]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/stabsread.c
start change to progspace independence
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
c378eb4e 24 Avoid placing any object file format specific code in this file. */
c906108c
SS
25
26#include "defs.h"
0e9f083f 27#include <string.h>
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
39#include "buildsym.h"
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
d16aafd8 44#include "doublest.h"
de17c821
DJ
45#include "cp-abi.h"
46#include "cp-support.h"
8fb822e0 47#include "gdb_assert.h"
c906108c
SS
48
49#include <ctype.h>
50
51/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
52#define EXTERN
53/**/
c906108c
SS
54#include "stabsread.h" /* Our own declarations */
55#undef EXTERN
56
a14ed312 57extern void _initialize_stabsread (void);
392a587b 58
c906108c
SS
59/* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
c378eb4e 63 expected to eventually go away... (FIXME) */
c906108c
SS
64
65struct field_info
c5aa993b
JM
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
c906108c 70
c5aa993b
JM
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
c906108c 75
c5aa993b
JM
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
c906108c
SS
86
87static void
a14ed312
KB
88read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
c906108c 90
a14ed312 91static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 92
94e10a22 93static long read_huge_number (char **, int, int *, int);
c906108c 94
a14ed312 95static struct type *error_type (char **, struct objfile *);
c906108c
SS
96
97static void
a14ed312
KB
98patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
c906108c 100
46cb6474 101static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 102
a14ed312 103static int read_type_number (char **, int *);
c906108c 104
a7a48797
EZ
105static struct type *read_type (char **, struct objfile *);
106
94e10a22 107static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 108
a14ed312 109static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 110
a14ed312
KB
111static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
c906108c 113
a14ed312 114static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 115
46bf5051 116static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
117
118static int
a14ed312
KB
119read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
c906108c
SS
121
122static int
a14ed312
KB
123read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
c906108c
SS
125
126static int
a14ed312
KB
127read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
c906108c
SS
129
130static int
a14ed312
KB
131read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
c906108c 133
a14ed312 134static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 135
570b8f7c
AC
136static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
c906108c 138
a14ed312 139static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 140 enum type_code,
a14ed312 141 struct objfile *);
c906108c 142
a14ed312
KB
143static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
c906108c 145
ad2f7632 146static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 147
bf362611 148static void add_undefined_type (struct type *, int[2]);
a7a48797 149
c906108c 150static int
a14ed312
KB
151read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
c906108c 153
7e1d63ec
AF
154static char *find_name_end (char *name);
155
a14ed312 156static int process_reference (char **string);
c906108c 157
a14ed312 158void stabsread_clear_cache (void);
7be570e7 159
8343f86c
DJ
160static const char vptr_name[] = "_vptr$";
161static const char vb_name[] = "_vb$";
c906108c 162
23136709
KB
163static void
164invalid_cpp_abbrev_complaint (const char *arg1)
165{
e2e0b3e5 166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 167}
c906108c 168
23136709 169static void
49b0b195 170reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
171{
172 complaint (&symfile_complaints,
e2e0b3e5 173 _("register number %d too large (max %d) in symbol %s"),
49b0b195 174 regnum, num_regs - 1, sym);
23136709 175}
c906108c 176
23136709
KB
177static void
178stabs_general_complaint (const char *arg1)
179{
180 complaint (&symfile_complaints, "%s", arg1);
181}
c906108c 182
c906108c
SS
183/* Make a list of forward references which haven't been defined. */
184
185static struct type **undef_types;
186static int undef_types_allocated;
187static int undef_types_length;
188static struct symbol *current_symbol = NULL;
189
bf362611
JB
190/* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
c378eb4e 192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
193 and type (0,2) is defined only later. */
194
195struct nat
196{
197 int typenums[2];
198 struct type *type;
199};
200static struct nat *noname_undefs;
201static int noname_undefs_allocated;
202static int noname_undefs_length;
203
c906108c
SS
204/* Check for and handle cretinous stabs symbol name continuation! */
205#define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
fc474241
DE
210
211/* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217static struct type **type_vector;
218
219/* Number of elements allocated for type_vector currently. */
220
221static int type_vector_length;
222
223/* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 227\f
c906108c
SS
228
229/* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
a7a48797 236static struct type **
46bf5051 237dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 238{
52f0bd74
AC
239 int filenum = typenums[0];
240 int index = typenums[1];
c906108c 241 unsigned old_len;
52f0bd74
AC
242 int real_filenum;
243 struct header_file *f;
c906108c
SS
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
23136709 251 complaint (&symfile_complaints,
3e43a32a
MS
252 _("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
23136709 254 filenum, index, symnum);
c906108c
SS
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
46bf5051 269 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
c5aa993b 274 Find it in this object file's type vector. */
c906108c
SS
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = (struct type **)
282 xmalloc (type_vector_length * sizeof (struct type *));
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
46bf5051 300 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 301 {
46bf5051 302 static struct type *temp_type;
c906108c 303
8a3fe4f8 304 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
305
306 error_return:
46bf5051
UW
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
c906108c
SS
309 }
310
46bf5051 311 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327}
328
329/* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 333 put into the type vector, and so may not be referred to by number. */
c906108c
SS
334
335static struct type *
35a2f538 336dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 337{
52f0bd74 338 struct type **type_addr;
c906108c
SS
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
46bf5051 345 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356}
357
358/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 359 and fix their symbols in given symbol vector. */
c906108c
SS
360
361static void
fba45db2
KB
362patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
363 struct objfile *objfile)
c906108c
SS
364{
365 int ii;
366 char *name;
367 char *pp;
368 struct symbol *sym;
369
370 if (stabs)
371 {
c906108c 372 /* for all the stab entries, find their corresponding symbols and
c378eb4e 373 patch their types! */
c5aa993b 374
c906108c
SS
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
c5aa993b 378 pp = (char *) strchr (name, ':');
8fb822e0 379 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
380 while (pp[1] == ':')
381 {
c5aa993b
JM
382 pp += 2;
383 pp = (char *) strchr (pp, ':');
c906108c 384 }
c5aa993b 385 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
386 if (!sym)
387 {
388 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
389 the variable was defined *anywhere*, not just whether
390 it is defined in this compilation unit. But neither
391 xlc or GCC seem to need such a definition, and until
392 we do psymtabs (so that the minimal symbols from all
393 compilation units are available now), I'm not sure
394 how to get the information. */
c906108c
SS
395
396 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
397 ld will remove it from the executable. There is then
398 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 399 sym = allocate_symbol (objfile);
176620f1 400 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 401 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 402 SYMBOL_SET_LINKAGE_NAME
10f0c4bb
TT
403 (sym, obstack_copy0 (&objfile->objfile_obstack,
404 name, pp - name));
c906108c 405 pp += 2;
c5aa993b 406 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
407 {
408 /* I don't think the linker does this with functions,
409 so as far as I know this is never executed.
410 But it doesn't hurt to check. */
411 SYMBOL_TYPE (sym) =
412 lookup_function_type (read_type (&pp, objfile));
413 }
414 else
415 {
416 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
417 }
418 add_symbol_to_list (sym, &global_symbols);
419 }
420 else
421 {
422 pp += 2;
c5aa993b 423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
424 {
425 SYMBOL_TYPE (sym) =
426 lookup_function_type (read_type (&pp, objfile));
427 }
428 else
429 {
430 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
431 }
432 }
433 }
434 }
435}
c906108c 436\f
c5aa993b 437
c906108c
SS
438/* Read a number by which a type is referred to in dbx data,
439 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
440 Just a single number N is equivalent to (0,N).
441 Return the two numbers by storing them in the vector TYPENUMS.
442 TYPENUMS will then be used as an argument to dbx_lookup_type.
443
444 Returns 0 for success, -1 for error. */
445
446static int
aa1ee363 447read_type_number (char **pp, int *typenums)
c906108c
SS
448{
449 int nbits;
433759f7 450
c906108c
SS
451 if (**pp == '(')
452 {
453 (*pp)++;
94e10a22 454 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
455 if (nbits != 0)
456 return -1;
94e10a22 457 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
458 if (nbits != 0)
459 return -1;
c906108c
SS
460 }
461 else
462 {
463 typenums[0] = 0;
94e10a22 464 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
465 if (nbits != 0)
466 return -1;
c906108c
SS
467 }
468 return 0;
469}
c906108c 470\f
c5aa993b 471
c906108c
SS
472#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
473#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
474#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
475#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
476
c906108c 477/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 478 during "process_later". */
c906108c
SS
479
480struct ref_map
481{
482 char *stabs;
483 CORE_ADDR value;
484 struct symbol *sym;
485};
486
487#define MAX_CHUNK_REFS 100
488#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
489#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
490
c5aa993b 491static struct ref_map *ref_map;
c906108c 492
c378eb4e 493/* Ptr to free cell in chunk's linked list. */
c5aa993b 494static int ref_count = 0;
c906108c 495
c378eb4e 496/* Number of chunks malloced. */
c906108c
SS
497static int ref_chunk = 0;
498
7be570e7 499/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
500 table. If the symbol table changes, this cache must be cleared
501 or we are left holding onto data in invalid obstacks. */
7be570e7 502void
fba45db2 503stabsread_clear_cache (void)
7be570e7
JM
504{
505 ref_count = 0;
506 ref_chunk = 0;
507}
508
c906108c
SS
509/* Create array of pointers mapping refids to symbols and stab strings.
510 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
511 find them, using their reference numbers as our index.
512 These will be used later when we resolve references. */
c906108c 513void
fba45db2 514ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
515{
516 if (ref_count == 0)
517 ref_chunk = 0;
518 if (refnum >= ref_count)
519 ref_count = refnum + 1;
520 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
521 {
c5aa993b 522 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 523 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 524
c906108c
SS
525 ref_map = (struct ref_map *)
526 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
527 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
528 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
529 ref_chunk += new_chunks;
530 }
531 ref_map[refnum].stabs = stabs;
532 ref_map[refnum].sym = sym;
533 ref_map[refnum].value = value;
534}
535
536/* Return defined sym for the reference REFNUM. */
537struct symbol *
fba45db2 538ref_search (int refnum)
c906108c
SS
539{
540 if (refnum < 0 || refnum > ref_count)
541 return 0;
542 return ref_map[refnum].sym;
543}
544
c906108c
SS
545/* Parse a reference id in STRING and return the resulting
546 reference number. Move STRING beyond the reference id. */
547
c5aa993b 548static int
fba45db2 549process_reference (char **string)
c906108c
SS
550{
551 char *p;
552 int refnum = 0;
553
c5aa993b
JM
554 if (**string != '#')
555 return 0;
556
c906108c
SS
557 /* Advance beyond the initial '#'. */
558 p = *string + 1;
559
c378eb4e 560 /* Read number as reference id. */
c906108c
SS
561 while (*p && isdigit (*p))
562 {
563 refnum = refnum * 10 + *p - '0';
564 p++;
565 }
566 *string = p;
567 return refnum;
568}
569
570/* If STRING defines a reference, store away a pointer to the reference
571 definition for later use. Return the reference number. */
572
573int
fba45db2 574symbol_reference_defined (char **string)
c906108c
SS
575{
576 char *p = *string;
577 int refnum = 0;
578
579 refnum = process_reference (&p);
580
c378eb4e 581 /* Defining symbols end in '='. */
c5aa993b 582 if (*p == '=')
c906108c 583 {
c378eb4e 584 /* Symbol is being defined here. */
c906108c
SS
585 *string = p + 1;
586 return refnum;
587 }
588 else
589 {
c378eb4e 590 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
591 or this is a forward reference to it. */
592 *string = p;
593 return -1;
594 }
595}
596
768a979c
UW
597static int
598stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
599{
600 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
601
602 if (regno >= gdbarch_num_regs (gdbarch)
603 + gdbarch_num_pseudo_regs (gdbarch))
604 {
605 reg_value_complaint (regno,
606 gdbarch_num_regs (gdbarch)
607 + gdbarch_num_pseudo_regs (gdbarch),
608 SYMBOL_PRINT_NAME (sym));
609
c378eb4e 610 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
611 }
612
613 return regno;
614}
615
616static const struct symbol_register_ops stab_register_funcs = {
617 stab_reg_to_regnum
618};
619
f1e6e072
TT
620/* The "aclass" indices for computed symbols. */
621
622static int stab_register_index;
623static int stab_regparm_index;
624
c906108c 625struct symbol *
fba45db2
KB
626define_symbol (CORE_ADDR valu, char *string, int desc, int type,
627 struct objfile *objfile)
c906108c 628{
5e2b427d 629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 630 struct symbol *sym;
7e1d63ec 631 char *p = (char *) find_name_end (string);
c906108c
SS
632 int deftype;
633 int synonym = 0;
52f0bd74 634 int i;
71c25dea 635 char *new_name = NULL;
c906108c
SS
636
637 /* We would like to eliminate nameless symbols, but keep their types.
638 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
639 to type 2, but, should not create a symbol to address that type. Since
640 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
641
642 int nameless;
643
644 /* Ignore syms with empty names. */
645 if (string[0] == 0)
646 return 0;
647
c378eb4e 648 /* Ignore old-style symbols from cc -go. */
c906108c
SS
649 if (p == 0)
650 return 0;
651
652 while (p[1] == ':')
653 {
c5aa993b
JM
654 p += 2;
655 p = strchr (p, ':');
681c238c
MS
656 if (p == NULL)
657 {
658 complaint (&symfile_complaints,
659 _("Bad stabs string '%s'"), string);
660 return NULL;
661 }
c906108c
SS
662 }
663
664 /* If a nameless stab entry, all we need is the type, not the symbol.
665 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
666 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
667
e623cf5d 668 current_symbol = sym = allocate_symbol (objfile);
c906108c 669
c906108c
SS
670 if (processing_gcc_compilation)
671 {
672 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
673 number of bytes occupied by a type or object, which we ignore. */
674 SYMBOL_LINE (sym) = desc;
c906108c
SS
675 }
676 else
677 {
c5aa993b 678 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
679 }
680
681 if (is_cplus_marker (string[0]))
682 {
683 /* Special GNU C++ names. */
684 switch (string[1])
685 {
c5aa993b 686 case 't':
1c9e8358 687 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 688 break;
c906108c 689
c5aa993b 690 case 'v': /* $vtbl_ptr_type */
c5aa993b 691 goto normal;
c906108c 692
c5aa993b 693 case 'e':
1c9e8358 694 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 695 break;
c906108c 696
c5aa993b
JM
697 case '_':
698 /* This was an anonymous type that was never fixed up. */
699 goto normal;
c906108c 700
c5aa993b
JM
701 case 'X':
702 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 703 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 704 goto normal;
c378eb4e 705 /* ... fall through ... */
c906108c 706
c5aa993b 707 default:
e2e0b3e5 708 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 709 string);
c378eb4e 710 goto normal; /* Do *something* with it. */
c906108c
SS
711 }
712 }
c906108c
SS
713 else
714 {
715 normal:
f85f34ed
TT
716 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
717 &objfile->objfile_obstack);
df8a16a1 718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea
TT
719 {
720 char *name = alloca (p - string + 1);
433759f7 721
71c25dea
TT
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
71c25dea
TT
725 }
726 if (new_name != NULL)
727 {
04a679b8 728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
729 xfree (new_name);
730 }
731 else
04a679b8 732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 735 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 736
c906108c
SS
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741#if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750#else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752#endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
c5aa993b
JM
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
766 if (*p != '=')
767 {
f1e6e072 768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
4e38b386 780 gdb_byte *dbl_valu;
6ccb9162 781 struct type *dbl_type;
c906108c
SS
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
46bf5051 787 dbl_type = objfile_type (objfile)->builtin_double;
4e38b386 788 dbl_valu =
4a146b47 789 obstack_alloc (&objfile->objfile_obstack,
6ccb9162
UW
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
c906108c 794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
46bf5051 807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 808 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
810 }
811 break;
ec8a089a
PM
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
ec8a089a
PM
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
f1e6e072 831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
f1e6e072 856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
3e43a32a
MS
865 range_type
866 = create_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
ec8a089a
PM
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
873 memcpy (string_value, string_local, ind + 1);
874 p++;
875
876 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
878 }
879 break;
880
c906108c
SS
881 case 'e':
882 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
883 can be represented as integral.
