points to an incomplete type that needs to be filled in.
3481
3482 OBJFILE points to the current objfile from which the stabs information is
3483 being read. (Note that it is redundant in that TYPE also contains a pointer
3484 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3485 */
c906108c
SS
3486
3487static struct type *
2ae1c2d2
JB
3488read_struct_type (char **pp, struct type *type, enum type_code type_code,
3489 struct objfile *objfile)
c906108c
SS
3490{
3491 struct cleanup *back_to;
3492 struct field_info fi;
3493
3494 fi.list = NULL;
3495 fi.fnlist = NULL;
3496
2ae1c2d2
JB
3497 /* When describing struct/union/class types in stabs, G++ always drops
3498 all qualifications from the name. So if you've got:
3499 struct A { ... struct B { ... }; ... };
3500 then G++ will emit stabs for `struct A::B' that call it simply
3501 `struct B'. Obviously, if you've got a real top-level definition for
3502 `struct B', or other nested definitions, this is going to cause
3503 problems.
3504
3505 Obviously, GDB can't fix this by itself, but it can at least avoid
3506 scribbling on existing structure type objects when new definitions
3507 appear. */
3508 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3509 || TYPE_STUB (type)))
3510 {
3511 complain_about_struct_wipeout (type);
3512
3513 /* It's probably best to return the type unchanged. */
3514 return type;
3515 }
3516
c906108c
SS
3517 back_to = make_cleanup (null_cleanup, 0);
3518
3519 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3520 TYPE_CODE (type) = type_code;
876cecd0 3521 TYPE_STUB (type) = 0;
c906108c
SS
3522
3523 /* First comes the total size in bytes. */
3524
3525 {
3526 int nbits;
433759f7 3527
94e10a22 3528 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3529 if (nbits != 0)
3530 return error_type (pp, objfile);
621791b8 3531 set_length_in_type_chain (type);
c906108c
SS
3532 }
3533
3534 /* Now read the baseclasses, if any, read the regular C struct or C++
3535 class member fields, attach the fields to the type, read the C++
3536 member functions, attach them to the type, and then read any tilde
3e43a32a 3537 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3538
3539 if (!read_baseclasses (&fi, pp, type, objfile)
3540 || !read_struct_fields (&fi, pp, type, objfile)
3541 || !attach_fields_to_type (&fi, type, objfile)
3542 || !read_member_functions (&fi, pp, type, objfile)
3543 || !attach_fn_fields_to_type (&fi, type)
3544 || !read_tilde_fields (&fi, pp, type, objfile))
3545 {
3546 type = error_type (pp, objfile);
3547 }
3548
3549 do_cleanups (back_to);
3550 return (type);
3551}
3552
3553/* Read a definition of an array type,
3554 and create and return a suitable type object.
3555 Also creates a range type which represents the bounds of that
3556 array. */
3557
3558static struct type *
aa1ee363 3559read_array_type (char **pp, struct type *type,
fba45db2 3560 struct objfile *objfile)
c906108c
SS
3561{
3562 struct type *index_type, *element_type, *range_type;
3563 int lower, upper;
3564 int adjustable = 0;
3565 int nbits;
3566
3567 /* Format of an array type:
3568 "ar<index type>;lower;upper;<array_contents_type>".
3569 OS9000: "arlower,upper;<array_contents_type>".
3570
3571 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3572 for these, produce a type like float[][]. */
3573
c906108c
SS
3574 {
3575 index_type = read_type (pp, objfile);
3576 if (**pp != ';')
3577 /* Improper format of array type decl. */
3578 return error_type (pp, objfile);
3579 ++*pp;
3580 }
3581
3582 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3583 {
3584 (*pp)++;
3585 adjustable = 1;
3586 }
94e10a22 3587 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3588
c906108c
SS
3589 if (nbits != 0)
3590 return error_type (pp, objfile);
3591
3592 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3593 {
3594 (*pp)++;
3595 adjustable = 1;
3596 }
94e10a22 3597 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3598 if (nbits != 0)
3599 return error_type (pp, objfile);
c5aa993b 3600
c906108c
SS
3601 element_type = read_type (pp, objfile);
3602
3603 if (adjustable)
3604 {
3605 lower = 0;
3606 upper = -1;
3607 }
3608
3609 range_type =
3610 create_range_type ((struct type *) NULL, index_type, lower, upper);
3611 type = create_array_type (type, element_type, range_type);
3612
3613 return type;
3614}
3615
3616
3617/* Read a definition of an enumeration type,
3618 and create and return a suitable type object.
3619 Also defines the symbols that represent the values of the type. */
3620
3621static struct type *
aa1ee363 3622read_enum_type (char **pp, struct type *type,
fba45db2 3623 struct objfile *objfile)
c906108c 3624{
5e2b427d 3625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3626 char *p;
c906108c 3627 char *name;
52f0bd74
AC
3628 long n;
3629 struct symbol *sym;
c906108c
SS
3630 int nsyms = 0;
3631 struct pending **symlist;
3632 struct pending *osyms, *syms;
3633 int o_nsyms;
3634 int nbits;
3635 int unsigned_enum = 1;
3636
3637#if 0
3638 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3639 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3640 to do? For now, force all enum values to file scope. */
3641 if (within_function)
3642 symlist = &local_symbols;
3643 else
3644#endif
3645 symlist = &file_symbols;
3646 osyms = *symlist;
3647 o_nsyms = osyms ? osyms->nsyms : 0;
3648
c906108c
SS
3649 /* The aix4 compiler emits an extra field before the enum members;
3650 my guess is it's a type of some sort. Just ignore it. */
3651 if (**pp == '-')
3652 {
3653 /* Skip over the type. */
3654 while (**pp != ':')
c5aa993b 3655 (*pp)++;
c906108c
SS
3656
3657 /* Skip over the colon. */
3658 (*pp)++;
3659 }
3660
3661 /* Read the value-names and their values.
