]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/stap-probe.c
move gdbarch object from objfile to per-BFD
[thirdparty/binutils-gdb.git] / gdb / stap-probe.c
CommitLineData
55aa24fb
SDJ
1/* SystemTap probe support for GDB.
2
28e7fd62 3 Copyright (C) 2012-2013 Free Software Foundation, Inc.
55aa24fb
SDJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "stap-probe.h"
22#include "probe.h"
23#include "vec.h"
24#include "ui-out.h"
25#include "objfiles.h"
26#include "arch-utils.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "filenames.h"
30#include "value.h"
31#include "exceptions.h"
32#include "ax.h"
33#include "ax-gdb.h"
34#include "complaints.h"
35#include "cli/cli-utils.h"
36#include "linespec.h"
37#include "user-regs.h"
38#include "parser-defs.h"
39#include "language.h"
40#include "elf-bfd.h"
41
42#include <ctype.h>
43
44/* The name of the SystemTap section where we will find information about
45 the probes. */
46
47#define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49/* Forward declaration. */
50
51static const struct probe_ops stap_probe_ops;
52
53/* Should we display debug information for the probe's argument expression
54 parsing? */
55
ccce17b0 56static unsigned int stap_expression_debug = 0;
55aa24fb
SDJ
57
58/* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
64 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
65 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
66 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
67
68enum stap_arg_bitness
69{
70 STAP_ARG_BITNESS_UNDEFINED,
71 STAP_ARG_BITNESS_32BIT_UNSIGNED,
72 STAP_ARG_BITNESS_32BIT_SIGNED,
73 STAP_ARG_BITNESS_64BIT_UNSIGNED,
74 STAP_ARG_BITNESS_64BIT_SIGNED,
75};
76
77/* The following structure represents a single argument for the probe. */
78
79struct stap_probe_arg
80{
81 /* The bitness of this argument. */
82 enum stap_arg_bitness bitness;
83
84 /* The corresponding `struct type *' to the bitness. */
85 struct type *atype;
86
87 /* The argument converted to an internal GDB expression. */
88 struct expression *aexpr;
89};
90
91typedef struct stap_probe_arg stap_probe_arg_s;
92DEF_VEC_O (stap_probe_arg_s);
93
94struct stap_probe
95{
96 /* Generic information about the probe. This shall be the first element
97 of this struct, in order to maintain binary compatibility with the
98 `struct probe' and be able to fully abstract it. */
99 struct probe p;
100
101 /* If the probe has a semaphore associated, then this is the value of
102 it. */
103 CORE_ADDR sem_addr;
104
105 unsigned int args_parsed : 1;
106 union
107 {
108 const char *text;
109
110 /* Information about each argument. This is an array of `stap_probe_arg',
111 with each entry representing one argument. */
112 VEC (stap_probe_arg_s) *vec;
113 }
114 args_u;
115};
116
117/* When parsing the arguments, we have to establish different precedences
118 for the various kinds of asm operators. This enumeration represents those
119 precedences.
120
121 This logic behind this is available at
122 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
123 the command "info '(as)Infix Ops'". */
124
125enum stap_operand_prec
126{
127 /* Lowest precedence, used for non-recognized operands or for the beginning
128 of the parsing process. */
129 STAP_OPERAND_PREC_NONE = 0,
130
131 /* Precedence of logical OR. */
132 STAP_OPERAND_PREC_LOGICAL_OR,
133
134 /* Precedence of logical AND. */
135 STAP_OPERAND_PREC_LOGICAL_AND,
136
137 /* Precedence of additive (plus, minus) and comparative (equal, less,
138 greater-than, etc) operands. */
139 STAP_OPERAND_PREC_ADD_CMP,
140
141 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
142 logical NOT). */
143 STAP_OPERAND_PREC_BITWISE,
144
145 /* Precedence of multiplicative operands (multiplication, division,
146 remainder, left shift and right shift). */
147 STAP_OPERAND_PREC_MUL
148};
149
150static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
151 enum stap_operand_prec prec);
152
153static void stap_parse_argument_conditionally (struct stap_parse_info *p);
154
155/* Returns 1 if *S is an operator, zero otherwise. */
156
fcf57f19 157static int stap_is_operator (const char *op);
55aa24fb
SDJ
158
159static void
160show_stapexpressiondebug (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
164 value);
165}
166
167/* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
168 if the operator code was not recognized. */
169
170static enum stap_operand_prec
171stap_get_operator_prec (enum exp_opcode op)
172{
173 switch (op)
174 {
175 case BINOP_LOGICAL_OR:
176 return STAP_OPERAND_PREC_LOGICAL_OR;
177
178 case BINOP_LOGICAL_AND:
179 return STAP_OPERAND_PREC_LOGICAL_AND;
180
181 case BINOP_ADD:
182 case BINOP_SUB:
183 case BINOP_EQUAL:
184 case BINOP_NOTEQUAL:
185 case BINOP_LESS:
186 case BINOP_LEQ:
187 case BINOP_GTR:
188 case BINOP_GEQ:
189 return STAP_OPERAND_PREC_ADD_CMP;
190
191 case BINOP_BITWISE_IOR:
192 case BINOP_BITWISE_AND:
193 case BINOP_BITWISE_XOR:
194 case UNOP_LOGICAL_NOT:
195 return STAP_OPERAND_PREC_BITWISE;
196
197 case BINOP_MUL:
198 case BINOP_DIV:
199 case BINOP_REM:
200 case BINOP_LSH:
201 case BINOP_RSH:
202 return STAP_OPERAND_PREC_MUL;
203
204 default:
205 return STAP_OPERAND_PREC_NONE;
206 }
207}
208
209/* Given S, read the operator in it and fills the OP pointer with its code.