884 e.g. "b:c=e6,0" for "const b = blob1"
885 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
886 {
f1e6e072 887 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889
890 if (*p != ',')
891 {
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 break;
894 }
895 ++p;
896
897 /* If the value is too big to fit in an int (perhaps because
898 it is unsigned), or something like that, we silently get
899 a bogus value. The type and everything else about it is
900 correct. Ideally, we should be using whatever we have
901 available for parsing unsigned and long long values,
902 however. */
903 SYMBOL_VALUE (sym) = atoi (p);
904 }
905 break;
906 default:
907 {
f1e6e072 908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 }
911 }
176620f1 912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
913 add_symbol_to_list (sym, &file_symbols);
914 return sym;
915
916 case 'C':
917 /* The name of a caught exception. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 919 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
921 SYMBOL_VALUE_ADDRESS (sym) = valu;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'f':
926 /* A static function definition. */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
930 add_symbol_to_list (sym, &file_symbols);
931 /* fall into process_function_types. */
932
933 process_function_types:
934 /* Function result types are described as the result type in stabs.
c5aa993b
JM
935 We need to convert this to the function-returning-type-X type
936 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
937 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
938 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
939
1e698235
DJ
940 /* All functions in C++ have prototypes. Stabs does not offer an
941 explicit way to identify prototyped or unprototyped functions,
942 but both GCC and Sun CC emit stabs for the "call-as" type rather
943 than the "declared-as" type for unprototyped functions, so
944 we treat all functions as if they were prototyped. This is used
945 primarily for promotion when calling the function from GDB. */
876cecd0 946 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 947
c378eb4e 948 /* fall into process_prototype_types. */
c906108c
SS
949
950 process_prototype_types:
951 /* Sun acc puts declared types of arguments here. */
952 if (*p == ';')
953 {
954 struct type *ftype = SYMBOL_TYPE (sym);
955 int nsemi = 0;
956 int nparams = 0;
957 char *p1 = p;
958
959 /* Obtain a worst case guess for the number of arguments
960 by counting the semicolons. */
961 while (*p1)
962 {
963 if (*p1++ == ';')
964 nsemi++;
965 }
966
c378eb4e 967 /* Allocate parameter information fields and fill them in. */
c906108c
SS
968 TYPE_FIELDS (ftype) = (struct field *)
969 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
970 while (*p++ == ';')
971 {
972 struct type *ptype;
973
974 /* A type number of zero indicates the start of varargs.
c5aa993b 975 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
976 if (p[0] == '0' && p[1] == '\0')
977 break;
978 ptype = read_type (&p, objfile);
979
980 /* The Sun compilers mark integer arguments, which should
c5aa993b 981 be promoted to the width of the calling conventions, with
c378eb4e 982 a type which references itself. This type is turned into
c5aa993b 983 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
984 it back into builtin_int here.
985 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 986 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 987 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
988 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
989 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
990 }
991 TYPE_NFIELDS (ftype) = nparams;
876cecd0 992 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
993 }
994 break;
995
996 case 'F':
997 /* A global function definition. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 999 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1001 add_symbol_to_list (sym, &global_symbols);
1002 goto process_function_types;
1003
1004 case 'G':
1005 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1006 value is not correct. It is necessary to search for the
1007 corresponding linker definition to find the value.
1008 These definitions appear at the end of the namelist. */
c906108c 1009 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1010 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1011 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1012 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1013 Symbol references don't have valid names and wont't match up with
1014 minimal symbols when the global_sym_chain is relocated.
1015 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1016 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1017 {
3567439c 1018 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1019 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1020 global_sym_chain[i] = sym;
c906108c
SS
1021 }
1022 add_symbol_to_list (sym, &global_symbols);
1023 break;
1024
1025 /* This case is faked by a conditional above,
c5aa993b
JM
1026 when there is no code letter in the dbx data.
1027 Dbx data never actually contains 'l'. */
c906108c
SS
1028 case 's':
1029 case 'l':
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1031 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1032 SYMBOL_VALUE (sym) = valu;
176620f1 1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'p':
1038 if (*p == 'F')
1039 /* pF is a two-letter code that means a function parameter in Fortran.
1040 The type-number specifies the type of the return value.
1041 Translate it into a pointer-to-function type. */
1042 {
1043 p++;
1044 SYMBOL_TYPE (sym)
1045 = lookup_pointer_type
c5aa993b 1046 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1047 }
1048 else
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050
f1e6e072 1051 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1052 SYMBOL_VALUE (sym) = valu;
176620f1 1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1054 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1055 add_symbol_to_list (sym, &local_symbols);
1056
5e2b427d 1057 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1058 {
1059 /* On little-endian machines, this crud is never necessary,
1060 and, if the extra bytes contain garbage, is harmful. */
1061 break;
1062 }
1063
1064 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1065 if (processing_gcc_compilation
5e2b427d 1066 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1067 break;
1068
5e2b427d 1069 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1070 {
8ee56bcf
AC
1071 /* If PCC says a parameter is a short or a char, it is
1072 really an int. */
5e2b427d
UW
1073 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1074 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1075 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1076 {
8ee56bcf
AC
1077 SYMBOL_TYPE (sym) =
1078 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1079 ? objfile_type (objfile)->builtin_unsigned_int
1080 : objfile_type (objfile)->builtin_int;
7a292a7a 1081 }
8ee56bcf 1082 break;
7a292a7a 1083 }
c906108c
SS
1084
1085 case 'P':
1086 /* acc seems to use P to declare the prototypes of functions that
1087 are referenced by this file. gdb is not prepared to deal
1088 with this extra information. FIXME, it ought to. */
1089 if (type == N_FUN)
1090 {
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 goto process_prototype_types;
1093 }
c5aa993b 1094 /*FALLTHROUGH */
c906108c
SS
1095
1096 case 'R':
1097 /* Parameter which is in a register. */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1099 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1100 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1101 SYMBOL_VALUE (sym) = valu;
176620f1 1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'r':
1107 /* Register variable (either global or local). */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1109 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1110 SYMBOL_VALUE (sym) = valu;
176620f1 1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1112 if (within_function)
1113 {
192cb3d4
MK
1114 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1115 the same name to represent an argument passed in a
1116 register. GCC uses 'P' for the same case. So if we find
1117 such a symbol pair we combine it into one 'P' symbol.
1118 For Sun cc we need to do this regardless of
1119 stabs_argument_has_addr, because the compiler puts out
1120 the 'p' symbol even if it never saves the argument onto
1121 the stack.
1122
1123 On most machines, we want to preserve both symbols, so
1124 that we can still get information about what is going on
1125 with the stack (VAX for computing args_printed, using
1126 stack slots instead of saved registers in backtraces,
1127 etc.).
c906108c
SS
1128
1129 Note that this code illegally combines
c5aa993b 1130 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1131 but this case is considered pathological and causes a warning
1132 from a decent compiler. */
1133
1134 if (local_symbols
1135 && local_symbols->nsyms > 0
5e2b427d 1136 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1137 {
1138 struct symbol *prev_sym;
433759f7 1139
c906108c
SS
1140 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1141 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1142 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1143 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1144 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1145 {
f1e6e072 1146 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1147 /* Use the type from the LOC_REGISTER; that is the type
1148 that is actually in that register. */
1149 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 sym = prev_sym;
1152 break;
1153 }
1154 }
c5aa993b 1155 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1156 }
1157 else
c5aa993b 1158 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1159 break;
1160
1161 case 'S':
c378eb4e 1162 /* Static symbol at top level of file. */
c906108c 1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1164 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1166 if (gdbarch_static_transform_name_p (gdbarch)
1167 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1168 SYMBOL_LINKAGE_NAME (sym))
1169 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1170 {
3b7344d5 1171 struct bound_minimal_symbol msym;
433759f7 1172
3e43a32a
MS
1173 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 NULL, objfile);
3b7344d5 1175 if (msym.minsym != NULL)
c5aa993b 1176 {
0d5cff50 1177 const char *new_name = gdbarch_static_transform_name
3567439c 1178 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1179
3567439c 1180 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1181 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1182 }
1183 }
176620f1 1184 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1185 add_symbol_to_list (sym, &file_symbols);
1186 break;
1187
1188 case 't':
52eea4ce
JB
1189 /* In Ada, there is no distinction between typedef and non-typedef;
1190 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1191 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1192
1193 Therefore, for Ada units, we check the character immediately
1194 before the 't', and if we do not find a 'T', then make sure to
1195 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196 will be stored in the VAR_DOMAIN). If the symbol was indeed
1197 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198 elsewhere, so we don't need to take care of that.
1199
1200 This is important to do, because of forward references:
1201 The cleanup of undefined types stored in undef_types only uses
1202 STRUCT_DOMAIN symbols to perform the replacement. */
1203 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204
e2cd42dd 1205 /* Typedef */
c906108c
SS
1206 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207
1208 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1209 did not use `sym'. Return without further processing. */
c5aa993b
JM
1210 if (nameless)
1211 return NULL;
c906108c 1212
f1e6e072 1213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1214 SYMBOL_VALUE (sym) = valu;
176620f1 1215 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1216 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1217 a base type which did not have its name defined when the
1218 derived class was output. We fill in the derived class's
1219 base part member's name here in that case. */
c906108c
SS
1220 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 {
1225 int j;
433759f7 1226
c906108c
SS
1227 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 }
1232
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 {
1235 /* gcc-2.6 or later (when using -fvtable-thunks)
1236 emits a unique named type for a vtable entry.
c378eb4e 1237 Some gdb code depends on that specific name. */
c906108c
SS
1238 extern const char vtbl_ptr_name[];
1239
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1241 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 {
1244 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1245 foo" or "function returning foo", we better not set
1246 the TYPE_NAME. If the program contains "typedef char
1247 *caddr_t;", we don't want all variables of type char
1248 * to print as caddr_t. This is not just a
1249 consequence of GDB's type management; PCC and GCC (at
1250 least through version 2.4) both output variables of
1251 either type char * or caddr_t with the type number
1252 defined in the 't' symbol for caddr_t. If a future
1253 compiler cleans this up it GDB is not ready for it
1254 yet, but if it becomes ready we somehow need to
1255 disable this check (without breaking the PCC/GCC2.4
1256 case).
1257
1258 Sigh.
1259
1260 Fortunately, this check seems not to be necessary
1261 for anything except pointers or functions. */
c378eb4e
MS
1262 /* ezannoni: 2000-10-26. This seems to apply for
1263 versions of gcc older than 2.8. This was the original
49d97c60 1264 problem: with the following code gdb would tell that
c378eb4e
MS
1265 the type for name1 is caddr_t, and func is char().
1266
49d97c60
EZ
1267 typedef char *caddr_t;
1268 char *name2;
1269 struct x
1270 {
c378eb4e 1271 char *name1;
49d97c60
EZ
1272 } xx;
1273 char *func()
1274 {
1275 }
1276 main () {}
1277 */
1278
c378eb4e 1279 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1280 if (current_subfile->language == language_pascal)
1281 {
3567439c 1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1283 }
c906108c
SS
1284 }
1285 else
3567439c 1286 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1287 }
1288
1289 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1290
1291 if (synonym)
1292 {
1293 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1294 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1295
1296 *struct_sym = *sym;
f1e6e072 1297 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
52eea4ce
JB
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
c906108c
SS
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1312 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
c906108c
SS
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1319
c906108c 1320 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1321 did not use `sym'. Return without further processing. */
c5aa993b
JM
1322 if (nameless)
1323 return NULL;
c906108c 1324
f1e6e072 1325 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1326 SYMBOL_VALUE (sym) = valu;
176620f1 1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
c906108c
SS
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
c378eb4e 1337 /* Clone the sym and then modify it. */
e623cf5d 1338 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1339
c906108c 1340 *typedef_sym = *sym;
f1e6e072 1341 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1342 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1343 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1344 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1345 TYPE_NAME (SYMBOL_TYPE (sym))
1346 = obconcat (&objfile->objfile_obstack,
1347 SYMBOL_LINKAGE_NAME (sym),
1348 (char *) NULL);
c906108c
SS
1349 add_symbol_to_list (typedef_sym, &file_symbols);
1350 }
1351 break;
1352
1353 case 'V':
c378eb4e 1354 /* Static symbol of local scope. */
c906108c 1355 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1356 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1357 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1358 if (gdbarch_static_transform_name_p (gdbarch)
1359 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1360 SYMBOL_LINKAGE_NAME (sym))
1361 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1362 {
3b7344d5 1363 struct bound_minimal_symbol msym;
433759f7
MS
1364
1365 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1366 NULL, objfile);
3b7344d5 1367 if (msym.minsym != NULL)
c5aa993b 1368 {
0d5cff50 1369 const char *new_name = gdbarch_static_transform_name
3567439c 1370 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1371
3567439c 1372 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1373 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1374 }
1375 }
176620f1 1376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1377 add_symbol_to_list (sym, &local_symbols);
1378 break;
1379
1380 case 'v':
1381 /* Reference parameter */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1383 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1384 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1385 SYMBOL_VALUE (sym) = valu;
176620f1 1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'a':
1391 /* Reference parameter which is in a register. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1393 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1394 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1395 SYMBOL_VALUE (sym) = valu;
176620f1 1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'X':
1401 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1402 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1403 that Pascal uses it too, but when I tried it Pascal used
1404 "x:3" (local symbol) instead. */
c906108c 1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1406 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1407 SYMBOL_VALUE (sym) = valu;
176620f1 1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
c906108c
SS
1411
1412 default:
1413 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1414 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1415 SYMBOL_VALUE (sym) = 0;
176620f1 1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1417 add_symbol_to_list (sym, &file_symbols);
1418 break;
1419 }
1420
192cb3d4
MK
1421 /* Some systems pass variables of certain types by reference instead
1422 of by value, i.e. they will pass the address of a structure (in a
1423 register or on the stack) instead of the structure itself. */
c906108c 1424
5e2b427d 1425 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1426 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1427 {
2a2d4dc3 1428 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1429 variables passed in a register). */
2a2d4dc3 1430 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1432 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1433 and subsequent arguments on SPARC, for example). */
1434 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1435 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1436 }
1437
c906108c
SS
1438 return sym;
1439}
1440
c906108c
SS
1441/* Skip rest of this symbol and return an error type.
1442
1443 General notes on error recovery: error_type always skips to the
1444 end of the symbol (modulo cretinous dbx symbol name continuation).
1445 Thus code like this:
1446
1447 if (*(*pp)++ != ';')
c5aa993b 1448 return error_type (pp, objfile);
c906108c
SS
1449
1450 is wrong because if *pp starts out pointing at '\0' (typically as the
1451 result of an earlier error), it will be incremented to point to the
1452 start of the next symbol, which might produce strange results, at least
1453 if you run off the end of the string table. Instead use
1454
1455 if (**pp != ';')
c5aa993b 1456 return error_type (pp, objfile);
c906108c
SS
1457 ++*pp;
1458
1459 or
1460
1461 if (**pp != ';')
c5aa993b 1462 foo = error_type (pp, objfile);
c906108c 1463 else
c5aa993b 1464 ++*pp;
c906108c
SS
1465
1466 And in case it isn't obvious, the point of all this hair is so the compiler
1467 can define new types and new syntaxes, and old versions of the
1468 debugger will be able to read the new symbol tables. */
1469
1470static struct type *
fba45db2 1471error_type (char **pp, struct objfile *objfile)
c906108c 1472{
3e43a32a
MS
1473 complaint (&symfile_complaints,
1474 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1475 while (1)
1476 {
1477 /* Skip to end of symbol. */
1478 while (**pp != '\0')
1479 {
1480 (*pp)++;
1481 }
1482
1483 /* Check for and handle cretinous dbx symbol name continuation! */
1484 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1485 {
1486 *pp = next_symbol_text (objfile);
1487 }
1488 else
1489 {
1490 break;
1491 }
1492 }
46bf5051 1493 return objfile_type (objfile)->builtin_error;
c906108c 1494}
c906108c 1495\f
c5aa993b 1496
c906108c
SS
1497/* Read type information or a type definition; return the type. Even
1498 though this routine accepts either type information or a type
1499 definition, the distinction is relevant--some parts of stabsread.c
1500 assume that type information starts with a digit, '-', or '(' in
1501 deciding whether to call read_type. */
1502
a7a48797 1503static struct type *
aa1ee363 1504read_type (char **pp, struct objfile *objfile)
c906108c 1505{
52f0bd74 1506 struct type *type = 0;
c906108c
SS
1507 struct type *type1;
1508 int typenums[2];
1509 char type_descriptor;
1510
1511 /* Size in bits of type if specified by a type attribute, or -1 if
1512 there is no size attribute. */
1513 int type_size = -1;
1514
c378eb4e 1515 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1516 int is_string = 0;
1517
c378eb4e 1518 /* Used to distinguish vector from array. */
e2cd42dd
MS
1519 int is_vector = 0;
1520
c906108c
SS
1521 /* Read type number if present. The type number may be omitted.
1522 for instance in a two-dimensional array declared with type
1523 "ar1;1;10;ar1;1;10;4". */
1524 if ((**pp >= '0' && **pp <= '9')
1525 || **pp == '('
1526 || **pp == '-')
1527 {
1528 if (read_type_number (pp, typenums) != 0)
1529 return error_type (pp, objfile);
c5aa993b 1530
c906108c 1531 if (**pp != '=')
8cfe231d
JB
1532 {
1533 /* Type is not being defined here. Either it already
1534 exists, or this is a forward reference to it.