3662 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3663 A semicolon or comma instead of a NAME means the end. */
3664 while (**pp && **pp != ';' && **pp != ',')
3665 {
3666 STABS_CONTINUE (pp, objfile);
3667 p = *pp;
c5aa993b
JM
3668 while (*p != ':')
3669 p++;
4a146b47 3670 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
c906108c 3671 *pp = p + 1;
94e10a22 3672 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3673 if (nbits != 0)
3674 return error_type (pp, objfile);
3675
3676 sym = (struct symbol *)
4a146b47 3677 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c 3678 memset (sym, 0, sizeof (struct symbol));
3567439c 3679 SYMBOL_SET_LINKAGE_NAME (sym, name);
33e5013e 3680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
c906108c 3681 SYMBOL_CLASS (sym) = LOC_CONST;
176620f1 3682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3683 SYMBOL_VALUE (sym) = n;
3684 if (n < 0)
3685 unsigned_enum = 0;
3686 add_symbol_to_list (sym, symlist);
3687 nsyms++;
3688 }
3689
3690 if (**pp == ';')
3691 (*pp)++; /* Skip the semicolon. */
3692
3693 /* Now fill in the fields of the type-structure. */
3694
5e2b427d 3695 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3696 set_length_in_type_chain (type);
c906108c 3697 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3698 TYPE_STUB (type) = 0;
c906108c 3699 if (unsigned_enum)
876cecd0 3700 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3701 TYPE_NFIELDS (type) = nsyms;
3702 TYPE_FIELDS (type) = (struct field *)
3703 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3704 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3705
3706 /* Find the symbols for the values and put them into the type.
3707 The symbols can be found in the symlist that we put them on
3708 to cause them to be defined. osyms contains the old value
3709 of that symlist; everything up to there was defined by us. */
3710 /* Note that we preserve the order of the enum constants, so
3711 that in something like "enum {FOO, LAST_THING=FOO}" we print
3712 FOO, not LAST_THING. */
3713
3714 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3715 {
3716 int last = syms == osyms ? o_nsyms : 0;
3717 int j = syms->nsyms;
433759f7 3718
c906108c
SS
3719 for (; --j >= last; --n)
3720 {
3721 struct symbol *xsym = syms->symbol[j];
433759f7 3722
c906108c 3723 SYMBOL_TYPE (xsym) = type;
3567439c 3724 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
c906108c
SS
3725 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3726 TYPE_FIELD_BITSIZE (type, n) = 0;
3727 }
3728 if (syms == osyms)
3729 break;
3730 }
3731
3732 return type;
3733}
3734
3735/* Sun's ACC uses a somewhat saner method for specifying the builtin
3736 typedefs in every file (for int, long, etc):
3737
c5aa993b
JM
3738 type = b <signed> <width> <format type>; <offset>; <nbits>
3739 signed = u or s.
3740 optional format type = c or b for char or boolean.
3741 offset = offset from high order bit to start bit of type.
3742 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3743
3744 The width/offset stuff appears to be for small objects stored in
3745 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3746 FIXME. */
3747
3748static struct type *
35a2f538 3749read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3750{
3751 int type_bits;
3752 int nbits;
3753 int signed_type;
3754 enum type_code code = TYPE_CODE_INT;
3755
3756 switch (**pp)
3757 {
c5aa993b
JM
3758 case 's':
3759 signed_type = 1;
3760 break;
3761 case 'u':
3762 signed_type = 0;
3763 break;
3764 default:
3765 return error_type (pp, objfile);
c906108c
SS
3766 }
3767 (*pp)++;
3768
3769 /* For some odd reason, all forms of char put a c here. This is strange
3770 because no other type has this honor. We can safely ignore this because
3771 we actually determine 'char'acterness by the number of bits specified in
3772 the descriptor.
3773 Boolean forms, e.g Fortran logical*X, put a b here. */
3774
3775 if (**pp == 'c')
3776 (*pp)++;
3777 else if (**pp == 'b')
3778 {
3779 code = TYPE_CODE_BOOL;
3780 (*pp)++;
3781 }
3782
3783 /* The first number appears to be the number of bytes occupied
3784 by this type, except that unsigned short is 4 instead of 2.
