]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
gdb
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
90#if 0
a14ed312
KB
91static int simple_read_overlay_region_table (void);
92static void simple_free_overlay_region_table (void);
c906108c
SS
93#endif
94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101bfd *symfile_bfd_open (char *);
c906108c 102
0e931cf0
JB
103int get_section_index (struct objfile *, char *);
104
31d99776 105static struct sym_fns *find_sym_fns (bfd *);
c906108c 106
a14ed312 107static void decrement_reading_symtab (void *);
c906108c 108
a14ed312 109static void overlay_invalidate_all (void);
c906108c 110
a14ed312 111void list_overlays_command (char *, int);
c906108c 112
a14ed312 113void map_overlay_command (char *, int);
c906108c 114
a14ed312 115void unmap_overlay_command (char *, int);
c906108c 116
a14ed312 117static void overlay_auto_command (char *, int);
c906108c 118
a14ed312 119static void overlay_manual_command (char *, int);
c906108c 120
a14ed312 121static void overlay_off_command (char *, int);
c906108c 122
a14ed312 123static void overlay_load_command (char *, int);
c906108c 124
a14ed312 125static void overlay_command (char *, int);
c906108c 126
a14ed312 127static void simple_free_overlay_table (void);
c906108c 128
e17a4113
UW
129static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
c906108c 131
a14ed312 132static int simple_read_overlay_table (void);
c906108c 133
a14ed312 134static int simple_overlay_update_1 (struct obj_section *);
c906108c 135
a14ed312 136static void add_filename_language (char *ext, enum language lang);
392a587b 137
a14ed312 138static void info_ext_lang_command (char *args, int from_tty);
392a587b 139
a14ed312 140static void init_filename_language_table (void);
392a587b 141
31d99776
DJ
142static void symfile_find_segment_sections (struct objfile *objfile);
143
a14ed312 144void _initialize_symfile (void);
c906108c
SS
145
146/* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150static struct sym_fns *symtab_fns = NULL;
151
152/* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155#ifdef SYMBOL_RELOADING_DEFAULT
156int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157#else
158int symbol_reloading = 0;
159#endif
920d2a44
AC
160static void
161show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("\
165Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167}
168
b7209cb4
FF
169/* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
c906108c 176 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 177 report all the functions that are actually present. */
c906108c
SS
178
179int auto_solib_add = 1;
b7209cb4
FF
180
181/* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189int auto_solib_limit;
c906108c 190\f
c5aa993b 191
c906108c
SS
192/* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197char *
63ca651f 198obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 199{
52f0bd74 200 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
aa1ee363
AC
205 const char *p1 = ptr;
206 char *p2 = p;
63ca651f 207 const char *end = ptr + size;
433759f7 208
c906108c
SS
209 while (p1 != end)
210 *p2++ = *p1++;
211 }
212 p[size] = 0;
213 return p;
214}
215
48cb83fd
JK
216/* Concatenate NULL terminated variable argument list of `const char *' strings;
217 return the new string. Space is found in the OBSTACKP. Argument list must
218 be terminated by a sentinel expression `(char *) NULL'. */
c906108c
SS
219
220char *
48cb83fd 221obconcat (struct obstack *obstackp, ...)
c906108c 222{
48cb83fd
JK
223 va_list ap;
224
225 va_start (ap, obstackp);
226 for (;;)
227 {
228 const char *s = va_arg (ap, const char *);
229
230 if (s == NULL)
231 break;
232
233 obstack_grow_str (obstackp, s);
234 }
235 va_end (ap);
236 obstack_1grow (obstackp, 0);
237
238 return obstack_finish (obstackp);
c906108c
SS
239}
240
ccefe4c4 241/* True if we are reading a symbol table. */
c906108c
SS
242
243int currently_reading_symtab = 0;
244
245static void
fba45db2 246decrement_reading_symtab (void *dummy)
c906108c
SS
247{
248 currently_reading_symtab--;
249}
250
ccefe4c4
TT
251/* Increment currently_reading_symtab and return a cleanup that can be
252 used to decrement it. */
253struct cleanup *
254increment_reading_symtab (void)
c906108c 255{
ccefe4c4
TT
256 ++currently_reading_symtab;
257 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
258}
259
5417f6dc
RM
260/* Remember the lowest-addressed loadable section we've seen.
