]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/stabsread.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
1736a7bd
PA
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
c906108c
SS
26
27#include "defs.h"
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
39#include "buildsym.h"
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
f69fdf9b 44#include "target-float.h"
de17c821
DJ
45#include "cp-abi.h"
46#include "cp-support.h"
c906108c
SS
47#include <ctype.h>
48
49/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
50#define EXTERN
51/**/
c906108c
SS
52#include "stabsread.h" /* Our own declarations */
53#undef EXTERN
54
52059ffd
TT
55struct nextfield
56{
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65};
66
67struct next_fnfieldlist
68{
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71};
72
c906108c
SS
73/* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
c378eb4e 77 expected to eventually go away... (FIXME) */
c906108c
SS
78
79struct field_info
c5aa993b 80 {
52059ffd
TT
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
c5aa993b 83 };
c906108c
SS
84
85static void
a121b7c1 86read_one_struct_field (struct field_info *, const char **, const char *,
a14ed312 87 struct type *, struct objfile *);
c906108c 88
a14ed312 89static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 90
a121b7c1 91static long read_huge_number (const char **, int, int *, int);
c906108c 92
a121b7c1 93static struct type *error_type (const char **, struct objfile *);
c906108c
SS
94
95static void
a14ed312
KB
96patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
c906108c 98
46cb6474 99static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 100
a121b7c1 101static int read_type_number (const char **, int *);
c906108c 102
a121b7c1 103static struct type *read_type (const char **, struct objfile *);
a7a48797 104
a121b7c1
PA
105static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
c906108c 107
a121b7c1
PA
108static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
c906108c 110
a121b7c1 111static struct type *read_sun_floating_type (const char **, int[2],
a14ed312 112 struct objfile *);
c906108c 113
a121b7c1 114static struct type *read_enum_type (const char **, struct type *, struct objfile *);
c906108c 115
46bf5051 116static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
117
118static int
a121b7c1 119read_member_functions (struct field_info *, const char **, struct type *,
a14ed312 120 struct objfile *);
c906108c
SS
121
122static int
a121b7c1 123read_struct_fields (struct field_info *, const char **, struct type *,
a14ed312 124 struct objfile *);
c906108c
SS
125
126static int
a121b7c1 127read_baseclasses (struct field_info *, const char **, struct type *,
a14ed312 128 struct objfile *);
c906108c
SS
129
130static int
a121b7c1 131read_tilde_fields (struct field_info *, const char **, struct type *,
a14ed312 132 struct objfile *);
c906108c 133
a14ed312 134static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 135
570b8f7c
AC
136static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
c906108c 138
a121b7c1 139static struct type *read_struct_type (const char **, struct type *,
2ae1c2d2 140 enum type_code,
a14ed312 141 struct objfile *);
c906108c 142
a121b7c1 143static struct type *read_array_type (const char **, struct type *,
a14ed312 144 struct objfile *);
c906108c 145
a121b7c1
PA
146static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
c906108c 148
bf362611 149static void add_undefined_type (struct type *, int[2]);
a7a48797 150
c906108c 151static int
a121b7c1 152read_cpp_abbrev (struct field_info *, const char **, struct type *,
a14ed312 153 struct objfile *);
c906108c 154
a121b7c1 155static const char *find_name_end (const char *name);
7e1d63ec 156
a121b7c1 157static int process_reference (const char **string);
c906108c 158
a14ed312 159void stabsread_clear_cache (void);
7be570e7 160
8343f86c
DJ
161static const char vptr_name[] = "_vptr$";
162static const char vb_name[] = "_vb$";
c906108c 163
23136709
KB
164static void
165invalid_cpp_abbrev_complaint (const char *arg1)
166{
e2e0b3e5 167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 168}
c906108c 169
23136709 170static void
49b0b195 171reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
172{
173 complaint (&symfile_complaints,
0fde2c53 174 _("bad register number %d (max %d) in symbol %s"),
49b0b195 175 regnum, num_regs - 1, sym);
23136709 176}
c906108c 177
23136709
KB
178static void
179stabs_general_complaint (const char *arg1)
180{
181 complaint (&symfile_complaints, "%s", arg1);
182}
c906108c 183
c906108c
SS
184/* Make a list of forward references which haven't been defined. */
185
186static struct type **undef_types;
187static int undef_types_allocated;
188static int undef_types_length;
189static struct symbol *current_symbol = NULL;
190
bf362611
JB
191/* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
c378eb4e 193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
194 and type (0,2) is defined only later. */
195
196struct nat
197{
198 int typenums[2];
199 struct type *type;
200};
201static struct nat *noname_undefs;
202static int noname_undefs_allocated;
203static int noname_undefs_length;
204
c906108c
SS
205/* Check for and handle cretinous stabs symbol name continuation! */
206#define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
fc474241
DE
211
212/* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218static struct type **type_vector;
219
220/* Number of elements allocated for type_vector currently. */
221
222static int type_vector_length;
223
224/* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 228\f
c906108c
SS
229
230/* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
a7a48797 237static struct type **
46bf5051 238dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 239{
52f0bd74
AC
240 int filenum = typenums[0];
241 int index = typenums[1];
c906108c 242 unsigned old_len;
52f0bd74
AC
243 int real_filenum;
244 struct header_file *f;
c906108c
SS
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
23136709 252 complaint (&symfile_complaints,
3e43a32a
MS
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
23136709 255 filenum, index, symnum);
c906108c
SS
256 goto error_return;
257 }
258
259 if (filenum == 0)
260 {
261 if (index < 0)
262 {
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
269
46bf5051 270 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
271 return &temp_type;
272 }
273
274 /* Type is defined outside of header files.
c5aa993b 275 Find it in this object file's type vector. */
c906108c
SS
276 if (index >= type_vector_length)
277 {
278 old_len = type_vector_length;
279 if (old_len == 0)
280 {
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 282 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
46bf5051 300 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 301 {
46bf5051 302 static struct type *temp_type;
c906108c 303
8a3fe4f8 304 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
305
306 error_return:
46bf5051
UW
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
c906108c
SS
309 }
310
46bf5051 311 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327}
328
329/* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 333 put into the type vector, and so may not be referred to by number. */
c906108c
SS
334
335static struct type *
35a2f538 336dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 337{
52f0bd74 338 struct type **type_addr;
c906108c
SS
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
46bf5051 345 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356}
357
9b790ce7
UW
358/* Allocate a floating-point type of size BITS. */
359
360static struct type *
361dbx_init_float_type (struct objfile *objfile, int bits)
362{
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
365 struct type *type;
366
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 if (format)
369 type = init_float_type (objfile, bits, NULL, format);
370 else
77b7c781 371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
9b790ce7
UW
372
373 return type;
374}
375
c906108c 376/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 377 and fix their symbols in given symbol vector. */
c906108c
SS
378
379static void
fba45db2
KB
380patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
c906108c
SS
382{
383 int ii;
384 char *name;
a121b7c1 385 const char *pp;
c906108c
SS
386 struct symbol *sym;
387
388 if (stabs)
389 {
c906108c 390 /* for all the stab entries, find their corresponding symbols and
c378eb4e 391 patch their types! */
c5aa993b 392
c906108c
SS
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
c5aa993b 396 pp = (char *) strchr (name, ':');
8fb822e0 397 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
398 while (pp[1] == ':')
399 {
c5aa993b
JM
400 pp += 2;
401 pp = (char *) strchr (pp, ':');
c906108c 402 }
c5aa993b 403 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
404 if (!sym)
405 {
406 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
c906108c
SS
413
414 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 417 sym = allocate_symbol (objfile);
176620f1 418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 420 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
422 name, pp - name));
c906108c 423 pp += 2;
c5aa993b 424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
425 {
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
429 SYMBOL_TYPE (sym) =
430 lookup_function_type (read_type (&pp, objfile));
431 }
432 else
433 {
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 }
436 add_symbol_to_list (sym, &global_symbols);
437 }
438 else
439 {
440 pp += 2;
c5aa993b 441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
442 {
443 SYMBOL_TYPE (sym) =
444 lookup_function_type (read_type (&pp, objfile));
445 }
446 else
447 {
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
449 }
450 }
451 }
452 }
453}
c906108c 454\f
c5aa993b 455
c906108c
SS
456/* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
461
462 Returns 0 for success, -1 for error. */
463
464static int
a121b7c1 465read_type_number (const char **pp, int *typenums)
c906108c
SS
466{
467 int nbits;
433759f7 468
c906108c
SS
469 if (**pp == '(')
470 {
471 (*pp)++;
94e10a22 472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
473 if (nbits != 0)
474 return -1;
94e10a22 475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
476 if (nbits != 0)
477 return -1;
c906108c
SS
478 }
479 else
480 {
481 typenums[0] = 0;
94e10a22 482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
483 if (nbits != 0)
484 return -1;
c906108c
SS
485 }
486 return 0;
487}
c906108c 488\f
c5aa993b 489
c906108c
SS
490#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494
c906108c 495/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 496 during "process_later". */
c906108c
SS
497
498struct ref_map
499{
a121b7c1 500 const char *stabs;
c906108c
SS
501 CORE_ADDR value;
502 struct symbol *sym;
503};
504
505#define MAX_CHUNK_REFS 100
506#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508
c5aa993b 509static struct ref_map *ref_map;
c906108c 510
c378eb4e 511/* Ptr to free cell in chunk's linked list. */
c5aa993b 512static int ref_count = 0;
c906108c 513
c378eb4e 514/* Number of chunks malloced. */
c906108c
SS
515static int ref_chunk = 0;
516
7be570e7 517/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
7be570e7 520void
fba45db2 521stabsread_clear_cache (void)
7be570e7
JM
522{
523 ref_count = 0;
524 ref_chunk = 0;
525}
526
c906108c
SS
527/* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
c906108c 531void
a121b7c1 532ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
c906108c
SS
533{
534 if (ref_count == 0)
535 ref_chunk = 0;
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 {
c5aa993b 540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 542
c906108c
SS
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
547 ref_chunk += new_chunks;
548 }
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
552}
553
554/* Return defined sym for the reference REFNUM. */
555struct symbol *
fba45db2 556ref_search (int refnum)
c906108c
SS
557{
558 if (refnum < 0 || refnum > ref_count)
559 return 0;
560 return ref_map[refnum].sym;
561}
562
c906108c
SS
563/* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
565
c5aa993b 566static int
a121b7c1 567process_reference (const char **string)
c906108c 568{
a121b7c1 569 const char *p;
c906108c
SS
570 int refnum = 0;
571
c5aa993b
JM
572 if (**string != '#')
573 return 0;
574
c906108c
SS
575 /* Advance beyond the initial '#'. */
576 p = *string + 1;
577
c378eb4e 578 /* Read number as reference id. */
c906108c
SS
579 while (*p && isdigit (*p))
580 {
581 refnum = refnum * 10 + *p - '0';
582 p++;
583 }
584 *string = p;
585 return refnum;
586}
587
588/* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
590
591int
a121b7c1 592symbol_reference_defined (const char **string)
c906108c 593{
a121b7c1 594 const char *p = *string;
c906108c
SS
595 int refnum = 0;
596
597 refnum = process_reference (&p);
598
c378eb4e 599 /* Defining symbols end in '='. */
c5aa993b 600 if (*p == '=')
c906108c 601 {
c378eb4e 602 /* Symbol is being defined here. */
c906108c
SS
603 *string = p + 1;
604 return refnum;
605 }
606 else
607 {
c378eb4e 608 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
609 or this is a forward reference to it. */
610 *string = p;
611 return -1;
612 }
613}
614
768a979c
UW
615static int
616stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617{
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619
0fde2c53
DE
620 if (regno < 0
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
768a979c
UW
623 {
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
628
c378eb4e 629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
630 }
631
632 return regno;
633}
634
635static const struct symbol_register_ops stab_register_funcs = {
636 stab_reg_to_regnum
637};
638
f1e6e072
TT
639/* The "aclass" indices for computed symbols. */
640
641static int stab_register_index;
642static int stab_regparm_index;
643
c906108c 644struct symbol *
a121b7c1 645define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
fba45db2 646 struct objfile *objfile)
c906108c 647{
5e2b427d 648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 649 struct symbol *sym;
a121b7c1 650 const char *p = find_name_end (string);
c906108c
SS
651 int deftype;
652 int synonym = 0;
52f0bd74 653 int i;
c906108c
SS
654
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
659
660 int nameless;
661
662 /* Ignore syms with empty names. */
663 if (string[0] == 0)
664 return 0;
665
c378eb4e 666 /* Ignore old-style symbols from cc -go. */
c906108c
SS
667 if (p == 0)
668 return 0;
669
670 while (p[1] == ':')
671 {
c5aa993b
JM
672 p += 2;
673 p = strchr (p, ':');
681c238c
MS
674 if (p == NULL)
675 {
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
678 return NULL;
679 }
c906108c
SS
680 }
681
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685
e623cf5d 686 current_symbol = sym = allocate_symbol (objfile);
c906108c 687
c906108c
SS
688 if (processing_gcc_compilation)
689 {
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
c906108c
SS
693 }
694 else
695 {
c5aa993b 696 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
697 }
698
025ac414
PM
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701
c906108c
SS
702 if (is_cplus_marker (string[0]))
703 {
704 /* Special GNU C++ names. */
705 switch (string[1])
706 {
c5aa993b 707 case 't':
1c9e8358 708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 709 break;
c906108c 710
c5aa993b 711 case 'v': /* $vtbl_ptr_type */
c5aa993b 712 goto normal;
c906108c 713
c5aa993b 714 case 'e':
1c9e8358 715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 716 break;
c906108c 717
c5aa993b
JM
718 case '_':
719 /* This was an anonymous type that was never fixed up. */
720 goto normal;
c906108c 721
c5aa993b
JM
722 case 'X':
723 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 724 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 725 goto normal;
c378eb4e 726 /* ... fall through ... */
c906108c 727
c5aa993b 728 default:
e2e0b3e5 729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 730 string);
c378eb4e 731 goto normal; /* Do *something* with it. */
c906108c
SS
732 }
733 }
c906108c
SS
734 else
735 {
736 normal:
2f408ecb
PA
737 std::string new_name;
738
df8a16a1 739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 740 {
224c3ddb 741 char *name = (char *) alloca (p - string + 1);
433759f7 742
71c25dea
TT
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
71c25dea 746 }
2f408ecb 747 if (!new_name.empty ())
71c25dea 748 {
2f408ecb
PA
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
751 1, objfile);
71c25dea
TT
752 }
753 else
04a679b8 754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
755
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 757 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 758
c906108c
SS
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763#if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772#else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774#endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
c5aa993b
JM
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
788 if (*p != '=')
789 {
f1e6e072 790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
793 add_symbol_to_list (sym, &file_symbols);
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
4e38b386 801 gdb_byte *dbl_valu;
6ccb9162 802 struct type *dbl_type;
c906108c 803
46bf5051 804 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
805 dbl_valu
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
f69fdf9b
UW
808
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
6ccb9162
UW
810
811 SYMBOL_TYPE (sym) = dbl_type;
c906108c 812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
46bf5051 825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 826 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
828 }
829 break;
ec8a089a
PM
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
ec8a089a
PM
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
f1e6e072 849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
f1e6e072 874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
3e43a32a 883 range_type
0c9c3474
SA
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
ec8a089a
PM
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
224c3ddb
SM
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
897 }
898 break;
899
c906108c
SS
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
f1e6e072 906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
f1e6e072 927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
176620f1 931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
932 add_symbol_to_list (sym, &file_symbols);
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
c5aa993b
JM
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
1e698235
DJ
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
876cecd0 965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 966
c378eb4e 967 /* fall into process_prototype_types. */
c906108c
SS
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
a121b7c1 976 const char *p1 = p;
c906108c
SS
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
c378eb4e 986 /* Allocate parameter information fields and fill them in. */
c906108c
SS
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
c5aa993b 994 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
c5aa993b 1000 be promoted to the width of the calling conventions, with
c378eb4e 1001 a type which references itself. This type is turned into
c5aa993b 1002 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 1006 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
876cecd0 1011 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
c906108c 1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1031 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1036 {
3567439c 1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
c906108c
SS
1040 }
1041 add_symbol_to_list (sym, &global_symbols);
1042 break;
1043
1044 /* This case is faked by a conditional above,
c5aa993b
JM
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
c906108c
SS
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1051 SYMBOL_VALUE (sym) = valu;
176620f1 1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1053 add_symbol_to_list (sym, &local_symbols);
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
c5aa993b 1065 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
f1e6e072 1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1071 SYMBOL_VALUE (sym) = valu;
176620f1 1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1073 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1074 add_symbol_to_list (sym, &local_symbols);
1075
5e2b427d 1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1084 if (processing_gcc_compilation
5e2b427d 1085 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1086 break;
1087
5e2b427d 1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1089 {
8ee56bcf
AC
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
5e2b427d
UW
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1095 {
8ee56bcf
AC
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
7a292a7a 1100 }
8ee56bcf 1101 break;
7a292a7a 1102 }
c906108c
SS
1103
1104 case 'P':
1105 /* acc seems to use P to declare the prototypes of functions that
1106 are referenced by this file. gdb is not prepared to deal
1107 with this extra information. FIXME, it ought to. */
1108 if (type == N_FUN)
1109 {
1110 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1111 goto process_prototype_types;
1112 }
c5aa993b 1113 /*FALLTHROUGH */
c906108c
SS
1114
1115 case 'R':
1116 /* Parameter which is in a register. */
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1118 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1119 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1120 SYMBOL_VALUE (sym) = valu;
176620f1 1121 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1122 add_symbol_to_list (sym, &local_symbols);
1123 break;
1124
1125 case 'r':
1126 /* Register variable (either global or local). */
1127 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1128 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1129 SYMBOL_VALUE (sym) = valu;
176620f1 1130 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1131 if (within_function)
1132 {
192cb3d4
MK
1133 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 the same name to represent an argument passed in a
1135 register. GCC uses 'P' for the same case. So if we find
1136 such a symbol pair we combine it into one 'P' symbol.