3785 Since this information is redundant with the third number,
3786 we will ignore it. */
94e10a22 3787 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3788 if (nbits != 0)
3789 return error_type (pp, objfile);
3790
3791 /* The second number is always 0, so ignore it too. */
94e10a22 3792 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3793 if (nbits != 0)
3794 return error_type (pp, objfile);
3795
3796 /* The third number is the number of bits for this type. */
94e10a22 3797 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3798 if (nbits != 0)
3799 return error_type (pp, objfile);
3800 /* The type *should* end with a semicolon. If it are embedded
3801 in a larger type the semicolon may be the only way to know where
3802 the type ends. If this type is at the end of the stabstring we
3803 can deal with the omitted semicolon (but we don't have to like
3804 it). Don't bother to complain(), Sun's compiler omits the semicolon
3805 for "void". */
3806 if (**pp == ';')
3807 ++(*pp);
3808
3809 if (type_bits == 0)
3810 return init_type (TYPE_CODE_VOID, 1,
c5aa993b 3811 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3812 objfile);
3813 else
3814 return init_type (code,
3815 type_bits / TARGET_CHAR_BIT,
c5aa993b 3816 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3817 objfile);
3818}
3819
3820static struct type *
35a2f538 3821read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3822{
3823 int nbits;
3824 int details;
3825 int nbytes;
f65ca430 3826 struct type *rettype;
c906108c
SS
3827
3828 /* The first number has more details about the type, for example
3829 FN_COMPLEX. */
94e10a22 3830 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3831 if (nbits != 0)
3832 return error_type (pp, objfile);
3833
3834 /* The second number is the number of bytes occupied by this type */
94e10a22 3835 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3836 if (nbits != 0)
3837 return error_type (pp, objfile);
3838
3839 if (details == NF_COMPLEX || details == NF_COMPLEX16
3840 || details == NF_COMPLEX32)
f65ca430
DJ
3841 {
3842 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3843 TYPE_TARGET_TYPE (rettype)
3844 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3845 return rettype;
3846 }
c906108c
SS
3847
3848 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3849}
3850
3851/* Read a number from the string pointed to by *PP.
3852 The value of *PP is advanced over the number.
3853 If END is nonzero, the character that ends the
3854 number must match END, or an error happens;
3855 and that character is skipped if it does match.
3856 If END is zero, *PP is left pointing to that character.
3857
94e10a22
JG
3858 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3859 the number is represented in an octal representation, assume that
3860 it is represented in a 2's complement representation with a size of
3861 TWOS_COMPLEMENT_BITS.
3862
c906108c
SS
3863 If the number fits in a long, set *BITS to 0 and return the value.
3864 If not, set *BITS to be the number of bits in the number and return 0.
3865
3866 If encounter garbage, set *BITS to -1 and return 0. */
3867
c2d11a7d 3868static long
94e10a22 3869read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3870{
3871 char *p = *pp;
3872 int sign = 1;
51e9e0d4 3873 int sign_bit = 0;
c2d11a7d 3874 long n = 0;
c906108c
SS
3875 int radix = 10;
3876 char overflow = 0;
3877 int nbits = 0;
3878 int c;
c2d11a7d 3879 long upper_limit;
a2699720 3880 int twos_complement_representation = 0;
c5aa993b 3881
c906108c
SS
3882 if (*p == '-')
3883 {
3884 sign = -1;
3885 p++;
3886 }
3887
3888 /* Leading zero means octal. GCC uses this to output values larger
3889 than an int (because that would be hard in decimal). */
3890 if (*p == '0')
3891 {
3892 radix = 8;
3893 p++;
3894 }
3895
a2699720
PA
3896 /* Skip extra zeros. */
3897 while (*p == '0')
3898 p++;
3899
3900 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3901 {
3902 /* Octal, possibly signed. Check if we have enough chars for a
3903 negative number. */
3904
3905 size_t len;
3906 char *p1 = p;
433759f7 3907
a2699720
PA
3908 while ((c = *p1) >= '0' && c < '8')
3909 p1++;
3910
3911 len = p1 - p;
3912 if (len > twos_complement_bits / 3
3e43a32a
MS
3913 || (twos_complement_bits % 3 == 0
3914 && len == twos_complement_bits / 3))
a2699720
PA
3915 {
3916 /* Ok, we have enough characters for a signed value, check
3917 for signness by testing if the sign bit is set. */
3918 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3919 c = *p - '0';
3920 if (c & (1 << sign_bit))
3921 {
3922 /* Definitely signed. */
3923 twos_complement_representation = 1;
3924 sign = -1;
3925 }
3926 }
3927 }
3928
1b831c93 3929 upper_limit = LONG_MAX / radix;
c906108c
SS
3930
3931 while ((c = *p++) >= '0' && c < ('0' + radix))
3932 {
3933 if (n <= upper_limit)
94e10a22
JG
3934 {
3935 if (twos_complement_representation)
3936 {
a2699720
PA
3937 /* Octal, signed, twos complement representation. In
3938 this case, n is the corresponding absolute value. */
3939 if (n == 0)
3940 {
3941 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3942
a2699720
PA
3943 n = -sn;
3944 }
94e10a22
JG
3945 else
3946 {
a2699720
PA
3947 n *= radix;
3948 n -= c - '0';
94e10a22 3949 }
94e10a22
JG
3950 }
3951 else
3952 {
3953 /* unsigned representation */
3954 n *= radix;
3955 n += c - '0'; /* FIXME this overflows anyway */
3956 }
3957 }
c906108c 3958 else
94e10a22 3959 overflow = 1;
c5aa993b 3960
c906108c 3961 /* This depends on large values being output in octal, which is
c5aa993b 3962 what GCC does. */
c906108c
SS
3963 if (radix == 8)
3964 {
3965 if (nbits == 0)
3966 {
3967 if (c == '0')
3968 /* Ignore leading zeroes. */
3969 ;
3970 else if (c == '1')
3971 nbits = 1;
3972 else if (c == '2' || c == '3')
3973 nbits = 2;
3974 else
3975 nbits = 3;
3976 }
3977 else
3978 nbits += 3;
3979 }
3980 }
3981 if (end)
3982 {
3983 if (c && c != end)
3984 {
3985 if (bits != NULL)
3986 *bits = -1;
3987 return 0;
3988 }
3989 }
3990 else
3991 --p;
3992
a2699720
PA
3993 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3994 {
3995 /* We were supposed to parse a number with maximum
3996 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3997 if (bits != NULL)
3998 *bits = -1;
3999 return 0;
4000 }
4001
c906108c
SS
4002 *pp = p;
4003 if (overflow)
4004 {
4005 if (nbits == 0)
4006 {
4007 /* Large decimal constants are an error (because it is hard to
4008 count how many bits are in them). */
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
c5aa993b 4013
c906108c 4014 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4015 the number of bits. Two's complement represention octals
4016 can't have a '-' in front. */
4017 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4018 ++nbits;
4019 if (bits)
4020 *bits = nbits;
4021 }
4022 else
4023 {
4024 if (bits)
4025 *bits = 0;
a2699720 4026 return n * sign;
c906108c
SS
4027 }
4028 /* It's *BITS which has the interesting information. */
4029 return 0;
4030}
4031
4032static struct type *
94e10a22
JG
4033read_range_type (char **pp, int typenums[2], int type_size,
4034 struct objfile *objfile)
c906108c 4035{
5e2b427d 4036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4037 char *orig_pp = *pp;
4038 int rangenums[2];
c2d11a7d 4039 long n2, n3;
c906108c
SS
4040 int n2bits, n3bits;
4041 int self_subrange;
4042 struct type *result_type;
4043 struct type *index_type = NULL;
4044
4045 /* First comes a type we are a subrange of.