1535 dbx_alloc_type handles both cases. */
1536 type = dbx_alloc_type (typenums, objfile);
1537
1538 /* If this is a forward reference, arrange to complain if it
1539 doesn't get patched up by the time we're done
1540 reading. */
1541 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1542 add_undefined_type (type, typenums);
8cfe231d
JB
1543
1544 return type;
1545 }
c906108c
SS
1546
1547 /* Type is being defined here. */
1548 /* Skip the '='.
c5aa993b
JM
1549 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 (*pp) += 2;
c906108c
SS
1551 }
1552 else
1553 {
1554 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1555 the definition, but don't put it in the type vector. */
c906108c
SS
1556 typenums[0] = typenums[1] = -1;
1557 (*pp)++;
1558 }
1559
c5aa993b 1560again:
c906108c
SS
1561 type_descriptor = (*pp)[-1];
1562 switch (type_descriptor)
1563 {
1564 case 'x':
1565 {
1566 enum type_code code;
1567
1568 /* Used to index through file_symbols. */
1569 struct pending *ppt;
1570 int i;
c5aa993b 1571
c906108c
SS
1572 /* Name including "struct", etc. */
1573 char *type_name;
c5aa993b 1574
c906108c
SS
1575 {
1576 char *from, *to, *p, *q1, *q2;
c5aa993b 1577
c906108c
SS
1578 /* Set the type code according to the following letter. */
1579 switch ((*pp)[0])
1580 {
1581 case 's':
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 case 'u':
1585 code = TYPE_CODE_UNION;
1586 break;
1587 case 'e':
1588 code = TYPE_CODE_ENUM;
1589 break;
1590 default:
1591 {
1592 /* Complain and keep going, so compilers can invent new
1593 cross-reference types. */
23136709 1594 complaint (&symfile_complaints,
3e43a32a
MS
1595 _("Unrecognized cross-reference type `%c'"),
1596 (*pp)[0]);
c906108c
SS
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 }
1600 }
c5aa993b 1601
c906108c
SS
1602 q1 = strchr (*pp, '<');
1603 p = strchr (*pp, ':');
1604 if (p == NULL)
1605 return error_type (pp, objfile);
1606 if (q1 && p > q1 && p[1] == ':')
1607 {
1608 int nesting_level = 0;
433759f7 1609
c906108c
SS
1610 for (q2 = q1; *q2; q2++)
1611 {
1612 if (*q2 == '<')
1613 nesting_level++;
1614 else if (*q2 == '>')
1615 nesting_level--;
1616 else if (*q2 == ':' && nesting_level == 0)
1617 break;
1618 }
1619 p = q2;
1620 if (*p != ':')
1621 return error_type (pp, objfile);
1622 }
71c25dea
TT
1623 type_name = NULL;
1624 if (current_subfile->language == language_cplus)
1625 {
1626 char *new_name, *name = alloca (p - *pp + 1);
433759f7 1627
71c25dea
TT
1628 memcpy (name, *pp, p - *pp);
1629 name[p - *pp] = '\0';
1630 new_name = cp_canonicalize_string (name);
1631 if (new_name != NULL)
1632 {
10f0c4bb
TT
1633 type_name = obstack_copy0 (&objfile->objfile_obstack,
1634 new_name, strlen (new_name));
71c25dea
TT
1635 xfree (new_name);
1636 }
1637 }
1638 if (type_name == NULL)
1639 {
3e43a32a
MS
1640 to = type_name = (char *)
1641 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1642
1643 /* Copy the name. */
1644 from = *pp + 1;
1645 while (from < p)
1646 *to++ = *from++;
1647 *to = '\0';
1648 }
c5aa993b 1649
c906108c
SS
1650 /* Set the pointer ahead of the name which we just read, and
1651 the colon. */
71c25dea 1652 *pp = p + 1;
c906108c
SS
1653 }
1654
149d821b
JB
1655 /* If this type has already been declared, then reuse the same
1656 type, rather than allocating a new one. This saves some
1657 memory. */
c906108c
SS
1658
1659 for (ppt = file_symbols; ppt; ppt = ppt->next)
1660 for (i = 0; i < ppt->nsyms; i++)
1661 {
1662 struct symbol *sym = ppt->symbol[i];
1663
1664 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1665 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1666 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1667 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1668 {
b99607ea 1669 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1670 type = SYMBOL_TYPE (sym);
149d821b 1671 if (typenums[0] != -1)
46bf5051 1672 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1673 return type;
1674 }
1675 }
1676
1677 /* Didn't find the type to which this refers, so we must
1678 be dealing with a forward reference. Allocate a type
1679 structure for it, and keep track of it so we can
1680 fill in the rest of the fields when we get the full
1681 type. */
1682 type = dbx_alloc_type (typenums, objfile);
1683 TYPE_CODE (type) = code;
1684 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1685 INIT_CPLUS_SPECIFIC (type);
876cecd0 1686 TYPE_STUB (type) = 1;
c906108c 1687
bf362611 1688 add_undefined_type (type, typenums);
c906108c
SS
1689 return type;
1690 }
1691
c5aa993b 1692 case '-': /* RS/6000 built-in type */
c906108c
SS
1693 case '0':
1694 case '1':
1695 case '2':
1696 case '3':
1697 case '4':
1698 case '5':
1699 case '6':
1700 case '7':
1701 case '8':
1702 case '9':
1703 case '(':
1704 (*pp)--;
1705
1706 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1707 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1708
1709 /* Allocate and enter the typedef type first.
c378eb4e 1710 This handles recursive types. */
c906108c
SS
1711 type = dbx_alloc_type (typenums, objfile);
1712 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1713 {
1714 struct type *xtype = read_type (pp, objfile);
433759f7 1715
c906108c
SS
1716 if (type == xtype)
1717 {
1718 /* It's being defined as itself. That means it is "void". */
1719 TYPE_CODE (type) = TYPE_CODE_VOID;
1720 TYPE_LENGTH (type) = 1;
1721 }
1722 else if (type_size >= 0 || is_string)
1723 {
dd6bda65
DJ
1724 /* This is the absolute wrong way to construct types. Every
1725 other debug format has found a way around this problem and
1726 the related problems with unnecessarily stubbed types;
1727 someone motivated should attempt to clean up the issue
1728 here as well. Once a type pointed to has been created it
13a393b0
JB
1729 should not be modified.
1730
1731 Well, it's not *absolutely* wrong. Constructing recursive
1732 types (trees, linked lists) necessarily entails modifying
1733 types after creating them. Constructing any loop structure
1734 entails side effects. The Dwarf 2 reader does handle this
1735 more gracefully (it never constructs more than once
1736 instance of a type object, so it doesn't have to copy type
1737 objects wholesale), but it still mutates type objects after
1738 other folks have references to them.
1739
1740 Keep in mind that this circularity/mutation issue shows up
1741 at the source language level, too: C's "incomplete types",
1742 for example. So the proper cleanup, I think, would be to
1743 limit GDB's type smashing to match exactly those required
1744 by the source language. So GDB could have a
1745 "complete_this_type" function, but never create unnecessary
1746 copies of a type otherwise. */
dd6bda65 1747 replace_type (type, xtype);
c906108c
SS
1748 TYPE_NAME (type) = NULL;
1749 TYPE_TAG_NAME (type) = NULL;
1750 }
1751 else
1752 {
876cecd0 1753 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1754 TYPE_TARGET_TYPE (type) = xtype;
1755 }
1756 }
1757 break;
1758
c5aa993b
JM
1759 /* In the following types, we must be sure to overwrite any existing
1760 type that the typenums refer to, rather than allocating a new one
1761 and making the typenums point to the new one. This is because there
1762 may already be pointers to the existing type (if it had been
1763 forward-referenced), and we must change it to a pointer, function,
1764 reference, or whatever, *in-place*. */
c906108c 1765
e2cd42dd 1766 case '*': /* Pointer to another type */
c906108c 1767 type1 = read_type (pp, objfile);
46bf5051 1768 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1769 break;
1770
c5aa993b 1771 case '&': /* Reference to another type */
c906108c 1772 type1 = read_type (pp, objfile);
46bf5051 1773 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1774 break;
1775
c5aa993b 1776 case 'f': /* Function returning another type */
c906108c 1777 type1 = read_type (pp, objfile);
0c8b41f1 1778 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1779 break;
1780
da966255
JB
1781 case 'g': /* Prototyped function. (Sun) */
1782 {
1783 /* Unresolved questions:
1784
1785 - According to Sun's ``STABS Interface Manual'', for 'f'
1786 and 'F' symbol descriptors, a `0' in the argument type list
1787 indicates a varargs function. But it doesn't say how 'g'
1788 type descriptors represent that info. Someone with access
1789 to Sun's toolchain should try it out.
1790
1791 - According to the comment in define_symbol (search for
1792 `process_prototype_types:'), Sun emits integer arguments as
1793 types which ref themselves --- like `void' types. Do we
1794 have to deal with that here, too? Again, someone with
1795 access to Sun's toolchain should try it out and let us
1796 know. */
1797
1798 const char *type_start = (*pp) - 1;
1799 struct type *return_type = read_type (pp, objfile);
1800 struct type *func_type
46bf5051 1801 = make_function_type (return_type,
0c8b41f1 1802 dbx_lookup_type (typenums, objfile));
da966255
JB
1803 struct type_list {
1804 struct type *type;
1805 struct type_list *next;
1806 } *arg_types = 0;
1807 int num_args = 0;
1808
1809 while (**pp && **pp != '#')
1810 {
1811 struct type *arg_type = read_type (pp, objfile);
1812 struct type_list *new = alloca (sizeof (*new));
1813 new->type = arg_type;
1814 new->next = arg_types;
1815 arg_types = new;
1816 num_args++;
1817 }
1818 if (**pp == '#')
1819 ++*pp;
1820 else
1821 {
23136709 1822 complaint (&symfile_complaints,
3e43a32a
MS
1823 _("Prototyped function type didn't "
1824 "end arguments with `#':\n%s"),
23136709 1825 type_start);
da966255
JB
1826 }
1827
1828 /* If there is just one argument whose type is `void', then
1829 that's just an empty argument list. */
1830 if (arg_types
1831 && ! arg_types->next
1832 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1833 num_args = 0;
1834
1835 TYPE_FIELDS (func_type)
1836 = (struct field *) TYPE_ALLOC (func_type,
1837 num_args * sizeof (struct field));
1838 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1839 {
1840 int i;
1841 struct type_list *t;
1842
1843 /* We stuck each argument type onto the front of the list
1844 when we read it, so the list is reversed. Build the
1845 fields array right-to-left. */
1846 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1847 TYPE_FIELD_TYPE (func_type, i) = t->type;
1848 }
1849 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1850 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1851
1852 type = func_type;
1853 break;
1854 }
1855
c5aa993b 1856 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1857 type = read_type (pp, objfile);
d7242108 1858 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1859 dbx_lookup_type (typenums, objfile));
c906108c
SS
1860 break;
1861
c5aa993b 1862 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1863 type = read_type (pp, objfile);
d7242108 1864 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1865 dbx_lookup_type (typenums, objfile));
c906108c
SS
1866 break;
1867
1868 case '@':
c5aa993b
JM
1869 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1870 { /* Member (class & variable) type */
c906108c
SS
1871 /* FIXME -- we should be doing smash_to_XXX types here. */
1872
1873 struct type *domain = read_type (pp, objfile);
1874 struct type *memtype;
1875
1876 if (**pp != ',')
1877 /* Invalid member type data format. */
1878 return error_type (pp, objfile);
1879 ++*pp;
1880
1881 memtype = read_type (pp, objfile);
1882 type = dbx_alloc_type (typenums, objfile);
0d5de010 1883 smash_to_memberptr_type (type, domain, memtype);
c906108c 1884 }
c5aa993b
JM
1885 else
1886 /* type attribute */
c906108c
SS
1887 {
1888 char *attr = *pp;
433759f7 1889
c906108c
SS
1890 /* Skip to the semicolon. */
1891 while (**pp != ';' && **pp != '\0')
1892 ++(*pp);
1893 if (**pp == '\0')
1894 return error_type (pp, objfile);
1895 else
c5aa993b 1896 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1897
1898 switch (*attr)
1899 {
e2cd42dd 1900 case 's': /* Size attribute */
c906108c
SS
1901 type_size = atoi (attr + 1);
1902 if (type_size <= 0)
1903 type_size = -1;
1904 break;
1905
e2cd42dd 1906 case 'S': /* String attribute */
c378eb4e 1907 /* FIXME: check to see if following type is array? */
c906108c
SS
1908 is_string = 1;
1909 break;
1910
e2cd42dd 1911 case 'V': /* Vector attribute */
c378eb4e 1912 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1913 is_vector = 1;
1914 break;
1915
c906108c
SS
1916 default:
1917 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1918 can invent new ones. */
c906108c
SS
1919 break;
1920 }
1921 ++*pp;
1922 goto again;
1923 }
1924 break;
1925
c5aa993b 1926 case '#': /* Method (class & fn) type */
c906108c
SS
1927 if ((*pp)[0] == '#')
1928 {
1929 /* We'll get the parameter types from the name. */
1930 struct type *return_type;
1931
1932 (*pp)++;
1933 return_type = read_type (pp, objfile);
1934 if (*(*pp)++ != ';')
23136709 1935 complaint (&symfile_complaints,
3e43a32a
MS
1936 _("invalid (minimal) member type "
1937 "data format at symtab pos %d."),
23136709 1938 symnum);
c906108c
SS
1939 type = allocate_stub_method (return_type);
1940 if (typenums[0] != -1)
46bf5051 1941 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1942 }
1943 else
1944 {
1945 struct type *domain = read_type (pp, objfile);
1946 struct type *return_type;
ad2f7632
DJ
1947 struct field *args;
1948 int nargs, varargs;
c906108c
SS
1949
1950 if (**pp != ',')
1951 /* Invalid member type data format. */
1952 return error_type (pp, objfile);
1953 else
1954 ++(*pp);
1955
1956 return_type = read_type (pp, objfile);
ad2f7632 1957 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1958 if (args == NULL)
1959 return error_type (pp, objfile);
c906108c 1960 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1961 smash_to_method_type (type, domain, return_type, args,
1962 nargs, varargs);
c906108c
SS
1963 }
1964 break;
1965
c5aa993b 1966 case 'r': /* Range type */
94e10a22 1967 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1968 if (typenums[0] != -1)
46bf5051 1969 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1970 break;
1971
1972 case 'b':
c906108c
SS
1973 {
1974 /* Sun ACC builtin int type */
1975 type = read_sun_builtin_type (pp, typenums, objfile);
1976 if (typenums[0] != -1)
46bf5051 1977 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1978 }
1979 break;
1980
c5aa993b 1981 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1982 type = read_sun_floating_type (pp, typenums, objfile);
1983 if (typenums[0] != -1)
46bf5051 1984 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1985 break;
c5aa993b
JM
1986
1987 case 'e': /* Enumeration type */
c906108c
SS
1988 type = dbx_alloc_type (typenums, objfile);
1989 type = read_enum_type (pp, type, objfile);
1990 if (typenums[0] != -1)
46bf5051 1991 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1992 break;
1993
c5aa993b
JM
1994 case 's': /* Struct type */
1995 case 'u': /* Union type */
2ae1c2d2
JB
1996 {
1997 enum type_code type_code = TYPE_CODE_UNDEF;
1998 type = dbx_alloc_type (typenums, objfile);
1999 switch (type_descriptor)
2000 {
2001 case 's':
2002 type_code = TYPE_CODE_STRUCT;
2003 break;
2004 case 'u':
2005 type_code = TYPE_CODE_UNION;
2006 break;
2007 }
2008 type = read_struct_type (pp, type, type_code, objfile);
2009 break;
2010 }
c906108c 2011
c5aa993b 2012 case 'a': /* Array type */
c906108c
SS
2013 if (**pp != 'r')
2014 return error_type (pp, objfile);
2015 ++*pp;
c5aa993b 2016
c906108c
SS
2017 type = dbx_alloc_type (typenums, objfile);
2018 type = read_array_type (pp, type, objfile);
2019 if (is_string)
2020 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2021 if (is_vector)
ea37ba09 2022 make_vector_type (type);
c906108c
SS
2023 break;
2024
6b1755ce 2025 case 'S': /* Set type */
c906108c 2026 type1 = read_type (pp, objfile);
c5aa993b 2027 type = create_set_type ((struct type *) NULL, type1);
c906108c 2028 if (typenums[0] != -1)
46bf5051 2029 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2030 break;
2031
2032 default:
c378eb4e
MS
2033 --*pp; /* Go back to the symbol in error. */
2034 /* Particularly important if it was \0! */
c906108c
SS
2035 return error_type (pp, objfile);
2036 }
2037
2038 if (type == 0)
2039 {
8a3fe4f8 2040 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2041 return error_type (pp, objfile);
2042 }
2043
2044 /* Size specified in a type attribute overrides any other size. */
2045 if (type_size != -1)
2046 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2047
2048 return type;
2049}
2050\f
2051/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2052 Return the proper type node for a given builtin type number. */
c906108c 2053
46bf5051
UW
2054static const struct objfile_data *rs6000_builtin_type_data;
2055
c906108c 2056static struct type *
46bf5051 2057rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2058{
3e43a32a
MS
2059 struct type **negative_types = objfile_data (objfile,
2060 rs6000_builtin_type_data);
46bf5051 2061
c906108c
SS
2062 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2063#define NUMBER_RECOGNIZED 34
c906108c
SS
2064 struct type *rettype = NULL;
2065
2066 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2067 {
e2e0b3e5 2068 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2069 return objfile_type (objfile)->builtin_error;
c906108c 2070 }
46bf5051
UW
2071
2072 if (!negative_types)
2073 {
2074 /* This includes an empty slot for type number -0. */
2075 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2076 NUMBER_RECOGNIZED + 1, struct type *);
2077 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2078 }
2079
c906108c
SS
2080 if (negative_types[-typenum] != NULL)
2081 return negative_types[-typenum];
2082
2083#if TARGET_CHAR_BIT != 8
c5aa993b 2084#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2085 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2086 that if that ever becomes not true, the correct fix will be to
2087 make the size in the struct type to be in bits, not in units of
2088 TARGET_CHAR_BIT. */
2089#endif
2090
2091 switch (-typenum)
2092 {
2093 case 1:
2094 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2095 by the debugging format. If there is a type called "int" which
2096 is other than 32 bits, then it should use a new negative type
2097 number (or avoid negative type numbers for that case).