1137 For Sun cc we need to do this regardless of
1138 stabs_argument_has_addr, because the compiler puts out
1139 the 'p' symbol even if it never saves the argument onto
1140 the stack.
1141
1142 On most machines, we want to preserve both symbols, so
1143 that we can still get information about what is going on
1144 with the stack (VAX for computing args_printed, using
1145 stack slots instead of saved registers in backtraces,
1146 etc.).
c906108c
SS
1147
1148 Note that this code illegally combines
c5aa993b 1149 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1150 but this case is considered pathological and causes a warning
1151 from a decent compiler. */
1152
1153 if (local_symbols
1154 && local_symbols->nsyms > 0
5e2b427d 1155 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1156 {
1157 struct symbol *prev_sym;
433759f7 1158
c906108c
SS
1159 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1160 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1161 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1162 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1163 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1164 {
f1e6e072 1165 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1166 /* Use the type from the LOC_REGISTER; that is the type
1167 that is actually in that register. */
1168 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1169 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1170 sym = prev_sym;
1171 break;
1172 }
1173 }
c5aa993b 1174 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1175 }
1176 else
c5aa993b 1177 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1178 break;
1179
1180 case 'S':
c378eb4e 1181 /* Static symbol at top level of file. */
c906108c 1182 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1183 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1184 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1185 if (gdbarch_static_transform_name_p (gdbarch)
1186 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1187 SYMBOL_LINKAGE_NAME (sym))
1188 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1189 {
3b7344d5 1190 struct bound_minimal_symbol msym;
433759f7 1191
3e43a32a
MS
1192 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1193 NULL, objfile);
3b7344d5 1194 if (msym.minsym != NULL)
c5aa993b 1195 {
0d5cff50 1196 const char *new_name = gdbarch_static_transform_name
3567439c 1197 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1198
3567439c 1199 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1200 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1201 }
1202 }
176620f1 1203 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1204 add_symbol_to_list (sym, &file_symbols);
1205 break;
1206
1207 case 't':
52eea4ce
JB
1208 /* In Ada, there is no distinction between typedef and non-typedef;
1209 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1210 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1211
1212 Therefore, for Ada units, we check the character immediately
1213 before the 't', and if we do not find a 'T', then make sure to
1214 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1215 will be stored in the VAR_DOMAIN). If the symbol was indeed
1216 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1217 elsewhere, so we don't need to take care of that.
1218
1219 This is important to do, because of forward references:
1220 The cleanup of undefined types stored in undef_types only uses
1221 STRUCT_DOMAIN symbols to perform the replacement. */
1222 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1223
e2cd42dd 1224 /* Typedef */
c906108c
SS
1225 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1226
1227 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1228 did not use `sym'. Return without further processing. */
c5aa993b
JM
1229 if (nameless)
1230 return NULL;
c906108c 1231
f1e6e072 1232 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1233 SYMBOL_VALUE (sym) = valu;
176620f1 1234 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1235 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1236 a base type which did not have its name defined when the
1237 derived class was output. We fill in the derived class's
1238 base part member's name here in that case. */
c906108c
SS
1239 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1242 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1243 {
1244 int j;
433759f7 1245
c906108c
SS
1246 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1247 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1248 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1249 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1250 }
1251
1252 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1253 {
1254 /* gcc-2.6 or later (when using -fvtable-thunks)
1255 emits a unique named type for a vtable entry.
c378eb4e 1256 Some gdb code depends on that specific name. */
c906108c
SS
1257 extern const char vtbl_ptr_name[];
1258
1259 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1260 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1261 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1262 {
1263 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1264 foo" or "function returning foo", we better not set
1265 the TYPE_NAME. If the program contains "typedef char
1266 *caddr_t;", we don't want all variables of type char
1267 * to print as caddr_t. This is not just a
1268 consequence of GDB's type management; PCC and GCC (at
1269 least through version 2.4) both output variables of
1270 either type char * or caddr_t with the type number
1271 defined in the 't' symbol for caddr_t. If a future
1272 compiler cleans this up it GDB is not ready for it
1273 yet, but if it becomes ready we somehow need to
1274 disable this check (without breaking the PCC/GCC2.4
1275 case).
1276
1277 Sigh.
1278
1279 Fortunately, this check seems not to be necessary
1280 for anything except pointers or functions. */
c378eb4e
MS
1281 /* ezannoni: 2000-10-26. This seems to apply for
1282 versions of gcc older than 2.8. This was the original
49d97c60 1283 problem: with the following code gdb would tell that
c378eb4e
MS
1284 the type for name1 is caddr_t, and func is char().
1285
49d97c60
EZ
1286 typedef char *caddr_t;
1287 char *name2;
1288 struct x
1289 {
c378eb4e 1290 char *name1;
49d97c60
EZ
1291 } xx;
1292 char *func()
1293 {
1294 }
1295 main () {}
1296 */
1297
c378eb4e 1298 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1299 if (current_subfile->language == language_pascal)
1300 {
3567439c 1301 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1302 }
c906108c
SS
1303 }
1304 else
3567439c 1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1306 }
1307
1308 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1309
1310 if (synonym)
1311 {
1312 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1313 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1314
1315 *struct_sym = *sym;
f1e6e072 1316 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1317 SYMBOL_VALUE (struct_sym) = valu;
1318 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1319 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1320 TYPE_NAME (SYMBOL_TYPE (sym))
1321 = obconcat (&objfile->objfile_obstack,
1322 SYMBOL_LINKAGE_NAME (sym),
1323 (char *) NULL);
52eea4ce
JB
1324 add_symbol_to_list (struct_sym, &file_symbols);
1325 }
1326
c906108c
SS
1327 break;
1328
1329 case 'T':
1330 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1331 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1332 synonym = *p == 't';
1333
1334 if (synonym)
1335 p++;
c906108c
SS
1336
1337 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1338
c906108c 1339 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1340 did not use `sym'. Return without further processing. */
c5aa993b
JM
1341 if (nameless)
1342 return NULL;
c906108c 1343
f1e6e072 1344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1345 SYMBOL_VALUE (sym) = valu;
176620f1 1346 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1347 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1348 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack,
1350 SYMBOL_LINKAGE_NAME (sym),
1351 (char *) NULL);
c906108c
SS
1352 add_symbol_to_list (sym, &file_symbols);
1353
1354 if (synonym)
1355 {
c378eb4e 1356 /* Clone the sym and then modify it. */
e623cf5d 1357 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1358
c906108c 1359 *typedef_sym = *sym;
f1e6e072 1360 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1361 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1362 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1363 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1364 TYPE_NAME (SYMBOL_TYPE (sym))
1365 = obconcat (&objfile->objfile_obstack,
1366 SYMBOL_LINKAGE_NAME (sym),
1367 (char *) NULL);
c906108c
SS
1368 add_symbol_to_list (typedef_sym, &file_symbols);
1369 }
1370 break;
1371
1372 case 'V':
c378eb4e 1373 /* Static symbol of local scope. */
c906108c 1374 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1375 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1376 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1377 if (gdbarch_static_transform_name_p (gdbarch)
1378 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1379 SYMBOL_LINKAGE_NAME (sym))
1380 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1381 {
3b7344d5 1382 struct bound_minimal_symbol msym;
433759f7
MS
1383
1384 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1385 NULL, objfile);
3b7344d5 1386 if (msym.minsym != NULL)
c5aa993b 1387 {
0d5cff50 1388 const char *new_name = gdbarch_static_transform_name
3567439c 1389 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1390
3567439c 1391 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1392 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1393 }
1394 }
176620f1 1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1396 add_symbol_to_list (sym, &local_symbols);
1397 break;
1398
1399 case 'v':
1400 /* Reference parameter */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1402 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1403 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1404 SYMBOL_VALUE (sym) = valu;
176620f1 1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 case 'a':
1410 /* Reference parameter which is in a register. */
1411 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1412 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1413 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1414 SYMBOL_VALUE (sym) = valu;
176620f1 1415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1416 add_symbol_to_list (sym, &local_symbols);
1417 break;
1418
1419 case 'X':
1420 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1421 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1422 that Pascal uses it too, but when I tried it Pascal used
1423 "x:3" (local symbol) instead. */
c906108c 1424 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1425 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1426 SYMBOL_VALUE (sym) = valu;
176620f1 1427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1428 add_symbol_to_list (sym, &local_symbols);
1429 break;
c906108c
SS
1430
1431 default:
1432 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1433 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1434 SYMBOL_VALUE (sym) = 0;
176620f1 1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1436 add_symbol_to_list (sym, &file_symbols);
1437 break;
1438 }
1439
192cb3d4
MK
1440 /* Some systems pass variables of certain types by reference instead
1441 of by value, i.e. they will pass the address of a structure (in a
1442 register or on the stack) instead of the structure itself. */
c906108c 1443
5e2b427d 1444 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1445 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1446 {
2a2d4dc3 1447 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1448 variables passed in a register). */
2a2d4dc3 1449 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1450 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1451 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1452 and subsequent arguments on SPARC, for example). */
1453 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1455 }
1456
c906108c
SS
1457 return sym;
1458}
1459
c906108c
SS
1460/* Skip rest of this symbol and return an error type.
1461
1462 General notes on error recovery: error_type always skips to the
1463 end of the symbol (modulo cretinous dbx symbol name continuation).
1464 Thus code like this:
1465
1466 if (*(*pp)++ != ';')
c5aa993b 1467 return error_type (pp, objfile);
c906108c
SS
1468
1469 is wrong because if *pp starts out pointing at '\0' (typically as the
1470 result of an earlier error), it will be incremented to point to the
1471 start of the next symbol, which might produce strange results, at least
1472 if you run off the end of the string table. Instead use
1473
1474 if (**pp != ';')
c5aa993b 1475 return error_type (pp, objfile);
c906108c
SS
1476 ++*pp;
1477
1478 or
1479
1480 if (**pp != ';')
c5aa993b 1481 foo = error_type (pp, objfile);
c906108c 1482 else
c5aa993b 1483 ++*pp;
c906108c
SS
1484
1485 And in case it isn't obvious, the point of all this hair is so the compiler
1486 can define new types and new syntaxes, and old versions of the
1487 debugger will be able to read the new symbol tables. */
1488
1489static struct type *
a121b7c1 1490error_type (const char **pp, struct objfile *objfile)
c906108c 1491{
3e43a32a
MS
1492 complaint (&symfile_complaints,
1493 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1494 while (1)
1495 {
1496 /* Skip to end of symbol. */
1497 while (**pp != '\0')
1498 {
1499 (*pp)++;
1500 }
1501
1502 /* Check for and handle cretinous dbx symbol name continuation! */
1503 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1504 {
1505 *pp = next_symbol_text (objfile);
1506 }
1507 else
1508 {
1509 break;
1510 }
1511 }
46bf5051 1512 return objfile_type (objfile)->builtin_error;
c906108c 1513}
c906108c 1514\f
c5aa993b 1515
c906108c
SS
1516/* Read type information or a type definition; return the type. Even
1517 though this routine accepts either type information or a type
1518 definition, the distinction is relevant--some parts of stabsread.c
1519 assume that type information starts with a digit, '-', or '(' in
1520 deciding whether to call read_type. */
1521
a7a48797 1522static struct type *
a121b7c1 1523read_type (const char **pp, struct objfile *objfile)
c906108c 1524{
52f0bd74 1525 struct type *type = 0;
c906108c
SS
1526 struct type *type1;
1527 int typenums[2];
1528 char type_descriptor;
1529
1530 /* Size in bits of type if specified by a type attribute, or -1 if
1531 there is no size attribute. */
1532 int type_size = -1;
1533
c378eb4e 1534 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1535 int is_string = 0;
1536
c378eb4e 1537 /* Used to distinguish vector from array. */
e2cd42dd
MS
1538 int is_vector = 0;
1539
c906108c
SS
1540 /* Read type number if present. The type number may be omitted.
1541 for instance in a two-dimensional array declared with type
1542 "ar1;1;10;ar1;1;10;4". */
1543 if ((**pp >= '0' && **pp <= '9')
1544 || **pp == '('
1545 || **pp == '-')
1546 {
1547 if (read_type_number (pp, typenums) != 0)
1548 return error_type (pp, objfile);
c5aa993b 1549
c906108c 1550 if (**pp != '=')
8cfe231d
JB
1551 {
1552 /* Type is not being defined here. Either it already
1553 exists, or this is a forward reference to it.
1554 dbx_alloc_type handles both cases. */
1555 type = dbx_alloc_type (typenums, objfile);
1556
1557 /* If this is a forward reference, arrange to complain if it
1558 doesn't get patched up by the time we're done
1559 reading. */
1560 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1561 add_undefined_type (type, typenums);
8cfe231d
JB
1562
1563 return type;
1564 }
c906108c
SS
1565
1566 /* Type is being defined here. */
1567 /* Skip the '='.