210 Return 1 on success, zero if the operator was not recognized. */
211
fcf57f19
SDJ
212static enum exp_opcode
213stap_get_opcode (const char **s)
55aa24fb
SDJ
214{
215 const char c = **s;
fcf57f19 216 enum exp_opcode op;
55aa24fb
SDJ
217
218 *s += 1;
219
220 switch (c)
221 {
222 case '*':
fcf57f19 223 op = BINOP_MUL;
55aa24fb
SDJ
224 break;
225
226 case '/':
fcf57f19 227 op = BINOP_DIV;
55aa24fb
SDJ
228 break;
229
230 case '%':
fcf57f19 231 op = BINOP_REM;
55aa24fb
SDJ
232 break;
233
234 case '<':
fcf57f19 235 op = BINOP_LESS;
55aa24fb
SDJ
236 if (**s == '<')
237 {
238 *s += 1;
fcf57f19 239 op = BINOP_LSH;
55aa24fb
SDJ
240 }
241 else if (**s == '=')
242 {
243 *s += 1;
fcf57f19 244 op = BINOP_LEQ;
55aa24fb
SDJ
245 }
246 else if (**s == '>')
247 {
248 *s += 1;
fcf57f19 249 op = BINOP_NOTEQUAL;
55aa24fb
SDJ
250 }
251 break;
252
253 case '>':
fcf57f19 254 op = BINOP_GTR;
55aa24fb
SDJ
255 if (**s == '>')
256 {
257 *s += 1;
fcf57f19 258 op = BINOP_RSH;
55aa24fb
SDJ
259 }
260 else if (**s == '=')
261 {
262 *s += 1;
fcf57f19 263 op = BINOP_GEQ;
55aa24fb
SDJ
264 }
265 break;
266
267 case '|':
fcf57f19 268 op = BINOP_BITWISE_IOR;
55aa24fb
SDJ
269 if (**s == '|')
270 {
271 *s += 1;
fcf57f19 272 op = BINOP_LOGICAL_OR;
55aa24fb
SDJ
273 }
274 break;
275
276 case '&':
fcf57f19 277 op = BINOP_BITWISE_AND;
55aa24fb
SDJ
278 if (**s == '&')
279 {
280 *s += 1;
fcf57f19 281 op = BINOP_LOGICAL_AND;
55aa24fb
SDJ
282 }
283 break;
284
285 case '^':
fcf57f19 286 op = BINOP_BITWISE_XOR;
55aa24fb
SDJ
287 break;
288
289 case '!':
fcf57f19 290 op = UNOP_LOGICAL_NOT;
55aa24fb
SDJ
291 break;
292
293 case '+':
fcf57f19 294 op = BINOP_ADD;
55aa24fb
SDJ
295 break;
296
297 case '-':
fcf57f19 298 op = BINOP_SUB;
55aa24fb
SDJ
299 break;
300
301 case '=':
fcf57f19
SDJ
302 gdb_assert (**s == '=');
303 op = BINOP_EQUAL;
55aa24fb
SDJ
304 break;
305
306 default:
fcf57f19
SDJ
307 internal_error (__FILE__, __LINE__,
308 _("Invalid opcode in expression `%s' for SystemTap"
309 "probe"), *s);
55aa24fb
SDJ
310 }
311
fcf57f19 312 return op;
55aa24fb
SDJ
313}
314
315/* Given the bitness of the argument, represented by B, return the
316 corresponding `struct type *'. */
317
318static struct type *
319stap_get_expected_argument_type (struct gdbarch *gdbarch,
320 enum stap_arg_bitness b)
321{
322 switch (b)
323 {
324 case STAP_ARG_BITNESS_UNDEFINED:
325 if (gdbarch_addr_bit (gdbarch) == 32)
326 return builtin_type (gdbarch)->builtin_uint32;
327 else
328 return builtin_type (gdbarch)->builtin_uint64;
329
330 case STAP_ARG_BITNESS_32BIT_SIGNED:
331 return builtin_type (gdbarch)->builtin_int32;
332
333 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
334 return builtin_type (gdbarch)->builtin_uint32;
335
336 case STAP_ARG_BITNESS_64BIT_SIGNED:
337 return builtin_type (gdbarch)->builtin_int64;
338
339 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint64;
341
342 default:
343 internal_error (__FILE__, __LINE__,
344 _("Undefined bitness for probe."));
345 break;
346 }
347}
348
349/* Function responsible for parsing a register operand according to
350 SystemTap parlance. Assuming:
351
352 RP = register prefix
353 RS = register suffix
354 RIP = register indirection prefix
355 RIS = register indirection suffix
356
357 Then a register operand can be:
358
359 [RIP] [RP] REGISTER [RS] [RIS]
360
361 This function takes care of a register's indirection, displacement and
362 direct access. It also takes into consideration the fact that some
363 registers are named differently inside and outside GDB, e.g., PPC's
364 general-purpose registers are represented by integers in the assembly
365 language (e.g., `15' is the 15th general-purpose register), but inside
366 GDB they have a prefix (the letter `r') appended. */
367
368static void
369stap_parse_register_operand (struct stap_parse_info *p)
370{
371 /* Simple flag to indicate whether we have seen a minus signal before
372 certain number. */
373 int got_minus = 0;
374
375 /* Flags to indicate whether this register access is being displaced and/or
376 indirected. */
377 int disp_p = 0, indirect_p = 0;
378 struct gdbarch *gdbarch = p->gdbarch;
379
380 /* Needed to generate the register name as a part of an expression. */
381 struct stoken str;
382
383 /* Variables used to extract the register name from the probe's
384 argument. */
385 const char *start;
386 char *regname;
387 int len;
388
389 /* Prefixes for the parser. */
390 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
391 const char *reg_ind_prefix
392 = gdbarch_stap_register_indirection_prefix (gdbarch);
393 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
394 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
395 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
396 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
397
398 /* Suffixes for the parser. */
399 const char *reg_suffix = gdbarch_stap_register_suffix (gdbarch);
400 const char *reg_ind_suffix
401 = gdbarch_stap_register_indirection_suffix (gdbarch);
402 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
403 int reg_suffix_len = reg_suffix ? strlen (reg_suffix) : 0;
404 int reg_ind_suffix_len = reg_ind_suffix ? strlen (reg_ind_suffix) : 0;