2098 See stabs.texinfo. */
46bf5051 2099 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
c906108c
SS
2100 break;
2101 case 2:
46bf5051 2102 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
c906108c
SS
2103 break;
2104 case 3:
46bf5051 2105 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
c906108c
SS
2106 break;
2107 case 4:
46bf5051 2108 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
c906108c
SS
2109 break;
2110 case 5:
2111 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2112 "unsigned char", objfile);
c906108c
SS
2113 break;
2114 case 6:
46bf5051 2115 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
c906108c
SS
2116 break;
2117 case 7:
2118 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2119 "unsigned short", objfile);
c906108c
SS
2120 break;
2121 case 8:
2122 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2123 "unsigned int", objfile);
c906108c
SS
2124 break;
2125 case 9:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2127 "unsigned", objfile);
89acf84d 2128 break;
c906108c
SS
2129 case 10:
2130 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2131 "unsigned long", objfile);
c906108c
SS
2132 break;
2133 case 11:
46bf5051 2134 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
c906108c
SS
2135 break;
2136 case 12:
2137 /* IEEE single precision (32 bit). */
46bf5051 2138 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
c906108c
SS
2139 break;
2140 case 13:
2141 /* IEEE double precision (64 bit). */
46bf5051 2142 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
c906108c
SS
2143 break;
2144 case 14:
2145 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2146 different sizes for "long double" should use different negative
2147 type numbers. See stabs.texinfo. */
46bf5051 2148 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
c906108c
SS
2149 break;
2150 case 15:
46bf5051 2151 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
c906108c
SS
2152 break;
2153 case 16:
2154 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2155 "boolean", objfile);
c906108c
SS
2156 break;
2157 case 17:
46bf5051 2158 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
c906108c
SS
2159 break;
2160 case 18:
46bf5051 2161 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
c906108c
SS
2162 break;
2163 case 19:
46bf5051 2164 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
c906108c
SS
2165 break;
2166 case 20:
2167 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2168 "character", objfile);
c906108c
SS
2169 break;
2170 case 21:
2171 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2172 "logical*1", objfile);
c906108c
SS
2173 break;
2174 case 22:
2175 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2176 "logical*2", objfile);
c906108c
SS
2177 break;
2178 case 23:
2179 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2180 "logical*4", objfile);
c906108c
SS
2181 break;
2182 case 24:
2183 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2184 "logical", objfile);
c906108c
SS
2185 break;
2186 case 25:
2187 /* Complex type consisting of two IEEE single precision values. */
46bf5051 2188 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
f65ca430 2189 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
46bf5051 2190 objfile);
c906108c
SS
2191 break;
2192 case 26:
2193 /* Complex type consisting of two IEEE double precision values. */
2194 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
f65ca430 2195 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
46bf5051 2196 objfile);
c906108c
SS
2197 break;
2198 case 27:
46bf5051 2199 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
c906108c
SS
2200 break;
2201 case 28:
46bf5051 2202 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
c906108c
SS
2203 break;
2204 case 29:
46bf5051 2205 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
c906108c
SS
2206 break;
2207 case 30:
46bf5051 2208 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
c906108c
SS
2209 break;
2210 case 31:
46bf5051 2211 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
c906108c
SS
2212 break;
2213 case 32:
2214 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2215 "unsigned long long", objfile);
c906108c
SS
2216 break;
2217 case 33:
2218 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2219 "logical*8", objfile);
c906108c
SS
2220 break;
2221 case 34:
46bf5051 2222 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
c906108c
SS
2223 break;
2224 }
2225 negative_types[-typenum] = rettype;
2226 return rettype;
2227}
2228\f
2229/* This page contains subroutines of read_type. */
2230
0d5cff50
DE
2231/* Wrapper around method_name_from_physname to flag a complaint
2232 if there is an error. */
de17c821 2233
0d5cff50
DE
2234static char *
2235stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2236{
2237 char *method_name;
2238
2239 method_name = method_name_from_physname (physname);
2240
2241 if (method_name == NULL)
c263362b
DJ
2242 {
2243 complaint (&symfile_complaints,
e2e0b3e5 2244 _("Method has bad physname %s\n"), physname);
0d5cff50 2245 return NULL;
c263362b 2246 }
de17c821 2247
0d5cff50 2248 return method_name;
de17c821
DJ
2249}
2250
c906108c
SS
2251/* Read member function stabs info for C++ classes. The form of each member
2252 function data is:
2253
c5aa993b 2254 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2255
2256 An example with two member functions is:
2257
c5aa993b 2258 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2259
2260 For the case of overloaded operators, the format is op$::*.funcs, where
2261 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2262 name (such as `+=') and `.' marks the end of the operator name.
2263
2264 Returns 1 for success, 0 for failure. */
2265
2266static int
fba45db2
KB
2267read_member_functions (struct field_info *fip, char **pp, struct type *type,
2268 struct objfile *objfile)
c906108c
SS
2269{
2270 int nfn_fields = 0;
2271 int length = 0;
c906108c
SS
2272 int i;
2273 struct next_fnfield
2274 {
2275 struct next_fnfield *next;
2276 struct fn_field fn_field;
c5aa993b
JM
2277 }
2278 *sublist;
c906108c
SS
2279 struct type *look_ahead_type;
2280 struct next_fnfieldlist *new_fnlist;
2281 struct next_fnfield *new_sublist;
2282 char *main_fn_name;
52f0bd74 2283 char *p;
c5aa993b 2284
c906108c 2285 /* Process each list until we find something that is not a member function
c378eb4e 2286 or find the end of the functions. */
c906108c
SS
2287
2288 while (**pp != ';')
2289 {
2290 /* We should be positioned at the start of the function name.
c5aa993b 2291 Scan forward to find the first ':' and if it is not the
c378eb4e 2292 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2293 p = *pp;
2294 while (*p != ':')
2295 {
2296 p++;
2297 }
2298 if (p[1] != ':')
2299 {
2300 break;
2301 }
2302
2303 sublist = NULL;
2304 look_ahead_type = NULL;
2305 length = 0;
c5aa993b 2306
c906108c
SS
2307 new_fnlist = (struct next_fnfieldlist *)
2308 xmalloc (sizeof (struct next_fnfieldlist));
b8c9b27d 2309 make_cleanup (xfree, new_fnlist);
c906108c 2310 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
c5aa993b 2311
c906108c
SS
2312 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2313 {
2314 /* This is a completely wierd case. In order to stuff in the
2315 names that might contain colons (the usual name delimiter),
2316 Mike Tiemann defined a different name format which is
2317 signalled if the identifier is "op$". In that case, the
2318 format is "op$::XXXX." where XXXX is the name. This is
2319 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2320 /* This lets the user type "break operator+".
2321 We could just put in "+" as the name, but that wouldn't
2322 work for "*". */
8343f86c 2323 static char opname[32] = "op$";
c906108c 2324 char *o = opname + 3;
c5aa993b 2325
c906108c
SS
2326 /* Skip past '::'. */
2327 *pp = p + 2;
2328
2329 STABS_CONTINUE (pp, objfile);
2330 p = *pp;
2331 while (*p != '.')
2332 {
2333 *o++ = *p++;
2334 }
2335 main_fn_name = savestring (opname, o - opname);
2336 /* Skip past '.' */
2337 *pp = p + 1;
2338 }
2339 else
2340 {
2341 main_fn_name = savestring (*pp, p - *pp);
2342 /* Skip past '::'. */
2343 *pp = p + 2;
2344 }
c5aa993b
JM
2345 new_fnlist->fn_fieldlist.name = main_fn_name;
2346
c906108c
SS
2347 do
2348 {
2349 new_sublist =
2350 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
b8c9b27d 2351 make_cleanup (xfree, new_sublist);
c906108c 2352 memset (new_sublist, 0, sizeof (struct next_fnfield));
c5aa993b 2353
c906108c
SS
2354 /* Check for and handle cretinous dbx symbol name continuation! */
2355 if (look_ahead_type == NULL)
2356 {
c378eb4e 2357 /* Normal case. */
c906108c 2358 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2359
2360 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2361 if (**pp != ':')
2362 {
2363 /* Invalid symtab info for member function. */
2364 return 0;
2365 }
2366 }
2367 else
2368 {
2369 /* g++ version 1 kludge */
c5aa993b 2370 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2371 look_ahead_type = NULL;
2372 }
c5aa993b 2373
c906108c
SS
2374 (*pp)++;
2375 p = *pp;
2376 while (*p != ';')
2377 {
2378 p++;
2379 }
c5aa993b 2380
c378eb4e 2381 /* If this is just a stub, then we don't have the real name here. */
c906108c 2382
74a9bb82 2383 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2384 {
c5aa993b
JM
2385 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2386 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2387 new_sublist->fn_field.is_stub = 1;
c906108c 2388 }
c5aa993b 2389 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2390 *pp = p + 1;
c5aa993b 2391
c906108c
SS
2392 /* Set this member function's visibility fields. */
2393 switch (*(*pp)++)
2394 {
c5aa993b
JM
2395 case VISIBILITY_PRIVATE:
2396 new_sublist->fn_field.is_private = 1;
2397 break;
2398 case VISIBILITY_PROTECTED:
2399 new_sublist->fn_field.is_protected = 1;
2400 break;
c906108c 2401 }
c5aa993b 2402
c906108c
SS
2403 STABS_CONTINUE (pp, objfile);
2404 switch (**pp)
2405 {
c378eb4e 2406 case 'A': /* Normal functions. */
c5aa993b
JM
2407 new_sublist->fn_field.is_const = 0;
2408 new_sublist->fn_field.is_volatile = 0;
2409 (*pp)++;
2410 break;
c378eb4e 2411 case 'B': /* `const' member functions. */
c5aa993b
JM
2412 new_sublist->fn_field.is_const = 1;
2413 new_sublist->fn_field.is_volatile = 0;
2414 (*pp)++;
2415 break;
c378eb4e 2416 case 'C': /* `volatile' member function. */
c5aa993b
JM
2417 new_sublist->fn_field.is_const = 0;
2418 new_sublist->fn_field.is_volatile = 1;
2419 (*pp)++;
2420 break;
c378eb4e 2421 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2422 new_sublist->fn_field.is_const = 1;
2423 new_sublist->fn_field.is_volatile = 1;
2424 (*pp)++;
2425 break;
3e43a32a 2426 case '*': /* File compiled with g++ version 1 --
c378eb4e 2427 no info. */
c5aa993b
JM
2428 case '?':
2429 case '.':
2430 break;
2431 default:
23136709 2432 complaint (&symfile_complaints,
3e43a32a
MS
2433 _("const/volatile indicator missing, got '%c'"),
2434 **pp);
c5aa993b 2435 break;
c906108c 2436 }
c5aa993b 2437
c906108c
SS
2438 switch (*(*pp)++)
2439 {
c5aa993b 2440 case '*':
c906108c
SS
2441 {
2442 int nbits;
c5aa993b 2443 /* virtual member function, followed by index.
c906108c
SS
2444 The sign bit is set to distinguish pointers-to-methods
2445 from virtual function indicies. Since the array is
2446 in words, the quantity must be shifted left by 1
2447 on 16 bit machine, and by 2 on 32 bit machine, forcing
2448 the sign bit out, and usable as a valid index into
2449 the array. Remove the sign bit here. */
c5aa993b 2450 new_sublist->fn_field.voffset =
94e10a22 2451 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2452 if (nbits != 0)
2453 return 0;
c5aa993b 2454
c906108c
SS
2455 STABS_CONTINUE (pp, objfile);
2456 if (**pp == ';' || **pp == '\0')
2457 {
2458 /* Must be g++ version 1. */
c5aa993b 2459 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2460 }
2461 else
2462 {
2463 /* Figure out from whence this virtual function came.
2464 It may belong to virtual function table of
2465 one of its baseclasses. */
2466 look_ahead_type = read_type (pp, objfile);
2467 if (**pp == ':')
2468 {
c378eb4e 2469 /* g++ version 1 overloaded methods. */
c906108c
SS
2470 }
2471 else
2472 {
c5aa993b 2473 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2474 if (**pp != ';')
2475 {
2476 return 0;
2477 }
2478 else
2479 {
2480 ++*pp;
2481 }
2482 look_ahead_type = NULL;
2483 }
2484 }
2485 break;
2486 }
c5aa993b
JM
2487 case '?':
2488 /* static member function. */
4ea09c10
PS
2489 {
2490 int slen = strlen (main_fn_name);
2491
2492 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2493
2494 /* For static member functions, we can't tell if they
2495 are stubbed, as they are put out as functions, and not as
2496 methods.
2497 GCC v2 emits the fully mangled name if
2498 dbxout.c:flag_minimal_debug is not set, so we have to
2499 detect a fully mangled physname here and set is_stub
2500 accordingly. Fully mangled physnames in v2 start with
2501 the member function name, followed by two underscores.
2502 GCC v3 currently always emits stubbed member functions,
2503 but with fully mangled physnames, which start with _Z. */
2504 if (!(strncmp (new_sublist->fn_field.physname,
2505 main_fn_name, slen) == 0
2506 && new_sublist->fn_field.physname[slen] == '_'
2507 && new_sublist->fn_field.physname[slen + 1] == '_'))
2508 {
2509 new_sublist->fn_field.is_stub = 1;
2510 }
2511 break;
2512 }
c5aa993b
JM
2513
2514 default:
2515 /* error */
23136709 2516 complaint (&symfile_complaints,
3e43a32a
MS
2517 _("member function type missing, got '%c'"),
2518 (*pp)[-1]);
c5aa993b
JM
2519 /* Fall through into normal member function. */
2520
2521 case '.':
2522 /* normal member function. */
2523 new_sublist->fn_field.voffset = 0;
2524 new_sublist->fn_field.fcontext = 0;
2525 break;
c906108c 2526 }
c5aa993b
JM
2527
2528 new_sublist->next = sublist;
c906108c
SS
2529 sublist = new_sublist;
2530 length++;
2531 STABS_CONTINUE (pp, objfile);
2532 }
2533 while (**pp != ';' && **pp != '\0');
c5aa993b 2534
c906108c 2535 (*pp)++;
0c867556 2536 STABS_CONTINUE (pp, objfile);
c5aa993b 2537
0c867556
PS
2538 /* Skip GCC 3.X member functions which are duplicates of the callable
2539 constructor/destructor. */
6cbbcdfe
KS
2540 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2541 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2542 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2543 {
0c867556 2544 xfree (main_fn_name);
c906108c 2545 }
0c867556
PS
2546 else
2547 {
de17c821
DJ
2548 int has_stub = 0;
2549 int has_destructor = 0, has_other = 0;
2550 int is_v3 = 0;
2551 struct next_fnfield *tmp_sublist;
2552
2553 /* Various versions of GCC emit various mostly-useless
2554 strings in the name field for special member functions.
2555
2556 For stub methods, we need to defer correcting the name
2557 until we are ready to unstub the method, because the current
2558 name string is used by gdb_mangle_name. The only stub methods
2559 of concern here are GNU v2 operators; other methods have their
2560 names correct (see caveat below).
2561
2562 For non-stub methods, in GNU v3, we have a complete physname.
2563 Therefore we can safely correct the name now. This primarily
2564 affects constructors and destructors, whose name will be
2565 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2566 operators will also have incorrect names; for instance,
2567 "operator int" will be named "operator i" (i.e. the type is
2568 mangled).
2569
2570 For non-stub methods in GNU v2, we have no easy way to
2571 know if we have a complete physname or not. For most
2572 methods the result depends on the platform (if CPLUS_MARKER
2573 can be `$' or `.', it will use minimal debug information, or
2574 otherwise the full physname will be included).
2575
2576 Rather than dealing with this, we take a different approach.
2577 For v3 mangled names, we can use the full physname; for v2,
2578 we use cplus_demangle_opname (which is actually v2 specific),
2579 because the only interesting names are all operators - once again
2580 barring the caveat below. Skip this process if any method in the
2581 group is a stub, to prevent our fouling up the workings of
2582 gdb_mangle_name.
2583
2584 The caveat: GCC 2.95.x (and earlier?) put constructors and
2585 destructors in the same method group. We need to split this
2586 into two groups, because they should have different names.
2587 So for each method group we check whether it contains both
2588 routines whose physname appears to be a destructor (the physnames
2589 for and destructors are always provided, due to quirks in v2
2590 mangling) and routines whose physname does not appear to be a
2591 destructor. If so then we break up the list into two halves.