c5aa993b
JM
1568 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1569 (*pp) += 2;
c906108c
SS
1570 }
1571 else
1572 {
1573 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1574 the definition, but don't put it in the type vector. */
c906108c
SS
1575 typenums[0] = typenums[1] = -1;
1576 (*pp)++;
1577 }
1578
c5aa993b 1579again:
c906108c
SS
1580 type_descriptor = (*pp)[-1];
1581 switch (type_descriptor)
1582 {
1583 case 'x':
1584 {
1585 enum type_code code;
1586
1587 /* Used to index through file_symbols. */
1588 struct pending *ppt;
1589 int i;
c5aa993b 1590
c906108c
SS
1591 /* Name including "struct", etc. */
1592 char *type_name;
c5aa993b 1593
c906108c 1594 {
a121b7c1 1595 const char *from, *p, *q1, *q2;
c5aa993b 1596
c906108c
SS
1597 /* Set the type code according to the following letter. */
1598 switch ((*pp)[0])
1599 {
1600 case 's':
1601 code = TYPE_CODE_STRUCT;
1602 break;
1603 case 'u':
1604 code = TYPE_CODE_UNION;
1605 break;
1606 case 'e':
1607 code = TYPE_CODE_ENUM;
1608 break;
1609 default:
1610 {
1611 /* Complain and keep going, so compilers can invent new
1612 cross-reference types. */
23136709 1613 complaint (&symfile_complaints,
3e43a32a
MS
1614 _("Unrecognized cross-reference type `%c'"),
1615 (*pp)[0]);
c906108c
SS
1616 code = TYPE_CODE_STRUCT;
1617 break;
1618 }
1619 }
c5aa993b 1620
c906108c
SS
1621 q1 = strchr (*pp, '<');
1622 p = strchr (*pp, ':');
1623 if (p == NULL)
1624 return error_type (pp, objfile);
1625 if (q1 && p > q1 && p[1] == ':')
1626 {
1627 int nesting_level = 0;
433759f7 1628
c906108c
SS
1629 for (q2 = q1; *q2; q2++)
1630 {
1631 if (*q2 == '<')
1632 nesting_level++;
1633 else if (*q2 == '>')
1634 nesting_level--;
1635 else if (*q2 == ':' && nesting_level == 0)
1636 break;
1637 }
1638 p = q2;
1639 if (*p != ':')
1640 return error_type (pp, objfile);
1641 }
71c25dea
TT
1642 type_name = NULL;
1643 if (current_subfile->language == language_cplus)
1644 {
2f408ecb 1645 char *name = (char *) alloca (p - *pp + 1);
433759f7 1646
71c25dea
TT
1647 memcpy (name, *pp, p - *pp);
1648 name[p - *pp] = '\0';
2f408ecb
PA
1649
1650 std::string new_name = cp_canonicalize_string (name);
1651 if (!new_name.empty ())
71c25dea 1652 {
224c3ddb
SM
1653 type_name
1654 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2f408ecb
PA
1655 new_name.c_str (),
1656 new_name.length ());
71c25dea
TT
1657 }
1658 }
1659 if (type_name == NULL)
1660 {
a121b7c1 1661 char *to = type_name = (char *)
3e43a32a 1662 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1663
1664 /* Copy the name. */
1665 from = *pp + 1;
1666 while (from < p)
1667 *to++ = *from++;
1668 *to = '\0';
1669 }
c5aa993b 1670
c906108c
SS
1671 /* Set the pointer ahead of the name which we just read, and
1672 the colon. */
71c25dea 1673 *pp = p + 1;
c906108c
SS
1674 }
1675
149d821b
JB
1676 /* If this type has already been declared, then reuse the same
1677 type, rather than allocating a new one. This saves some
1678 memory. */
c906108c
SS
1679
1680 for (ppt = file_symbols; ppt; ppt = ppt->next)
1681 for (i = 0; i < ppt->nsyms; i++)
1682 {
1683 struct symbol *sym = ppt->symbol[i];
1684
1685 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1686 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1687 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1688 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1689 {
b99607ea 1690 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1691 type = SYMBOL_TYPE (sym);
149d821b 1692 if (typenums[0] != -1)
46bf5051 1693 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1694 return type;
1695 }
1696 }
1697
1698 /* Didn't find the type to which this refers, so we must
1699 be dealing with a forward reference. Allocate a type
1700 structure for it, and keep track of it so we can
1701 fill in the rest of the fields when we get the full
1702 type. */
1703 type = dbx_alloc_type (typenums, objfile);
1704 TYPE_CODE (type) = code;
1705 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1706 INIT_CPLUS_SPECIFIC (type);
876cecd0 1707 TYPE_STUB (type) = 1;
c906108c 1708
bf362611 1709 add_undefined_type (type, typenums);
c906108c
SS
1710 return type;
1711 }
1712
c5aa993b 1713 case '-': /* RS/6000 built-in type */
c906108c
SS
1714 case '0':
1715 case '1':
1716 case '2':
1717 case '3':
1718 case '4':
1719 case '5':
1720 case '6':
1721 case '7':
1722 case '8':
1723 case '9':
1724 case '(':
1725 (*pp)--;
1726
1727 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1728 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1729
1730 /* Allocate and enter the typedef type first.
c378eb4e 1731 This handles recursive types. */
c906108c
SS
1732 type = dbx_alloc_type (typenums, objfile);
1733 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1734 {
1735 struct type *xtype = read_type (pp, objfile);
433759f7 1736
c906108c
SS
1737 if (type == xtype)
1738 {
1739 /* It's being defined as itself. That means it is "void". */
1740 TYPE_CODE (type) = TYPE_CODE_VOID;
1741 TYPE_LENGTH (type) = 1;
1742 }
1743 else if (type_size >= 0 || is_string)
1744 {
dd6bda65
DJ
1745 /* This is the absolute wrong way to construct types. Every
1746 other debug format has found a way around this problem and
1747 the related problems with unnecessarily stubbed types;
1748 someone motivated should attempt to clean up the issue
1749 here as well. Once a type pointed to has been created it
13a393b0
JB
1750 should not be modified.
1751
1752 Well, it's not *absolutely* wrong. Constructing recursive
1753 types (trees, linked lists) necessarily entails modifying
1754 types after creating them. Constructing any loop structure
1755 entails side effects. The Dwarf 2 reader does handle this
1756 more gracefully (it never constructs more than once
1757 instance of a type object, so it doesn't have to copy type
1758 objects wholesale), but it still mutates type objects after
1759 other folks have references to them.
1760
1761 Keep in mind that this circularity/mutation issue shows up
1762 at the source language level, too: C's "incomplete types",
1763 for example. So the proper cleanup, I think, would be to
1764 limit GDB's type smashing to match exactly those required
1765 by the source language. So GDB could have a
1766 "complete_this_type" function, but never create unnecessary
1767 copies of a type otherwise. */
dd6bda65 1768 replace_type (type, xtype);
c906108c
SS
1769 TYPE_NAME (type) = NULL;
1770 TYPE_TAG_NAME (type) = NULL;
1771 }
1772 else
1773 {
876cecd0 1774 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1775 TYPE_TARGET_TYPE (type) = xtype;
1776 }
1777 }
1778 break;
1779
c5aa993b
JM
1780 /* In the following types, we must be sure to overwrite any existing
1781 type that the typenums refer to, rather than allocating a new one
1782 and making the typenums point to the new one. This is because there
1783 may already be pointers to the existing type (if it had been
1784 forward-referenced), and we must change it to a pointer, function,
1785 reference, or whatever, *in-place*. */
c906108c 1786
e2cd42dd 1787 case '*': /* Pointer to another type */
c906108c 1788 type1 = read_type (pp, objfile);
46bf5051 1789 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1790 break;
1791
c5aa993b 1792 case '&': /* Reference to another type */
c906108c 1793 type1 = read_type (pp, objfile);
3b224330
AV
1794 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1795 TYPE_CODE_REF);
c906108c
SS
1796 break;
1797
c5aa993b 1798 case 'f': /* Function returning another type */
c906108c 1799 type1 = read_type (pp, objfile);
0c8b41f1 1800 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1801 break;
1802
da966255
JB
1803 case 'g': /* Prototyped function. (Sun) */
1804 {
1805 /* Unresolved questions:
1806
1807 - According to Sun's ``STABS Interface Manual'', for 'f'
1808 and 'F' symbol descriptors, a `0' in the argument type list
1809 indicates a varargs function. But it doesn't say how 'g'
1810 type descriptors represent that info. Someone with access
1811 to Sun's toolchain should try it out.
1812
1813 - According to the comment in define_symbol (search for
1814 `process_prototype_types:'), Sun emits integer arguments as
1815 types which ref themselves --- like `void' types. Do we
1816 have to deal with that here, too? Again, someone with
1817 access to Sun's toolchain should try it out and let us
1818 know. */
1819
1820 const char *type_start = (*pp) - 1;
1821 struct type *return_type = read_type (pp, objfile);
1822 struct type *func_type
46bf5051 1823 = make_function_type (return_type,
0c8b41f1 1824 dbx_lookup_type (typenums, objfile));
da966255
JB
1825 struct type_list {
1826 struct type *type;
1827 struct type_list *next;
1828 } *arg_types = 0;
1829 int num_args = 0;
1830
1831 while (**pp && **pp != '#')
1832 {
1833 struct type *arg_type = read_type (pp, objfile);
8d749320 1834 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1835 newobj->type = arg_type;
1836 newobj->next = arg_types;
1837 arg_types = newobj;
da966255
JB
1838 num_args++;
1839 }
1840 if (**pp == '#')
1841 ++*pp;
1842 else
1843 {
23136709 1844 complaint (&symfile_complaints,
3e43a32a
MS
1845 _("Prototyped function type didn't "
1846 "end arguments with `#':\n%s"),
23136709 1847 type_start);
da966255
JB
1848 }
1849
1850 /* If there is just one argument whose type is `void', then
1851 that's just an empty argument list. */
1852 if (arg_types
1853 && ! arg_types->next
1854 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1855 num_args = 0;
1856
1857 TYPE_FIELDS (func_type)
1858 = (struct field *) TYPE_ALLOC (func_type,
1859 num_args * sizeof (struct field));
1860 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1861 {
1862 int i;
1863 struct type_list *t;
1864
1865 /* We stuck each argument type onto the front of the list
1866 when we read it, so the list is reversed. Build the
1867 fields array right-to-left. */
1868 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1869 TYPE_FIELD_TYPE (func_type, i) = t->type;
1870 }
1871 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1872 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1873
1874 type = func_type;
1875 break;
1876 }
1877
c5aa993b 1878 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1879 type = read_type (pp, objfile);
d7242108 1880 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1881 dbx_lookup_type (typenums, objfile));
c906108c
SS
1882 break;
1883
c5aa993b 1884 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1885 type = read_type (pp, objfile);
d7242108 1886 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1887 dbx_lookup_type (typenums, objfile));
c906108c
SS
1888 break;
1889
1890 case '@':
c5aa993b
JM
1891 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1892 { /* Member (class & variable) type */
c906108c
SS
1893 /* FIXME -- we should be doing smash_to_XXX types here. */
1894
1895 struct type *domain = read_type (pp, objfile);
1896 struct type *memtype;
1897
1898 if (**pp != ',')
1899 /* Invalid member type data format. */
1900 return error_type (pp, objfile);
1901 ++*pp;
1902
1903 memtype = read_type (pp, objfile);
1904 type = dbx_alloc_type (typenums, objfile);
0d5de010 1905 smash_to_memberptr_type (type, domain, memtype);
c906108c 1906 }
c5aa993b
JM
1907 else
1908 /* type attribute */
c906108c 1909 {
a121b7c1 1910 const char *attr = *pp;
433759f7 1911
c906108c
SS
1912 /* Skip to the semicolon. */
1913 while (**pp != ';' && **pp != '\0')
1914 ++(*pp);
1915 if (**pp == '\0')
1916 return error_type (pp, objfile);
1917 else
c5aa993b 1918 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1919
1920 switch (*attr)
1921 {
e2cd42dd 1922 case 's': /* Size attribute */
c906108c
SS
1923 type_size = atoi (attr + 1);
1924 if (type_size <= 0)
1925 type_size = -1;
1926 break;
1927
e2cd42dd 1928 case 'S': /* String attribute */
c378eb4e 1929 /* FIXME: check to see if following type is array? */
c906108c
SS
1930 is_string = 1;
1931 break;
1932
e2cd42dd 1933 case 'V': /* Vector attribute */
c378eb4e 1934 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1935 is_vector = 1;
1936 break;
1937
c906108c
SS
1938 default:
1939 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1940 can invent new ones. */
c906108c
SS
1941 break;
1942 }
1943 ++*pp;
1944 goto again;
1945 }
1946 break;
1947
c5aa993b 1948 case '#': /* Method (class & fn) type */
c906108c
SS
1949 if ((*pp)[0] == '#')
1950 {
1951 /* We'll get the parameter types from the name. */
1952 struct type *return_type;
1953
1954 (*pp)++;
1955 return_type = read_type (pp, objfile);
1956 if (*(*pp)++ != ';')
23136709 1957 complaint (&symfile_complaints,
3e43a32a
MS
1958 _("invalid (minimal) member type "
1959 "data format at symtab pos %d."),
23136709 1960 symnum);
c906108c
SS
1961 type = allocate_stub_method (return_type);
1962 if (typenums[0] != -1)
46bf5051 1963 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1964 }
1965 else
1966 {
1967 struct type *domain = read_type (pp, objfile);
1968 struct type *return_type;
ad2f7632
DJ
1969 struct field *args;
1970 int nargs, varargs;
c906108c
SS
1971
1972 if (**pp != ',')
1973 /* Invalid member type data format. */
1974 return error_type (pp, objfile);
1975 else
1976 ++(*pp);
1977
1978 return_type = read_type (pp, objfile);
ad2f7632 1979 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1980 if (args == NULL)
1981 return error_type (pp, objfile);
c906108c 1982 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1983 smash_to_method_type (type, domain, return_type, args,
1984 nargs, varargs);
c906108c
SS
1985 }
1986 break;
1987
c5aa993b 1988 case 'r': /* Range type */
94e10a22 1989 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1990 if (typenums[0] != -1)
46bf5051 1991 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1992 break;
1993
1994 case 'b':
c906108c
SS
1995 {
1996 /* Sun ACC builtin int type */
1997 type = read_sun_builtin_type (pp, typenums, objfile);
1998 if (typenums[0] != -1)
46bf5051 1999 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2000 }
2001 break;
2002
c5aa993b 2003 case 'R': /* Sun ACC builtin float type */
c906108c
SS
2004 type = read_sun_floating_type (pp, typenums, objfile);
2005 if (typenums[0] != -1)
46bf5051 2006 *dbx_lookup_type (typenums, objfile) = type;
c906108c 2007 break;
c5aa993b
JM
2008
2009 case 'e': /* Enumeration type */
c906108c
SS
2010 type = dbx_alloc_type (typenums, objfile);
2011 type = read_enum_type (pp, type, objfile);
2012 if (typenums[0] != -1)
46bf5051 2013 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2014 break;
2015
c5aa993b
JM
2016 case 's': /* Struct type */
2017 case 'u': /* Union type */
2ae1c2d2
JB
2018 {
2019 enum type_code type_code = TYPE_CODE_UNDEF;
2020 type = dbx_alloc_type (typenums, objfile);
2021 switch (type_descriptor)
2022 {
2023 case 's':
2024 type_code = TYPE_CODE_STRUCT;
2025 break;
2026 case 'u':
2027 type_code = TYPE_CODE_UNION;
2028 break;
2029 }
2030 type = read_struct_type (pp, type, type_code, objfile);
2031 break;
2032 }
c906108c 2033
c5aa993b 2034 case 'a': /* Array type */
c906108c
SS
2035 if (**pp != 'r')
2036 return error_type (pp, objfile);
2037 ++*pp;
c5aa993b 2038
c906108c
SS
2039 type = dbx_alloc_type (typenums, objfile);
2040 type = read_array_type (pp, type, objfile);
2041 if (is_string)
2042 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2043 if (is_vector)
ea37ba09 2044 make_vector_type (type);
c906108c
SS
2045 break;
2046
6b1755ce 2047 case 'S': /* Set type */
c906108c 2048 type1 = read_type (pp, objfile);
c5aa993b 2049 type = create_set_type ((struct type *) NULL, type1);
c906108c 2050 if (typenums[0] != -1)
46bf5051 2051 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2052 break;
2053
2054 default:
c378eb4e
MS
2055 --*pp; /* Go back to the symbol in error. */
2056 /* Particularly important if it was \0! */
c906108c
SS
2057 return error_type (pp, objfile);
2058 }
2059
2060 if (type == 0)
2061 {
8a3fe4f8 2062 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2063 return error_type (pp, objfile);
2064 }
2065
2066 /* Size specified in a type attribute overrides any other size. */
2067 if (type_size != -1)
2068 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2069
2070 return type;
2071}
2072\f
2073/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2074 Return the proper type node for a given builtin type number. */
c906108c 2075
46bf5051
UW
2076static const struct objfile_data *rs6000_builtin_type_data;
2077
c906108c 2078static struct type *
46bf5051 2079rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2080{
19ba03f4
SM
2081 struct type **negative_types
2082 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2083
c906108c
SS
2084 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2085#define NUMBER_RECOGNIZED 34
c906108c
SS
2086 struct type *rettype = NULL;
2087
2088 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2089 {
e2e0b3e5 2090 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2091 return objfile_type (objfile)->builtin_error;
c906108c 2092 }
46bf5051
UW
2093
2094 if (!negative_types)
2095 {
2096 /* This includes an empty slot for type number -0. */
2097 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2098 NUMBER_RECOGNIZED + 1, struct type *);
2099 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2100 }
2101
c906108c
SS
2102 if (negative_types[-typenum] != NULL)
2103 return negative_types[-typenum];
2104
2105#if TARGET_CHAR_BIT != 8
c5aa993b 2106#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2107 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2108 that if that ever becomes not true, the correct fix will be to
2109 make the size in the struct type to be in bits, not in units of
2110 TARGET_CHAR_BIT. */
2111#endif
2112
2113 switch (-typenum)
2114 {
2115 case 1:
2116 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2117 by the debugging format. If there is a type called "int" which
2118 is other than 32 bits, then it should use a new negative type
2119 number (or avoid negative type numbers for that case).