261 This function is called via bfd_map_over_sections.
c906108c
SS
262
263 In case of equal vmas, the section with the largest size becomes the
264 lowest-addressed loadable section.
265
266 If the vmas and sizes are equal, the last section is considered the
267 lowest-addressed loadable section. */
268
269void
4efb68b1 270find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 271{
c5aa993b 272 asection **lowest = (asection **) obj;
c906108c 273
eb73e134 274 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
275 return;
276 if (!*lowest)
277 *lowest = sect; /* First loadable section */
278 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
279 *lowest = sect; /* A lower loadable section */
280 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
281 && (bfd_section_size (abfd, (*lowest))
282 <= bfd_section_size (abfd, sect)))
283 *lowest = sect;
284}
285
a39a16c4
MM
286/* Create a new section_addr_info, with room for NUM_SECTIONS. */
287
288struct section_addr_info *
289alloc_section_addr_info (size_t num_sections)
290{
291 struct section_addr_info *sap;
292 size_t size;
293
294 size = (sizeof (struct section_addr_info)
295 + sizeof (struct other_sections) * (num_sections - 1));
296 sap = (struct section_addr_info *) xmalloc (size);
297 memset (sap, 0, size);
298 sap->num_sections = num_sections;
299
300 return sap;
301}
62557bbc
KB
302
303/* Build (allocate and populate) a section_addr_info struct from
304 an existing section table. */
305
306extern struct section_addr_info *
0542c86d
PA
307build_section_addr_info_from_section_table (const struct target_section *start,
308 const struct target_section *end)
62557bbc
KB
309{
310 struct section_addr_info *sap;
0542c86d 311 const struct target_section *stp;
62557bbc
KB
312 int oidx;
313
a39a16c4 314 sap = alloc_section_addr_info (end - start);
62557bbc
KB
315
316 for (stp = start, oidx = 0; stp != end; stp++)
317 {
5417f6dc 318 if (bfd_get_section_flags (stp->bfd,
fbd35540 319 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 320 && oidx < end - start)
62557bbc
KB
321 {
322 sap->other[oidx].addr = stp->addr;
5417f6dc 323 sap->other[oidx].name
fbd35540 324 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
325 sap->other[oidx].sectindex = stp->the_bfd_section->index;
326 oidx++;
327 }
328 }
329
330 return sap;
331}
332
82ccf5a5 333/* Create a section_addr_info from section offsets in ABFD. */
089b4803 334
82ccf5a5
JK
335static struct section_addr_info *
336build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
337{
338 struct section_addr_info *sap;
339 int i;
340 struct bfd_section *sec;
341
82ccf5a5
JK
342 sap = alloc_section_addr_info (bfd_count_sections (abfd));
343 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
344 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 345 {
82ccf5a5
JK
346 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
347 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
348 sap->other[i].sectindex = sec->index;
349 i++;
350 }
089b4803
TG
351 return sap;
352}
353
82ccf5a5
JK
354/* Create a section_addr_info from section offsets in OBJFILE. */
355
356struct section_addr_info *
357build_section_addr_info_from_objfile (const struct objfile *objfile)
358{
359 struct section_addr_info *sap;
360 int i;
361
362 /* Before reread_symbols gets rewritten it is not safe to call:
363 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
364 */
365 sap = build_section_addr_info_from_bfd (objfile->obfd);
366 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
367 {
368 int sectindex = sap->other[i].sectindex;
369
370 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
371 }
372 return sap;
373}
62557bbc
KB
374
375/* Free all memory allocated by build_section_addr_info_from_section_table. */
376
377extern void
378free_section_addr_info (struct section_addr_info *sap)
379{
380 int idx;
381
a39a16c4 382 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 383 if (sap->other[idx].name)
b8c9b27d
KB
384 xfree (sap->other[idx].name);
385 xfree (sap);
62557bbc
KB
386}
387
388
e8289572
JB
389/* Initialize OBJFILE's sect_index_* members. */
390static void
391init_objfile_sect_indices (struct objfile *objfile)
c906108c 392{
e8289572 393 asection *sect;
c906108c 394 int i;
5417f6dc 395
b8fbeb18 396 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 397 if (sect)
b8fbeb18
EZ
398 objfile->sect_index_text = sect->index;
399
400 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 401 if (sect)
b8fbeb18
EZ
402 objfile->sect_index_data = sect->index;
403
404 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 405 if (sect)
b8fbeb18
EZ
406 objfile->sect_index_bss = sect->index;
407
408 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 409 if (sect)
b8fbeb18
EZ
410 objfile->sect_index_rodata = sect->index;
411
bbcd32ad
FF
412 /* This is where things get really weird... We MUST have valid
413 indices for the various sect_index_* members or gdb will abort.