4046 In C it is usually 0, 1 or the type being defined. */
4047 if (read_type_number (pp, rangenums) != 0)
4048 return error_type (pp, objfile);
4049 self_subrange = (rangenums[0] == typenums[0] &&
4050 rangenums[1] == typenums[1]);
4051
4052 if (**pp == '=')
4053 {
4054 *pp = orig_pp;
4055 index_type = read_type (pp, objfile);
4056 }
4057
4058 /* A semicolon should now follow; skip it. */
4059 if (**pp == ';')
4060 (*pp)++;
4061
4062 /* The remaining two operands are usually lower and upper bounds
4063 of the range. But in some special cases they mean something else. */
94e10a22
JG
4064 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4065 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4066
4067 if (n2bits == -1 || n3bits == -1)
4068 return error_type (pp, objfile);
4069
4070 if (index_type)
4071 goto handle_true_range;
4072
4073 /* If limits are huge, must be large integral type. */
4074 if (n2bits != 0 || n3bits != 0)
4075 {
4076 char got_signed = 0;
4077 char got_unsigned = 0;
4078 /* Number of bits in the type. */
4079 int nbits = 0;
4080
94e10a22
JG
4081 /* If a type size attribute has been specified, the bounds of
4082 the range should fit in this size. If the lower bounds needs
4083 more bits than the upper bound, then the type is signed. */
4084 if (n2bits <= type_size && n3bits <= type_size)
4085 {
4086 if (n2bits == type_size && n2bits > n3bits)
4087 got_signed = 1;
4088 else
4089 got_unsigned = 1;
4090 nbits = type_size;
4091 }
c906108c 4092 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4093 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4094 {
4095 got_unsigned = 1;
4096 nbits = n3bits;
4097 }
4098 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4099 integral type. Take care of the case where <large number> doesn't
4100 fit in a long but <large number>-1 does. */
c906108c
SS
4101 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4102 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4103 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4104 && n3 == LONG_MAX))
c906108c
SS
4105 {
4106 got_signed = 1;
4107 nbits = n2bits;
4108 }
4109
4110 if (got_signed || got_unsigned)
4111 {
4112 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4113 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4114 objfile);
4115 }
4116 else
4117 return error_type (pp, objfile);
4118 }
4119
4120 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4121 if (self_subrange && n2 == 0 && n3 == 0)
4122 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4123
4124 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4125 is the width in bytes.
4126
4127 Fortran programs appear to use this for complex types also. To
4128 distinguish between floats and complex, g77 (and others?) seem
4129 to use self-subranges for the complexes, and subranges of int for
4130 the floats.