2120 See stabs.texinfo. */
19f392bc 2121 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2122 break;
2123 case 2:
19f392bc 2124 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2125 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2126 break;
2127 case 3:
19f392bc 2128 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2129 break;
2130 case 4:
19f392bc 2131 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2132 break;
2133 case 5:
19f392bc 2134 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2135 break;
2136 case 6:
19f392bc 2137 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2138 break;
2139 case 7:
19f392bc 2140 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2141 break;
2142 case 8:
19f392bc 2143 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2144 break;
2145 case 9:
19f392bc 2146 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2147 break;
c906108c 2148 case 10:
19f392bc 2149 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2150 break;
2151 case 11:
77b7c781 2152 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
c906108c
SS
2153 break;
2154 case 12:
2155 /* IEEE single precision (32 bit). */
49f190bc
UW
2156 rettype = init_float_type (objfile, 32, "float",
2157 floatformats_ieee_single);
c906108c
SS
2158 break;
2159 case 13:
2160 /* IEEE double precision (64 bit). */
49f190bc
UW
2161 rettype = init_float_type (objfile, 64, "double",
2162 floatformats_ieee_double);
c906108c
SS
2163 break;
2164 case 14:
2165 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2166 different sizes for "long double" should use different negative
2167 type numbers. See stabs.texinfo. */
49f190bc
UW
2168 rettype = init_float_type (objfile, 64, "long double",
2169 floatformats_ieee_double);
c906108c
SS
2170 break;
2171 case 15:
19f392bc 2172 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2173 break;
2174 case 16:
19f392bc 2175 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2176 break;
2177 case 17:
49f190bc
UW
2178 rettype = init_float_type (objfile, 32, "short real",
2179 floatformats_ieee_single);
c906108c
SS
2180 break;
2181 case 18:
49f190bc
UW
2182 rettype = init_float_type (objfile, 64, "real",
2183 floatformats_ieee_double);
c906108c
SS
2184 break;
2185 case 19:
19f392bc 2186 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2187 break;
2188 case 20:
19f392bc 2189 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2190 break;
2191 case 21:
19f392bc 2192 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2193 break;
2194 case 22:
19f392bc 2195 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2196 break;
2197 case 23:
19f392bc 2198 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2199 break;
2200 case 24:
19f392bc 2201 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2202 break;
2203 case 25:
2204 /* Complex type consisting of two IEEE single precision values. */
19f392bc
UW
2205 rettype = init_complex_type (objfile, "complex",
2206 rs6000_builtin_type (12, objfile));
c906108c
SS
2207 break;
2208 case 26:
2209 /* Complex type consisting of two IEEE double precision values. */
19f392bc
UW
2210 rettype = init_complex_type (objfile, "double complex",
2211 rs6000_builtin_type (13, objfile));
c906108c
SS
2212 break;
2213 case 27:
19f392bc 2214 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2215 break;
2216 case 28:
19f392bc 2217 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2218 break;
2219 case 29:
19f392bc 2220 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2221 break;
2222 case 30:
19f392bc 2223 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2224 break;
2225 case 31:
19f392bc 2226 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2227 break;
2228 case 32:
19f392bc 2229 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2230 break;
2231 case 33:
19f392bc 2232 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2233 break;
2234 case 34:
19f392bc 2235 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2236 break;
2237 }
2238 negative_types[-typenum] = rettype;
2239 return rettype;
2240}
2241\f
2242/* This page contains subroutines of read_type. */
2243
0d5cff50
DE
2244/* Wrapper around method_name_from_physname to flag a complaint
2245 if there is an error. */
de17c821 2246
0d5cff50
DE
2247static char *
2248stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2249{
2250 char *method_name;
2251
2252 method_name = method_name_from_physname (physname);
2253
2254 if (method_name == NULL)
c263362b
DJ
2255 {
2256 complaint (&symfile_complaints,
e2e0b3e5 2257 _("Method has bad physname %s\n"), physname);
0d5cff50 2258 return NULL;
c263362b 2259 }
de17c821 2260
0d5cff50 2261 return method_name;
de17c821
DJ
2262}
2263
c906108c
SS
2264/* Read member function stabs info for C++ classes. The form of each member
2265 function data is:
2266
c5aa993b 2267 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2268
2269 An example with two member functions is:
2270
c5aa993b 2271 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2272
2273 For the case of overloaded operators, the format is op$::*.funcs, where
2274 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2275 name (such as `+=') and `.' marks the end of the operator name.
2276
2277 Returns 1 for success, 0 for failure. */
2278
2279static int
a121b7c1
PA
2280read_member_functions (struct field_info *fip, const char **pp,
2281 struct type *type, struct objfile *objfile)
c906108c
SS
2282{
2283 int nfn_fields = 0;
2284 int length = 0;
c906108c
SS
2285 int i;
2286 struct next_fnfield
2287 {
2288 struct next_fnfield *next;
2289 struct fn_field fn_field;
c5aa993b
JM
2290 }
2291 *sublist;
c906108c
SS
2292 struct type *look_ahead_type;
2293 struct next_fnfieldlist *new_fnlist;
2294 struct next_fnfield *new_sublist;
2295 char *main_fn_name;
a121b7c1 2296 const char *p;
c5aa993b 2297
c906108c 2298 /* Process each list until we find something that is not a member function
c378eb4e 2299 or find the end of the functions. */
c906108c
SS
2300
2301 while (**pp != ';')
2302 {
2303 /* We should be positioned at the start of the function name.
c5aa993b 2304 Scan forward to find the first ':' and if it is not the
c378eb4e 2305 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2306 p = *pp;
2307 while (*p != ':')
2308 {
2309 p++;
2310 }
2311 if (p[1] != ':')
2312 {
2313 break;
2314 }
2315
2316 sublist = NULL;
2317 look_ahead_type = NULL;
2318 length = 0;
c5aa993b 2319
8d749320 2320 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2321 make_cleanup (xfree, new_fnlist);
c5aa993b 2322
c906108c
SS
2323 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2324 {
2325 /* This is a completely wierd case. In order to stuff in the
2326 names that might contain colons (the usual name delimiter),
2327 Mike Tiemann defined a different name format which is
2328 signalled if the identifier is "op$". In that case, the
2329 format is "op$::XXXX." where XXXX is the name. This is
2330 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2331 /* This lets the user type "break operator+".
2332 We could just put in "+" as the name, but that wouldn't
2333 work for "*". */
8343f86c 2334 static char opname[32] = "op$";
c906108c 2335 char *o = opname + 3;
c5aa993b 2336
c906108c
SS
2337 /* Skip past '::'. */
2338 *pp = p + 2;
2339
2340 STABS_CONTINUE (pp, objfile);
2341 p = *pp;
2342 while (*p != '.')
2343 {
2344 *o++ = *p++;
2345 }
2346 main_fn_name = savestring (opname, o - opname);
2347 /* Skip past '.' */
2348 *pp = p + 1;
2349 }
2350 else
2351 {
2352 main_fn_name = savestring (*pp, p - *pp);
2353 /* Skip past '::'. */
2354 *pp = p + 2;
2355 }
c5aa993b
JM
2356 new_fnlist->fn_fieldlist.name = main_fn_name;
2357
c906108c
SS
2358 do
2359 {
8d749320 2360 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2361 make_cleanup (xfree, new_sublist);
c5aa993b 2362
c906108c
SS
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
c378eb4e 2366 /* Normal case. */
c906108c 2367 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
c5aa993b 2379 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2380 look_ahead_type = NULL;
2381 }
c5aa993b 2382
c906108c
SS
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
c5aa993b 2389
09e2d7c7
DE
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 else
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
c906108c 2396
09e2d7c7 2397 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2398 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2399 {
4bfb94b8 2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2401 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2402 new_sublist->fn_field.is_stub = 1;
c906108c 2403 }
09e2d7c7 2404
c5aa993b 2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2406 *pp = p + 1;
c5aa993b 2407
c906108c
SS
2408 /* Set this member function's visibility fields. */
2409 switch (*(*pp)++)
2410 {
c5aa993b
JM
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2413 break;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2416 break;
c906108c 2417 }
c5aa993b 2418
c906108c
SS
2419 STABS_CONTINUE (pp, objfile);
2420 switch (**pp)
2421 {
c378eb4e 2422 case 'A': /* Normal functions. */
c5aa993b
JM
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
c378eb4e 2427 case 'B': /* `const' member functions. */
c5aa993b
JM
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2430 (*pp)++;
2431 break;
c378eb4e 2432 case 'C': /* `volatile' member function. */
c5aa993b
JM
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
c378eb4e 2437 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2440 (*pp)++;
2441 break;
3e43a32a 2442 case '*': /* File compiled with g++ version 1 --
c378eb4e 2443 no info. */
c5aa993b
JM
2444 case '?':
2445 case '.':
2446 break;
2447 default:
23136709 2448 complaint (&symfile_complaints,
3e43a32a
MS
2449 _("const/volatile indicator missing, got '%c'"),
2450 **pp);
c5aa993b 2451 break;
c906108c 2452 }
c5aa993b 2453
c906108c
SS
2454 switch (*(*pp)++)
2455 {
c5aa993b 2456 case '*':
c906108c
SS
2457 {
2458 int nbits;
c5aa993b 2459 /* virtual member function, followed by index.
c906108c
SS
2460 The sign bit is set to distinguish pointers-to-methods
2461 from virtual function indicies. Since the array is
2462 in words, the quantity must be shifted left by 1
2463 on 16 bit machine, and by 2 on 32 bit machine, forcing
2464 the sign bit out, and usable as a valid index into
2465 the array. Remove the sign bit here. */
c5aa993b 2466 new_sublist->fn_field.voffset =
94e10a22 2467 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2468 if (nbits != 0)
2469 return 0;
c5aa993b 2470
c906108c
SS
2471 STABS_CONTINUE (pp, objfile);
2472 if (**pp == ';' || **pp == '\0')
2473 {
2474 /* Must be g++ version 1. */
c5aa993b 2475 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2476 }
2477 else
2478 {
2479 /* Figure out from whence this virtual function came.
2480 It may belong to virtual function table of
2481 one of its baseclasses. */
2482 look_ahead_type = read_type (pp, objfile);
2483 if (**pp == ':')
2484 {
c378eb4e 2485 /* g++ version 1 overloaded methods. */
c906108c
SS
2486 }
2487 else
2488 {
c5aa993b 2489 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2490 if (**pp != ';')
2491 {
2492 return 0;
2493 }
2494 else
2495 {
2496 ++*pp;
2497 }
2498 look_ahead_type = NULL;
2499 }
2500 }
2501 break;
2502 }
c5aa993b
JM
2503 case '?':
2504 /* static member function. */
4ea09c10
PS
2505 {
2506 int slen = strlen (main_fn_name);
2507
2508 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2509
2510 /* For static member functions, we can't tell if they
2511 are stubbed, as they are put out as functions, and not as
2512 methods.
2513 GCC v2 emits the fully mangled name if
2514 dbxout.c:flag_minimal_debug is not set, so we have to
2515 detect a fully mangled physname here and set is_stub
2516 accordingly. Fully mangled physnames in v2 start with
2517 the member function name, followed by two underscores.
2518 GCC v3 currently always emits stubbed member functions,
2519 but with fully mangled physnames, which start with _Z. */
2520 if (!(strncmp (new_sublist->fn_field.physname,
2521 main_fn_name, slen) == 0
2522 && new_sublist->fn_field.physname[slen] == '_'
2523 && new_sublist->fn_field.physname[slen + 1] == '_'))
2524 {
2525 new_sublist->fn_field.is_stub = 1;
2526 }
2527 break;
2528 }
c5aa993b
JM
2529
2530 default:
2531 /* error */
23136709 2532 complaint (&symfile_complaints,
3e43a32a
MS
2533 _("member function type missing, got '%c'"),
2534 (*pp)[-1]);
c5aa993b
JM
2535 /* Fall through into normal member function. */
2536
2537 case '.':
2538 /* normal member function. */
2539 new_sublist->fn_field.voffset = 0;
2540 new_sublist->fn_field.fcontext = 0;
2541 break;
c906108c 2542 }
c5aa993b
JM
2543
2544 new_sublist->next = sublist;
c906108c
SS
2545 sublist = new_sublist;
2546 length++;
2547 STABS_CONTINUE (pp, objfile);
2548 }
2549 while (**pp != ';' && **pp != '\0');
c5aa993b 2550
c906108c 2551 (*pp)++;
0c867556 2552 STABS_CONTINUE (pp, objfile);
c5aa993b 2553
0c867556
PS
2554 /* Skip GCC 3.X member functions which are duplicates of the callable
2555 constructor/destructor. */
6cbbcdfe
KS
2556 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2557 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2558 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2559 {
0c867556 2560 xfree (main_fn_name);
c906108c 2561 }
0c867556
PS
2562 else
2563 {
de17c821
DJ
2564 int has_stub = 0;
2565 int has_destructor = 0, has_other = 0;
2566 int is_v3 = 0;
2567 struct next_fnfield *tmp_sublist;
2568
2569 /* Various versions of GCC emit various mostly-useless
2570 strings in the name field for special member functions.
2571
2572 For stub methods, we need to defer correcting the name
2573 until we are ready to unstub the method, because the current
2574 name string is used by gdb_mangle_name. The only stub methods
2575 of concern here are GNU v2 operators; other methods have their
2576 names correct (see caveat below).
2577
2578 For non-stub methods, in GNU v3, we have a complete physname.
2579 Therefore we can safely correct the name now. This primarily
2580 affects constructors and destructors, whose name will be
2581 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2582 operators will also have incorrect names; for instance,
2583 "operator int" will be named "operator i" (i.e. the type is
2584 mangled).
2585
2586 For non-stub methods in GNU v2, we have no easy way to
2587 know if we have a complete physname or not. For most
2588 methods the result depends on the platform (if CPLUS_MARKER
2589 can be `$' or `.', it will use minimal debug information, or
2590 otherwise the full physname will be included).
2591
2592 Rather than dealing with this, we take a different approach.
2593 For v3 mangled names, we can use the full physname; for v2,
2594 we use cplus_demangle_opname (which is actually v2 specific),
2595 because the only interesting names are all operators - once again
2596 barring the caveat below. Skip this process if any method in the
2597 group is a stub, to prevent our fouling up the workings of
2598 gdb_mangle_name.
2599
2600 The caveat: GCC 2.95.x (and earlier?) put constructors and
2601 destructors in the same method group. We need to split this
2602 into two groups, because they should have different names.
2603 So for each method group we check whether it contains both
2604 routines whose physname appears to be a destructor (the physnames
2605 for and destructors are always provided, due to quirks in v2
2606 mangling) and routines whose physname does not appear to be a
2607 destructor. If so then we break up the list into two halves.
2608 Even if the constructors and destructors aren't in the same group
2609 the destructor will still lack the leading tilde, so that also
2610 needs to be fixed.
2611
2612 So, to summarize what we expect and handle here:
2613
2614 Given Given Real Real Action
2615 method name physname physname method name
2616
2617 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2618 [now or later]
2619 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2620 rename
2621 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2622 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2623 */
2624
2625 tmp_sublist = sublist;
2626 while (tmp_sublist != NULL)
2627 {
2628 if (tmp_sublist->fn_field.is_stub)
2629 has_stub = 1;
2630 if (tmp_sublist->fn_field.physname[0] == '_'
2631 && tmp_sublist->fn_field.physname[1] == 'Z')
2632 is_v3 = 1;
2633
2634 if (is_destructor_name (tmp_sublist->fn_field.physname))
2635 has_destructor++;
2636 else
2637 has_other++;
2638
2639 tmp_sublist = tmp_sublist->next;
2640 }
2641
2642 if (has_destructor && has_other)
2643 {
2644 struct next_fnfieldlist *destr_fnlist;
2645 struct next_fnfield *last_sublist;
2646
2647 /* Create a new fn_fieldlist for the destructors. */
2648
8d749320 2649 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2650 make_cleanup (xfree, destr_fnlist);
8d749320 2651
de17c821 2652 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2653 = obconcat (&objfile->objfile_obstack, "~",
2654 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2655
8d749320
SM
2656 destr_fnlist->fn_fieldlist.fn_fields =
2657 XOBNEWVEC (&objfile->objfile_obstack,
2658 struct fn_field, has_destructor);
de17c821
DJ
2659 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2660 sizeof (struct fn_field) * has_destructor);
2661 tmp_sublist = sublist;
2662 last_sublist = NULL;
2663 i = 0;
2664 while (tmp_sublist != NULL)
2665 {
2666 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2667 {
2668 tmp_sublist = tmp_sublist->next;
2669 continue;
2670 }
2671
2672 destr_fnlist->fn_fieldlist.fn_fields[i++]
2673 = tmp_sublist->fn_field;
2674 if (last_sublist)
2675 last_sublist->next = tmp_sublist->next;
2676 else
2677 sublist = tmp_sublist->next;
2678 last_sublist = tmp_sublist;
2679 tmp_sublist = tmp_sublist->next;
2680 }
2681
2682 destr_fnlist->fn_fieldlist.length = has_destructor;
2683 destr_fnlist->next = fip->fnlist;
2684 fip->fnlist = destr_fnlist;
2685 nfn_fields++;
de17c821
DJ
2686 length -= has_destructor;
2687 }
2688 else if (is_v3)
2689 {
2690 /* v3 mangling prevents the use of abbreviated physnames,
2691 so we can do this here. There are stubbed methods in v3
2692 only:
2693 - in -gstabs instead of -gstabs+
2694 - or for static methods, which are output as a function type
2695 instead of a method type. */
0d5cff50
DE
2696 char *new_method_name =
2697 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2698
0d5cff50
DE
2699 if (new_method_name != NULL
2700 && strcmp (new_method_name,
2701 new_fnlist->fn_fieldlist.name) != 0)
2702 {
2703 new_fnlist->fn_fieldlist.name = new_method_name;
2704 xfree (main_fn_name);
2705 }
2706 else
2707 xfree (new_method_name);
de17c821
DJ
2708 }
2709 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2710 {
1754f103 2711 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2712 obconcat (&objfile->objfile_obstack,
2713 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2714 xfree (main_fn_name);
2715 }
2716 else if (!has_stub)
2717 {
2718 char dem_opname[256];
2719 int ret;
433759f7 2720
de17c821
DJ
2721 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2722 dem_opname, DMGL_ANSI);
2723 if (!ret)
2724 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2725 dem_opname, 0);
2726 if (ret)
2727 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2728 = ((const char *)
2729 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2730 strlen (dem_opname)));
0d5cff50 2731 xfree (main_fn_name);
de17c821
DJ
2732 }
2733
0c867556 2734 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2735 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2736 sizeof (struct fn_field) * length);
2737 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2738 sizeof (struct fn_field) * length);
2739 for (i = length; (i--, sublist); sublist = sublist->next)
2740 {
2741 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2742 }
c5aa993b 2743
0c867556
PS
2744 new_fnlist->fn_fieldlist.length = length;
2745 new_fnlist->next = fip->fnlist;
2746 fip->fnlist = new_fnlist;
2747 nfn_fields++;
0c867556 2748 }
c906108c
SS
2749 }
2750
2751 if (nfn_fields)
2752 {
2753 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2754 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2755 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2756 memset (TYPE_FN_FIELDLISTS (type), 0,
2757 sizeof (struct fn_fieldlist) * nfn_fields);
2758 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2759 }
2760
2761 return 1;
2762}
2763
2764/* Special GNU C++ name.