414 So if for example, there is no ".text" section, we have to
31d99776
DJ
415 accomodate that. First, check for a file with the standard
416 one or two segments. */
417
418 symfile_find_segment_sections (objfile);
419
420 /* Except when explicitly adding symbol files at some address,
421 section_offsets contains nothing but zeros, so it doesn't matter
422 which slot in section_offsets the individual sect_index_* members
423 index into. So if they are all zero, it is safe to just point
424 all the currently uninitialized indices to the first slot. But
425 beware: if this is the main executable, it may be relocated
426 later, e.g. by the remote qOffsets packet, and then this will
427 be wrong! That's why we try segments first. */
bbcd32ad
FF
428
429 for (i = 0; i < objfile->num_sections; i++)
430 {
431 if (ANOFFSET (objfile->section_offsets, i) != 0)
432 {
433 break;
434 }
435 }
436 if (i == objfile->num_sections)
437 {
438 if (objfile->sect_index_text == -1)
439 objfile->sect_index_text = 0;
440 if (objfile->sect_index_data == -1)
441 objfile->sect_index_data = 0;
442 if (objfile->sect_index_bss == -1)
443 objfile->sect_index_bss = 0;
444 if (objfile->sect_index_rodata == -1)
445 objfile->sect_index_rodata = 0;
446 }
b8fbeb18 447}
c906108c 448
c1bd25fd
DJ
449/* The arguments to place_section. */
450
451struct place_section_arg
452{
453 struct section_offsets *offsets;
454 CORE_ADDR lowest;
455};
456
457/* Find a unique offset to use for loadable section SECT if
458 the user did not provide an offset. */
459
2c0b251b 460static void
c1bd25fd
DJ
461place_section (bfd *abfd, asection *sect, void *obj)
462{
463 struct place_section_arg *arg = obj;
464 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
465 int done;
3bd72c6f 466 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 467
2711e456
DJ
468 /* We are only interested in allocated sections. */
469 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
470 return;
471
472 /* If the user specified an offset, honor it. */
473 if (offsets[sect->index] != 0)
474 return;
475
476 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
477 start_addr = (arg->lowest + align - 1) & -align;
478
c1bd25fd
DJ
479 do {
480 asection *cur_sec;
c1bd25fd 481
c1bd25fd
DJ
482 done = 1;
483
484 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
485 {
486 int indx = cur_sec->index;
c1bd25fd
DJ
487
488 /* We don't need to compare against ourself. */
489 if (cur_sec == sect)
490 continue;
491
2711e456
DJ
492 /* We can only conflict with allocated sections. */
493 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 continue;
495
496 /* If the section offset is 0, either the section has not been placed
497 yet, or it was the lowest section placed (in which case LOWEST
498 will be past its end). */
499 if (offsets[indx] == 0)
500 continue;
501
502 /* If this section would overlap us, then we must move up. */
503 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
504 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
505 {
506 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
507 start_addr = (start_addr + align - 1) & -align;
508 done = 0;
3bd72c6f 509 break;
c1bd25fd
DJ
510 }
511
512 /* Otherwise, we appear to be OK. So far. */
513 }
514 }
515 while (!done);
516
517 offsets[sect->index] = start_addr;
518 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 519}
e8289572 520
75242ef4
JK
521/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