405 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
406
407 /* Checking for a displacement argument. */
408 if (*p->arg == '+')
409 {
410 /* If it's a plus sign, we don't need to do anything, just advance the
411 pointer. */
412 ++p->arg;
413 }
414
415 if (*p->arg == '-')
416 {
417 got_minus = 1;
418 ++p->arg;
419 }
420
421 if (isdigit (*p->arg))
422 {
423 /* The value of the displacement. */
424 long displacement;
a0bcdaa7 425 char *endp;
55aa24fb
SDJ
426
427 disp_p = 1;
a0bcdaa7
PA
428 displacement = strtol (p->arg, &endp, 10);
429 p->arg = endp;
55aa24fb
SDJ
430
431 /* Generating the expression for the displacement. */
432 write_exp_elt_opcode (OP_LONG);
433 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
434 write_exp_elt_longcst (displacement);
435 write_exp_elt_opcode (OP_LONG);
436 if (got_minus)
437 write_exp_elt_opcode (UNOP_NEG);
438 }
439
440 /* Getting rid of register indirection prefix. */
441 if (reg_ind_prefix
442 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0)
443 {
444 indirect_p = 1;
445 p->arg += reg_ind_prefix_len;
446 }
447
448 if (disp_p && !indirect_p)
449 error (_("Invalid register displacement syntax on expression `%s'."),
450 p->saved_arg);
451
452 /* Getting rid of register prefix. */
453 if (reg_prefix && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
454 p->arg += reg_prefix_len;
455
456 /* Now we should have only the register name. Let's extract it and get
457 the associated number. */
458 start = p->arg;
459
460 /* We assume the register name is composed by letters and numbers. */
461 while (isalnum (*p->arg))
462 ++p->arg;
463
464 len = p->arg - start;
465
466 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
467 regname[0] = '\0';
468
469 /* We only add the GDB's register prefix/suffix if we are dealing with
470 a numeric register. */
471 if (gdb_reg_prefix && isdigit (*start))
472 {
473 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
474 strncpy (regname + gdb_reg_prefix_len, start, len);
475
476 if (gdb_reg_suffix)
477 strncpy (regname + gdb_reg_prefix_len + len,
478 gdb_reg_suffix, gdb_reg_suffix_len);
479
480 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
481 }
482 else
483 strncpy (regname, start, len);
484
485 regname[len] = '\0';
486
487 /* Is this a valid register name? */
488 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
489 error (_("Invalid register name `%s' on expression `%s'."),
490 regname, p->saved_arg);
491
492 write_exp_elt_opcode (OP_REGISTER);
493 str.ptr = regname;
494 str.length = len;
495 write_exp_string (str);
496 write_exp_elt_opcode (OP_REGISTER);
497
498 if (indirect_p)
499 {
500 if (disp_p)
501 write_exp_elt_opcode (BINOP_ADD);
502
503 /* Casting to the expected type. */
504 write_exp_elt_opcode (UNOP_CAST);
505 write_exp_elt_type (lookup_pointer_type (p->arg_type));
506 write_exp_elt_opcode (UNOP_CAST);
507
508 write_exp_elt_opcode (UNOP_IND);
509 }
510
511 /* Getting rid of the register name suffix. */
512 if (reg_suffix)
513 {
514 if (strncmp (p->arg, reg_suffix, reg_suffix_len) != 0)
515 error (_("Missing register name suffix `%s' on expression `%s'."),
516 reg_suffix, p->saved_arg);
517
518 p->arg += reg_suffix_len;
519 }
520
521 /* Getting rid of the register indirection suffix. */
522 if (indirect_p && reg_ind_suffix)
523 {
524 if (strncmp (p->arg, reg_ind_suffix, reg_ind_suffix_len) != 0)
525 error (_("Missing indirection suffix `%s' on expression `%s'."),
526 reg_ind_suffix, p->saved_arg);
527
528 p->arg += reg_ind_suffix_len;
529 }
530}
531
532/* This function is responsible for parsing a single operand.
533
534 A single operand can be:
535
536 - an unary operation (e.g., `-5', `~2', or even with subexpressions
537 like `-(2 + 1)')
538 - a register displacement, which will be treated as a register
539 operand (e.g., `-4(%eax)' on x86)
540 - a numeric constant, or
541 - a register operand (see function `stap_parse_register_operand')
542
543 The function also calls special-handling functions to deal with
544 unrecognized operands, allowing arch-specific parsers to be
545 created. */
546
547static void
548stap_parse_single_operand (struct stap_parse_info *p)
549{
550 struct gdbarch *gdbarch = p->gdbarch;
551
552 /* Prefixes for the parser. */
553 const char *const_prefix = gdbarch_stap_integer_prefix (gdbarch);
554 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
555 const char *reg_ind_prefix
556 = gdbarch_stap_register_indirection_prefix (gdbarch);
557 int const_prefix_len = const_prefix ? strlen (const_prefix) : 0;
558 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
559 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
560
561 /* Suffixes for the parser. */
562 const char *const_suffix = gdbarch_stap_integer_suffix (gdbarch);
55aa24fb 563 int const_suffix_len = const_suffix ? strlen (const_suffix) : 0;
55aa24fb
SDJ
564
565 /* We first try to parse this token as a "special token". */
566 if (gdbarch_stap_parse_special_token_p (gdbarch))
567 {
568 int ret = gdbarch_stap_parse_special_token (gdbarch, p);
569
570 if (ret)
571 {
572 /* If the return value of the above function is not zero,
573 it means it successfully parsed the special token.