4131
4132 Also note that for complexes, g77 sets n2 to the size of one of
4133 the member floats, not the whole complex beast. My guess is that
4134 this was to work well with pre-COMPLEX versions of gdb. */
4135
4136 if (n3 == 0 && n2 > 0)
4137 {
1300f5dd
JB
4138 struct type *float_type
4139 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4140
c906108c
SS
4141 if (self_subrange)
4142 {
1300f5dd
JB
4143 struct type *complex_type =
4144 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
433759f7 4145
1300f5dd
JB
4146 TYPE_TARGET_TYPE (complex_type) = float_type;
4147 return complex_type;
c906108c
SS
4148 }
4149 else
1300f5dd 4150 return float_type;
c906108c
SS
4151 }
4152
a2699720 4153 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4154
4155 else if (n2 == 0 && n3 == -1)
4156 {
a2699720 4157 int bits = type_size;
433759f7 4158
a2699720
PA
4159 if (bits <= 0)
4160 {
4161 /* We don't know its size. It is unsigned int or unsigned
4162 long. GCC 2.3.3 uses this for long long too, but that is
4163 just a GDB 3.5 compatibility hack. */
5e2b427d 4164 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4165 }
4166
4167 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
c906108c
SS
4168 TYPE_FLAG_UNSIGNED, NULL, objfile);
4169 }
4170
4171 /* Special case: char is defined (Who knows why) as a subrange of
4172 itself with range 0-127. */
4173 else if (self_subrange && n2 == 0 && n3 == 127)
973ccf8b 4174 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
c906108c 4175
c906108c
SS
4176 /* We used to do this only for subrange of self or subrange of int. */
4177 else if (n2 == 0)
4178 {
a0b3c4fd
JM
4179 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4180 "unsigned long", and we already checked for that,
4181 so don't need to test for it here. */
4182
c906108c
SS
4183 if (n3 < 0)
4184 /* n3 actually gives the size. */
c5aa993b 4185 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
c906108c 4186 NULL, objfile);
c906108c 4187
7be570e7 4188 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4189 unsigned n-byte integer. But do require n to be a power of
4190 two; we don't want 3- and 5-byte integers flying around. */
4191 {
4192 int bytes;
4193 unsigned long bits;
4194
4195 bits = n3;
4196 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4197 bits >>= 8;
4198 if (bits == 0
4199 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4200 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4201 objfile);
4202 }
c906108c
SS
4203 }
4204 /* I think this is for Convex "long long". Since I don't know whether
4205 Convex sets self_subrange, I also accept that particular size regardless
4206 of self_subrange. */
4207 else if (n3 == 0 && n2 < 0
4208 && (self_subrange
9a76efb6 4209 || n2 == -gdbarch_long_long_bit
5e2b427d 4210 (gdbarch) / TARGET_CHAR_BIT))
c5aa993b
JM
4211 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4212 else if (n2 == -n3 - 1)
c906108c
SS
4213 {
4214 if (n3 == 0x7f)
4215 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4216 if (n3 == 0x7fff)
4217 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4218 if (n3 == 0x7fffffff)
4219 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4220 }
4221
4222 /* We have a real range type on our hands. Allocate space and
4223 return a real pointer. */
c5aa993b 4224handle_true_range:
c906108c
SS
4225
4226 if (self_subrange)
46bf5051 4227 index_type = objfile_type (objfile)->builtin_int;
c906108c 4228 else
46bf5051 4229 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4230 if (index_type == NULL)
4231 {
4232 /* Does this actually ever happen? Is that why we are worrying
4233 about dealing with it rather than just calling error_type? */
4234
23136709 4235 complaint (&symfile_complaints,
e2e0b3e5 4236 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4237
46bf5051 4238 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4239 }
4240
4241 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4242 return (result_type);
4243}
4244
4245/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4246 and terminated with END. Return the list of types read in, or NULL
4247 if there is an error. */
c906108c 4248
ad2f7632
DJ
4249static struct field *
4250read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4251 int *varargsp)
c906108c
SS
4252{
4253 /* FIXME! Remove this arbitrary limit! */
ad2f7632
DJ
4254 struct type *types[1024]; /* allow for fns of 1023 parameters */
4255 int n = 0, i;
4256 struct field *rval;
c906108c
SS
4257
4258 while (**pp != end)
4259 {
4260 if (**pp != ',')
4261 /* Invalid argument list: no ','. */
0a029df5 4262 return NULL;
c906108c
SS
4263 (*pp)++;
4264 STABS_CONTINUE (pp, objfile);
4265 types[n++] = read_type (pp, objfile);
4266 }
4267 (*pp)++; /* get past `end' (the ':' character) */
4268
d24d8548
JK
4269 if (n == 0)
4270 {
4271 /* We should read at least the THIS parameter here. Some broken stabs
4272 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4273 have been present ";-16,(0,43)" reference instead. This way the
4274 excessive ";" marker prematurely stops the parameters parsing. */
4275
4276 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4277 *varargsp = 0;
4278 }
4279 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4280 *varargsp = 1;
c906108c
SS
4281 else
4282 {
ad2f7632
DJ
4283 n--;
4284 *varargsp = 0;
c906108c 4285 }
ad2f7632
DJ
4286
4287 rval = (struct field *) xmalloc (n * sizeof (struct field));
4288 memset (rval, 0, n * sizeof (struct field));
4289 for (i = 0; i < n; i++)
4290 rval[i].type = types[i];
4291 *nargsp = n;
c906108c
SS
4292 return rval;
4293}
4294\f
4295/* Common block handling. */
4296
4297/* List of symbols declared since the last BCOMM. This list is a tail
4298 of local_symbols. When ECOMM is seen, the symbols on the list
4299 are noted so their proper addresses can be filled in later,
4300 using the common block base address gotten from the assembler
4301 stabs. */
4302
4303static struct pending *common_block;
4304static int common_block_i;
4305
4306/* Name of the current common block. We get it from the BCOMM instead of the
4307 ECOMM to match IBM documentation (even though IBM puts the name both places
4308 like everyone else). */
4309static char *common_block_name;
4310
4311/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4312 to remain after this function returns. */
4313
4314void