522 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
523 entries. */
e8289572
JB
524
525void
75242ef4
JK
526relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
527 int num_sections,
528 struct section_addr_info *addrs)
e8289572
JB
529{
530 int i;
531
75242ef4 532 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 533
75242ef4 534 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 535 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 536 {
75242ef4 537 struct other_sections *osp;
e8289572 538
75242ef4 539 osp = &addrs->other[i];
e8289572
JB
540 if (osp->addr == 0)
541 continue;
542
543 /* Record all sections in offsets */
544 /* The section_offsets in the objfile are here filled in using
545 the BFD index. */
75242ef4
JK
546 section_offsets->offsets[osp->sectindex] = osp->addr;
547 }
548}
549
82ccf5a5
JK
550/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
551 their (name, sectindex) pair. sectindex makes the sort by name stable. */
552
553static int
554addrs_section_compar (const void *ap, const void *bp)
555{
556 const struct other_sections *a = *((struct other_sections **) ap);
557 const struct other_sections *b = *((struct other_sections **) bp);
558 int retval, a_idx, b_idx;
559
560 retval = strcmp (a->name, b->name);
561 if (retval)
562 return retval;
563
564 /* SECTINDEX is undefined iff ADDR is zero. */
565 a_idx = a->addr == 0 ? 0 : a->sectindex;
566 b_idx = b->addr == 0 ? 0 : b->sectindex;
567 return a_idx - b_idx;
568}
569
570/* Provide sorted array of pointers to sections of ADDRS. The array is
571 terminated by NULL. Caller is responsible to call xfree for it. */
572
573static struct other_sections **
574addrs_section_sort (struct section_addr_info *addrs)
575{
576 struct other_sections **array;
577 int i;
578
579 /* `+ 1' for the NULL terminator. */
580 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
581 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
582 array[i] = &addrs->other[i];
583 array[i] = NULL;
584
585 qsort (array, i, sizeof (*array), addrs_section_compar);
586
587 return array;
588}
589
75242ef4 590/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
591 also SECTINDEXes specific to ABFD there. This function can be used to
592 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
593
594void
595addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
596{
597 asection *lower_sect;
75242ef4
JK
598 CORE_ADDR lower_offset;
599 int i;
82ccf5a5
JK
600 struct cleanup *my_cleanup;
601 struct section_addr_info *abfd_addrs;
602 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
603 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
604
605 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
606 continguous sections. */
607 lower_sect = NULL;
608 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
609 if (lower_sect == NULL)
610 {
611 warning (_("no loadable sections found in added symbol-file %s"),
612 bfd_get_filename (abfd));
613 lower_offset = 0;
e8289572 614 }
75242ef4
JK
615 else
616 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
617
82ccf5a5
JK
618 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
619 in ABFD. Section names are not unique - there can be multiple sections of
620 the same name. Also the sections of the same name do not have to be
621 adjacent to each other. Some sections may be present only in one of the
622 files. Even sections present in both files do not have to be in the same
623 order.