574
575 If it is NULL, we try to parse it using our method. */
576 return;
577 }
578 }
579
580 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
581 {
582 char c = *p->arg;
583 int number;
584
585 /* We use this variable to do a lookahead. */
586 const char *tmp = p->arg;
587
588 ++tmp;
589
590 /* This is an unary operation. Here is a list of allowed tokens
591 here:
592
593 - numeric literal;
594 - number (from register displacement)
595 - subexpression (beginning with `(')
596
597 We handle the register displacement here, and the other cases
598 recursively. */
599 if (p->inside_paren_p)
600 tmp = skip_spaces_const (tmp);
601
602 if (isdigit (*tmp))
a0bcdaa7
PA
603 {
604 char *endp;
605
606 number = strtol (tmp, &endp, 10);
607 tmp = endp;
608 }
55aa24fb
SDJ
609
610 if (!reg_ind_prefix
611 || strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
612 {
613 /* This is not a displacement. We skip the operator, and deal
614 with it later. */
615 ++p->arg;
616 stap_parse_argument_conditionally (p);
617 if (c == '-')
618 write_exp_elt_opcode (UNOP_NEG);
619 else if (c == '~')
620 write_exp_elt_opcode (UNOP_COMPLEMENT);
621 }
622 else
623 {
624 /* If we are here, it means it is a displacement. The only
625 operations allowed here are `-' and `+'. */
626 if (c == '~')
627 error (_("Invalid operator `%c' for register displacement "
628 "on expression `%s'."), c, p->saved_arg);
629
630 stap_parse_register_operand (p);
631 }
632 }
633 else if (isdigit (*p->arg))
634 {
635 /* A temporary variable, needed for lookahead. */
636 const char *tmp = p->arg;
a0bcdaa7 637 char *endp;
55aa24fb
SDJ
638 long number;
639
640 /* We can be dealing with a numeric constant (if `const_prefix' is
641 NULL), or with a register displacement. */
a0bcdaa7
PA
642 number = strtol (tmp, &endp, 10);
643 tmp = endp;
55aa24fb
SDJ
644
645 if (p->inside_paren_p)
646 tmp = skip_spaces_const (tmp);
647 if (!const_prefix && reg_ind_prefix
648 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
649 {
650 /* We are dealing with a numeric constant. */
651 write_exp_elt_opcode (OP_LONG);
652 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
653 write_exp_elt_longcst (number);
654 write_exp_elt_opcode (OP_LONG);
655
656 p->arg = tmp;
657
658 if (const_suffix)
659 {
660 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
661 p->arg += const_suffix_len;
662 else
663 error (_("Invalid constant suffix on expression `%s'."),
664 p->saved_arg);
665 }
666 }
667 else if (reg_ind_prefix
668 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) == 0)
669 stap_parse_register_operand (p);
670 else
671 error (_("Unknown numeric token on expression `%s'."),
672 p->saved_arg);
673 }
674 else if (const_prefix
675 && strncmp (p->arg, const_prefix, const_prefix_len) == 0)
676 {
677 /* We are dealing with a numeric constant. */
678 long number;
a0bcdaa7 679 char *endp;
55aa24fb
SDJ
680
681 p->arg += const_prefix_len;
a0bcdaa7
PA
682 number = strtol (p->arg, &endp, 10);
683 p->arg = endp;
55aa24fb
SDJ
684
685 write_exp_elt_opcode (OP_LONG);
686 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
687 write_exp_elt_longcst (number);
688 write_exp_elt_opcode (OP_LONG);
689
690 if (const_suffix)
691 {
692 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
693 p->arg += const_suffix_len;
694 else
695 error (_("Invalid constant suffix on expression `%s'."),
696 p->saved_arg);
697 }
698 }
699 else if ((reg_prefix
700 && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
701 || (reg_ind_prefix
702 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0))
703 stap_parse_register_operand (p);
704 else
705 error (_("Operator `%c' not recognized on expression `%s'."),
706 *p->arg, p->saved_arg);
707}
708
709/* This function parses an argument conditionally, based on single or
710 non-single operands. A non-single operand would be a parenthesized
711 expression (e.g., `(2 + 1)'), and a single operand is anything that
712 starts with `-', `~', `+' (i.e., unary operators), a digit, or
713 something recognized by `gdbarch_stap_is_single_operand'. */
714
715static void
716stap_parse_argument_conditionally (struct stap_parse_info *p)
717{
718 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
719 || isdigit (*p->arg)
720 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
721 stap_parse_single_operand (p);
722 else if (*p->arg == '(')
723 {
724 /* We are dealing with a parenthesized operand. It means we
725 have to parse it as it was a separate expression, without
726 left-side or precedence. */
727 ++p->arg;
728 p->arg = skip_spaces_const (p->arg);
729 ++p->inside_paren_p;
730
731 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
732
733 --p->inside_paren_p;
734 if (*p->arg != ')')
735 error (_("Missign close-paren on expression `%s'."),
736 p->saved_arg);
737
738 ++p->arg;
739 if (p->inside_paren_p)
740 p->arg = skip_spaces_const (p->arg);
741 }
742 else
743 error (_("Cannot parse expression `%s'."), p->saved_arg);
744}
745
746/* Helper function for `stap_parse_argument'. Please, see its comments to
747 better understand what this function does. */
748
749static void
750stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
751 enum stap_operand_prec prec)
752{
753 /* This is an operator-precedence parser.
754
755 We work with left- and right-sides of expressions, and
756 parse them depending on the precedence of the operators
757 we find. */
758
759 if (p->inside_paren_p)
760 p->arg = skip_spaces_const (p->arg);
761
762 if (!has_lhs)
763 {
764 /* We were called without a left-side, either because this is the
765 first call, or because we were called to parse a parenthesized
766 expression. It doesn't really matter; we have to parse the
767 left-side in order to continue the process. */
768 stap_parse_argument_conditionally (p);
769 }
770
771 /* Start to parse the right-side, and to "join" left and right sides
772 depending on the operation specified.
773
774 This loop shall continue until we run out of characters in the input,
775 or until we find a close-parenthesis, which means that we've reached
776 the end of a sub-expression. */
777 while (p->arg && *p->arg && *p->arg != ')' && !isspace (*p->arg))
778 {
779 const char *tmp_exp_buf;
780 enum exp_opcode opcode;
781 enum stap_operand_prec cur_prec;
782
fcf57f19 783 if (!stap_is_operator (p->arg))
55aa24fb
SDJ
784 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
785 p->saved_arg);
786
787 /* We have to save the current value of the expression buffer because
788 the `stap_get_opcode' modifies it in order to get the current
789 operator. If this operator's precedence is lower than PREC, we
790 should return and not advance the expression buffer pointer. */
791 tmp_exp_buf = p->arg;
fcf57f19 792 opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
793
794 cur_prec = stap_get_operator_prec (opcode);
795 if (cur_prec < prec)
796 {
797 /* If the precedence of the operator that we are seeing now is
798 lower than the precedence of the first operator seen before
799 this parsing process began, it means we should stop parsing
800 and return. */
801 break;
802 }
803
804 p->arg = tmp_exp_buf;
805 if (p->inside_paren_p)
806 p->arg = skip_spaces_const (p->arg);
807
808 /* Parse the right-side of the expression. */
809 stap_parse_argument_conditionally (p);
810
811 /* While we still have operators, try to parse another
812 right-side, but using the current right-side as a left-side. */
fcf57f19 813 while (*p->arg && stap_is_operator (p->arg))
55aa24fb
SDJ
814 {
815 enum exp_opcode lookahead_opcode;
816 enum stap_operand_prec lookahead_prec;
817
818 /* Saving the current expression buffer position. The explanation
819 is the same as above. */
820 tmp_exp_buf = p->arg;
fcf57f19 821 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
822 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
823
824 if (lookahead_prec <= prec)
825 {
826 /* If we are dealing with an operator whose precedence is lower
827 than the first one, just abandon the attempt. */
828 break;
829 }
830
831 /* Parse the right-side of the expression, but since we already
832 have a left-side at this point, set `has_lhs' to 1. */
833 stap_parse_argument_1 (p, 1, lookahead_prec);
834 }
835
836 write_exp_elt_opcode (opcode);
837 }
838}
839
840/* Parse a probe's argument.