2592 Even if the constructors and destructors aren't in the same group
2593 the destructor will still lack the leading tilde, so that also
2594 needs to be fixed.
2595
2596 So, to summarize what we expect and handle here:
2597
2598 Given Given Real Real Action
2599 method name physname physname method name
2600
2601 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2602 [now or later]
2603 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2604 rename
2605 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2606 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2607 */
2608
2609 tmp_sublist = sublist;
2610 while (tmp_sublist != NULL)
2611 {
2612 if (tmp_sublist->fn_field.is_stub)
2613 has_stub = 1;
2614 if (tmp_sublist->fn_field.physname[0] == '_'
2615 && tmp_sublist->fn_field.physname[1] == 'Z')
2616 is_v3 = 1;
2617
2618 if (is_destructor_name (tmp_sublist->fn_field.physname))
2619 has_destructor++;
2620 else
2621 has_other++;
2622
2623 tmp_sublist = tmp_sublist->next;
2624 }
2625
2626 if (has_destructor && has_other)
2627 {
2628 struct next_fnfieldlist *destr_fnlist;
2629 struct next_fnfield *last_sublist;
2630
2631 /* Create a new fn_fieldlist for the destructors. */
2632
2633 destr_fnlist = (struct next_fnfieldlist *)
2634 xmalloc (sizeof (struct next_fnfieldlist));
2635 make_cleanup (xfree, destr_fnlist);
2636 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2637 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2638 = obconcat (&objfile->objfile_obstack, "~",
2639 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821
DJ
2640
2641 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2642 obstack_alloc (&objfile->objfile_obstack,
de17c821
DJ
2643 sizeof (struct fn_field) * has_destructor);
2644 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2645 sizeof (struct fn_field) * has_destructor);
2646 tmp_sublist = sublist;
2647 last_sublist = NULL;
2648 i = 0;
2649 while (tmp_sublist != NULL)
2650 {
2651 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2652 {
2653 tmp_sublist = tmp_sublist->next;
2654 continue;
2655 }
2656
2657 destr_fnlist->fn_fieldlist.fn_fields[i++]
2658 = tmp_sublist->fn_field;
2659 if (last_sublist)
2660 last_sublist->next = tmp_sublist->next;
2661 else
2662 sublist = tmp_sublist->next;
2663 last_sublist = tmp_sublist;
2664 tmp_sublist = tmp_sublist->next;
2665 }
2666
2667 destr_fnlist->fn_fieldlist.length = has_destructor;
2668 destr_fnlist->next = fip->fnlist;
2669 fip->fnlist = destr_fnlist;
2670 nfn_fields++;
de17c821
DJ
2671 length -= has_destructor;
2672 }
2673 else if (is_v3)
2674 {
2675 /* v3 mangling prevents the use of abbreviated physnames,
2676 so we can do this here. There are stubbed methods in v3
2677 only:
2678 - in -gstabs instead of -gstabs+
2679 - or for static methods, which are output as a function type
2680 instead of a method type. */
0d5cff50
DE
2681 char *new_method_name =
2682 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2683
0d5cff50
DE
2684 if (new_method_name != NULL
2685 && strcmp (new_method_name,
2686 new_fnlist->fn_fieldlist.name) != 0)
2687 {
2688 new_fnlist->fn_fieldlist.name = new_method_name;
2689 xfree (main_fn_name);
2690 }
2691 else
2692 xfree (new_method_name);
de17c821
DJ
2693 }
2694 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2695 {
1754f103 2696 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2697 obconcat (&objfile->objfile_obstack,
2698 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2699 xfree (main_fn_name);
2700 }
2701 else if (!has_stub)
2702 {
2703 char dem_opname[256];
2704 int ret;
433759f7 2705
de17c821
DJ
2706 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2707 dem_opname, DMGL_ANSI);
2708 if (!ret)
2709 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2710 dem_opname, 0);
2711 if (ret)
2712 new_fnlist->fn_fieldlist.name
10f0c4bb
TT
2713 = obstack_copy0 (&objfile->objfile_obstack,
2714 dem_opname, strlen (dem_opname));
0d5cff50 2715 xfree (main_fn_name);
de17c821
DJ
2716 }
2717
0c867556 2718 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2719 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2720 sizeof (struct fn_field) * length);
2721 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2722 sizeof (struct fn_field) * length);
2723 for (i = length; (i--, sublist); sublist = sublist->next)
2724 {
2725 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2726 }
c5aa993b 2727
0c867556
PS
2728 new_fnlist->fn_fieldlist.length = length;
2729 new_fnlist->next = fip->fnlist;
2730 fip->fnlist = new_fnlist;
2731 nfn_fields++;
0c867556 2732 }
c906108c
SS
2733 }
2734
2735 if (nfn_fields)
2736 {
2737 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2738 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2739 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2740 memset (TYPE_FN_FIELDLISTS (type), 0,
2741 sizeof (struct fn_fieldlist) * nfn_fields);
2742 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2743 }
2744
2745 return 1;
2746}
2747
2748/* Special GNU C++ name.
2749
2750 Returns 1 for success, 0 for failure. "failure" means that we can't
2751 keep parsing and it's time for error_type(). */
2752
2753static int
fba45db2
KB
2754read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2755 struct objfile *objfile)
c906108c 2756{
52f0bd74 2757 char *p;
0d5cff50 2758 const char *name;
c906108c
SS
2759 char cpp_abbrev;
2760 struct type *context;
2761
2762 p = *pp;
2763 if (*++p == 'v')
2764 {
2765 name = NULL;
2766 cpp_abbrev = *++p;
2767
2768 *pp = p + 1;
2769
2770 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2771 where the type number before the ':' is the "context" and
2772 everything after is a regular type definition. Lookup the
c378eb4e 2773 type, find it's name, and construct the field name. */
c906108c
SS
2774
2775 context = read_type (pp, objfile);
2776
2777 switch (cpp_abbrev)
2778 {
c5aa993b 2779 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2780 name = type_name_no_tag (context);
2781 if (name == NULL)
433759f7
MS
2782 {
2783 name = "";
2784 }
48cb83fd
JK
2785 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2786 vptr_name, name, (char *) NULL);
c5aa993b 2787 break;
c906108c 2788
c5aa993b
JM
2789 case 'b': /* $vb -- a virtual bsomethingorother */
2790 name = type_name_no_tag (context);
2791 if (name == NULL)
2792 {
23136709 2793 complaint (&symfile_complaints,
3e43a32a
MS
2794 _("C++ abbreviated type name "
2795 "unknown at symtab pos %d"),
23136709 2796 symnum);
c5aa993b
JM
2797 name = "FOO";
2798 }
48cb83fd
JK
2799 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2800 name, (char *) NULL);
c5aa993b 2801 break;
c906108c 2802
c5aa993b 2803 default:
23136709 2804 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2805 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2806 "INVALID_CPLUSPLUS_ABBREV",
2807 (char *) NULL);
c5aa993b 2808 break;
c906108c
SS
2809 }
2810
2811 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2812 field type. */
c906108c
SS
2813
2814 p = ++(*pp);
2815 if (p[-1] != ':')
2816 {
23136709 2817 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2818 return 0;
2819 }
2820 fip->list->field.type = read_type (pp, objfile);
2821 if (**pp == ',')
c5aa993b 2822 (*pp)++; /* Skip the comma. */
c906108c
SS
2823 else
2824 return 0;
2825
2826 {
2827 int nbits;
433759f7 2828
f41f5e61
PA
2829 SET_FIELD_BITPOS (fip->list->field,
2830 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2831 if (nbits != 0)
2832 return 0;
2833 }
2834 /* This field is unpacked. */
2835 FIELD_BITSIZE (fip->list->field) = 0;
2836 fip->list->visibility = VISIBILITY_PRIVATE;
2837 }
2838 else
2839 {
23136709 2840 invalid_cpp_abbrev_complaint (*pp);
c906108c 2841 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2842 better return 0. If we returned 1, we would need to at least advance
2843 *pp to avoid an infinite loop. */
c906108c
SS
2844 return 0;
2845 }
2846 return 1;
2847}
2848
2849static void
fba45db2
KB
2850read_one_struct_field (struct field_info *fip, char **pp, char *p,
2851 struct type *type, struct objfile *objfile)
c906108c 2852{
5e2b427d
UW
2853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2854
41989fcd 2855 fip->list->field.name =
10f0c4bb 2856 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2857 *pp = p + 1;
2858
c378eb4e 2859 /* This means we have a visibility for a field coming. */
c906108c
SS
2860 if (**pp == '/')
2861 {
2862 (*pp)++;
c5aa993b 2863 fip->list->visibility = *(*pp)++;
c906108c
SS
2864 }
2865 else
2866 {
2867 /* normal dbx-style format, no explicit visibility */
c5aa993b 2868 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2869 }
2870
c5aa993b 2871 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2872 if (**pp == ':')
2873 {
2874 p = ++(*pp);
2875#if 0
c378eb4e 2876 /* Possible future hook for nested types. */
c906108c
SS
2877 if (**pp == '!')
2878 {
c5aa993b 2879 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2880 p = ++(*pp);
2881 }
c5aa993b
JM
2882 else
2883 ...;
c906108c 2884#endif
c5aa993b 2885 while (*p != ';')
c906108c
SS
2886 {
2887 p++;
2888 }
2889 /* Static class member. */
2890 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2891 *pp = p + 1;
2892 return;
2893 }
2894 else if (**pp != ',')
2895 {
2896 /* Bad structure-type format. */
23136709 2897 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2898 return;
2899 }
2900
2901 (*pp)++; /* Skip the comma. */
2902
2903 {
2904 int nbits;
433759f7 2905
f41f5e61
PA
2906 SET_FIELD_BITPOS (fip->list->field,
2907 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2908 if (nbits != 0)
2909 {
23136709 2910 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2911 return;
2912 }
94e10a22 2913 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2914 if (nbits != 0)
2915 {
23136709 2916 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2917 return;
2918 }
2919 }
2920
2921 if (FIELD_BITPOS (fip->list->field) == 0
2922 && FIELD_BITSIZE (fip->list->field) == 0)
2923 {
2924 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2925 it is a field which has been optimized out. The correct stab for
2926 this case is to use VISIBILITY_IGNORE, but that is a recent
2927 invention. (2) It is a 0-size array. For example
e2e0b3e5 2928 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2929 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2930 will continue to work, and a 0-size array as a whole doesn't
2931 have any contents to print.
2932
2933 I suspect this probably could also happen with gcc -gstabs (not
2934 -gstabs+) for static fields, and perhaps other C++ extensions.
2935 Hopefully few people use -gstabs with gdb, since it is intended
2936 for dbx compatibility. */
c906108c
SS
2937
2938 /* Ignore this field. */
c5aa993b 2939 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2940 }
2941 else
2942 {
2943 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2944 dbx gives a bit size for all fields.
2945 Note that forward refs cannot be packed,
2946 and treat enums as if they had the width of ints. */
c906108c
SS
2947
2948 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2949
2950 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2951 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2952 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2953 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2954 {
2955 FIELD_BITSIZE (fip->list->field) = 0;
2956 }
c5aa993b 2957 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2958 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2959 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2960 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2961 == gdbarch_int_bit (gdbarch))
c5aa993b 2962 )
c906108c
SS
2963 &&
2964 FIELD_BITPOS (fip->list->field) % 8 == 0)
2965 {
2966 FIELD_BITSIZE (fip->list->field) = 0;
2967 }
2968 }
2969}
2970
2971
2972/* Read struct or class data fields. They have the form:
2973
c5aa993b 2974 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2975
2976 At the end, we see a semicolon instead of a field.
2977
2978 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2979 a static field.
2980
2981 The optional VISIBILITY is one of:
2982
c5aa993b
JM
2983 '/0' (VISIBILITY_PRIVATE)
2984 '/1' (VISIBILITY_PROTECTED)
2985 '/2' (VISIBILITY_PUBLIC)
2986 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2987
2988 or nothing, for C style fields with public visibility.
2989
2990 Returns 1 for success, 0 for failure. */
2991
2992static int
fba45db2
KB
2993read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2994 struct objfile *objfile)
c906108c 2995{
52f0bd74 2996 char *p;
c906108c
SS
2997 struct nextfield *new;
2998
2999 /* We better set p right now, in case there are no fields at all... */
3000
3001 p = *pp;
3002
3003 /* Read each data member type until we find the terminating ';' at the end of
3004 the data member list, or break for some other reason such as finding the
c378eb4e 3005 start of the member function list. */
fedbd091 3006 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3007 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3008
fedbd091 3009 while (**pp != ';' && **pp != '\0')
c906108c 3010 {
c906108c
SS
3011 STABS_CONTINUE (pp, objfile);
3012 /* Get space to record the next field's data. */
3013 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3014 make_cleanup (xfree, new);
c906108c 3015 memset (new, 0, sizeof (struct nextfield));
c5aa993b
JM
3016 new->next = fip->list;
3017 fip->list = new;
c906108c
SS
3018
3019 /* Get the field name. */
3020 p = *pp;
3021
3022 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3023 unless the CPLUS_MARKER is followed by an underscore, in
3024 which case it is just the name of an anonymous type, which we
3025 should handle like any other type name. */
c906108c
SS
3026
3027 if (is_cplus_marker (p[0]) && p[1] != '_')
3028 {
3029 if (!read_cpp_abbrev (fip, pp, type, objfile))
3030 return 0;
3031 continue;
3032 }
3033
3034 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3035 values. Data members are delimited by a single ':', while member
3036 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3037 functions (if any), terminate scan loop and return. */
c906108c 3038
c5aa993b 3039 while (*p != ':' && *p != '\0')
c906108c
SS
3040 {
3041 p++;
3042 }
3043 if (*p == '\0')
3044 return 0;
3045
3046 /* Check to see if we have hit the member functions yet. */
3047 if (p[1] == ':')
3048 {
3049 break;
3050 }
3051 read_one_struct_field (fip, pp, p, type, objfile);
3052 }
3053 if (p[0] == ':' && p[1] == ':')
3054 {
1b831c93
AC
3055 /* (the deleted) chill the list of fields: the last entry (at
3056 the head) is a partially constructed entry which we now
c378eb4e 3057 scrub. */
c5aa993b 3058 fip->list = fip->list->next;
c906108c
SS
3059 }
3060 return 1;
3061}
9846de1b 3062/* *INDENT-OFF* */
c906108c
SS
3063/* The stabs for C++ derived classes contain baseclass information which
3064 is marked by a '!' character after the total size. This function is
3065 called when we encounter the baseclass marker, and slurps up all the
3066 baseclass information.
3067
3068 Immediately following the '!' marker is the number of base classes that
3069 the class is derived from, followed by information for each base class.
3070 For each base class, there are two visibility specifiers, a bit offset
3071 to the base class information within the derived class, a reference to
3072 the type for the base class, and a terminating semicolon.
3073
3074 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3075 ^^ ^ ^ ^ ^ ^ ^
3076 Baseclass information marker __________________|| | | | | | |
3077 Number of baseclasses __________________________| | | | | | |
3078 Visibility specifiers (2) ________________________| | | | | |
3079 Offset in bits from start of class _________________| | | | |
3080 Type number for base class ___________________________| | | |
3081 Visibility specifiers (2) _______________________________| | |
3082 Offset in bits from start of class ________________________| |
3083 Type number of base class ____________________________________|
3084
3085 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3086/* *INDENT-ON* */
c906108c 3087
c5aa993b
JM
3088
3089
c906108c 3090static int
fba45db2
KB
3091read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3092 struct objfile *objfile)
c906108c
SS
3093{
3094 int i;
3095 struct nextfield *new;
3096
3097 if (**pp != '!')