624
625 Use stable sort by name for the sections in both files. Then linearly
626 scan both lists matching as most of the entries as possible. */
627
628 addrs_sorted = addrs_section_sort (addrs);
629 my_cleanup = make_cleanup (xfree, addrs_sorted);
630
631 abfd_addrs = build_section_addr_info_from_bfd (abfd);
632 make_cleanup_free_section_addr_info (abfd_addrs);
633 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
634 make_cleanup (xfree, abfd_addrs_sorted);
635
636 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
637
638 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
639 * addrs->num_sections);
640 make_cleanup (xfree, addrs_to_abfd_addrs);
641
642 while (*addrs_sorted)
643 {
644 const char *sect_name = (*addrs_sorted)->name;
645
646 while (*abfd_addrs_sorted
647 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
648 abfd_addrs_sorted++;
649
650 if (*abfd_addrs_sorted
651 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
652 {
653 int index_in_addrs;
654
655 /* Make the found item directly addressable from ADDRS. */
656 index_in_addrs = *addrs_sorted - addrs->other;
657 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
658 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
659
660 /* Never use the same ABFD entry twice. */
661 abfd_addrs_sorted++;
662 }
663
664 addrs_sorted++;
665 }
666
75242ef4
JK
667 /* Calculate offsets for the loadable sections.
668 FIXME! Sections must be in order of increasing loadable section
669 so that contiguous sections can use the lower-offset!!!
670
671 Adjust offsets if the segments are not contiguous.
672 If the section is contiguous, its offset should be set to
673 the offset of the highest loadable section lower than it
674 (the loadable section directly below it in memory).
675 this_offset = lower_offset = lower_addr - lower_orig_addr */
676
677 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
678 {
b0fcb67f 679 const char *sect_name = addrs->other[i].name;
82ccf5a5 680 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
681
682 if (sect)
75242ef4 683 {
672d9c23 684 /* This is the index used by BFD. */
82ccf5a5 685 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
686
687 if (addrs->other[i].addr != 0)
75242ef4 688 {
82ccf5a5 689 addrs->other[i].addr -= sect->addr;
75242ef4 690 lower_offset = addrs->other[i].addr;
75242ef4
JK
691 }
692 else
672d9c23 693 addrs->other[i].addr = lower_offset;
75242ef4
JK
694 }
695 else
672d9c23 696 {
b0fcb67f
JK
697 /* This section does not exist in ABFD, which is normally
698 unexpected and we want to issue a warning.
699
4d9743af
JK
700 However, the ELF prelinker does create a few sections which are
701 marked in the main executable as loadable (they are loaded in
702 memory from the DYNAMIC segment) and yet are not present in
703 separate debug info files. This is fine, and should not cause
704 a warning. Shared libraries contain just the section
705 ".gnu.liblist" but it is not marked as loadable there. There is
706 no other way to identify them than by their name as the sections
707 created by prelink have no special flags. */
b0fcb67f
JK
708
709 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af
JK
710 || strcmp (sect_name, ".gnu.conflict") == 0
711 || strcmp (sect_name, ".dynbss") == 0
712 || strcmp (sect_name, ".sdynbss") == 0))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23
JK
716 addrs->other[i].addr = 0;
717
718 /* SECTINDEX is invalid if ADDR is zero. */
719 }
75242ef4 720 }
82ccf5a5
JK
721
722 do_cleanups (my_cleanup);
75242ef4
JK
723}
724
725/* Parse the user's idea of an offset for dynamic linking, into our idea
726 of how to represent it for fast symbol reading. This is the default
727 version of the sym_fns.sym_offsets function for symbol readers that
728 don't need to do anything special. It allocates a section_offsets table
729 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
730
731void
732default_symfile_offsets (struct objfile *objfile,
733 struct section_addr_info *addrs)
734{
735 objfile->num_sections = bfd_count_sections (objfile->obfd);
736 objfile->section_offsets = (struct section_offsets *)
737 obstack_alloc (&objfile->objfile_obstack,
738 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
739 relative_addr_info_to_section_offsets (objfile->section_offsets,
740 objfile->num_sections, addrs);
e8289572 741
c1bd25fd
DJ
742 /* For relocatable files, all loadable sections will start at zero.