841
842 Assuming that:
843
844 LP = literal integer prefix
845 LS = literal integer suffix
846
847 RP = register prefix
848 RS = register suffix
849
850 RIP = register indirection prefix
851 RIS = register indirection suffix
852
853 This routine assumes that arguments' tokens are of the form:
854
855 - [LP] NUMBER [LS]
856 - [RP] REGISTER [RS]
857 - [RIP] [RP] REGISTER [RS] [RIS]
858 - If we find a number without LP, we try to parse it as a literal integer
859 constant (if LP == NULL), or as a register displacement.
860 - We count parenthesis, and only skip whitespaces if we are inside them.
861 - If we find an operator, we skip it.
862
863 This function can also call a special function that will try to match
864 unknown tokens. It will return 1 if the argument has been parsed
865 successfully, or zero otherwise. */
866
867static struct expression *
868stap_parse_argument (const char **arg, struct type *atype,
869 struct gdbarch *gdbarch)
870{
871 struct stap_parse_info p;
55aa24fb
SDJ
872 struct cleanup *back_to;
873
874 /* We need to initialize the expression buffer, in order to begin
875 our parsing efforts. The language here does not matter, since we
876 are using our own parser. */
877 initialize_expout (10, current_language, gdbarch);
878 back_to = make_cleanup (free_current_contents, &expout);
879
880 p.saved_arg = *arg;
881 p.arg = *arg;
882 p.arg_type = atype;
883 p.gdbarch = gdbarch;
884 p.inside_paren_p = 0;
885
886 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
887
888 discard_cleanups (back_to);
889
890 gdb_assert (p.inside_paren_p == 0);
891
892 /* Casting the final expression to the appropriate type. */
893 write_exp_elt_opcode (UNOP_CAST);
894 write_exp_elt_type (atype);
895 write_exp_elt_opcode (UNOP_CAST);
896
897 reallocate_expout ();
898
899 p.arg = skip_spaces_const (p.arg);
900 *arg = p.arg;
901
902 return expout;
903}
904
905/* Function which parses an argument string from PROBE, correctly splitting
906 the arguments and storing their information in properly ways.
907
908 Consider the following argument string (x86 syntax):
909
910 `4@%eax 4@$10'
911
912 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
913 This function basically handles them, properly filling some structures with
914 this information. */
915
916static void
6bac7473 917stap_parse_probe_arguments (struct stap_probe *probe)
55aa24fb
SDJ
918{
919 const char *cur;
6bac7473 920 struct gdbarch *gdbarch = get_objfile_arch (probe->p.objfile);
55aa24fb
SDJ
921
922 gdb_assert (!probe->args_parsed);
923 cur = probe->args_u.text;
924 probe->args_parsed = 1;
925 probe->args_u.vec = NULL;
926
927 if (!cur || !*cur || *cur == ':')
928 return;
929
930 while (*cur)
931 {
932 struct stap_probe_arg arg;
933 enum stap_arg_bitness b;
934 int got_minus = 0;
935 struct expression *expr;
936
937 memset (&arg, 0, sizeof (arg));
938
939 /* We expect to find something like:
940
941 N@OP
942
943 Where `N' can be [+,-][4,8]. This is not mandatory, so
944 we check it here. If we don't find it, go to the next
945 state. */
946 if ((*cur == '-' && cur[1] && cur[2] != '@')
947 && cur[1] != '@')
948 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
949 else
950 {
951 if (*cur == '-')
952 {
953 /* Discard the `-'. */
954 ++cur;
955 got_minus = 1;
956 }
957
958 if (*cur == '4')
959 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
960 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
961 else if (*cur == '8')
962 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
963 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
964 else
965 {
966 /* We have an error, because we don't expect anything
967 except 4 and 8. */
968 complaint (&symfile_complaints,
969 _("unrecognized bitness `%c' for probe `%s'"),
970 *cur, probe->p.name);
971 return;
972 }
973
974 arg.bitness = b;
975 arg.atype = stap_get_expected_argument_type (gdbarch, b);
976
977 /* Discard the number and the `@' sign. */
978 cur += 2;
979 }
980
981 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
982
983 if (stap_expression_debug)
984 dump_raw_expression (expr, gdb_stdlog,
985 "before conversion to prefix form");
986
987 prefixify_expression (expr);
988
989 if (stap_expression_debug)
990 dump_prefix_expression (expr, gdb_stdlog);
991
992 arg.aexpr = expr;
993
994 /* Start it over again. */
995 cur = skip_spaces_const (cur);
996
997 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
998 }
999}
1000
1001/* Given PROBE, returns the number of arguments present in that probe's
1002 argument string. */
1003
1004static unsigned
6bac7473 1005stap_get_probe_argument_count (struct probe *probe_generic)
55aa24fb
SDJ
1006{
1007 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1008
1009 gdb_assert (probe_generic->pops == &stap_probe_ops);
1010
1011 if (!probe->args_parsed)
25f9533e
SDJ
1012 {
1013 if (probe_generic->pops->can_evaluate_probe_arguments (probe_generic))
1014 stap_parse_probe_arguments (probe);
1015 else
1016 {
1017 static int have_warned_stap_incomplete = 0;
1018
1019 if (!have_warned_stap_incomplete)
1020 {
1021 warning (_(
1022"The SystemTap SDT probe support is not fully implemented on this target;\n"
1023"you will not be able to inspect the arguments of the probes.\n"
1024"Please report a bug against GDB requesting a port to this target."));
1025 have_warned_stap_incomplete = 1;
1026 }
1027
1028 /* Marking the arguments as "already parsed". */
1029 probe->args_u.vec = NULL;
1030 probe->args_parsed = 1;
1031 }
1032 }
55aa24fb
SDJ
1033
1034 gdb_assert (probe->args_parsed);
1035 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1036}
1037
1038/* Return 1 if OP is a valid operator inside a probe argument, or zero
1039 otherwise. */
1040
1041static int
fcf57f19 1042stap_is_operator (const char *op)
55aa24fb 1043{
fcf57f19
SDJ
1044 int ret = 1;
1045
1046 switch (*op)
1047 {
1048 case '*':
1049 case '/':
1050 case '%':
1051 case '^':
1052 case '!':
1053 case '+':
1054 case '-':
1055 case '<':
1056 case '>':
1057 case '|':
1058 case '&':
1059 break;
1060
1061 case '=':
1062 if (op[1] != '=')
1063 ret = 0;
1064 break;
1065
1066 default:
1067 /* We didn't find any operator. */
1068 ret = 0;
1069 }
1070
1071 return ret;
55aa24fb
SDJ
1072}
1073
1074static struct stap_probe_arg *
6bac7473 1075stap_get_arg (struct stap_probe *probe, unsigned n)
55aa24fb
SDJ
1076{
1077 if (!probe->args_parsed)
6bac7473 1078 stap_parse_probe_arguments (probe);
55aa24fb
SDJ
1079
1080 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1081}
1082
25f9533e
SDJ
1083/* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1084
1085static int