fba45db2 4315common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4316{
4317 if (common_block_name != NULL)
4318 {
23136709 4319 complaint (&symfile_complaints,
e2e0b3e5 4320 _("Invalid symbol data: common block within common block"));
c906108c
SS
4321 }
4322 common_block = local_symbols;
4323 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4324 common_block_name = obsavestring (name, strlen (name),
4a146b47 4325 &objfile->objfile_obstack);
c906108c
SS
4326}
4327
4328/* Process a N_ECOMM symbol. */
4329
4330void
fba45db2 4331common_block_end (struct objfile *objfile)
c906108c
SS
4332{
4333 /* Symbols declared since the BCOMM are to have the common block
4334 start address added in when we know it. common_block and
4335 common_block_i point to the first symbol after the BCOMM in
4336 the local_symbols list; copy the list and hang it off the
4337 symbol for the common block name for later fixup. */
4338 int i;
4339 struct symbol *sym;
4340 struct pending *new = 0;
4341 struct pending *next;
4342 int j;
4343
4344 if (common_block_name == NULL)
4345 {
e2e0b3e5 4346 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4347 return;
4348 }
4349
c5aa993b 4350 sym = (struct symbol *)
4a146b47 4351 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c 4352 memset (sym, 0, sizeof (struct symbol));
4a146b47 4353 /* Note: common_block_name already saved on objfile_obstack */
3567439c 4354 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
c906108c
SS
4355 SYMBOL_CLASS (sym) = LOC_BLOCK;
4356
4357 /* Now we copy all the symbols which have been defined since the BCOMM. */
4358
4359 /* Copy all the struct pendings before common_block. */
4360 for (next = local_symbols;
4361 next != NULL && next != common_block;
4362 next = next->next)
4363 {
4364 for (j = 0; j < next->nsyms; j++)
4365 add_symbol_to_list (next->symbol[j], &new);
4366 }
4367
4368 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4369 NULL, it means copy all the local symbols (which we already did
4370 above). */
4371
4372 if (common_block != NULL)
4373 for (j = common_block_i; j < common_block->nsyms; j++)
4374 add_symbol_to_list (common_block->symbol[j], &new);
4375
4376 SYMBOL_TYPE (sym) = (struct type *) new;
4377
4378 /* Should we be putting local_symbols back to what it was?
4379 Does it matter? */
4380
3567439c 4381 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4382 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4383 global_sym_chain[i] = sym;
4384 common_block_name = NULL;
4385}
4386
4387/* Add a common block's start address to the offset of each symbol
4388 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4389 the common block name). */
4390
4391static void
fba45db2 4392fix_common_block (struct symbol *sym, int valu)
c906108c
SS
4393{
4394 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4395
c5aa993b 4396 for (; next; next = next->next)
c906108c 4397 {
aa1ee363 4398 int j;
433759f7 4399
c906108c
SS
4400 for (j = next->nsyms - 1; j >= 0; j--)
4401 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4402 }
4403}
c5aa993b 4404\f
c906108c
SS
4405
4406
bf362611
JB
4407/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4408 See add_undefined_type for more details. */
c906108c 4409
a7a48797 4410static void
bf362611
JB
4411add_undefined_type_noname (struct type *type, int typenums[2])
4412{
4413 struct nat nat;
4414
4415 nat.typenums[0] = typenums [0];
4416 nat.typenums[1] = typenums [1];
4417 nat.type = type;
4418
4419 if (noname_undefs_length == noname_undefs_allocated)
4420 {
4421 noname_undefs_allocated *= 2;
4422 noname_undefs = (struct nat *)
4423 xrealloc ((char *) noname_undefs,
4424 noname_undefs_allocated * sizeof (struct nat));
4425 }
4426 noname_undefs[noname_undefs_length++] = nat;
4427}
4428
4429/* Add TYPE to the UNDEF_TYPES vector.
4430 See add_undefined_type for more details. */
4431
4432static void
4433add_undefined_type_1 (struct type *type)
c906108c
SS
4434{
4435 if (undef_types_length == undef_types_allocated)
4436 {
4437 undef_types_allocated *= 2;
4438 undef_types = (struct type **)
4439 xrealloc ((char *) undef_types,
4440 undef_types_allocated * sizeof (struct type *));
4441 }
4442 undef_types[undef_types_length++] = type;
4443}
4444
bf362611
JB
4445/* What about types defined as forward references inside of a small lexical
4446 scope? */
4447/* Add a type to the list of undefined types to be checked through
4448 once this file has been read in.
4449
4450 In practice, we actually maintain two such lists: The first list
4451 (UNDEF_TYPES) is used for types whose name has been provided, and
4452 concerns forward references (eg 'xs' or 'xu' forward references);
4453 the second list (NONAME_UNDEFS) is used for types whose name is
4454 unknown at creation time, because they were referenced through
4455 their type number before the actual type was declared.
4456 This function actually adds the given type to the proper list. */
4457
4458static void
4459add_undefined_type (struct type *type, int typenums[2])
4460{
4461 if (TYPE_TAG_NAME (type) == NULL)
4462 add_undefined_type_noname (type, typenums);
4463 else
4464 add_undefined_type_1 (type);
4465}
4466
4467/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4468
2c0b251b 4469static void
46bf5051 4470cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4471{
4472 int i;
4473
4474 for (i = 0; i < noname_undefs_length; i++)
4475 {
4476 struct nat nat = noname_undefs[i];
4477 struct type **type;
4478
46bf5051 4479 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4480 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4481 {
4482 /* The instance flags of the undefined type are still unset,
4483 and needs to be copied over from the reference type.
4484 Since replace_type expects them to be identical, we need
4485 to set these flags manually before hand. */
4486 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4487 replace_type (nat.type, *type);
4488 }
bf362611
JB
4489 }
4490
4491 noname_undefs_length = 0;
4492}
4493
c906108c
SS
4494/* Go through each undefined type, see if it's still undefined, and fix it
4495 up if possible. We have two kinds of undefined types:
4496
4497 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4498 Fix: update array length using the element bounds
4499 and the target type's length.
c906108c 4500 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4501 yet defined at the time a pointer to it was made.