3098 {
3099 return 1;
3100 }
3101 else
3102 {
c378eb4e 3103 /* Skip the '!' baseclass information marker. */
c906108c
SS
3104 (*pp)++;
3105 }
3106
3107 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3108 {
3109 int nbits;
433759f7 3110
94e10a22 3111 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3112 if (nbits != 0)
3113 return 0;
3114 }
3115
3116#if 0
3117 /* Some stupid compilers have trouble with the following, so break
3118 it up into simpler expressions. */
3119 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3120 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3121#else
3122 {
3123 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3124 char *pointer;
3125
3126 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3127 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3128 }
3129#endif /* 0 */
3130
3131 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3132
3133 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3134 {
3135 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3136 make_cleanup (xfree, new);
c906108c 3137 memset (new, 0, sizeof (struct nextfield));
c5aa993b
JM
3138 new->next = fip->list;
3139 fip->list = new;
c378eb4e
MS
3140 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3141 field! */
c906108c
SS
3142
3143 STABS_CONTINUE (pp, objfile);
3144 switch (**pp)
3145 {
c5aa993b 3146 case '0':
c378eb4e 3147 /* Nothing to do. */
c5aa993b
JM
3148 break;
3149 case '1':
3150 SET_TYPE_FIELD_VIRTUAL (type, i);
3151 break;
3152 default:
3153 /* Unknown character. Complain and treat it as non-virtual. */
3154 {
23136709 3155 complaint (&symfile_complaints,
3e43a32a
MS
3156 _("Unknown virtual character `%c' for baseclass"),
3157 **pp);
c5aa993b 3158 }
c906108c
SS
3159 }
3160 ++(*pp);
3161
c5aa993b
JM
3162 new->visibility = *(*pp)++;
3163 switch (new->visibility)
c906108c 3164 {
c5aa993b
JM
3165 case VISIBILITY_PRIVATE:
3166 case VISIBILITY_PROTECTED:
3167 case VISIBILITY_PUBLIC:
3168 break;
3169 default:
3170 /* Bad visibility format. Complain and treat it as
3171 public. */
3172 {
23136709 3173 complaint (&symfile_complaints,
e2e0b3e5 3174 _("Unknown visibility `%c' for baseclass"),
23136709 3175 new->visibility);
c5aa993b
JM
3176 new->visibility = VISIBILITY_PUBLIC;
3177 }
c906108c
SS
3178 }
3179
3180 {
3181 int nbits;
c5aa993b 3182
c906108c
SS
3183 /* The remaining value is the bit offset of the portion of the object
3184 corresponding to this baseclass. Always zero in the absence of
3185 multiple inheritance. */
3186
f41f5e61 3187 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3188 if (nbits != 0)
3189 return 0;
3190 }
3191
3192 /* The last piece of baseclass information is the type of the
c5aa993b 3193 base class. Read it, and remember it's type name as this
c378eb4e 3194 field's name. */
c906108c 3195
c5aa993b
JM
3196 new->field.type = read_type (pp, objfile);
3197 new->field.name = type_name_no_tag (new->field.type);
c906108c 3198
c378eb4e 3199 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3200 if (**pp == ';')
3201 (*pp)++;
3202 else
3203 return 0;
3204 }
3205 return 1;
3206}
3207
3208/* The tail end of stabs for C++ classes that contain a virtual function
3209 pointer contains a tilde, a %, and a type number.
3210 The type number refers to the base class (possibly this class itself) which
3211 contains the vtable pointer for the current class.
3212
3213 This function is called when we have parsed all the method declarations,
3214 so we can look for the vptr base class info. */
3215
3216static int
fba45db2
KB
3217read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3218 struct objfile *objfile)
c906108c 3219{
52f0bd74 3220 char *p;
c906108c
SS
3221
3222 STABS_CONTINUE (pp, objfile);
3223
c378eb4e 3224 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3225 if (**pp == ';')
3226 {
3227 (*pp)++;
3228 }
3229
3230 if (**pp == '~')
3231 {
3232 (*pp)++;
3233
3234 if (**pp == '=' || **pp == '+' || **pp == '-')
3235 {
3236 /* Obsolete flags that used to indicate the presence
c378eb4e 3237 of constructors and/or destructors. */
c906108c
SS
3238 (*pp)++;
3239 }
3240
3241 /* Read either a '%' or the final ';'. */
3242 if (*(*pp)++ == '%')
3243 {
3244 /* The next number is the type number of the base class
3245 (possibly our own class) which supplies the vtable for
3246 this class. Parse it out, and search that class to find
3247 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3248 and TYPE_VPTR_FIELDNO. */
3249
3250 struct type *t;
3251 int i;
3252
3253 t = read_type (pp, objfile);
3254 p = (*pp)++;
3255 while (*p != '\0' && *p != ';')
3256 {
3257 p++;
3258 }
3259 if (*p == '\0')
3260 {
3261 /* Premature end of symbol. */
3262 return 0;
3263 }
c5aa993b 3264
c906108c 3265 TYPE_VPTR_BASETYPE (type) = t;
c378eb4e 3266 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3267 {
3268 for (i = TYPE_NFIELDS (t) - 1;
3269 i >= TYPE_N_BASECLASSES (t);
3270 --i)
3271 {
0d5cff50 3272 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3273
8343f86c 3274 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3275 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c
SS
3276 {
3277 TYPE_VPTR_FIELDNO (type) = i;
3278 goto gotit;
3279 }
3280 }
3281 /* Virtual function table field not found. */
23136709 3282 complaint (&symfile_complaints,
3e43a32a
MS
3283 _("virtual function table pointer "
3284 "not found when defining class `%s'"),
23136709 3285 TYPE_NAME (type));
c906108c
SS
3286 return 0;
3287 }
3288 else
3289 {
3290 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3291 }
3292
c5aa993b 3293 gotit:
c906108c
SS
3294 *pp = p + 1;
3295 }
3296 }
3297 return 1;
3298}
3299
3300static int
aa1ee363 3301attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3302{
52f0bd74 3303 int n;
c906108c
SS
3304
3305 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3306 fip->fnlist != NULL;
3307 fip->fnlist = fip->fnlist->next)
c906108c 3308 {
c378eb4e 3309 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3310 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3311 }
3312 return 1;
3313}
3314
c906108c
SS
3315/* Create the vector of fields, and record how big it is.
3316 We need this info to record proper virtual function table information
3317 for this class's virtual functions. */
3318
3319static int
aa1ee363 3320attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3321 struct objfile *objfile)
c906108c 3322{
52f0bd74
AC
3323 int nfields = 0;
3324 int non_public_fields = 0;
3325 struct nextfield *scan;
c906108c
SS
3326
3327 /* Count up the number of fields that we have, as well as taking note of
3328 whether or not there are any non-public fields, which requires us to
3329 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3330 bitfields. */
c906108c 3331
c5aa993b 3332 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3333 {
3334 nfields++;
c5aa993b 3335 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3336 {
3337 non_public_fields++;
3338 }
3339 }
3340
3341 /* Now we know how many fields there are, and whether or not there are any
3342 non-public fields. Record the field count, allocate space for the
c378eb4e 3343 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3344
3345 TYPE_NFIELDS (type) = nfields;
3346 TYPE_FIELDS (type) = (struct field *)
3347 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3348 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3349
3350 if (non_public_fields)
3351 {
3352 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3353
3354 TYPE_FIELD_PRIVATE_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3357
3358 TYPE_FIELD_PROTECTED_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3361
3362 TYPE_FIELD_IGNORE_BITS (type) =
3363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3365 }
3366
c378eb4e
MS
3367 /* Copy the saved-up fields into the field vector. Start from the
3368 head of the list, adding to the tail of the field array, so that
3369 they end up in the same order in the array in which they were
3370 added to the list. */
c906108c
SS
3371
3372 while (nfields-- > 0)
3373 {
c5aa993b
JM
3374 TYPE_FIELD (type, nfields) = fip->list->field;
3375 switch (fip->list->visibility)
c906108c 3376 {
c5aa993b
JM
3377 case VISIBILITY_PRIVATE:
3378 SET_TYPE_FIELD_PRIVATE (type, nfields);
3379 break;
c906108c 3380
c5aa993b
JM
3381 case VISIBILITY_PROTECTED:
3382 SET_TYPE_FIELD_PROTECTED (type, nfields);
3383 break;
c906108c 3384
c5aa993b
JM
3385 case VISIBILITY_IGNORE:
3386 SET_TYPE_FIELD_IGNORE (type, nfields);
3387 break;
c906108c 3388
c5aa993b
JM
3389 case VISIBILITY_PUBLIC:
3390 break;
c906108c 3391
c5aa993b
JM
3392 default:
3393 /* Unknown visibility. Complain and treat it as public. */
3394 {
3e43a32a
MS
3395 complaint (&symfile_complaints,
3396 _("Unknown visibility `%c' for field"),
23136709 3397 fip->list->visibility);
c5aa993b
JM
3398 }
3399 break;
c906108c 3400 }
c5aa993b 3401 fip->list = fip->list->next;
c906108c
SS
3402 }
3403 return 1;
3404}
3405
2ae1c2d2 3406
2ae1c2d2
JB
3407/* Complain that the compiler has emitted more than one definition for the
3408 structure type TYPE. */
3409static void
3410complain_about_struct_wipeout (struct type *type)
3411{
0d5cff50
DE
3412 const char *name = "";
3413 const char *kind = "";
2ae1c2d2
JB
3414
3415 if (TYPE_TAG_NAME (type))
3416 {
3417 name = TYPE_TAG_NAME (type);
3418 switch (TYPE_CODE (type))
3419 {
3420 case TYPE_CODE_STRUCT: kind = "struct "; break;
3421 case TYPE_CODE_UNION: kind = "union "; break;
3422 case TYPE_CODE_ENUM: kind = "enum "; break;
3423 default: kind = "";
3424 }
3425 }
3426 else if (TYPE_NAME (type))
3427 {
3428 name = TYPE_NAME (type);
3429 kind = "";
3430 }
3431 else
3432 {
3433 name = "<unknown>";
3434 kind = "";
3435 }
3436
23136709 3437 complaint (&symfile_complaints,
e2e0b3e5 3438 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3439}
3440
621791b8
PM
3441/* Set the length for all variants of a same main_type, which are
3442 connected in the closed chain.
3443
3444 This is something that needs to be done when a type is defined *after*
3445 some cross references to this type have already been read. Consider
3446 for instance the following scenario where we have the following two
3447 stabs entries:
3448
3449 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3450 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3451
3452 A stubbed version of type dummy is created while processing the first
3453 stabs entry. The length of that type is initially set to zero, since
3454 it is unknown at this point. Also, a "constant" variation of type
3455 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3456 the stabs line).
3457
3458 The second stabs entry allows us to replace the stubbed definition
3459 with the real definition. However, we still need to adjust the length
3460 of the "constant" variation of that type, as its length was left
3461 untouched during the main type replacement... */
3462
3463static void
9e69f3b6 3464set_length_in_type_chain (struct type *type)
621791b8
PM
3465{
3466 struct type *ntype = TYPE_CHAIN (type);
3467
3468 while (ntype != type)
3469 {
3470 if (TYPE_LENGTH(ntype) == 0)
3471 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3472 else
3473 complain_about_struct_wipeout (ntype);
3474 ntype = TYPE_CHAIN (ntype);
3475 }
3476}
2ae1c2d2 3477
c906108c
SS
3478/* Read the description of a structure (or union type) and return an object
3479 describing the type.
3480
3481 PP points to a character pointer that points to the next unconsumed token
b021a221 3482 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3483 *PP will point to "4a:1,0,32;;".
3484
3485 TYPE points to an incomplete type that needs to be filled in.
3486
3487 OBJFILE points to the current objfile from which the stabs information is
3488 being read. (Note that it is redundant in that TYPE also contains a pointer
3489 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3490 */
c906108c
SS
3491
3492static struct type *
2ae1c2d2
JB
3493read_struct_type (char **pp, struct type *type, enum type_code type_code,
3494 struct objfile *objfile)
c906108c
SS
3495{
3496 struct cleanup *back_to;
3497 struct field_info fi;
3498
3499 fi.list = NULL;
3500 fi.fnlist = NULL;
3501
2ae1c2d2
JB
3502 /* When describing struct/union/class types in stabs, G++ always drops
3503 all qualifications from the name. So if you've got:
3504 struct A { ... struct B { ... }; ... };
3505 then G++ will emit stabs for `struct A::B' that call it simply
3506 `struct B'. Obviously, if you've got a real top-level definition for
3507 `struct B', or other nested definitions, this is going to cause
3508 problems.
3509
3510 Obviously, GDB can't fix this by itself, but it can at least avoid
3511 scribbling on existing structure type objects when new definitions
3512 appear. */
3513 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3514 || TYPE_STUB (type)))
3515 {
3516 complain_about_struct_wipeout (type);
3517
3518 /* It's probably best to return the type unchanged. */
3519 return type;
3520 }
3521
c906108c
SS
3522 back_to = make_cleanup (null_cleanup, 0);
3523
3524 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3525 TYPE_CODE (type) = type_code;
876cecd0 3526 TYPE_STUB (type) = 0;
c906108c
SS
3527
3528 /* First comes the total size in bytes. */
3529
3530 {
3531 int nbits;
433759f7 3532
94e10a22 3533 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3534 if (nbits != 0)
73b8d9da
TT
3535 {
3536 do_cleanups (back_to);
3537 return error_type (pp, objfile);
3538 }
621791b8 3539 set_length_in_type_chain (type);
c906108c
SS
3540 }
3541
3542 /* Now read the baseclasses, if any, read the regular C struct or C++
3543 class member fields, attach the fields to the type, read the C++
3544 member functions, attach them to the type, and then read any tilde
3e43a32a 3545 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3546
3547 if (!read_baseclasses (&fi, pp, type, objfile)
3548 || !read_struct_fields (&fi, pp, type, objfile)
3549 || !attach_fields_to_type (&fi, type, objfile)
3550 || !read_member_functions (&fi, pp, type, objfile)
3551 || !attach_fn_fields_to_type (&fi, type)
3552 || !read_tilde_fields (&fi, pp, type, objfile))
3553 {
3554 type = error_type (pp, objfile);
3555 }
3556
3557 do_cleanups (back_to);
3558 return (type);
3559}
3560
3561/* Read a definition of an array type,
3562 and create and return a suitable type object.
3563 Also creates a range type which represents the bounds of that
3564 array. */
3565
3566static struct type *
aa1ee363 3567read_array_type (char **pp, struct type *type,
fba45db2 3568 struct objfile *objfile)
c906108c
SS
3569{
3570 struct type *index_type, *element_type, *range_type;
3571 int lower, upper;
3572 int adjustable = 0;
3573 int nbits;
3574
3575 /* Format of an array type:
3576 "ar<index type>;lower;upper;<array_contents_type>".
3577 OS9000: "arlower,upper;<array_contents_type>".
3578
3579 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3580 for these, produce a type like float[][]. */
3581
c906108c
SS
3582 {
3583 index_type = read_type (pp, objfile);
3584 if (**pp != ';')
3585 /* Improper format of array type decl. */
3586 return error_type (pp, objfile);
3587 ++*pp;
3588 }
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
94e10a22 3595 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3596
c906108c
SS
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3601 {
3602 (*pp)++;
3603 adjustable = 1;
3604 }
94e10a22 3605 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
c5aa993b 3608
c906108c
SS
3609 element_type = read_type (pp, objfile);
3610
3611 if (adjustable)
3612 {
3613 lower = 0;
3614 upper = -1;
3615 }
3616
3617 range_type =
3618 create_range_type ((struct type *) NULL, index_type, lower, upper);
3619 type = create_array_type (type, element_type, range_type);
3620
3621 return type;
3622}
3623
3624
3625/* Read a definition of an enumeration type,
3626 and create and return a suitable type object.
3627 Also defines the symbols that represent the values of the type. */
3628
3629static struct type *
aa1ee363 3630read_enum_type (char **pp, struct type *type,
fba45db2 3631 struct objfile *objfile)
c906108c 3632{
5e2b427d 3633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3634 char *p;
c906108c 3635 char *name;
52f0bd74
AC
3636 long n;
3637 struct symbol *sym;
c906108c
SS
3638 int nsyms = 0;
3639 struct pending **symlist;
3640 struct pending *osyms, *syms;
3641 int o_nsyms;
3642 int nbits;
3643 int unsigned_enum = 1;
3644
3645#if 0
3646 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3647 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3648 to do? For now, force all enum values to file scope. */
3649 if (within_function)
3650 symlist = &local_symbols;
3651 else
3652#endif
3653 symlist = &file_symbols;
3654 osyms = *symlist;
3655 o_nsyms = osyms ? osyms->nsyms : 0;
3656
c906108c
SS
3657 /* The aix4 compiler emits an extra field before the enum members;
3658 my guess is it's a type of some sort. Just ignore it. */
3659 if (**pp == '-')
3660 {
3661 /* Skip over the type. */
3662 while (**pp != ':')
c5aa993b 3663 (*pp)++;
c906108c
SS
3664
3665 /* Skip over the colon. */
3666 (*pp)++;
3667 }
3668
3669 /* Read the value-names and their values.
3670 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3671 A semicolon or comma instead of a NAME means the end. */
3672 while (**pp && **pp != ';' && **pp != ',')
3673 {
3674 STABS_CONTINUE (pp, objfile);
3675 p = *pp;
c5aa993b
JM
3676 while (*p != ':')
3677 p++;
10f0c4bb 3678 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3679 *pp = p + 1;
94e10a22 3680 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3681 if (nbits != 0)
3682 return error_type (pp, objfile);
3683
e623cf5d 3684 sym = allocate_symbol (objfile);
3567439c 3685 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3686 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3687 &objfile->objfile_obstack);
f1e6e072 3688 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3689 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3690 SYMBOL_VALUE (sym) = n;
3691 if (n < 0)
3692 unsigned_enum = 0;
3693 add_symbol_to_list (sym, symlist);
3694 nsyms++;
3695 }
3696
3697 if (**pp == ';')
3698 (*pp)++; /* Skip the semicolon. */
3699
3700 /* Now fill in the fields of the type-structure. */
3701
5e2b427d 3702 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3703 set_length_in_type_chain (type);
c906108c 3704 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3705 TYPE_STUB (type) = 0;
c906108c 3706 if (unsigned_enum)
876cecd0 3707 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3708 TYPE_NFIELDS (type) = nsyms;
3709 TYPE_FIELDS (type) = (struct field *)
3710 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3711 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3712
3713 /* Find the symbols for the values and put them into the type.