1086stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1087{
1088 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
df6d5441 1089 struct gdbarch *gdbarch = get_objfile_arch (stap_probe->p.objfile);
25f9533e
SDJ
1090
1091 /* For SystemTap probes, we have to guarantee that the method
1092 stap_is_single_operand is defined on gdbarch. If it is not, then it
1093 means that argument evaluation is not implemented on this target. */
1094 return gdbarch_stap_is_single_operand_p (gdbarch);
1095}
1096
55aa24fb
SDJ
1097/* Evaluate the probe's argument N (indexed from 0), returning a value
1098 corresponding to it. Assertion is thrown if N does not exist. */
1099
1100static struct value *
6bac7473 1101stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n)
55aa24fb
SDJ
1102{
1103 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1104 struct stap_probe_arg *arg;
1105 int pos = 0;
1106
1107 gdb_assert (probe_generic->pops == &stap_probe_ops);
1108
6bac7473 1109 arg = stap_get_arg (stap_probe, n);
55aa24fb
SDJ
1110 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1111}
1112
1113/* Compile the probe's argument N (indexed from 0) to agent expression.
1114 Assertion is thrown if N does not exist. */
1115
1116static void
6bac7473
SDJ
1117stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1118 struct axs_value *value, unsigned n)
55aa24fb
SDJ
1119{
1120 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1121 struct stap_probe_arg *arg;
1122 union exp_element *pc;
1123
1124 gdb_assert (probe_generic->pops == &stap_probe_ops);
1125
6bac7473 1126 arg = stap_get_arg (stap_probe, n);
55aa24fb
SDJ
1127
1128 pc = arg->aexpr->elts;
1129 gen_expr (arg->aexpr, &pc, expr, value);
1130
1131 require_rvalue (expr, value);
1132 value->type = arg->atype;
1133}
1134
1135/* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1136 as it is allocated from OBJFILE_OBSTACK. */
1137
1138static void
1139stap_probe_destroy (struct probe *probe_generic)
1140{
1141 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1142
1143 gdb_assert (probe_generic->pops == &stap_probe_ops);
1144
1145 if (probe->args_parsed)
1146 {
1147 struct stap_probe_arg *arg;
1148 int ix;
1149
1150 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1151 ++ix)
1152 xfree (arg->aexpr);
1153 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1154 }
1155}
1156
1157\f
1158
1159/* This is called to compute the value of one of the $_probe_arg*
1160 convenience variables. */
1161
1162static struct value *
1163compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1164 void *data)
1165{
1166 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1167 CORE_ADDR pc = get_frame_pc (frame);
1168 int sel = (int) (uintptr_t) data;
55aa24fb 1169 struct probe *pc_probe;
6bac7473 1170 const struct sym_probe_fns *pc_probe_fns;
55aa24fb
SDJ
1171 unsigned n_args;
1172
1173 /* SEL == -1 means "_probe_argc". */
1174 gdb_assert (sel >= -1);
1175
6bac7473 1176 pc_probe = find_probe_by_pc (pc);
55aa24fb
SDJ
1177 if (pc_probe == NULL)
1178 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1179
6bac7473
SDJ
1180 gdb_assert (pc_probe->objfile != NULL);
1181 gdb_assert (pc_probe->objfile->sf != NULL);
1182 gdb_assert (pc_probe->objfile->sf->sym_probe_fns != NULL);
1183
1184 pc_probe_fns = pc_probe->objfile->sf->sym_probe_fns;
1185
1186 n_args = pc_probe_fns->sym_get_probe_argument_count (pc_probe);
55aa24fb
SDJ
1187 if (sel == -1)
1188 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1189
1190 if (sel >= n_args)
1191 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1192 sel, n_args);
1193
6bac7473 1194 return pc_probe_fns->sym_evaluate_probe_argument (pc_probe, sel);
55aa24fb
SDJ
1195}
1196
1197/* This is called to compile one of the $_probe_arg* convenience
1198 variables into an agent expression. */
1199
1200static void
1201compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1202 struct axs_value *value, void *data)
1203{
1204 CORE_ADDR pc = expr->scope;
1205 int sel = (int) (uintptr_t) data;
55aa24fb 1206 struct probe *pc_probe;
6bac7473 1207 const struct sym_probe_fns *pc_probe_fns;
2b963b68 1208 int n_args;
55aa24fb
SDJ
1209
1210 /* SEL == -1 means "_probe_argc". */
1211 gdb_assert (sel >= -1);
1212
6bac7473 1213 pc_probe = find_probe_by_pc (pc);
55aa24fb
SDJ
1214 if (pc_probe == NULL)
1215 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1216
6bac7473
SDJ
1217 gdb_assert (pc_probe->objfile != NULL);
1218 gdb_assert (pc_probe->objfile->sf != NULL);
1219 gdb_assert (pc_probe->objfile->sf->sym_probe_fns != NULL);
1220
1221 pc_probe_fns = pc_probe->objfile->sf->sym_probe_fns;
1222
2b963b68 1223 n_args = pc_probe_fns->sym_get_probe_argument_count (pc_probe);
6bac7473 1224
55aa24fb
SDJ
1225 if (sel == -1)
1226 {
1227 value->kind = axs_rvalue;
1228 value->type = builtin_type (expr->gdbarch)->builtin_int;
2b963b68 1229 ax_const_l (expr, n_args);
55aa24fb
SDJ
1230 return;
1231 }
1232
1233 gdb_assert (sel >= 0);
2b963b68 1234 if (sel >= n_args)
55aa24fb 1235 error (_("Invalid probe argument %d -- probe has %d arguments available"),
2b963b68 1236 sel, n_args);
55aa24fb 1237
6bac7473 1238 pc_probe_fns->sym_compile_to_ax (pc_probe, expr, value, sel);
55aa24fb
SDJ
1239}
1240
1241\f
1242
1243/* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1244 address. SET is zero if the semaphore should be cleared, or one
1245 if it should be set. This is a helper function for `stap_semaphore_down'
1246 and `stap_semaphore_up'. */
1247
1248static void
1249stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1250{
1251 gdb_byte bytes[sizeof (LONGEST)];
1252 /* The ABI specifies "unsigned short". */
1253 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1254 ULONGEST value;
1255
1256 if (address == 0)
1257 return;
1258
1259 /* Swallow errors. */
1260 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1261 {
1262 warning (_("Could not read the value of a SystemTap semaphore."));
1263 return;
1264 }
1265
1266 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1267 gdbarch_byte_order (gdbarch));
1268 /* Note that we explicitly don't worry about overflow or
1269 underflow. */
1270 if (set)
1271 ++value;
1272 else
1273 --value;
1274
1275 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1276 gdbarch_byte_order (gdbarch), value);
1277
1278 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1279 warning (_("Could not write the value of a SystemTap semaphore."));
1280}
1281
1282/* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1283 act as reference counters, so calls to this function must be paired with
1284 calls to `stap_semaphore_down'.