2765
2766 Returns 1 for success, 0 for failure. "failure" means that we can't
2767 keep parsing and it's time for error_type(). */
2768
2769static int
a121b7c1 2770read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
fba45db2 2771 struct objfile *objfile)
c906108c 2772{
a121b7c1 2773 const char *p;
0d5cff50 2774 const char *name;
c906108c
SS
2775 char cpp_abbrev;
2776 struct type *context;
2777
2778 p = *pp;
2779 if (*++p == 'v')
2780 {
2781 name = NULL;
2782 cpp_abbrev = *++p;
2783
2784 *pp = p + 1;
2785
2786 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2787 where the type number before the ':' is the "context" and
2788 everything after is a regular type definition. Lookup the
c378eb4e 2789 type, find it's name, and construct the field name. */
c906108c
SS
2790
2791 context = read_type (pp, objfile);
2792
2793 switch (cpp_abbrev)
2794 {
c5aa993b 2795 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2796 name = type_name_no_tag (context);
2797 if (name == NULL)
433759f7
MS
2798 {
2799 name = "";
2800 }
48cb83fd
JK
2801 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2802 vptr_name, name, (char *) NULL);
c5aa993b 2803 break;
c906108c 2804
c5aa993b
JM
2805 case 'b': /* $vb -- a virtual bsomethingorother */
2806 name = type_name_no_tag (context);
2807 if (name == NULL)
2808 {
23136709 2809 complaint (&symfile_complaints,
3e43a32a
MS
2810 _("C++ abbreviated type name "
2811 "unknown at symtab pos %d"),
23136709 2812 symnum);
c5aa993b
JM
2813 name = "FOO";
2814 }
48cb83fd
JK
2815 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2816 name, (char *) NULL);
c5aa993b 2817 break;
c906108c 2818
c5aa993b 2819 default:
23136709 2820 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2821 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2822 "INVALID_CPLUSPLUS_ABBREV",
2823 (char *) NULL);
c5aa993b 2824 break;
c906108c
SS
2825 }
2826
2827 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2828 field type. */
c906108c
SS
2829
2830 p = ++(*pp);
2831 if (p[-1] != ':')
2832 {
23136709 2833 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2834 return 0;
2835 }
2836 fip->list->field.type = read_type (pp, objfile);
2837 if (**pp == ',')
c5aa993b 2838 (*pp)++; /* Skip the comma. */
c906108c
SS
2839 else
2840 return 0;
2841
2842 {
2843 int nbits;
433759f7 2844
f41f5e61
PA
2845 SET_FIELD_BITPOS (fip->list->field,
2846 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2847 if (nbits != 0)
2848 return 0;
2849 }
2850 /* This field is unpacked. */
2851 FIELD_BITSIZE (fip->list->field) = 0;
2852 fip->list->visibility = VISIBILITY_PRIVATE;
2853 }
2854 else
2855 {
23136709 2856 invalid_cpp_abbrev_complaint (*pp);
c906108c 2857 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2858 better return 0. If we returned 1, we would need to at least advance
2859 *pp to avoid an infinite loop. */
c906108c
SS
2860 return 0;
2861 }
2862 return 1;
2863}
2864
2865static void
a121b7c1 2866read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
fba45db2 2867 struct type *type, struct objfile *objfile)
c906108c 2868{
5e2b427d
UW
2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2870
224c3ddb
SM
2871 fip->list->field.name
2872 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2873 *pp = p + 1;
2874
c378eb4e 2875 /* This means we have a visibility for a field coming. */
c906108c
SS
2876 if (**pp == '/')
2877 {
2878 (*pp)++;
c5aa993b 2879 fip->list->visibility = *(*pp)++;
c906108c
SS
2880 }
2881 else
2882 {
2883 /* normal dbx-style format, no explicit visibility */
c5aa993b 2884 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2885 }
2886
c5aa993b 2887 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2888 if (**pp == ':')
2889 {
2890 p = ++(*pp);
2891#if 0
c378eb4e 2892 /* Possible future hook for nested types. */
c906108c
SS
2893 if (**pp == '!')
2894 {
c5aa993b 2895 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2896 p = ++(*pp);
2897 }
c5aa993b
JM
2898 else
2899 ...;
c906108c 2900#endif
c5aa993b 2901 while (*p != ';')
c906108c
SS
2902 {
2903 p++;
2904 }
2905 /* Static class member. */
2906 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2907 *pp = p + 1;
2908 return;
2909 }
2910 else if (**pp != ',')
2911 {
2912 /* Bad structure-type format. */
23136709 2913 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2914 return;
2915 }
2916
2917 (*pp)++; /* Skip the comma. */
2918
2919 {
2920 int nbits;
433759f7 2921
f41f5e61
PA
2922 SET_FIELD_BITPOS (fip->list->field,
2923 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2924 if (nbits != 0)
2925 {
23136709 2926 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2927 return;
2928 }
94e10a22 2929 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2930 if (nbits != 0)
2931 {
23136709 2932 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2933 return;
2934 }
2935 }
2936
2937 if (FIELD_BITPOS (fip->list->field) == 0
2938 && FIELD_BITSIZE (fip->list->field) == 0)
2939 {
2940 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2941 it is a field which has been optimized out. The correct stab for
2942 this case is to use VISIBILITY_IGNORE, but that is a recent
2943 invention. (2) It is a 0-size array. For example
e2e0b3e5 2944 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2945 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2946 will continue to work, and a 0-size array as a whole doesn't
2947 have any contents to print.
2948
2949 I suspect this probably could also happen with gcc -gstabs (not
2950 -gstabs+) for static fields, and perhaps other C++ extensions.
2951 Hopefully few people use -gstabs with gdb, since it is intended
2952 for dbx compatibility. */
c906108c
SS
2953
2954 /* Ignore this field. */
c5aa993b 2955 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2956 }
2957 else
2958 {
2959 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2960 dbx gives a bit size for all fields.
2961 Note that forward refs cannot be packed,
2962 and treat enums as if they had the width of ints. */
c906108c
SS
2963
2964 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2965
2966 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2967 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2968 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2969 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
c5aa993b 2973 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2974 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2975 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2976 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2977 == gdbarch_int_bit (gdbarch))
c5aa993b 2978 )
c906108c
SS
2979 &&
2980 FIELD_BITPOS (fip->list->field) % 8 == 0)
2981 {
2982 FIELD_BITSIZE (fip->list->field) = 0;
2983 }
2984 }
2985}
2986
2987
2988/* Read struct or class data fields. They have the form:
2989
c5aa993b 2990 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2991
2992 At the end, we see a semicolon instead of a field.
2993
2994 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2995 a static field.
2996
2997 The optional VISIBILITY is one of:
2998
c5aa993b
JM
2999 '/0' (VISIBILITY_PRIVATE)
3000 '/1' (VISIBILITY_PROTECTED)
3001 '/2' (VISIBILITY_PUBLIC)
3002 '/9' (VISIBILITY_IGNORE)
c906108c
SS
3003
3004 or nothing, for C style fields with public visibility.
3005
3006 Returns 1 for success, 0 for failure. */
3007
3008static int
a121b7c1 3009read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3010 struct objfile *objfile)
c906108c 3011{
a121b7c1 3012 const char *p;
fe978cb0 3013 struct nextfield *newobj;
c906108c
SS
3014
3015 /* We better set p right now, in case there are no fields at all... */
3016
3017 p = *pp;
3018
3019 /* Read each data member type until we find the terminating ';' at the end of
3020 the data member list, or break for some other reason such as finding the
c378eb4e 3021 start of the member function list. */
fedbd091 3022 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3023 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3024
fedbd091 3025 while (**pp != ';' && **pp != '\0')
c906108c 3026 {
c906108c
SS
3027 STABS_CONTINUE (pp, objfile);
3028 /* Get space to record the next field's data. */
8d749320 3029 newobj = XCNEW (struct nextfield);
fe978cb0 3030 make_cleanup (xfree, newobj);
8d749320 3031
fe978cb0
PA
3032 newobj->next = fip->list;
3033 fip->list = newobj;
c906108c
SS
3034
3035 /* Get the field name. */
3036 p = *pp;
3037
3038 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3039 unless the CPLUS_MARKER is followed by an underscore, in
3040 which case it is just the name of an anonymous type, which we
3041 should handle like any other type name. */
c906108c
SS
3042
3043 if (is_cplus_marker (p[0]) && p[1] != '_')
3044 {
3045 if (!read_cpp_abbrev (fip, pp, type, objfile))
3046 return 0;
3047 continue;
3048 }
3049
3050 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3051 values. Data members are delimited by a single ':', while member
3052 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3053 functions (if any), terminate scan loop and return. */
c906108c 3054
c5aa993b 3055 while (*p != ':' && *p != '\0')
c906108c
SS
3056 {
3057 p++;
3058 }
3059 if (*p == '\0')
3060 return 0;
3061
3062 /* Check to see if we have hit the member functions yet. */
3063 if (p[1] == ':')
3064 {
3065 break;
3066 }
3067 read_one_struct_field (fip, pp, p, type, objfile);
3068 }
3069 if (p[0] == ':' && p[1] == ':')
3070 {
1b831c93
AC
3071 /* (the deleted) chill the list of fields: the last entry (at
3072 the head) is a partially constructed entry which we now
c378eb4e 3073 scrub. */
c5aa993b 3074 fip->list = fip->list->next;
c906108c
SS
3075 }
3076 return 1;
3077}
9846de1b 3078/* *INDENT-OFF* */
c906108c
SS
3079/* The stabs for C++ derived classes contain baseclass information which
3080 is marked by a '!' character after the total size. This function is
3081 called when we encounter the baseclass marker, and slurps up all the
3082 baseclass information.
3083
3084 Immediately following the '!' marker is the number of base classes that
3085 the class is derived from, followed by information for each base class.
3086 For each base class, there are two visibility specifiers, a bit offset
3087 to the base class information within the derived class, a reference to
3088 the type for the base class, and a terminating semicolon.
3089
3090 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3091 ^^ ^ ^ ^ ^ ^ ^
3092 Baseclass information marker __________________|| | | | | | |
3093 Number of baseclasses __________________________| | | | | | |
3094 Visibility specifiers (2) ________________________| | | | | |
3095 Offset in bits from start of class _________________| | | | |
3096 Type number for base class ___________________________| | | |
3097 Visibility specifiers (2) _______________________________| | |
3098 Offset in bits from start of class ________________________| |
3099 Type number of base class ____________________________________|
3100
3101 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3102/* *INDENT-ON* */
c906108c 3103
c5aa993b
JM
3104
3105
c906108c 3106static int
a121b7c1 3107read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3108 struct objfile *objfile)
c906108c
SS
3109{
3110 int i;
fe978cb0 3111 struct nextfield *newobj;
c906108c
SS
3112
3113 if (**pp != '!')
3114 {
3115 return 1;
3116 }
3117 else
3118 {
c378eb4e 3119 /* Skip the '!' baseclass information marker. */
c906108c
SS
3120 (*pp)++;
3121 }
3122
3123 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3124 {
3125 int nbits;
433759f7 3126
94e10a22 3127 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3128 if (nbits != 0)
3129 return 0;
3130 }
3131
3132#if 0
3133 /* Some stupid compilers have trouble with the following, so break
3134 it up into simpler expressions. */
3135 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3136 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3137#else
3138 {
3139 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3140 char *pointer;
3141
3142 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3143 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3144 }
3145#endif /* 0 */
3146
3147 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3148
3149 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3150 {
8d749320 3151 newobj = XCNEW (struct nextfield);
fe978cb0 3152 make_cleanup (xfree, newobj);
8d749320 3153
fe978cb0
PA
3154 newobj->next = fip->list;
3155 fip->list = newobj;
3156 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3157 field! */
c906108c
SS
3158
3159 STABS_CONTINUE (pp, objfile);
3160 switch (**pp)
3161 {
c5aa993b 3162 case '0':
c378eb4e 3163 /* Nothing to do. */
c5aa993b
JM
3164 break;
3165 case '1':
3166 SET_TYPE_FIELD_VIRTUAL (type, i);
3167 break;
3168 default:
3169 /* Unknown character. Complain and treat it as non-virtual. */
3170 {
23136709 3171 complaint (&symfile_complaints,
3e43a32a
MS
3172 _("Unknown virtual character `%c' for baseclass"),
3173 **pp);
c5aa993b 3174 }
c906108c
SS
3175 }
3176 ++(*pp);
3177
fe978cb0
PA
3178 newobj->visibility = *(*pp)++;
3179 switch (newobj->visibility)
c906108c 3180 {
c5aa993b
JM
3181 case VISIBILITY_PRIVATE:
3182 case VISIBILITY_PROTECTED:
3183 case VISIBILITY_PUBLIC:
3184 break;
3185 default:
3186 /* Bad visibility format. Complain and treat it as
3187 public. */
3188 {
23136709 3189 complaint (&symfile_complaints,
e2e0b3e5 3190 _("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3191 newobj->visibility);
3192 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3193 }
c906108c
SS
3194 }
3195
3196 {
3197 int nbits;
c5aa993b 3198
c906108c
SS
3199 /* The remaining value is the bit offset of the portion of the object
3200 corresponding to this baseclass. Always zero in the absence of
3201 multiple inheritance. */
3202
fe978cb0 3203 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3204 if (nbits != 0)
3205 return 0;
3206 }
3207
3208 /* The last piece of baseclass information is the type of the
c5aa993b 3209 base class. Read it, and remember it's type name as this
c378eb4e 3210 field's name. */
c906108c 3211
fe978cb0
PA
3212 newobj->field.type = read_type (pp, objfile);
3213 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3214
c378eb4e 3215 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3216 if (**pp == ';')
3217 (*pp)++;
3218 else
3219 return 0;
3220 }
3221 return 1;
3222}
3223
3224/* The tail end of stabs for C++ classes that contain a virtual function
3225 pointer contains a tilde, a %, and a type number.
3226 The type number refers to the base class (possibly this class itself) which
3227 contains the vtable pointer for the current class.