743 The zero is meaningless, so try to pick arbitrary addresses such
744 that no loadable sections overlap. This algorithm is quadratic,
745 but the number of sections in a single object file is generally
746 small. */
747 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
748 {
749 struct place_section_arg arg;
2711e456
DJ
750 bfd *abfd = objfile->obfd;
751 asection *cur_sec;
2711e456
DJ
752
753 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
754 /* We do not expect this to happen; just skip this step if the
755 relocatable file has a section with an assigned VMA. */
756 if (bfd_section_vma (abfd, cur_sec) != 0)
757 break;
758
759 if (cur_sec == NULL)
760 {
761 CORE_ADDR *offsets = objfile->section_offsets->offsets;
762
763 /* Pick non-overlapping offsets for sections the user did not
764 place explicitly. */
765 arg.offsets = objfile->section_offsets;
766 arg.lowest = 0;
767 bfd_map_over_sections (objfile->obfd, place_section, &arg);
768
769 /* Correctly filling in the section offsets is not quite
770 enough. Relocatable files have two properties that
771 (most) shared objects do not:
772
773 - Their debug information will contain relocations. Some
774 shared libraries do also, but many do not, so this can not
775 be assumed.
776
777 - If there are multiple code sections they will be loaded
778 at different relative addresses in memory than they are
779 in the objfile, since all sections in the file will start
780 at address zero.
781
782 Because GDB has very limited ability to map from an
783 address in debug info to the correct code section,
784 it relies on adding SECT_OFF_TEXT to things which might be
785 code. If we clear all the section offsets, and set the
786 section VMAs instead, then symfile_relocate_debug_section
787 will return meaningful debug information pointing at the
788 correct sections.
789
790 GDB has too many different data structures for section
791 addresses - a bfd, objfile, and so_list all have section
792 tables, as does exec_ops. Some of these could probably
793 be eliminated. */
794
795 for (cur_sec = abfd->sections; cur_sec != NULL;
796 cur_sec = cur_sec->next)
797 {
798 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
799 continue;
800
801 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
802 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572
JB
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24
MS
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
c906108c
SS
1001 /* Discard cleanups as symbol reading was successful. */
1002
1003 discard_cleanups (old_chain);
f7545552 1004 xfree (local_addr);
c906108c
SS
1005}
1006
1007/* Perform required actions after either reading in the initial
1008 symbols for a new objfile, or mapping in the symbols from a reusable
1009 objfile. */
c5aa993b 1010
c906108c 1011void
7eedccfa 1012new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1013{
c906108c
SS
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1017 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1018 {
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1021
1022 clear_symtab_users ();
1023 }
7eedccfa 1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1025 {
69de3c6a 1026 breakpoint_re_set ();
c906108c
SS
1027 }
1028
1029 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1031}
1032
1033/* Process a symbol file, as either the main file or as a dynamically
1034 loaded file.
1035
5417f6dc
RM
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1038
7eedccfa
PP
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1041
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1045
c906108c
SS
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
7eedccfa 1048
7904e09f 1049static struct objfile *
7eedccfa
PP
1050symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1051 int add_flags,
7904e09f
JB
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1054 int num_offsets,
7eedccfa 1055 int flags)
c906108c
SS
1056{
1057 struct objfile *objfile;
a39a16c4 1058 struct cleanup *my_cleanups;
5417f6dc 1059 const char *name = bfd_get_filename (abfd);
7eedccfa 1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1061
9291a0cd
TT
1062 if (readnow_symbol_files)
1063 flags |= OBJF_READNOW;
1064
5417f6dc 1065 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1066
5417f6dc
RM
1067 /* Give user a chance to burp if we'd be