4502 Fix: Do a full lookup on the struct/union tag. */
bf362611 4503
2c0b251b 4504static void
bf362611 4505cleanup_undefined_types_1 (void)
c906108c
SS
4506{
4507 struct type **type;
4508
9e386756
JB
4509 /* Iterate over every undefined type, and look for a symbol whose type
4510 matches our undefined type. The symbol matches if:
4511 1. It is a typedef in the STRUCT domain;
4512 2. It has the same name, and same type code;
4513 3. The instance flags are identical.
4514
4515 It is important to check the instance flags, because we have seen
4516 examples where the debug info contained definitions such as:
4517
4518 "foo_t:t30=B31=xefoo_t:"
4519
4520 In this case, we have created an undefined type named "foo_t" whose
4521 instance flags is null (when processing "xefoo_t"), and then created
4522 another type with the same name, but with different instance flags
4523 ('B' means volatile). I think that the definition above is wrong,
4524 since the same type cannot be volatile and non-volatile at the same
4525 time, but we need to be able to cope with it when it happens. The
4526 approach taken here is to treat these two types as different. */
4527
c906108c
SS
4528 for (type = undef_types; type < undef_types + undef_types_length; type++)
4529 {
4530 switch (TYPE_CODE (*type))
4531 {
4532
c5aa993b
JM
4533 case TYPE_CODE_STRUCT:
4534 case TYPE_CODE_UNION:
4535 case TYPE_CODE_ENUM:
c906108c
SS
4536 {
4537 /* Check if it has been defined since. Need to do this here
4538 as well as in check_typedef to deal with the (legitimate in
4539 C though not C++) case of several types with the same name
4540 in different source files. */
74a9bb82 4541 if (TYPE_STUB (*type))
c906108c
SS
4542 {
4543 struct pending *ppt;
4544 int i;
4545 /* Name of the type, without "struct" or "union" */
4546 char *typename = TYPE_TAG_NAME (*type);
4547
4548 if (typename == NULL)
4549 {
e2e0b3e5 4550 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4551 break;
4552 }
4553 for (ppt = file_symbols; ppt; ppt = ppt->next)
4554 {
4555 for (i = 0; i < ppt->nsyms; i++)
4556 {
4557 struct symbol *sym = ppt->symbol[i];
c5aa993b 4558
c906108c 4559 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4560 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4561 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4562 TYPE_CODE (*type))
9e386756
JB
4563 && (TYPE_INSTANCE_FLAGS (*type) ==
4564 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4565 && strcmp (SYMBOL_LINKAGE_NAME (sym),
9e386756 4566 typename) == 0)
13a393b0 4567 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4568 }
4569 }
4570 }
4571 }
4572 break;
4573
4574 default:
4575 {
23136709 4576 complaint (&symfile_complaints,
e2e0b3e5
AC
4577 _("forward-referenced types left unresolved, "
4578 "type code %d."),
23136709 4579 TYPE_CODE (*type));
c906108c
SS
4580 }
4581 break;
4582 }
4583 }
4584
4585 undef_types_length = 0;
4586}
4587
bf362611
JB
4588/* Try to fix all the undefined types we ecountered while processing
4589 this unit. */
4590
4591void
46bf5051 4592cleanup_undefined_types (struct objfile *objfile)
bf362611
JB
4593{
4594 cleanup_undefined_types_1 ();
46bf5051 4595 cleanup_undefined_types_noname (objfile);
bf362611
JB
4596}
4597
c906108c
SS
4598/* Scan through all of the global symbols defined in the object file,
4599 assigning values to the debugging symbols that need to be assigned
4600 to. Get these symbols from the minimal symbol table. */
4601
4602void
fba45db2 4603scan_file_globals (struct objfile *objfile)
c906108c
SS
4604{
4605 int hash;
4606 struct minimal_symbol *msymbol;
507836c0 4607 struct symbol *sym, *prev;
c906108c
SS
4608 struct objfile *resolve_objfile;
4609
4610 /* SVR4 based linkers copy referenced global symbols from shared
4611 libraries to the main executable.