3228
3229 This function is called when we have parsed all the method declarations,
3230 so we can look for the vptr base class info. */
3231
3232static int
a121b7c1 3233read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3234 struct objfile *objfile)
c906108c 3235{
a121b7c1 3236 const char *p;
c906108c
SS
3237
3238 STABS_CONTINUE (pp, objfile);
3239
c378eb4e 3240 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3241 if (**pp == ';')
3242 {
3243 (*pp)++;
3244 }
3245
3246 if (**pp == '~')
3247 {
3248 (*pp)++;
3249
3250 if (**pp == '=' || **pp == '+' || **pp == '-')
3251 {
3252 /* Obsolete flags that used to indicate the presence
c378eb4e 3253 of constructors and/or destructors. */
c906108c
SS
3254 (*pp)++;
3255 }
3256
3257 /* Read either a '%' or the final ';'. */
3258 if (*(*pp)++ == '%')
3259 {
3260 /* The next number is the type number of the base class
3261 (possibly our own class) which supplies the vtable for
3262 this class. Parse it out, and search that class to find
3263 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3264 and TYPE_VPTR_FIELDNO. */
3265
3266 struct type *t;
3267 int i;
3268
3269 t = read_type (pp, objfile);
3270 p = (*pp)++;
3271 while (*p != '\0' && *p != ';')
3272 {
3273 p++;
3274 }
3275 if (*p == '\0')
3276 {
3277 /* Premature end of symbol. */
3278 return 0;
3279 }
c5aa993b 3280
ae6ae975 3281 set_type_vptr_basetype (type, t);
c378eb4e 3282 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3283 {
3284 for (i = TYPE_NFIELDS (t) - 1;
3285 i >= TYPE_N_BASECLASSES (t);
3286 --i)
3287 {
0d5cff50 3288 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3289
8343f86c 3290 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3291 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3292 {
ae6ae975 3293 set_type_vptr_fieldno (type, i);
c906108c
SS
3294 goto gotit;
3295 }
3296 }
3297 /* Virtual function table field not found. */
23136709 3298 complaint (&symfile_complaints,
3e43a32a
MS
3299 _("virtual function table pointer "
3300 "not found when defining class `%s'"),
23136709 3301 TYPE_NAME (type));
c906108c
SS
3302 return 0;
3303 }
3304 else
3305 {
ae6ae975 3306 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3307 }
3308
c5aa993b 3309 gotit:
c906108c
SS
3310 *pp = p + 1;
3311 }
3312 }
3313 return 1;
3314}
3315
3316static int
aa1ee363 3317attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3318{
52f0bd74 3319 int n;
c906108c
SS
3320
3321 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3322 fip->fnlist != NULL;
3323 fip->fnlist = fip->fnlist->next)
c906108c 3324 {
c378eb4e 3325 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3326 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3327 }
3328 return 1;
3329}
3330
c906108c
SS
3331/* Create the vector of fields, and record how big it is.
3332 We need this info to record proper virtual function table information
3333 for this class's virtual functions. */
3334
3335static int
aa1ee363 3336attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3337 struct objfile *objfile)
c906108c 3338{
52f0bd74
AC
3339 int nfields = 0;
3340 int non_public_fields = 0;
3341 struct nextfield *scan;
c906108c
SS
3342
3343 /* Count up the number of fields that we have, as well as taking note of
3344 whether or not there are any non-public fields, which requires us to
3345 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3346 bitfields. */
c906108c 3347
c5aa993b 3348 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3349 {
3350 nfields++;
c5aa993b 3351 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3352 {
3353 non_public_fields++;
3354 }
3355 }
3356
3357 /* Now we know how many fields there are, and whether or not there are any
3358 non-public fields. Record the field count, allocate space for the
c378eb4e 3359 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3360
3361 TYPE_NFIELDS (type) = nfields;
3362 TYPE_FIELDS (type) = (struct field *)
3363 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3364 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3365
3366 if (non_public_fields)
3367 {
3368 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3369
3370 TYPE_FIELD_PRIVATE_BITS (type) =
3371 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3372 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3373
3374 TYPE_FIELD_PROTECTED_BITS (type) =
3375 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3376 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3377
3378 TYPE_FIELD_IGNORE_BITS (type) =
3379 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3380 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3381 }
3382
c378eb4e
MS
3383 /* Copy the saved-up fields into the field vector. Start from the
3384 head of the list, adding to the tail of the field array, so that
3385 they end up in the same order in the array in which they were
3386 added to the list. */
c906108c
SS
3387
3388 while (nfields-- > 0)
3389 {
c5aa993b
JM
3390 TYPE_FIELD (type, nfields) = fip->list->field;
3391 switch (fip->list->visibility)
c906108c 3392 {
c5aa993b
JM
3393 case VISIBILITY_PRIVATE:
3394 SET_TYPE_FIELD_PRIVATE (type, nfields);
3395 break;
c906108c 3396
c5aa993b
JM
3397 case VISIBILITY_PROTECTED:
3398 SET_TYPE_FIELD_PROTECTED (type, nfields);
3399 break;
c906108c 3400
c5aa993b
JM
3401 case VISIBILITY_IGNORE:
3402 SET_TYPE_FIELD_IGNORE (type, nfields);
3403 break;
c906108c 3404
c5aa993b
JM
3405 case VISIBILITY_PUBLIC:
3406 break;
c906108c 3407
c5aa993b
JM
3408 default:
3409 /* Unknown visibility. Complain and treat it as public. */
3410 {
3e43a32a
MS
3411 complaint (&symfile_complaints,
3412 _("Unknown visibility `%c' for field"),
23136709 3413 fip->list->visibility);
c5aa993b
JM
3414 }
3415 break;
c906108c 3416 }
c5aa993b 3417 fip->list = fip->list->next;
c906108c
SS
3418 }
3419 return 1;
3420}
3421
2ae1c2d2 3422
2ae1c2d2
JB
3423/* Complain that the compiler has emitted more than one definition for the
3424 structure type TYPE. */
3425static void
3426complain_about_struct_wipeout (struct type *type)
3427{
0d5cff50
DE
3428 const char *name = "";
3429 const char *kind = "";
2ae1c2d2
JB
3430
3431 if (TYPE_TAG_NAME (type))
3432 {
3433 name = TYPE_TAG_NAME (type);
3434 switch (TYPE_CODE (type))
3435 {
3436 case TYPE_CODE_STRUCT: kind = "struct "; break;
3437 case TYPE_CODE_UNION: kind = "union "; break;
3438 case TYPE_CODE_ENUM: kind = "enum "; break;
3439 default: kind = "";
3440 }
3441 }
3442 else if (TYPE_NAME (type))
3443 {
3444 name = TYPE_NAME (type);
3445 kind = "";
3446 }
3447 else
3448 {
3449 name = "<unknown>";
3450 kind = "";
3451 }
3452
23136709 3453 complaint (&symfile_complaints,
e2e0b3e5 3454 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3455}
3456
621791b8
PM
3457/* Set the length for all variants of a same main_type, which are
3458 connected in the closed chain.
3459
3460 This is something that needs to be done when a type is defined *after*
3461 some cross references to this type have already been read. Consider
3462 for instance the following scenario where we have the following two
3463 stabs entries:
3464
3465 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3466 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3467
3468 A stubbed version of type dummy is created while processing the first
3469 stabs entry. The length of that type is initially set to zero, since
3470 it is unknown at this point. Also, a "constant" variation of type
3471 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3472 the stabs line).
3473
3474 The second stabs entry allows us to replace the stubbed definition
3475 with the real definition. However, we still need to adjust the length
3476 of the "constant" variation of that type, as its length was left
3477 untouched during the main type replacement... */
3478
3479static void
9e69f3b6 3480set_length_in_type_chain (struct type *type)
621791b8
PM
3481{
3482 struct type *ntype = TYPE_CHAIN (type);
3483
3484 while (ntype != type)
3485 {
3486 if (TYPE_LENGTH(ntype) == 0)
3487 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3488 else
3489 complain_about_struct_wipeout (ntype);
3490 ntype = TYPE_CHAIN (ntype);
3491 }
3492}
2ae1c2d2 3493
c906108c
SS
3494/* Read the description of a structure (or union type) and return an object
3495 describing the type.
3496
3497 PP points to a character pointer that points to the next unconsumed token
b021a221 3498 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3499 *PP will point to "4a:1,0,32;;".
3500
3501 TYPE points to an incomplete type that needs to be filled in.
3502
3503 OBJFILE points to the current objfile from which the stabs information is
3504 being read. (Note that it is redundant in that TYPE also contains a pointer
3505 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3506 */
c906108c
SS
3507
3508static struct type *
a121b7c1 3509read_struct_type (const char **pp, struct type *type, enum type_code type_code,
2ae1c2d2 3510 struct objfile *objfile)
c906108c
SS
3511{
3512 struct cleanup *back_to;
3513 struct field_info fi;
3514
3515 fi.list = NULL;
3516 fi.fnlist = NULL;
3517
2ae1c2d2
JB
3518 /* When describing struct/union/class types in stabs, G++ always drops
3519 all qualifications from the name. So if you've got:
3520 struct A { ... struct B { ... }; ... };
3521 then G++ will emit stabs for `struct A::B' that call it simply
3522 `struct B'. Obviously, if you've got a real top-level definition for
3523 `struct B', or other nested definitions, this is going to cause
3524 problems.
3525
3526 Obviously, GDB can't fix this by itself, but it can at least avoid
3527 scribbling on existing structure type objects when new definitions
3528 appear. */
3529 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3530 || TYPE_STUB (type)))
3531 {
3532 complain_about_struct_wipeout (type);
3533
3534 /* It's probably best to return the type unchanged. */
3535 return type;
3536 }
3537
c906108c
SS
3538 back_to = make_cleanup (null_cleanup, 0);
3539
3540 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3541 TYPE_CODE (type) = type_code;
876cecd0 3542 TYPE_STUB (type) = 0;
c906108c
SS
3543
3544 /* First comes the total size in bytes. */
3545
3546 {
3547 int nbits;
433759f7 3548
94e10a22 3549 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3550 if (nbits != 0)
73b8d9da
TT
3551 {
3552 do_cleanups (back_to);
3553 return error_type (pp, objfile);
3554 }
621791b8 3555 set_length_in_type_chain (type);
c906108c
SS
3556 }
3557
3558 /* Now read the baseclasses, if any, read the regular C struct or C++
3559 class member fields, attach the fields to the type, read the C++
3560 member functions, attach them to the type, and then read any tilde
3e43a32a 3561 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3562
3563 if (!read_baseclasses (&fi, pp, type, objfile)
3564 || !read_struct_fields (&fi, pp, type, objfile)
3565 || !attach_fields_to_type (&fi, type, objfile)
3566 || !read_member_functions (&fi, pp, type, objfile)
3567 || !attach_fn_fields_to_type (&fi, type)
3568 || !read_tilde_fields (&fi, pp, type, objfile))
3569 {
3570 type = error_type (pp, objfile);
3571 }
3572
3573 do_cleanups (back_to);
3574 return (type);
3575}
3576
3577/* Read a definition of an array type,
3578 and create and return a suitable type object.
3579 Also creates a range type which represents the bounds of that
3580 array. */
3581
3582static struct type *
a121b7c1 3583read_array_type (const char **pp, struct type *type,
fba45db2 3584 struct objfile *objfile)
c906108c
SS
3585{
3586 struct type *index_type, *element_type, *range_type;
3587 int lower, upper;
3588 int adjustable = 0;
3589 int nbits;
3590
3591 /* Format of an array type:
3592 "ar<index type>;lower;upper;<array_contents_type>".
3593 OS9000: "arlower,upper;<array_contents_type>".
3594
3595 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3596 for these, produce a type like float[][]. */
3597
c906108c
SS
3598 {
3599 index_type = read_type (pp, objfile);
3600 if (**pp != ';')
3601 /* Improper format of array type decl. */
3602 return error_type (pp, objfile);
3603 ++*pp;
3604 }
3605
3606 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3607 {
3608 (*pp)++;
3609 adjustable = 1;
3610 }
94e10a22 3611 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3612
c906108c
SS
3613 if (nbits != 0)
3614 return error_type (pp, objfile);
3615
3616 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3617 {
3618 (*pp)++;
3619 adjustable = 1;
3620 }
94e10a22 3621 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3622 if (nbits != 0)
3623 return error_type (pp, objfile);
c5aa993b 3624
c906108c
SS
3625 element_type = read_type (pp, objfile);
3626
3627 if (adjustable)
3628 {
3629 lower = 0;
3630 upper = -1;
3631 }
3632
3633 range_type =
0c9c3474 3634 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3635 type = create_array_type (type, element_type, range_type);
3636
3637 return type;
3638}
3639
3640
3641/* Read a definition of an enumeration type,
3642 and create and return a suitable type object.
3643 Also defines the symbols that represent the values of the type. */
3644
3645static struct type *
a121b7c1 3646read_enum_type (const char **pp, struct type *type,
fba45db2 3647 struct objfile *objfile)
c906108c 3648{
5e2b427d 3649 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 3650 const char *p;
c906108c 3651 char *name;
52f0bd74
AC
3652 long n;
3653 struct symbol *sym;
c906108c
SS
3654 int nsyms = 0;
3655 struct pending **symlist;
3656 struct pending *osyms, *syms;
3657 int o_nsyms;
3658 int nbits;
3659 int unsigned_enum = 1;
3660
3661#if 0
3662 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3663 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3664 to do? For now, force all enum values to file scope. */
3665 if (within_function)
3666 symlist = &local_symbols;
3667 else
3668#endif
3669 symlist = &file_symbols;
3670 osyms = *symlist;
3671 o_nsyms = osyms ? osyms->nsyms : 0;
3672
c906108c
SS
3673 /* The aix4 compiler emits an extra field before the enum members;
3674 my guess is it's a type of some sort. Just ignore it. */
3675 if (**pp == '-')
3676 {
3677 /* Skip over the type. */
3678 while (**pp != ':')
c5aa993b 3679 (*pp)++;
c906108c
SS
3680
3681 /* Skip over the colon. */
3682 (*pp)++;
3683 }
3684
3685 /* Read the value-names and their values.
3686 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3687 A semicolon or comma instead of a NAME means the end. */
3688 while (**pp && **pp != ';' && **pp != ',')
3689 {
3690 STABS_CONTINUE (pp, objfile);
3691 p = *pp;
c5aa993b
JM
3692 while (*p != ':')
3693 p++;
224c3ddb 3694 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3695 *pp = p + 1;
94e10a22 3696 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3697 if (nbits != 0)
3698 return error_type (pp, objfile);
3699
e623cf5d 3700 sym = allocate_symbol (objfile);
3567439c 3701 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3702 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3703 &objfile->objfile_obstack);
f1e6e072 3704 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3705 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3706 SYMBOL_VALUE (sym) = n;
3707 if (n < 0)
3708 unsigned_enum = 0;
3709 add_symbol_to_list (sym, symlist);
3710 nsyms++;
3711 }
3712
3713 if (**pp == ';')
3714 (*pp)++; /* Skip the semicolon. */
3715
3716 /* Now fill in the fields of the type-structure. */
3717
5e2b427d 3718 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3719 set_length_in_type_chain (type);
c906108c 3720 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3721 TYPE_STUB (type) = 0;
c906108c 3722 if (unsigned_enum)
876cecd0 3723 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3724 TYPE_NFIELDS (type) = nsyms;
3725 TYPE_FIELDS (type) = (struct field *)
3726 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3727 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3728
3729 /* Find the symbols for the values and put them into the type.
3730 The symbols can be found in the symlist that we put them on
3731 to cause them to be defined. osyms contains the old value
3732 of that symlist; everything up to there was defined by us. */
3733 /* Note that we preserve the order of the enum constants, so
3734 that in something like "enum {FOO, LAST_THING=FOO}" we print
3735 FOO, not LAST_THING. */
3736
3737 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3738 {
3739 int last = syms == osyms ? o_nsyms : 0;
3740 int j = syms->nsyms;
433759f7 3741
c906108c
SS
3742 for (; --j >= last; --n)
3743 {
3744 struct symbol *xsym = syms->symbol[j];
433759f7 3745
c906108c 3746 SYMBOL_TYPE (xsym) = type;
3567439c 3747 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3748 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3749 TYPE_FIELD_BITSIZE (type, n) = 0;
3750 }
3751 if (syms == osyms)
3752 break;
3753 }
3754
3755 return type;
3756}
3757
3758/* Sun's ACC uses a somewhat saner method for specifying the builtin
3759 typedefs in every file (for int, long, etc):
3760
c5aa993b
JM
3761 type = b <signed> <width> <format type>; <offset>; <nbits>
3762 signed = u or s.
3763 optional format type = c or b for char or boolean.
3764 offset = offset from high order bit to start bit of type.