3714 The symbols can be found in the symlist that we put them on
3715 to cause them to be defined. osyms contains the old value
3716 of that symlist; everything up to there was defined by us. */
3717 /* Note that we preserve the order of the enum constants, so
3718 that in something like "enum {FOO, LAST_THING=FOO}" we print
3719 FOO, not LAST_THING. */
3720
3721 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3722 {
3723 int last = syms == osyms ? o_nsyms : 0;
3724 int j = syms->nsyms;
433759f7 3725
c906108c
SS
3726 for (; --j >= last; --n)
3727 {
3728 struct symbol *xsym = syms->symbol[j];
433759f7 3729
c906108c 3730 SYMBOL_TYPE (xsym) = type;
3567439c 3731 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3732 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3733 TYPE_FIELD_BITSIZE (type, n) = 0;
3734 }
3735 if (syms == osyms)
3736 break;
3737 }
3738
3739 return type;
3740}
3741
3742/* Sun's ACC uses a somewhat saner method for specifying the builtin
3743 typedefs in every file (for int, long, etc):
3744
c5aa993b
JM
3745 type = b <signed> <width> <format type>; <offset>; <nbits>
3746 signed = u or s.
3747 optional format type = c or b for char or boolean.
3748 offset = offset from high order bit to start bit of type.
3749 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3750
3751 The width/offset stuff appears to be for small objects stored in
3752 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3753 FIXME. */
3754
3755static struct type *
35a2f538 3756read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3757{
3758 int type_bits;
3759 int nbits;
3760 int signed_type;
3761 enum type_code code = TYPE_CODE_INT;
3762
3763 switch (**pp)
3764 {
c5aa993b
JM
3765 case 's':
3766 signed_type = 1;
3767 break;
3768 case 'u':
3769 signed_type = 0;
3770 break;
3771 default:
3772 return error_type (pp, objfile);
c906108c
SS
3773 }
3774 (*pp)++;
3775
3776 /* For some odd reason, all forms of char put a c here. This is strange
3777 because no other type has this honor. We can safely ignore this because
3778 we actually determine 'char'acterness by the number of bits specified in
3779 the descriptor.
3780 Boolean forms, e.g Fortran logical*X, put a b here. */
3781
3782 if (**pp == 'c')
3783 (*pp)++;
3784 else if (**pp == 'b')
3785 {
3786 code = TYPE_CODE_BOOL;
3787 (*pp)++;
3788 }
3789
3790 /* The first number appears to be the number of bytes occupied
3791 by this type, except that unsigned short is 4 instead of 2.
3792 Since this information is redundant with the third number,
3793 we will ignore it. */
94e10a22 3794 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797
c378eb4e 3798 /* The second number is always 0, so ignore it too. */
94e10a22 3799 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
c378eb4e 3803 /* The third number is the number of bits for this type. */
94e10a22 3804 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807 /* The type *should* end with a semicolon. If it are embedded
3808 in a larger type the semicolon may be the only way to know where
3809 the type ends. If this type is at the end of the stabstring we
3810 can deal with the omitted semicolon (but we don't have to like
3811 it). Don't bother to complain(), Sun's compiler omits the semicolon
3812 for "void". */
3813 if (**pp == ';')
3814 ++(*pp);
3815
3816 if (type_bits == 0)
3817 return init_type (TYPE_CODE_VOID, 1,
c5aa993b 3818 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3819 objfile);
3820 else
3821 return init_type (code,
3822 type_bits / TARGET_CHAR_BIT,
c5aa993b 3823 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3824 objfile);
3825}
3826
3827static struct type *
35a2f538 3828read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3829{
3830 int nbits;
3831 int details;
3832 int nbytes;
f65ca430 3833 struct type *rettype;
c906108c
SS
3834
3835 /* The first number has more details about the type, for example
3836 FN_COMPLEX. */
94e10a22 3837 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3838 if (nbits != 0)
3839 return error_type (pp, objfile);
3840
c378eb4e 3841 /* The second number is the number of bytes occupied by this type. */
94e10a22 3842 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
3846 if (details == NF_COMPLEX || details == NF_COMPLEX16
3847 || details == NF_COMPLEX32)
f65ca430
DJ
3848 {
3849 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3850 TYPE_TARGET_TYPE (rettype)
3851 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3852 return rettype;
3853 }
c906108c
SS
3854
3855 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3856}
3857
3858/* Read a number from the string pointed to by *PP.
3859 The value of *PP is advanced over the number.
3860 If END is nonzero, the character that ends the
3861 number must match END, or an error happens;
3862 and that character is skipped if it does match.
3863 If END is zero, *PP is left pointing to that character.
3864
94e10a22
JG
3865 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3866 the number is represented in an octal representation, assume that
3867 it is represented in a 2's complement representation with a size of
3868 TWOS_COMPLEMENT_BITS.
3869
c906108c
SS
3870 If the number fits in a long, set *BITS to 0 and return the value.
3871 If not, set *BITS to be the number of bits in the number and return 0.
3872
3873 If encounter garbage, set *BITS to -1 and return 0. */
3874
c2d11a7d 3875static long
94e10a22 3876read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3877{
3878 char *p = *pp;
3879 int sign = 1;
51e9e0d4 3880 int sign_bit = 0;
c2d11a7d 3881 long n = 0;
c906108c
SS
3882 int radix = 10;
3883 char overflow = 0;
3884 int nbits = 0;
3885 int c;
c2d11a7d 3886 long upper_limit;
a2699720 3887 int twos_complement_representation = 0;
c5aa993b 3888
c906108c
SS
3889 if (*p == '-')
3890 {
3891 sign = -1;
3892 p++;
3893 }
3894
3895 /* Leading zero means octal. GCC uses this to output values larger
3896 than an int (because that would be hard in decimal). */
3897 if (*p == '0')
3898 {
3899 radix = 8;
3900 p++;
3901 }
3902
a2699720
PA
3903 /* Skip extra zeros. */
3904 while (*p == '0')
3905 p++;
3906
3907 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908 {
3909 /* Octal, possibly signed. Check if we have enough chars for a
3910 negative number. */
3911
3912 size_t len;
3913 char *p1 = p;
433759f7 3914
a2699720
PA
3915 while ((c = *p1) >= '0' && c < '8')
3916 p1++;
3917
3918 len = p1 - p;
3919 if (len > twos_complement_bits / 3
3e43a32a
MS
3920 || (twos_complement_bits % 3 == 0
3921 && len == twos_complement_bits / 3))
a2699720
PA
3922 {
3923 /* Ok, we have enough characters for a signed value, check
3924 for signness by testing if the sign bit is set. */
3925 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 c = *p - '0';
3927 if (c & (1 << sign_bit))
3928 {
3929 /* Definitely signed. */
3930 twos_complement_representation = 1;
3931 sign = -1;
3932 }
3933 }
3934 }
3935
1b831c93 3936 upper_limit = LONG_MAX / radix;
c906108c
SS
3937
3938 while ((c = *p++) >= '0' && c < ('0' + radix))
3939 {
3940 if (n <= upper_limit)
94e10a22
JG
3941 {
3942 if (twos_complement_representation)
3943 {
a2699720
PA
3944 /* Octal, signed, twos complement representation. In
3945 this case, n is the corresponding absolute value. */
3946 if (n == 0)
3947 {
3948 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3949
a2699720
PA
3950 n = -sn;
3951 }
94e10a22
JG
3952 else
3953 {
a2699720
PA
3954 n *= radix;
3955 n -= c - '0';
94e10a22 3956 }
94e10a22
JG
3957 }
3958 else
3959 {
3960 /* unsigned representation */
3961 n *= radix;
c378eb4e 3962 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3963 }
3964 }
c906108c 3965 else
94e10a22 3966 overflow = 1;
c5aa993b 3967
c906108c 3968 /* This depends on large values being output in octal, which is
c378eb4e 3969 what GCC does. */
c906108c
SS
3970 if (radix == 8)
3971 {
3972 if (nbits == 0)
3973 {
3974 if (c == '0')
3975 /* Ignore leading zeroes. */
3976 ;
3977 else if (c == '1')
3978 nbits = 1;
3979 else if (c == '2' || c == '3')
3980 nbits = 2;
3981 else
3982 nbits = 3;
3983 }
3984 else
3985 nbits += 3;
3986 }
3987 }
3988 if (end)
3989 {
3990 if (c && c != end)
3991 {
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996 }
3997 else
3998 --p;
3999
a2699720
PA
4000 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001 {
4002 /* We were supposed to parse a number with maximum
4003 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4004 if (bits != NULL)
4005 *bits = -1;
4006 return 0;
4007 }
4008
c906108c
SS
4009 *pp = p;
4010 if (overflow)
4011 {
4012 if (nbits == 0)
4013 {
4014 /* Large decimal constants are an error (because it is hard to
4015 count how many bits are in them). */
4016 if (bits != NULL)
4017 *bits = -1;
4018 return 0;
4019 }
c5aa993b 4020
c906108c 4021 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4022 the number of bits. Two's complement represention octals
4023 can't have a '-' in front. */
4024 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4025 ++nbits;
4026 if (bits)
4027 *bits = nbits;
4028 }
4029 else
4030 {
4031 if (bits)
4032 *bits = 0;
a2699720 4033 return n * sign;
c906108c
SS
4034 }
4035 /* It's *BITS which has the interesting information. */
4036 return 0;
4037}
4038
4039static struct type *
94e10a22
JG
4040read_range_type (char **pp, int typenums[2], int type_size,
4041 struct objfile *objfile)
c906108c 4042{
5e2b427d 4043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4044 char *orig_pp = *pp;
4045 int rangenums[2];
c2d11a7d 4046 long n2, n3;
c906108c
SS
4047 int n2bits, n3bits;
4048 int self_subrange;
4049 struct type *result_type;
4050 struct type *index_type = NULL;
4051
4052 /* First comes a type we are a subrange of.
4053 In C it is usually 0, 1 or the type being defined. */
4054 if (read_type_number (pp, rangenums) != 0)
4055 return error_type (pp, objfile);
4056 self_subrange = (rangenums[0] == typenums[0] &&
4057 rangenums[1] == typenums[1]);
4058
4059 if (**pp == '=')
4060 {
4061 *pp = orig_pp;
4062 index_type = read_type (pp, objfile);
4063 }
4064
4065 /* A semicolon should now follow; skip it. */
4066 if (**pp == ';')
4067 (*pp)++;
4068
4069 /* The remaining two operands are usually lower and upper bounds
4070 of the range. But in some special cases they mean something else. */
94e10a22
JG
4071 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4072 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4073
4074 if (n2bits == -1 || n3bits == -1)
4075 return error_type (pp, objfile);
4076
4077 if (index_type)
4078 goto handle_true_range;
4079
4080 /* If limits are huge, must be large integral type. */
4081 if (n2bits != 0 || n3bits != 0)
4082 {
4083 char got_signed = 0;
4084 char got_unsigned = 0;
4085 /* Number of bits in the type. */
4086 int nbits = 0;
4087
94e10a22 4088 /* If a type size attribute has been specified, the bounds of
c378eb4e 4089 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4090 more bits than the upper bound, then the type is signed. */
4091 if (n2bits <= type_size && n3bits <= type_size)
4092 {
4093 if (n2bits == type_size && n2bits > n3bits)
4094 got_signed = 1;
4095 else
4096 got_unsigned = 1;
4097 nbits = type_size;
4098 }
c906108c 4099 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4100 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4101 {
4102 got_unsigned = 1;
4103 nbits = n3bits;
4104 }
4105 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4106 integral type. Take care of the case where <large number> doesn't
4107 fit in a long but <large number>-1 does. */
c906108c
SS
4108 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4109 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4110 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4111 && n3 == LONG_MAX))
c906108c
SS
4112 {
4113 got_signed = 1;
4114 nbits = n2bits;
4115 }
4116
4117 if (got_signed || got_unsigned)
4118 {
4119 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4120 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4121 objfile);
4122 }
4123 else
4124 return error_type (pp, objfile);
4125 }
4126
4127 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4128 if (self_subrange && n2 == 0 && n3 == 0)
4129 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4130
4131 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4132 is the width in bytes.
4133
4134 Fortran programs appear to use this for complex types also. To
4135 distinguish between floats and complex, g77 (and others?) seem
4136 to use self-subranges for the complexes, and subranges of int for
4137 the floats.
4138
4139 Also note that for complexes, g77 sets n2 to the size of one of
4140 the member floats, not the whole complex beast. My guess is that
c378eb4e 4141 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4142
4143 if (n3 == 0 && n2 > 0)
4144 {
1300f5dd
JB
4145 struct type *float_type
4146 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4147
c906108c
SS
4148 if (self_subrange)
4149 {
1300f5dd
JB
4150 struct type *complex_type =
4151 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
433759f7 4152
1300f5dd
JB
4153 TYPE_TARGET_TYPE (complex_type) = float_type;
4154 return complex_type;
c906108c
SS
4155 }
4156 else
1300f5dd 4157 return float_type;
c906108c
SS
4158 }
4159
a2699720 4160 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4161
4162 else if (n2 == 0 && n3 == -1)
4163 {
a2699720 4164 int bits = type_size;
433759f7 4165
a2699720
PA
4166 if (bits <= 0)
4167 {
4168 /* We don't know its size. It is unsigned int or unsigned
4169 long. GCC 2.3.3 uses this for long long too, but that is
4170 just a GDB 3.5 compatibility hack. */
5e2b427d 4171 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4172 }
4173
4174 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
c906108c
SS
4175 TYPE_FLAG_UNSIGNED, NULL, objfile);
4176 }
4177
4178 /* Special case: char is defined (Who knows why) as a subrange of
4179 itself with range 0-127. */
4180 else if (self_subrange && n2 == 0 && n3 == 127)
973ccf8b 4181 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
c906108c 4182
c906108c
SS
4183 /* We used to do this only for subrange of self or subrange of int. */
4184 else if (n2 == 0)
4185 {
a0b3c4fd
JM
4186 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4187 "unsigned long", and we already checked for that,
4188 so don't need to test for it here. */
4189
c906108c
SS
4190 if (n3 < 0)
4191 /* n3 actually gives the size. */
c5aa993b 4192 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
c906108c 4193 NULL, objfile);
c906108c 4194
7be570e7 4195 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4196 unsigned n-byte integer. But do require n to be a power of
4197 two; we don't want 3- and 5-byte integers flying around. */
4198 {
4199 int bytes;
4200 unsigned long bits;
4201
4202 bits = n3;
4203 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4204 bits >>= 8;
4205 if (bits == 0
4206 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4207 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4208 objfile);
4209 }
c906108c
SS
4210 }
4211 /* I think this is for Convex "long long". Since I don't know whether
4212 Convex sets self_subrange, I also accept that particular size regardless
4213 of self_subrange. */
4214 else if (n3 == 0 && n2 < 0
4215 && (self_subrange
9a76efb6 4216 || n2 == -gdbarch_long_long_bit
5e2b427d 4217 (gdbarch) / TARGET_CHAR_BIT))
c5aa993b
JM
4218 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4219 else if (n2 == -n3 - 1)
c906108c
SS
4220 {
4221 if (n3 == 0x7f)
4222 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4223 if (n3 == 0x7fff)
4224 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4225 if (n3 == 0x7fffffff)
4226 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4227 }
4228
4229 /* We have a real range type on our hands. Allocate space and
4230 return a real pointer. */
c5aa993b 4231handle_true_range:
c906108c
SS
4232
4233 if (self_subrange)
46bf5051 4234 index_type = objfile_type (objfile)->builtin_int;
c906108c 4235 else
46bf5051 4236 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4237 if (index_type == NULL)
4238 {
4239 /* Does this actually ever happen? Is that why we are worrying
4240 about dealing with it rather than just calling error_type? */
4241
23136709 4242 complaint (&symfile_complaints,
e2e0b3e5 4243 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4244
46bf5051 4245 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4246 }
4247
4248 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4249 return (result_type);
4250}
4251
4252/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4253 and terminated with END. Return the list of types read in, or NULL
4254 if there is an error. */
c906108c 4255
ad2f7632
DJ
4256static struct field *
4257read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4258 int *varargsp)
c906108c
SS
4259{
4260 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4261 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4262 int n = 0, i;
4263 struct field *rval;
c906108c
SS
4264
4265 while (**pp != end)
4266 {
4267 if (**pp != ',')
4268 /* Invalid argument list: no ','. */
0a029df5 4269 return NULL;
c906108c
SS
4270 (*pp)++;
4271 STABS_CONTINUE (pp, objfile);
4272 types[n++] = read_type (pp, objfile);
4273 }
c378eb4e 4274 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4275
d24d8548
JK
4276 if (n == 0)
4277 {
4278 /* We should read at least the THIS parameter here. Some broken stabs
4279 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4280 have been present ";-16,(0,43)" reference instead. This way the
4281 excessive ";" marker prematurely stops the parameters parsing. */
4282
4283 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4284 *varargsp = 0;
4285 }
4286 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4287 *varargsp = 1;
c906108c
SS
4288 else
4289 {
ad2f7632
DJ
4290 n--;
4291 *varargsp = 0;
c906108c 4292 }
ad2f7632
DJ
4293
4294 rval = (struct field *) xmalloc (n * sizeof (struct field));
4295 memset (rval, 0, n * sizeof (struct field));
4296 for (i = 0; i < n; i++)
4297 rval[i].type = types[i];
4298 *nargsp = n;
c906108c
SS
4299 return rval;
4300}
4301\f
4302/* Common block handling. */
4303
4304/* List of symbols declared since the last BCOMM. This list is a tail
4305 of local_symbols. When ECOMM is seen, the symbols on the list
4306 are noted so their proper addresses can be filled in later,
4307 using the common block base address gotten from the assembler
4308 stabs. */
4309
4310static struct pending *common_block;
4311static int common_block_i;
4312
4313/* Name of the current common block. We get it from the BCOMM instead of the
4314 ECOMM to match IBM documentation (even though IBM puts the name both places
4315 like everyone else). */
4316static char *common_block_name;
4317
4318/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4319 to remain after this function returns. */
4320
4321void
fba45db2 4322common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4323{
4324 if (common_block_name != NULL)
4325 {
23136709 4326 complaint (&symfile_complaints,
e2e0b3e5 4327 _("Invalid symbol data: common block within common block"));
c906108c
SS
4328 }
4329 common_block = local_symbols;
4330 common_block_i = local_symbols ? local_symbols->nsyms : 0;
10f0c4bb
TT
4331 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4332 name, strlen (name));
c906108c
SS
4333}
4334
4335/* Process a N_ECOMM symbol. */
4336
4337void
fba45db2 4338common_block_end (struct objfile *objfile)
c906108c
SS
4339{
4340 /* Symbols declared since the BCOMM are to have the common block
4341 start address added in when we know it. common_block and
4342 common_block_i point to the first symbol after the BCOMM in
4343 the local_symbols list; copy the list and hang it off the
4344 symbol for the common block name for later fixup. */
4345 int i;
4346 struct symbol *sym;
4347 struct pending *new = 0;
4348 struct pending *next;
4349 int j;
4350
4351 if (common_block_name == NULL)
4352 {
e2e0b3e5 4353 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4354 return;
4355 }
4356
e623cf5d 4357 sym = allocate_symbol (objfile);
c378eb4e 4358 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4359 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4360 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4361
4362 /* Now we copy all the symbols which have been defined since the BCOMM. */
4363
4364 /* Copy all the struct pendings before common_block. */
4365 for (next = local_symbols;
4366 next != NULL && next != common_block;
4367 next = next->next)
4368 {
4369 for (j = 0; j < next->nsyms; j++)
4370 add_symbol_to_list (next->symbol[j], &new);
4371 }
4372
4373 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4374 NULL, it means copy all the local symbols (which we already did
4375 above). */
4376
4377 if (common_block != NULL)
4378 for (j = common_block_i; j < common_block->nsyms; j++)
4379 add_symbol_to_list (common_block->symbol[j], &new);
4380
4381 SYMBOL_TYPE (sym) = (struct type *) new;
4382
4383 /* Should we be putting local_symbols back to what it was?