4612 If we are scanning the symbols for a shared library, try to resolve
4613 them from the minimal symbols of the main executable first. */
4614
4615 if (symfile_objfile && objfile != symfile_objfile)
4616 resolve_objfile = symfile_objfile;
4617 else
4618 resolve_objfile = objfile;
4619
4620 while (1)
4621 {
4622 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4623 no unresolved symbols. */
c906108c
SS
4624 for (hash = 0; hash < HASHSIZE; hash++)
4625 {
4626 if (global_sym_chain[hash])
4627 break;
4628 }
4629 if (hash >= HASHSIZE)
4630 return;
4631
3567439c 4632 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4633 {
4634 QUIT;
4635
4636 /* Skip static symbols. */
4637 switch (MSYMBOL_TYPE (msymbol))
4638 {
4639 case mst_file_text:
4640 case mst_file_data:
4641 case mst_file_bss:
4642 continue;
4643 default:
4644 break;
4645 }
4646
4647 prev = NULL;
4648
4649 /* Get the hash index and check all the symbols
4650 under that hash index. */
4651
3567439c 4652 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4653
4654 for (sym = global_sym_chain[hash]; sym;)
4655 {
3567439c
DJ
4656 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4657 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4658 {
c906108c
SS
4659 /* Splice this symbol out of the hash chain and
4660 assign the value we have to it. */
4661 if (prev)
4662 {
4663 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4664 }
4665 else
4666 {
4667 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4668 }
c5aa993b 4669
c906108c
SS
4670 /* Check to see whether we need to fix up a common block. */
4671 /* Note: this code might be executed several times for
4672 the same symbol if there are multiple references. */
507836c0 4673 if (sym)
c906108c 4674 {
507836c0 4675 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4676 {
507836c0 4677 fix_common_block (sym,
c906108c
SS
4678 SYMBOL_VALUE_ADDRESS (msymbol));
4679 }
4680 else
4681 {
507836c0 4682 SYMBOL_VALUE_ADDRESS (sym)
c906108c
SS
4683 = SYMBOL_VALUE_ADDRESS (msymbol);
4684 }
507836c0 4685 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
c906108c
SS
4686 }
4687
c906108c
SS
4688 if (prev)
4689 {
4690 sym = SYMBOL_VALUE_CHAIN (prev);
4691 }
4692 else
4693 {
4694 sym = global_sym_chain[hash];
4695 }
4696 }
4697 else
4698 {
4699 prev = sym;
4700 sym = SYMBOL_VALUE_CHAIN (sym);
4701 }
4702 }
4703 }
4704 if (resolve_objfile == objfile)
4705 break;
4706 resolve_objfile = objfile;
4707 }
4708
4709 /* Change the storage class of any remaining unresolved globals to
4710 LOC_UNRESOLVED and remove them from the chain. */
4711 for (hash = 0; hash < HASHSIZE; hash++)
4712 {
4713 sym = global_sym_chain[hash];
4714 while (sym)
4715 {
4716 prev = sym;
4717 sym = SYMBOL_VALUE_CHAIN (sym);
4718
4719 /* Change the symbol address from the misleading chain value
4720 to address zero. */
4721 SYMBOL_VALUE_ADDRESS (prev) = 0;
4722
4723 /* Complain about unresolved common block symbols. */
4724 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4725 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4726 else
23136709 4727 complaint (&symfile_complaints,
3e43a32a
MS
4728 _("%s: common block `%s' from "
4729 "global_sym_chain unresolved"),
3567439c 4730 objfile->name, SYMBOL_PRINT_NAME (prev));
c906108c
SS
4731 }
4732 }
4733 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4734}
4735
4736/* Initialize anything that needs initializing when starting to read
4737 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4738 to a psymtab. */
4739
4740void
fba45db2 4741stabsread_init (void)
c906108c
SS
4742{
4743}
4744
4745/* Initialize anything that needs initializing when a completely new
4746 symbol file is specified (not just adding some symbols from another
4747 file, e.g. a shared library). */
4748
4749void
fba45db2 4750stabsread_new_init (void)
c906108c
SS
4751{
4752 /* Empty the hash table of global syms looking for values. */
4753 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4754}
4755
4756/* Initialize anything that needs initializing at the same time as
4757 start_symtab() is called. */
4758
c5aa993b 4759void
fba45db2 4760start_stabs (void)
c906108c
SS
4761{
4762 global_stabs = NULL; /* AIX COFF */
4763 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4764 n_this_object_header_files = 1;
4765 type_vector_length = 0;
4766 type_vector = (struct type **) 0;
4767
4768 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4769 common_block_name = NULL;
c906108c
SS
4770}
4771
4772/* Call after end_symtab() */
4773
c5aa993b 4774void
fba45db2 4775end_stabs (void)
c906108c
SS
4776{
4777 if (type_vector)
4778 {
b8c9b27d 4779 xfree (type_vector);
c906108c
SS
4780 }
4781 type_vector = 0;
4782 type_vector_length = 0;
4783 previous_stab_code = 0;
4784}
4785
4786void
fba45db2 4787finish_global_stabs (struct objfile *objfile)
c906108c
SS
4788{
4789 if (global_stabs)
4790 {
4791 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4792 xfree (global_stabs);
c906108c
SS
4793 global_stabs = NULL;
4794 }
4795}
4796
7e1d63ec
AF
4797/* Find the end of the name, delimited by a ':', but don't match
4798 ObjC symbols which look like -[Foo bar::]:bla. */
4799static char *
4800find_name_end (char *name)
4801{
4802 char *s = name;
433759f7 4803
7e1d63ec
AF
4804 if (s[0] == '-' || *s == '+')
4805 {
4806 /* Must be an ObjC method symbol. */
4807 if (s[1] != '[')
4808 {
8a3fe4f8 4809 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4810 }
4811 s = strchr (s, ']');
4812 if (s == NULL)
4813 {
8a3fe4f8 4814 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4815 }
4816 return strchr (s, ':');
4817 }
4818 else
4819 {
4820 return strchr (s, ':');
4821 }
4822}
4823
c906108c
SS
4824/* Initializer for this module */
4825
4826void
fba45db2 4827_initialize_stabsread (void)
c906108c 4828{
46bf5051
UW
4829 rs6000_builtin_type_data = register_objfile_data ();
4830
c906108c
SS
4831 undef_types_allocated = 20;
4832 undef_types_length = 0;
4833 undef_types = (struct type **)
4834 xmalloc (undef_types_allocated * sizeof (struct type *));
bf362611
JB
4835
4836 noname_undefs_allocated = 20;
4837 noname_undefs_length = 0;
4838 noname_undefs = (struct nat *)
4839 xmalloc (noname_undefs_allocated * sizeof (struct nat));
c906108c 4840}