3765 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3766
3767 The width/offset stuff appears to be for small objects stored in
3768 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3769 FIXME. */
3770
3771static struct type *
a121b7c1 3772read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3773{
3774 int type_bits;
3775 int nbits;
19f392bc
UW
3776 int unsigned_type;
3777 int boolean_type = 0;
c906108c
SS
3778
3779 switch (**pp)
3780 {
c5aa993b 3781 case 's':
19f392bc 3782 unsigned_type = 0;
c5aa993b
JM
3783 break;
3784 case 'u':
19f392bc 3785 unsigned_type = 1;
c5aa993b
JM
3786 break;
3787 default:
3788 return error_type (pp, objfile);
c906108c
SS
3789 }
3790 (*pp)++;
3791
3792 /* For some odd reason, all forms of char put a c here. This is strange
3793 because no other type has this honor. We can safely ignore this because
3794 we actually determine 'char'acterness by the number of bits specified in
3795 the descriptor.
3796 Boolean forms, e.g Fortran logical*X, put a b here. */
3797
3798 if (**pp == 'c')
3799 (*pp)++;
3800 else if (**pp == 'b')
3801 {
19f392bc 3802 boolean_type = 1;
c906108c
SS
3803 (*pp)++;
3804 }
3805
3806 /* The first number appears to be the number of bytes occupied
3807 by this type, except that unsigned short is 4 instead of 2.
3808 Since this information is redundant with the third number,
3809 we will ignore it. */
94e10a22 3810 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3811 if (nbits != 0)
3812 return error_type (pp, objfile);
3813
c378eb4e 3814 /* The second number is always 0, so ignore it too. */
94e10a22 3815 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3816 if (nbits != 0)
3817 return error_type (pp, objfile);
3818
c378eb4e 3819 /* The third number is the number of bits for this type. */
94e10a22 3820 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3821 if (nbits != 0)
3822 return error_type (pp, objfile);
3823 /* The type *should* end with a semicolon. If it are embedded
3824 in a larger type the semicolon may be the only way to know where
3825 the type ends. If this type is at the end of the stabstring we
3826 can deal with the omitted semicolon (but we don't have to like
3827 it). Don't bother to complain(), Sun's compiler omits the semicolon
3828 for "void". */
3829 if (**pp == ';')
3830 ++(*pp);
3831
3832 if (type_bits == 0)
19f392bc 3833 {
77b7c781
UW
3834 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3835 TARGET_CHAR_BIT, NULL);
19f392bc
UW
3836 if (unsigned_type)
3837 TYPE_UNSIGNED (type) = 1;
3838 return type;
3839 }
3840
3841 if (boolean_type)
3842 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3843 else
19f392bc 3844 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3845}
3846
3847static struct type *
a121b7c1
PA
3848read_sun_floating_type (const char **pp, int typenums[2],
3849 struct objfile *objfile)
c906108c
SS
3850{
3851 int nbits;
3852 int details;
3853 int nbytes;
f65ca430 3854 struct type *rettype;
c906108c
SS
3855
3856 /* The first number has more details about the type, for example
3857 FN_COMPLEX. */
94e10a22 3858 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3859 if (nbits != 0)
3860 return error_type (pp, objfile);
3861
c378eb4e 3862 /* The second number is the number of bytes occupied by this type. */
94e10a22 3863 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3864 if (nbits != 0)
3865 return error_type (pp, objfile);
3866
19f392bc
UW
3867 nbits = nbytes * TARGET_CHAR_BIT;
3868
c906108c
SS
3869 if (details == NF_COMPLEX || details == NF_COMPLEX16
3870 || details == NF_COMPLEX32)
f65ca430 3871 {
9b790ce7 3872 rettype = dbx_init_float_type (objfile, nbits / 2);
19f392bc 3873 return init_complex_type (objfile, NULL, rettype);
f65ca430 3874 }
c906108c 3875
9b790ce7 3876 return dbx_init_float_type (objfile, nbits);
c906108c
SS
3877}
3878
3879/* Read a number from the string pointed to by *PP.
3880 The value of *PP is advanced over the number.
3881 If END is nonzero, the character that ends the
3882 number must match END, or an error happens;
3883 and that character is skipped if it does match.
3884 If END is zero, *PP is left pointing to that character.
3885
94e10a22
JG
3886 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3887 the number is represented in an octal representation, assume that
3888 it is represented in a 2's complement representation with a size of
3889 TWOS_COMPLEMENT_BITS.
3890
c906108c
SS
3891 If the number fits in a long, set *BITS to 0 and return the value.
3892 If not, set *BITS to be the number of bits in the number and return 0.
3893
3894 If encounter garbage, set *BITS to -1 and return 0. */
3895
c2d11a7d 3896static long
a121b7c1
PA
3897read_huge_number (const char **pp, int end, int *bits,
3898 int twos_complement_bits)
c906108c 3899{
a121b7c1 3900 const char *p = *pp;
c906108c 3901 int sign = 1;
51e9e0d4 3902 int sign_bit = 0;
c2d11a7d 3903 long n = 0;
c906108c
SS
3904 int radix = 10;
3905 char overflow = 0;
3906 int nbits = 0;
3907 int c;
c2d11a7d 3908 long upper_limit;
a2699720 3909 int twos_complement_representation = 0;
c5aa993b 3910
c906108c
SS
3911 if (*p == '-')
3912 {
3913 sign = -1;
3914 p++;
3915 }
3916
3917 /* Leading zero means octal. GCC uses this to output values larger
3918 than an int (because that would be hard in decimal). */
3919 if (*p == '0')
3920 {
3921 radix = 8;
3922 p++;
3923 }
3924
a2699720
PA
3925 /* Skip extra zeros. */
3926 while (*p == '0')
3927 p++;
3928
3929 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3930 {
3931 /* Octal, possibly signed. Check if we have enough chars for a
3932 negative number. */
3933
3934 size_t len;
a121b7c1 3935 const char *p1 = p;
433759f7 3936
a2699720
PA
3937 while ((c = *p1) >= '0' && c < '8')
3938 p1++;
3939
3940 len = p1 - p;
3941 if (len > twos_complement_bits / 3
3e43a32a
MS
3942 || (twos_complement_bits % 3 == 0
3943 && len == twos_complement_bits / 3))
a2699720
PA
3944 {
3945 /* Ok, we have enough characters for a signed value, check
3946 for signness by testing if the sign bit is set. */
3947 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3948 c = *p - '0';
3949 if (c & (1 << sign_bit))
3950 {
3951 /* Definitely signed. */
3952 twos_complement_representation = 1;
3953 sign = -1;
3954 }
3955 }
3956 }
3957
1b831c93 3958 upper_limit = LONG_MAX / radix;
c906108c
SS
3959
3960 while ((c = *p++) >= '0' && c < ('0' + radix))
3961 {
3962 if (n <= upper_limit)
94e10a22
JG
3963 {
3964 if (twos_complement_representation)
3965 {
a2699720
PA
3966 /* Octal, signed, twos complement representation. In
3967 this case, n is the corresponding absolute value. */
3968 if (n == 0)
3969 {
3970 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3971
a2699720
PA
3972 n = -sn;
3973 }
94e10a22
JG
3974 else
3975 {
a2699720
PA
3976 n *= radix;
3977 n -= c - '0';
94e10a22 3978 }
94e10a22
JG
3979 }
3980 else
3981 {
3982 /* unsigned representation */
3983 n *= radix;
c378eb4e 3984 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3985 }
3986 }
c906108c 3987 else
94e10a22 3988 overflow = 1;
c5aa993b 3989
c906108c 3990 /* This depends on large values being output in octal, which is
c378eb4e 3991 what GCC does. */
c906108c
SS
3992 if (radix == 8)
3993 {
3994 if (nbits == 0)
3995 {
3996 if (c == '0')
3997 /* Ignore leading zeroes. */
3998 ;
3999 else if (c == '1')
4000 nbits = 1;
4001 else if (c == '2' || c == '3')
4002 nbits = 2;
4003 else
4004 nbits = 3;
4005 }
4006 else
4007 nbits += 3;
4008 }
4009 }
4010 if (end)
4011 {
4012 if (c && c != end)
4013 {
4014 if (bits != NULL)
4015 *bits = -1;
4016 return 0;
4017 }
4018 }
4019 else
4020 --p;
4021
a2699720
PA
4022 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4023 {
4024 /* We were supposed to parse a number with maximum
4025 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4026 if (bits != NULL)
4027 *bits = -1;
4028 return 0;
4029 }
4030
c906108c
SS
4031 *pp = p;
4032 if (overflow)
4033 {
4034 if (nbits == 0)
4035 {
4036 /* Large decimal constants are an error (because it is hard to
4037 count how many bits are in them). */
4038 if (bits != NULL)
4039 *bits = -1;
4040 return 0;
4041 }
c5aa993b 4042
c906108c 4043 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4044 the number of bits. Two's complement represention octals
4045 can't have a '-' in front. */
4046 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4047 ++nbits;
4048 if (bits)
4049 *bits = nbits;
4050 }
4051 else
4052 {
4053 if (bits)
4054 *bits = 0;
a2699720 4055 return n * sign;
c906108c
SS
4056 }
4057 /* It's *BITS which has the interesting information. */
4058 return 0;
4059}
4060
4061static struct type *
a121b7c1 4062read_range_type (const char **pp, int typenums[2], int type_size,
94e10a22 4063 struct objfile *objfile)
c906108c 4064{
5e2b427d 4065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 4066 const char *orig_pp = *pp;
c906108c 4067 int rangenums[2];
c2d11a7d 4068 long n2, n3;
c906108c
SS
4069 int n2bits, n3bits;
4070 int self_subrange;
4071 struct type *result_type;
4072 struct type *index_type = NULL;
4073
4074 /* First comes a type we are a subrange of.
4075 In C it is usually 0, 1 or the type being defined. */
4076 if (read_type_number (pp, rangenums) != 0)
4077 return error_type (pp, objfile);
4078 self_subrange = (rangenums[0] == typenums[0] &&
4079 rangenums[1] == typenums[1]);
4080
4081 if (**pp == '=')
4082 {
4083 *pp = orig_pp;
4084 index_type = read_type (pp, objfile);
4085 }
4086
4087 /* A semicolon should now follow; skip it. */
4088 if (**pp == ';')
4089 (*pp)++;
4090
4091 /* The remaining two operands are usually lower and upper bounds
4092 of the range. But in some special cases they mean something else. */
94e10a22
JG
4093 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4094 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4095
4096 if (n2bits == -1 || n3bits == -1)
4097 return error_type (pp, objfile);
4098
4099 if (index_type)
4100 goto handle_true_range;
4101
4102 /* If limits are huge, must be large integral type. */
4103 if (n2bits != 0 || n3bits != 0)
4104 {
4105 char got_signed = 0;
4106 char got_unsigned = 0;
4107 /* Number of bits in the type. */
4108 int nbits = 0;
4109
94e10a22 4110 /* If a type size attribute has been specified, the bounds of
c378eb4e 4111 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4112 more bits than the upper bound, then the type is signed. */
4113 if (n2bits <= type_size && n3bits <= type_size)
4114 {
4115 if (n2bits == type_size && n2bits > n3bits)
4116 got_signed = 1;
4117 else
4118 got_unsigned = 1;
4119 nbits = type_size;
4120 }
c906108c 4121 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4122 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4123 {
4124 got_unsigned = 1;
4125 nbits = n3bits;
4126 }
4127 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4128 integral type. Take care of the case where <large number> doesn't
4129 fit in a long but <large number>-1 does. */
c906108c
SS
4130 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4131 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4132 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4133 && n3 == LONG_MAX))
c906108c
SS
4134 {
4135 got_signed = 1;
4136 nbits = n2bits;
4137 }
4138
4139 if (got_signed || got_unsigned)
19f392bc 4140 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4141 else
4142 return error_type (pp, objfile);
4143 }
4144
4145 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4146 if (self_subrange && n2 == 0 && n3 == 0)
77b7c781 4147 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
c906108c
SS
4148
4149 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4150 is the width in bytes.
4151
4152 Fortran programs appear to use this for complex types also. To
4153 distinguish between floats and complex, g77 (and others?) seem
4154 to use self-subranges for the complexes, and subranges of int for
4155 the floats.
4156
4157 Also note that for complexes, g77 sets n2 to the size of one of
4158 the member floats, not the whole complex beast. My guess is that
c378eb4e 4159 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4160
4161 if (n3 == 0 && n2 > 0)
4162 {
1300f5dd 4163 struct type *float_type
9b790ce7 4164 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
1300f5dd 4165
c906108c 4166 if (self_subrange)
19f392bc 4167 return init_complex_type (objfile, NULL, float_type);
c906108c 4168 else
1300f5dd 4169 return float_type;
c906108c
SS
4170 }
4171
a2699720 4172 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4173
4174 else if (n2 == 0 && n3 == -1)
4175 {
a2699720 4176 int bits = type_size;
433759f7 4177
a2699720
PA
4178 if (bits <= 0)
4179 {
4180 /* We don't know its size. It is unsigned int or unsigned
4181 long. GCC 2.3.3 uses this for long long too, but that is
4182 just a GDB 3.5 compatibility hack. */
5e2b427d 4183 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4184 }
4185
19f392bc 4186 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4187 }
4188
4189 /* Special case: char is defined (Who knows why) as a subrange of
4190 itself with range 0-127. */
4191 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc 4192 {
77b7c781
UW
4193 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4194 0, NULL);
19f392bc
UW
4195 TYPE_NOSIGN (type) = 1;
4196 return type;
4197 }
c906108c
SS
4198 /* We used to do this only for subrange of self or subrange of int. */
4199 else if (n2 == 0)
4200 {
a0b3c4fd
JM
4201 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4202 "unsigned long", and we already checked for that,
4203 so don't need to test for it here. */
4204
c906108c
SS
4205 if (n3 < 0)
4206 /* n3 actually gives the size. */
19f392bc 4207 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4208
7be570e7 4209 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4210 unsigned n-byte integer. But do require n to be a power of
4211 two; we don't want 3- and 5-byte integers flying around. */
4212 {
4213 int bytes;
4214 unsigned long bits;
4215
4216 bits = n3;
4217 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4218 bits >>= 8;
4219 if (bits == 0
4220 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4221 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4222 }
c906108c
SS
4223 }
4224 /* I think this is for Convex "long long". Since I don't know whether
4225 Convex sets self_subrange, I also accept that particular size regardless
4226 of self_subrange. */
4227 else if (n3 == 0 && n2 < 0
4228 && (self_subrange
9a76efb6 4229 || n2 == -gdbarch_long_long_bit
5e2b427d 4230 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4231 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4232 else if (n2 == -n3 - 1)
c906108c
SS
4233 {
4234 if (n3 == 0x7f)
19f392bc 4235 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4236 if (n3 == 0x7fff)
19f392bc 4237 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4238 if (n3 == 0x7fffffff)
19f392bc 4239 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4240 }
4241
4242 /* We have a real range type on our hands. Allocate space and
4243 return a real pointer. */
c5aa993b 4244handle_true_range:
c906108c
SS
4245
4246 if (self_subrange)
46bf5051 4247 index_type = objfile_type (objfile)->builtin_int;
c906108c 4248 else
46bf5051 4249 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4250 if (index_type == NULL)
4251 {
4252 /* Does this actually ever happen? Is that why we are worrying
4253 about dealing with it rather than just calling error_type? */
4254
23136709 4255 complaint (&symfile_complaints,
e2e0b3e5 4256 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4257
46bf5051 4258 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4259 }
4260
0c9c3474
SA
4261 result_type
4262 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4263 return (result_type);
4264}
4265
4266/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4267 and terminated with END. Return the list of types read in, or NULL
4268 if there is an error. */
c906108c 4269
ad2f7632 4270static struct field *
a121b7c1 4271read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
ad2f7632 4272 int *varargsp)
c906108c
SS
4273{
4274 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4275 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4276 int n = 0, i;
4277 struct field *rval;
c906108c
SS
4278
4279 while (**pp != end)
4280 {
4281 if (**pp != ',')
4282 /* Invalid argument list: no ','. */
0a029df5 4283 return NULL;
c906108c
SS
4284 (*pp)++;
4285 STABS_CONTINUE (pp, objfile);
4286 types[n++] = read_type (pp, objfile);
4287 }
c378eb4e 4288 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4289
d24d8548
JK
4290 if (n == 0)
4291 {
4292 /* We should read at least the THIS parameter here. Some broken stabs
4293 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4294 have been present ";-16,(0,43)" reference instead. This way the
4295 excessive ";" marker prematurely stops the parameters parsing. */
4296
4297 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4298 *varargsp = 0;
4299 }
4300 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4301 *varargsp = 1;
c906108c
SS
4302 else
4303 {
ad2f7632
DJ
4304 n--;
4305 *varargsp = 0;
c906108c 4306 }
ad2f7632 4307
8d749320 4308 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4309 for (i = 0; i < n; i++)
4310 rval[i].type = types[i];
4311 *nargsp = n;
c906108c
SS
4312 return rval;
4313}
4314\f
4315/* Common block handling. */
4316
4317/* List of symbols declared since the last BCOMM. This list is a tail
4318 of local_symbols. When ECOMM is seen, the symbols on the list
4319 are noted so their proper addresses can be filled in later,
4320 using the common block base address gotten from the assembler
4321 stabs. */
4322
4323static struct pending *common_block;
4324static int common_block_i;
4325
4326/* Name of the current common block. We get it from the BCOMM instead of the
4327 ECOMM to match IBM documentation (even though IBM puts the name both places
4328 like everyone else). */
4329static char *common_block_name;
4330
4331/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4332 to remain after this function returns. */
4333
4334void
a121b7c1 4335common_block_start (const char *name, struct objfile *objfile)
c906108c
SS
4336{
4337 if (common_block_name != NULL)
4338 {
23136709 4339 complaint (&symfile_complaints,
e2e0b3e5 4340 _("Invalid symbol data: common block within common block"));
c906108c
SS
4341 }
4342 common_block = local_symbols;
4343 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4344 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4345 strlen (name));
c906108c
SS
4346}
4347
4348/* Process a N_ECOMM symbol. */
4349
4350void
fba45db2 4351common_block_end (struct objfile *objfile)
c906108c
SS
4352{
4353 /* Symbols declared since the BCOMM are to have the common block
4354 start address added in when we know it. common_block and
4355 common_block_i point to the first symbol after the BCOMM in
4356 the local_symbols list; copy the list and hang it off the
4357 symbol for the common block name for later fixup. */
4358 int i;
4359 struct symbol *sym;
fe978cb0 4360 struct pending *newobj = 0;
c906108c
SS
4361 struct pending *next;
4362 int j;
4363
4364 if (common_block_name == NULL)
4365 {
e2e0b3e5 4366 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4367 return;
4368 }
4369
e623cf5d 4370 sym = allocate_symbol (objfile);
c378eb4e 4371 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4372 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4373 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4374
4375 /* Now we copy all the symbols which have been defined since the BCOMM. */
4376
4377 /* Copy all the struct pendings before common_block. */
4378 for (next = local_symbols;
4379 next != NULL && next != common_block;
4380 next = next->next)
4381 {
4382 for (j = 0; j < next->nsyms; j++)
fe978cb0 4383 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4384 }
4385
4386 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4387 NULL, it means copy all the local symbols (which we already did
4388 above). */
4389
4390 if (common_block != NULL)
4391 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4392 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4393
fe978cb0 4394 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4395
4396 /* Should we be putting local_symbols back to what it was?