4384 Does it matter? */
4385
3567439c 4386 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4387 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4388 global_sym_chain[i] = sym;
4389 common_block_name = NULL;
4390}
4391
4392/* Add a common block's start address to the offset of each symbol
4393 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4394 the common block name). */
4395
4396static void
46cb6474 4397fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4398{
4399 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4400
c5aa993b 4401 for (; next; next = next->next)
c906108c 4402 {
aa1ee363 4403 int j;
433759f7 4404
c906108c
SS
4405 for (j = next->nsyms - 1; j >= 0; j--)
4406 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4407 }
4408}
c5aa993b 4409\f
c906108c
SS
4410
4411
bf362611
JB
4412/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4413 See add_undefined_type for more details. */
c906108c 4414
a7a48797 4415static void
bf362611
JB
4416add_undefined_type_noname (struct type *type, int typenums[2])
4417{
4418 struct nat nat;
4419
4420 nat.typenums[0] = typenums [0];
4421 nat.typenums[1] = typenums [1];
4422 nat.type = type;
4423
4424 if (noname_undefs_length == noname_undefs_allocated)
4425 {
4426 noname_undefs_allocated *= 2;
4427 noname_undefs = (struct nat *)
4428 xrealloc ((char *) noname_undefs,
4429 noname_undefs_allocated * sizeof (struct nat));
4430 }
4431 noname_undefs[noname_undefs_length++] = nat;
4432}
4433
4434/* Add TYPE to the UNDEF_TYPES vector.
4435 See add_undefined_type for more details. */
4436
4437static void
4438add_undefined_type_1 (struct type *type)
c906108c
SS
4439{
4440 if (undef_types_length == undef_types_allocated)
4441 {
4442 undef_types_allocated *= 2;
4443 undef_types = (struct type **)
4444 xrealloc ((char *) undef_types,
4445 undef_types_allocated * sizeof (struct type *));
4446 }
4447 undef_types[undef_types_length++] = type;
4448}
4449
bf362611
JB
4450/* What about types defined as forward references inside of a small lexical
4451 scope? */
4452/* Add a type to the list of undefined types to be checked through
4453 once this file has been read in.
4454
4455 In practice, we actually maintain two such lists: The first list
4456 (UNDEF_TYPES) is used for types whose name has been provided, and
4457 concerns forward references (eg 'xs' or 'xu' forward references);
4458 the second list (NONAME_UNDEFS) is used for types whose name is
4459 unknown at creation time, because they were referenced through
4460 their type number before the actual type was declared.
4461 This function actually adds the given type to the proper list. */
4462
4463static void
4464add_undefined_type (struct type *type, int typenums[2])
4465{
4466 if (TYPE_TAG_NAME (type) == NULL)
4467 add_undefined_type_noname (type, typenums);
4468 else
4469 add_undefined_type_1 (type);
4470}
4471
4472/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4473
2c0b251b 4474static void
46bf5051 4475cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4476{
4477 int i;
4478
4479 for (i = 0; i < noname_undefs_length; i++)
4480 {
4481 struct nat nat = noname_undefs[i];
4482 struct type **type;
4483
46bf5051 4484 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4485 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4486 {
4487 /* The instance flags of the undefined type are still unset,
4488 and needs to be copied over from the reference type.
4489 Since replace_type expects them to be identical, we need
4490 to set these flags manually before hand. */
4491 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4492 replace_type (nat.type, *type);
4493 }
bf362611
JB
4494 }
4495
4496 noname_undefs_length = 0;
4497}
4498
c906108c
SS
4499/* Go through each undefined type, see if it's still undefined, and fix it
4500 up if possible. We have two kinds of undefined types:
4501
4502 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4503 Fix: update array length using the element bounds
4504 and the target type's length.
c906108c 4505 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4506 yet defined at the time a pointer to it was made.
4507 Fix: Do a full lookup on the struct/union tag. */
bf362611 4508
2c0b251b 4509static void
bf362611 4510cleanup_undefined_types_1 (void)
c906108c
SS
4511{
4512 struct type **type;
4513
9e386756
JB
4514 /* Iterate over every undefined type, and look for a symbol whose type
4515 matches our undefined type. The symbol matches if:
4516 1. It is a typedef in the STRUCT domain;
4517 2. It has the same name, and same type code;
4518 3. The instance flags are identical.
4519
4520 It is important to check the instance flags, because we have seen
4521 examples where the debug info contained definitions such as:
4522
4523 "foo_t:t30=B31=xefoo_t:"
4524
4525 In this case, we have created an undefined type named "foo_t" whose
4526 instance flags is null (when processing "xefoo_t"), and then created
4527 another type with the same name, but with different instance flags
4528 ('B' means volatile). I think that the definition above is wrong,
4529 since the same type cannot be volatile and non-volatile at the same
4530 time, but we need to be able to cope with it when it happens. The
4531 approach taken here is to treat these two types as different. */
4532
c906108c
SS
4533 for (type = undef_types; type < undef_types + undef_types_length; type++)
4534 {
4535 switch (TYPE_CODE (*type))
4536 {
4537
c5aa993b
JM
4538 case TYPE_CODE_STRUCT:
4539 case TYPE_CODE_UNION:
4540 case TYPE_CODE_ENUM:
c906108c
SS
4541 {
4542 /* Check if it has been defined since. Need to do this here
4543 as well as in check_typedef to deal with the (legitimate in
4544 C though not C++) case of several types with the same name
4545 in different source files. */
74a9bb82 4546 if (TYPE_STUB (*type))
c906108c
SS
4547 {
4548 struct pending *ppt;
4549 int i;
c378eb4e 4550 /* Name of the type, without "struct" or "union". */
0d5cff50 4551 const char *typename = TYPE_TAG_NAME (*type);
c906108c
SS
4552
4553 if (typename == NULL)
4554 {
e2e0b3e5 4555 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4556 break;
4557 }
4558 for (ppt = file_symbols; ppt; ppt = ppt->next)
4559 {
4560 for (i = 0; i < ppt->nsyms; i++)
4561 {
4562 struct symbol *sym = ppt->symbol[i];
c5aa993b 4563
c906108c 4564 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4565 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4566 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4567 TYPE_CODE (*type))
9e386756
JB
4568 && (TYPE_INSTANCE_FLAGS (*type) ==
4569 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4570 && strcmp (SYMBOL_LINKAGE_NAME (sym),
9e386756 4571 typename) == 0)
13a393b0 4572 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4573 }
4574 }
4575 }
4576 }
4577 break;
4578
4579 default:
4580 {
23136709 4581 complaint (&symfile_complaints,
e2e0b3e5
AC
4582 _("forward-referenced types left unresolved, "
4583 "type code %d."),
23136709 4584 TYPE_CODE (*type));
c906108c
SS
4585 }
4586 break;
4587 }
4588 }
4589
4590 undef_types_length = 0;
4591}
4592
bf362611
JB
4593/* Try to fix all the undefined types we ecountered while processing
4594 this unit. */
4595
4596void
0a0edcd5 4597cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4598{
4599 cleanup_undefined_types_1 ();
46bf5051 4600 cleanup_undefined_types_noname (objfile);
bf362611
JB
4601}
4602
c906108c
SS
4603/* Scan through all of the global symbols defined in the object file,
4604 assigning values to the debugging symbols that need to be assigned
4605 to. Get these symbols from the minimal symbol table. */
4606
4607void
fba45db2 4608scan_file_globals (struct objfile *objfile)
c906108c
SS
4609{
4610 int hash;
4611 struct minimal_symbol *msymbol;
507836c0 4612 struct symbol *sym, *prev;
c906108c
SS
4613 struct objfile *resolve_objfile;
4614
4615 /* SVR4 based linkers copy referenced global symbols from shared
4616 libraries to the main executable.
4617 If we are scanning the symbols for a shared library, try to resolve
4618 them from the minimal symbols of the main executable first. */
4619
4620 if (symfile_objfile && objfile != symfile_objfile)
4621 resolve_objfile = symfile_objfile;
4622 else
4623 resolve_objfile = objfile;
4624
4625 while (1)
4626 {
4627 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4628 no unresolved symbols. */
c906108c
SS
4629 for (hash = 0; hash < HASHSIZE; hash++)
4630 {
4631 if (global_sym_chain[hash])
4632 break;
4633 }
4634 if (hash >= HASHSIZE)
4635 return;
4636
3567439c 4637 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4638 {
4639 QUIT;
4640
4641 /* Skip static symbols. */
4642 switch (MSYMBOL_TYPE (msymbol))
4643 {
4644 case mst_file_text:
4645 case mst_file_data:
4646 case mst_file_bss:
4647 continue;
4648 default:
4649 break;
4650 }
4651
4652 prev = NULL;
4653
4654 /* Get the hash index and check all the symbols
c378eb4e 4655 under that hash index. */
c906108c 4656
efd66ac6 4657 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4658
4659 for (sym = global_sym_chain[hash]; sym;)
4660 {
efd66ac6 4661 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4662 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4663 {
c906108c 4664 /* Splice this symbol out of the hash chain and
c378eb4e 4665 assign the value we have to it. */
c906108c
SS
4666 if (prev)
4667 {
4668 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4669 }
4670 else
4671 {
4672 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4673 }
c5aa993b 4674
c906108c
SS
4675 /* Check to see whether we need to fix up a common block. */
4676 /* Note: this code might be executed several times for
4677 the same symbol if there are multiple references. */
507836c0 4678 if (sym)
c906108c 4679 {
507836c0 4680 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4681 {
507836c0 4682 fix_common_block (sym,
77e371c0
TT
4683 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4684 msymbol));
c906108c
SS
4685 }
4686 else
4687 {
507836c0 4688 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4689 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4690 }
efd66ac6 4691 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4692 }
4693
c906108c
SS
4694 if (prev)
4695 {
4696 sym = SYMBOL_VALUE_CHAIN (prev);
4697 }
4698 else
4699 {
4700 sym = global_sym_chain[hash];
4701 }
4702 }
4703 else
4704 {
4705 prev = sym;
4706 sym = SYMBOL_VALUE_CHAIN (sym);
4707 }
4708 }
4709 }
4710 if (resolve_objfile == objfile)
4711 break;
4712 resolve_objfile = objfile;
4713 }
4714
4715 /* Change the storage class of any remaining unresolved globals to
4716 LOC_UNRESOLVED and remove them from the chain. */
4717 for (hash = 0; hash < HASHSIZE; hash++)
4718 {
4719 sym = global_sym_chain[hash];
4720 while (sym)
4721 {
4722 prev = sym;
4723 sym = SYMBOL_VALUE_CHAIN (sym);
4724
4725 /* Change the symbol address from the misleading chain value
4726 to address zero. */
4727 SYMBOL_VALUE_ADDRESS (prev) = 0;
4728
4729 /* Complain about unresolved common block symbols. */
4730 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4731 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4732 else
23136709 4733 complaint (&symfile_complaints,
3e43a32a
MS
4734 _("%s: common block `%s' from "
4735 "global_sym_chain unresolved"),
4262abfb 4736 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4737 }
4738 }
4739 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4740}
4741
4742/* Initialize anything that needs initializing when starting to read
4743 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4744 to a psymtab. */
4745
4746void
fba45db2 4747stabsread_init (void)
c906108c
SS
4748{
4749}
4750
4751/* Initialize anything that needs initializing when a completely new
4752 symbol file is specified (not just adding some symbols from another
4753 file, e.g. a shared library). */
4754
4755void
fba45db2 4756stabsread_new_init (void)
c906108c
SS
4757{
4758 /* Empty the hash table of global syms looking for values. */
4759 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4760}
4761
4762/* Initialize anything that needs initializing at the same time as
c378eb4e 4763 start_symtab() is called. */
c906108c 4764
c5aa993b 4765void
fba45db2 4766start_stabs (void)
c906108c
SS
4767{
4768 global_stabs = NULL; /* AIX COFF */
4769 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4770 n_this_object_header_files = 1;
4771 type_vector_length = 0;
4772 type_vector = (struct type **) 0;
4773
4774 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4775 common_block_name = NULL;
c906108c
SS
4776}
4777
c378eb4e 4778/* Call after end_symtab(). */
c906108c 4779
c5aa993b 4780void
fba45db2 4781end_stabs (void)
c906108c
SS
4782{
4783 if (type_vector)
4784 {
b8c9b27d 4785 xfree (type_vector);
c906108c
SS
4786 }
4787 type_vector = 0;
4788 type_vector_length = 0;
4789 previous_stab_code = 0;
4790}
4791
4792void
fba45db2 4793finish_global_stabs (struct objfile *objfile)
c906108c
SS
4794{
4795 if (global_stabs)
4796 {
4797 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4798 xfree (global_stabs);
c906108c
SS
4799 global_stabs = NULL;
4800 }
4801}
4802
7e1d63ec
AF
4803/* Find the end of the name, delimited by a ':', but don't match
4804 ObjC symbols which look like -[Foo bar::]:bla. */
4805static char *
4806find_name_end (char *name)
4807{
4808 char *s = name;
433759f7 4809
7e1d63ec
AF
4810 if (s[0] == '-' || *s == '+')
4811 {
4812 /* Must be an ObjC method symbol. */
4813 if (s[1] != '[')
4814 {
8a3fe4f8 4815 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4816 }
4817 s = strchr (s, ']');
4818 if (s == NULL)
4819 {
8a3fe4f8 4820 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4821 }
4822 return strchr (s, ':');
4823 }
4824 else
4825 {
4826 return strchr (s, ':');
4827 }
4828}
4829
c378eb4e 4830/* Initializer for this module. */
c906108c
SS
4831
4832void
fba45db2 4833_initialize_stabsread (void)
c906108c 4834{
46bf5051
UW
4835 rs6000_builtin_type_data = register_objfile_data ();
4836
c906108c
SS
4837 undef_types_allocated = 20;
4838 undef_types_length = 0;
4839 undef_types = (struct type **)
4840 xmalloc (undef_types_allocated * sizeof (struct type *));
bf362611
JB
4841
4842 noname_undefs_allocated = 20;
4843 noname_undefs_length = 0;
4844 noname_undefs = (struct nat *)
4845 xmalloc (noname_undefs_allocated * sizeof (struct nat));
f1e6e072
TT
4846
4847 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4848 &stab_register_funcs);
4849 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4850 &stab_register_funcs);
c906108c 4851}