1285
1286 This function and `stap_semaphore_down' race with another tool changing
1287 the probes, but that is too rare to care. */
1288
1289static void
1290stap_set_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1291{
1292 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1293
1294 gdb_assert (probe_generic->pops == &stap_probe_ops);
1295
1296 stap_modify_semaphore (probe->sem_addr, 1, gdbarch);
1297}
1298
1299/* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1300
1301static void
1302stap_clear_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1303{
1304 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1305
1306 gdb_assert (probe_generic->pops == &stap_probe_ops);
1307
1308 stap_modify_semaphore (probe->sem_addr, 0, gdbarch);
1309}
1310
1311/* Implementation of `$_probe_arg*' set of variables. */
1312
1313static const struct internalvar_funcs probe_funcs =
1314{
1315 compute_probe_arg,
1316 compile_probe_arg,
1317 NULL
1318};
1319
1320/* Helper function that parses the information contained in a
1321 SystemTap's probe. Basically, the information consists in:
1322
1323 - Probe's PC address;
1324 - Link-time section address of `.stapsdt.base' section;
1325 - Link-time address of the semaphore variable, or ZERO if the
1326 probe doesn't have an associated semaphore;
1327 - Probe's provider name;
1328 - Probe's name;
1329 - Probe's argument format
1330
1331 This function returns 1 if the handling was successful, and zero
1332 otherwise. */
1333
1334static void
1335handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1336 VEC (probe_p) **probesp, CORE_ADDR base)
1337{
1338 bfd *abfd = objfile->obfd;
1339 int size = bfd_get_arch_size (abfd) / 8;
1340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
55aa24fb
SDJ
1341 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1342 CORE_ADDR base_ref;
1343 const char *probe_args = NULL;
1344 struct stap_probe *ret;
1345
1346 ret = obstack_alloc (&objfile->objfile_obstack, sizeof (*ret));
1347 ret->p.pops = &stap_probe_ops;
6bac7473 1348 ret->p.objfile = objfile;
55aa24fb
SDJ
1349
1350 /* Provider and the name of the probe. */
fe106009 1351 ret->p.provider = (char *) &el->data[3 * size];
55aa24fb
SDJ
1352 ret->p.name = memchr (ret->p.provider, '\0',
1353 (char *) el->data + el->size - ret->p.provider);
1354 /* Making sure there is a name. */
1355 if (!ret->p.name)
1356 {
1357 complaint (&symfile_complaints, _("corrupt probe name when "
1358 "reading `%s'"), objfile->name);
1359
1360 /* There is no way to use a probe without a name or a provider, so
1361 returning zero here makes sense. */
1362 return;
1363 }
1364 else
1365 ++ret->p.name;
1366
1367 /* Retrieving the probe's address. */
1368 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1369
1370 /* Link-time sh_addr of `.stapsdt.base' section. */
1371 base_ref = extract_typed_address (&el->data[size], ptr_type);
1372
1373 /* Semaphore address. */
1374 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1375
1376 ret->p.address += (ANOFFSET (objfile->section_offsets,
1377 SECT_OFF_TEXT (objfile))
1378 + base - base_ref);
1379 if (ret->sem_addr)
1380 ret->sem_addr += (ANOFFSET (objfile->section_offsets,
1381 SECT_OFF_DATA (objfile))
1382 + base - base_ref);
1383
1384 /* Arguments. We can only extract the argument format if there is a valid
1385 name for this probe. */
1386 probe_args = memchr (ret->p.name, '\0',
1387 (char *) el->data + el->size - ret->p.name);
1388
1389 if (probe_args != NULL)
1390 ++probe_args;
1391
1392 if (probe_args == NULL || (memchr (probe_args, '\0',
1393 (char *) el->data + el->size - ret->p.name)
1394 != el->data + el->size - 1))
1395 {
1396 complaint (&symfile_complaints, _("corrupt probe argument when "
1397 "reading `%s'"), objfile->name);
1398 /* If the argument string is NULL, it means some problem happened with
1399 it. So we return 0. */
1400 return;
1401 }
1402
1403 ret->args_parsed = 0;
1404 ret->args_u.text = (void *) probe_args;
1405
1406 /* Successfully created probe. */
1407 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1408}
1409
1410/* Helper function which tries to find the base address of the SystemTap
1411 base section named STAP_BASE_SECTION_NAME. */
1412
1413static void
1414get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1415{
1416 asection **ret = obj;
1417
1418 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1419 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1420 *ret = sect;
1421}
1422
1423/* Helper function which iterates over every section in the BFD file,
1424 trying to find the base address of the SystemTap base section.