4397 Does it matter? */
4398
3567439c 4399 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4400 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4401 global_sym_chain[i] = sym;
4402 common_block_name = NULL;
4403}
4404
4405/* Add a common block's start address to the offset of each symbol
4406 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4407 the common block name). */
4408
4409static void
46cb6474 4410fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4411{
4412 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4413
c5aa993b 4414 for (; next; next = next->next)
c906108c 4415 {
aa1ee363 4416 int j;
433759f7 4417
c906108c
SS
4418 for (j = next->nsyms - 1; j >= 0; j--)
4419 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4420 }
4421}
c5aa993b 4422\f
c906108c
SS
4423
4424
bf362611
JB
4425/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4426 See add_undefined_type for more details. */
c906108c 4427
a7a48797 4428static void
bf362611
JB
4429add_undefined_type_noname (struct type *type, int typenums[2])
4430{
4431 struct nat nat;
4432
4433 nat.typenums[0] = typenums [0];
4434 nat.typenums[1] = typenums [1];
4435 nat.type = type;
4436
4437 if (noname_undefs_length == noname_undefs_allocated)
4438 {
4439 noname_undefs_allocated *= 2;
4440 noname_undefs = (struct nat *)
4441 xrealloc ((char *) noname_undefs,
4442 noname_undefs_allocated * sizeof (struct nat));
4443 }
4444 noname_undefs[noname_undefs_length++] = nat;
4445}
4446
4447/* Add TYPE to the UNDEF_TYPES vector.
4448 See add_undefined_type for more details. */
4449
4450static void
4451add_undefined_type_1 (struct type *type)
c906108c
SS
4452{
4453 if (undef_types_length == undef_types_allocated)
4454 {
4455 undef_types_allocated *= 2;
4456 undef_types = (struct type **)
4457 xrealloc ((char *) undef_types,
4458 undef_types_allocated * sizeof (struct type *));
4459 }
4460 undef_types[undef_types_length++] = type;
4461}
4462
bf362611
JB
4463/* What about types defined as forward references inside of a small lexical
4464 scope? */
4465/* Add a type to the list of undefined types to be checked through
4466 once this file has been read in.
4467
4468 In practice, we actually maintain two such lists: The first list
4469 (UNDEF_TYPES) is used for types whose name has been provided, and
4470 concerns forward references (eg 'xs' or 'xu' forward references);
4471 the second list (NONAME_UNDEFS) is used for types whose name is
4472 unknown at creation time, because they were referenced through
4473 their type number before the actual type was declared.
4474 This function actually adds the given type to the proper list. */
4475
4476static void
4477add_undefined_type (struct type *type, int typenums[2])
4478{
4479 if (TYPE_TAG_NAME (type) == NULL)
4480 add_undefined_type_noname (type, typenums);
4481 else
4482 add_undefined_type_1 (type);
4483}
4484
4485/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4486
2c0b251b 4487static void
46bf5051 4488cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4489{
4490 int i;
4491
4492 for (i = 0; i < noname_undefs_length; i++)
4493 {
4494 struct nat nat = noname_undefs[i];
4495 struct type **type;
4496
46bf5051 4497 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4498 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4499 {
4500 /* The instance flags of the undefined type are still unset,
4501 and needs to be copied over from the reference type.
4502 Since replace_type expects them to be identical, we need
4503 to set these flags manually before hand. */
4504 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4505 replace_type (nat.type, *type);
4506 }
bf362611
JB
4507 }
4508
4509 noname_undefs_length = 0;
4510}
4511
c906108c
SS
4512/* Go through each undefined type, see if it's still undefined, and fix it
4513 up if possible. We have two kinds of undefined types:
4514
4515 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4516 Fix: update array length using the element bounds
4517 and the target type's length.
c906108c 4518 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4519 yet defined at the time a pointer to it was made.
4520 Fix: Do a full lookup on the struct/union tag. */
bf362611 4521
2c0b251b 4522static void
bf362611 4523cleanup_undefined_types_1 (void)
c906108c
SS
4524{
4525 struct type **type;
4526
9e386756
JB
4527 /* Iterate over every undefined type, and look for a symbol whose type
4528 matches our undefined type. The symbol matches if:
4529 1. It is a typedef in the STRUCT domain;
4530 2. It has the same name, and same type code;
4531 3. The instance flags are identical.
4532
4533 It is important to check the instance flags, because we have seen
4534 examples where the debug info contained definitions such as:
4535
4536 "foo_t:t30=B31=xefoo_t:"
4537
4538 In this case, we have created an undefined type named "foo_t" whose
4539 instance flags is null (when processing "xefoo_t"), and then created
4540 another type with the same name, but with different instance flags
4541 ('B' means volatile). I think that the definition above is wrong,
4542 since the same type cannot be volatile and non-volatile at the same
4543 time, but we need to be able to cope with it when it happens. The
4544 approach taken here is to treat these two types as different. */
4545
c906108c
SS
4546 for (type = undef_types; type < undef_types + undef_types_length; type++)
4547 {
4548 switch (TYPE_CODE (*type))
4549 {
4550
c5aa993b
JM
4551 case TYPE_CODE_STRUCT:
4552 case TYPE_CODE_UNION:
4553 case TYPE_CODE_ENUM:
c906108c
SS
4554 {
4555 /* Check if it has been defined since. Need to do this here
4556 as well as in check_typedef to deal with the (legitimate in
4557 C though not C++) case of several types with the same name
4558 in different source files. */
74a9bb82 4559 if (TYPE_STUB (*type))
c906108c
SS
4560 {
4561 struct pending *ppt;
4562 int i;
c378eb4e 4563 /* Name of the type, without "struct" or "union". */
fe978cb0 4564 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4565
fe978cb0 4566 if (type_name == NULL)
c906108c 4567 {
e2e0b3e5 4568 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4569 break;
4570 }
4571 for (ppt = file_symbols; ppt; ppt = ppt->next)
4572 {
4573 for (i = 0; i < ppt->nsyms; i++)
4574 {
4575 struct symbol *sym = ppt->symbol[i];
c5aa993b 4576
c906108c 4577 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4578 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4579 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4580 TYPE_CODE (*type))
9e386756
JB
4581 && (TYPE_INSTANCE_FLAGS (*type) ==
4582 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4583 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4584 type_name) == 0)
13a393b0 4585 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4586 }
4587 }
4588 }
4589 }
4590 break;
4591
4592 default:
4593 {
23136709 4594 complaint (&symfile_complaints,
e2e0b3e5
AC
4595 _("forward-referenced types left unresolved, "
4596 "type code %d."),
23136709 4597 TYPE_CODE (*type));
c906108c
SS
4598 }
4599 break;
4600 }
4601 }
4602
4603 undef_types_length = 0;
4604}
4605
bf362611
JB
4606/* Try to fix all the undefined types we ecountered while processing
4607 this unit. */
4608
4609void
0a0edcd5 4610cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4611{
4612 cleanup_undefined_types_1 ();
46bf5051 4613 cleanup_undefined_types_noname (objfile);
bf362611
JB
4614}
4615
c906108c
SS
4616/* Scan through all of the global symbols defined in the object file,
4617 assigning values to the debugging symbols that need to be assigned
4618 to. Get these symbols from the minimal symbol table. */
4619
4620void
fba45db2 4621scan_file_globals (struct objfile *objfile)
c906108c
SS
4622{
4623 int hash;
4624 struct minimal_symbol *msymbol;
507836c0 4625 struct symbol *sym, *prev;
c906108c
SS
4626 struct objfile *resolve_objfile;
4627
4628 /* SVR4 based linkers copy referenced global symbols from shared
4629 libraries to the main executable.
4630 If we are scanning the symbols for a shared library, try to resolve
4631 them from the minimal symbols of the main executable first. */
4632
4633 if (symfile_objfile && objfile != symfile_objfile)
4634 resolve_objfile = symfile_objfile;
4635 else
4636 resolve_objfile = objfile;
4637
4638 while (1)
4639 {
4640 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4641 no unresolved symbols. */
c906108c
SS
4642 for (hash = 0; hash < HASHSIZE; hash++)
4643 {
4644 if (global_sym_chain[hash])
4645 break;
4646 }
4647 if (hash >= HASHSIZE)
4648 return;
4649
3567439c 4650 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4651 {
4652 QUIT;
4653
4654 /* Skip static symbols. */
4655 switch (MSYMBOL_TYPE (msymbol))
4656 {
4657 case mst_file_text:
4658 case mst_file_data:
4659 case mst_file_bss:
4660 continue;
4661 default:
4662 break;
4663 }
4664
4665 prev = NULL;
4666
4667 /* Get the hash index and check all the symbols
c378eb4e 4668 under that hash index. */
c906108c 4669
efd66ac6 4670 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4671
4672 for (sym = global_sym_chain[hash]; sym;)
4673 {
efd66ac6 4674 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4675 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4676 {
c906108c 4677 /* Splice this symbol out of the hash chain and
c378eb4e 4678 assign the value we have to it. */
c906108c
SS
4679 if (prev)
4680 {
4681 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4682 }
4683 else
4684 {
4685 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4686 }
c5aa993b 4687
c906108c
SS
4688 /* Check to see whether we need to fix up a common block. */
4689 /* Note: this code might be executed several times for
4690 the same symbol if there are multiple references. */
507836c0 4691 if (sym)
c906108c 4692 {
507836c0 4693 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4694 {
507836c0 4695 fix_common_block (sym,
77e371c0
TT
4696 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4697 msymbol));
c906108c
SS
4698 }
4699 else
4700 {
507836c0 4701 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4702 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4703 }
efd66ac6 4704 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4705 }
4706
c906108c
SS
4707 if (prev)
4708 {
4709 sym = SYMBOL_VALUE_CHAIN (prev);
4710 }
4711 else
4712 {
4713 sym = global_sym_chain[hash];
4714 }
4715 }
4716 else
4717 {
4718 prev = sym;
4719 sym = SYMBOL_VALUE_CHAIN (sym);
4720 }
4721 }
4722 }
4723 if (resolve_objfile == objfile)
4724 break;
4725 resolve_objfile = objfile;
4726 }
4727
4728 /* Change the storage class of any remaining unresolved globals to
4729 LOC_UNRESOLVED and remove them from the chain. */
4730 for (hash = 0; hash < HASHSIZE; hash++)
4731 {
4732 sym = global_sym_chain[hash];
4733 while (sym)
4734 {
4735 prev = sym;
4736 sym = SYMBOL_VALUE_CHAIN (sym);
4737
4738 /* Change the symbol address from the misleading chain value
4739 to address zero. */
4740 SYMBOL_VALUE_ADDRESS (prev) = 0;
4741
4742 /* Complain about unresolved common block symbols. */
4743 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4744 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4745 else
23136709 4746 complaint (&symfile_complaints,
3e43a32a
MS
4747 _("%s: common block `%s' from "
4748 "global_sym_chain unresolved"),
4262abfb 4749 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4750 }
4751 }
4752 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4753}
4754
4755/* Initialize anything that needs initializing when starting to read
4756 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4757 to a psymtab. */
4758
4759void
fba45db2 4760stabsread_init (void)
c906108c
SS
4761{
4762}
4763
4764/* Initialize anything that needs initializing when a completely new
4765 symbol file is specified (not just adding some symbols from another
4766 file, e.g. a shared library). */
4767
4768void
fba45db2 4769stabsread_new_init (void)
c906108c
SS
4770{
4771 /* Empty the hash table of global syms looking for values. */
4772 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4773}
4774
4775/* Initialize anything that needs initializing at the same time as
c378eb4e 4776 start_symtab() is called. */
c906108c 4777
c5aa993b 4778void
fba45db2 4779start_stabs (void)
c906108c
SS
4780{
4781 global_stabs = NULL; /* AIX COFF */
4782 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4783 n_this_object_header_files = 1;
4784 type_vector_length = 0;
4785 type_vector = (struct type **) 0;
4786
4787 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4788 common_block_name = NULL;
c906108c
SS
4789}
4790
c378eb4e 4791/* Call after end_symtab(). */
c906108c 4792
c5aa993b 4793void
fba45db2 4794end_stabs (void)
c906108c
SS
4795{
4796 if (type_vector)
4797 {
b8c9b27d 4798 xfree (type_vector);
c906108c
SS
4799 }
4800 type_vector = 0;
4801 type_vector_length = 0;
4802 previous_stab_code = 0;
4803}
4804
4805void
fba45db2 4806finish_global_stabs (struct objfile *objfile)
c906108c
SS
4807{
4808 if (global_stabs)
4809 {
4810 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4811 xfree (global_stabs);
c906108c
SS
4812 global_stabs = NULL;
4813 }
4814}
4815
7e1d63ec
AF
4816/* Find the end of the name, delimited by a ':', but don't match
4817 ObjC symbols which look like -[Foo bar::]:bla. */
a121b7c1
PA
4818static const char *
4819find_name_end (const char *name)
7e1d63ec 4820{
a121b7c1 4821 const char *s = name;
433759f7 4822
7e1d63ec
AF
4823 if (s[0] == '-' || *s == '+')
4824 {
4825 /* Must be an ObjC method symbol. */
4826 if (s[1] != '[')
4827 {
8a3fe4f8 4828 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4829 }
4830 s = strchr (s, ']');
4831 if (s == NULL)
4832 {
8a3fe4f8 4833 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4834 }
4835 return strchr (s, ':');
4836 }
4837 else
4838 {
4839 return strchr (s, ':');
4840 }
4841}
4842
c378eb4e 4843/* Initializer for this module. */
c906108c
SS
4844
4845void
fba45db2 4846_initialize_stabsread (void)
c906108c 4847{
46bf5051
UW
4848 rs6000_builtin_type_data = register_objfile_data ();
4849
c906108c
SS
4850 undef_types_allocated = 20;
4851 undef_types_length = 0;
8d749320 4852 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4853
4854 noname_undefs_allocated = 20;
4855 noname_undefs_length = 0;
8d749320 4856 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4857
4858 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4859 &stab_register_funcs);
4860 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4861 &stab_register_funcs);
c906108c 4862}