1425 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1426
1427static int
1428get_stap_base_address (bfd *obfd, bfd_vma *base)
1429{
1430 asection *ret = NULL;
1431
1432 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1433
1434 if (!ret)
1435 {
1436 complaint (&symfile_complaints, _("could not obtain base address for "
1437 "SystemTap section on objfile `%s'."),
1438 obfd->filename);
1439 return 0;
1440 }
1441
1442 if (base)
1443 *base = ret->vma;
1444
1445 return 1;
1446}
1447
1448/* Helper function for `elf_get_probes', which gathers information about all
1449 SystemTap probes from OBJFILE. */
1450
1451static void
1452stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1453{
1454 /* If we are here, then this is the first time we are parsing the
1455 SystemTap probe's information. We basically have to count how many
1456 probes the objfile has, and then fill in the necessary information
1457 for each one. */
1458 bfd *obfd = objfile->obfd;
1459 bfd_vma base;
1460 struct sdt_note *iter;
1461 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1462
d7333987
SDJ
1463 if (objfile->separate_debug_objfile_backlink != NULL)
1464 {
1465 /* This is a .debug file, not the objfile itself. */
1466 return;
1467 }
1468
55aa24fb
SDJ
1469 if (!elf_tdata (obfd)->sdt_note_head)
1470 {
1471 /* There isn't any probe here. */
1472 return;
1473 }
1474
1475 if (!get_stap_base_address (obfd, &base))
1476 {
1477 /* There was an error finding the base address for the section.
1478 Just return NULL. */
1479 return;
1480 }
1481
1482 /* Parsing each probe's information. */
1483 for (iter = elf_tdata (obfd)->sdt_note_head; iter; iter = iter->next)
1484 {
1485 /* We first have to handle all the information about the
1486 probe which is present in the section. */
1487 handle_stap_probe (objfile, iter, probesp, base);
1488 }
1489
1490 if (save_probesp_len == VEC_length (probe_p, *probesp))
1491 {
1492 /* If we are here, it means we have failed to parse every known
1493 probe. */
1494 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1495 "from inferior"));
1496 return;
1497 }
1498}
1499
1500static void
1501stap_relocate (struct probe *probe_generic, CORE_ADDR delta)
1502{
1503 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1504
1505 gdb_assert (probe_generic->pops == &stap_probe_ops);
1506
1507 probe->p.address += delta;
1508 if (probe->sem_addr)
1509 probe->sem_addr += delta;
1510}
1511
1512static int
1513stap_probe_is_linespec (const char **linespecp)
1514{
1515 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1516
1517 return probe_is_linespec_by_keyword (linespecp, keywords);
1518}
1519
1520static void
1521stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1522{
1523 info_probe_column_s stap_probe_column;
1524
1525 stap_probe_column.field_name = "semaphore";
1526 stap_probe_column.print_name = _("Semaphore");
1527
1528 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1529}
1530
1531static void
1532stap_gen_info_probes_table_values (struct probe *probe_generic,
55aa24fb
SDJ
1533 VEC (const_char_ptr) **ret)
1534{
1535 struct stap_probe *probe = (struct stap_probe *) probe_generic;
6bac7473 1536 struct gdbarch *gdbarch;
55aa24fb
SDJ
1537 const char *val = NULL;
1538
1539 gdb_assert (probe_generic->pops == &stap_probe_ops);
1540
6bac7473
SDJ
1541 gdbarch = get_objfile_arch (probe->p.objfile);
1542
55aa24fb
SDJ
1543 if (probe->sem_addr)
1544 val = print_core_address (gdbarch, probe->sem_addr);
1545
1546 VEC_safe_push (const_char_ptr, *ret, val);
1547}
1548
1549/* SystemTap probe_ops. */
1550
1551static const struct probe_ops stap_probe_ops =
1552{
1553 stap_probe_is_linespec,
1554 stap_get_probes,
1555 stap_relocate,
1556 stap_get_probe_argument_count,
25f9533e 1557 stap_can_evaluate_probe_arguments,
55aa24fb
SDJ
1558 stap_evaluate_probe_argument,
1559 stap_compile_to_ax,
1560 stap_set_semaphore,
1561 stap_clear_semaphore,
1562 stap_probe_destroy,
1563 stap_gen_info_probes_table_header,
1564 stap_gen_info_probes_table_values,
1565};
1566
1567/* Implementation of the `info probes stap' command. */
1568
1569static void
1570info_probes_stap_command (char *arg, int from_tty)
1571{
1572 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1573}
1574
1575void _initialize_stap_probe (void);
1576
1577void
1578_initialize_stap_probe (void)
1579{
1580 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1581
ccce17b0
YQ
1582 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1583 &stap_expression_debug,
1584 _("Set SystemTap expression debugging."),
1585 _("Show SystemTap expression debugging."),
1586 _("When non-zero, the internal representation "
1587 "of SystemTap expressions will be printed."),
1588 NULL,
1589 show_stapexpressiondebug,
1590 &setdebuglist, &showdebuglist);
55aa24fb
SDJ
1591
1592 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1593 (void *) (uintptr_t) -1);
1594 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1595 (void *) (uintptr_t) 0);
1596 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1597 (void *) (uintptr_t) 1);
1598 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1599 (void *) (uintptr_t) 2);
1600 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1601 (void *) (uintptr_t) 3);
1602 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1603 (void *) (uintptr_t) 4);
1604 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1605 (void *) (uintptr_t) 5);
1606 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1607 (void *) (uintptr_t) 6);
1608 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1609 (void *) (uintptr_t) 7);
1610 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1611 (void *) (uintptr_t) 8);
1612 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1613 (void *) (uintptr_t) 9);
1614 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1615 (void *) (uintptr_t) 10);
1616 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1617 (void *) (uintptr_t) 11);
1618
1619 add_cmd ("stap", class_info, info_probes_stap_command,
1620 _("\
1621Show information about SystemTap static probes.\n\
1622Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1623Each argument is a regular expression, used to select probes.\n\
1624PROVIDER matches probe provider names.\n\
1625NAME matches the probe names.\n\
1626OBJECT matches the executable or shared library name."),
1627 info_probes_cmdlist_get ());
1628
1629}