1068 interactively wiping out any existing symbols. */
c906108c
SS
1069
1070 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1071 && (add_flags & SYMFILE_MAINLINE)
c906108c 1072 && from_tty
9e2f0ad4 1073 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1074 error (_("Not confirmed."));
c906108c 1075
2df3850c 1076 objfile = allocate_objfile (abfd, flags);
5417f6dc 1077 discard_cleanups (my_cleanups);
c906108c 1078
78a4a9b9
AC
1079 /* We either created a new mapped symbol table, mapped an existing
1080 symbol table file which has not had initial symbol reading
1081 performed, or need to read an unmapped symbol table. */
1082 if (from_tty || info_verbose)
c906108c 1083 {
769d7dc4
AC
1084 if (deprecated_pre_add_symbol_hook)
1085 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1086 else
c906108c 1087 {
55333a84
DE
1088 printf_unfiltered (_("Reading symbols from %s..."), name);
1089 wrap_here ("");
1090 gdb_flush (gdb_stdout);
c906108c 1091 }
c906108c 1092 }
78a4a9b9 1093 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1094 add_flags);
c906108c
SS
1095
1096 /* We now have at least a partial symbol table. Check to see if the
1097 user requested that all symbols be read on initial access via either
1098 the gdb startup command line or on a per symbol file basis. Expand
1099 all partial symbol tables for this objfile if so. */
1100
9291a0cd 1101 if ((flags & OBJF_READNOW))
c906108c 1102 {
55333a84 1103 if (from_tty || info_verbose)
c906108c 1104 {
a3f17187 1105 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1106 wrap_here ("");
1107 gdb_flush (gdb_stdout);
1108 }
1109
ccefe4c4
TT
1110 if (objfile->sf)
1111 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1112 }
1113
55333a84 1114 if ((from_tty || info_verbose)
e361b228 1115 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1116 {
1117 wrap_here ("");
55333a84 1118 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1119 wrap_here ("");
1120 }
1121
c906108c
SS
1122 if (from_tty || info_verbose)
1123 {
769d7dc4
AC
1124 if (deprecated_post_add_symbol_hook)
1125 deprecated_post_add_symbol_hook ();
c906108c 1126 else
55333a84 1127 printf_unfiltered (_("done.\n"));
c906108c
SS
1128 }
1129
481d0f41
JB
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
a39a16c4
MM
1135 do_cleanups (my_cleanups);
1136
109f874e 1137 if (objfile->sf == NULL)
8caee43b
PP
1138 {
1139 observer_notify_new_objfile (objfile);
1140 return objfile; /* No symbols. */
1141 }
109f874e 1142
7eedccfa 1143 new_symfile_objfile (objfile, add_flags);
c906108c 1144
06d3b283 1145 observer_notify_new_objfile (objfile);
c906108c 1146
ce7d4522 1147 bfd_cache_close_all ();
c906108c
SS
1148 return (objfile);
1149}
1150
9cce227f
TG
1151/* Add BFD as a separate debug file for OBJFILE. */
1152
1153void
1154symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1155{
15d123c9 1156 struct objfile *new_objfile;
089b4803
TG
1157 struct section_addr_info *sap;
1158 struct cleanup *my_cleanup;
1159
1160 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1161 because sections of BFD may not match sections of OBJFILE and because
1162 vma may have been modified by tools such as prelink. */
1163 sap = build_section_addr_info_from_objfile (objfile);
1164 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1165
15d123c9 1166 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1167 (bfd, symfile_flags,
089b4803 1168 sap, NULL, 0,
9cce227f
TG
1169 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1170 | OBJF_USERLOADED));
089b4803
TG
1171
1172 do_cleanups (my_cleanup);
9cce227f 1173
15d123c9 1174 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1175}
7904e09f 1176
eb4556d7
JB
1177/* Process the symbol file ABFD, as either the main file or as a
1178 dynamically loaded file.
1179
1180 See symbol_file_add_with_addrs_or_offsets's comments for
1181 details. */
1182struct objfile *
7eedccfa 1183symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1184 struct section_addr_info *addrs,
7eedccfa 1185 int flags)
eb4556d7 1186{
7eedccfa
PP
1187 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1188 flags);
eb4556d7
JB
1189}
1190
1191
7904e09f
JB
1192/* Process a symbol file, as either the main file or as a dynamically
1193 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1194 for details. */
1195struct objfile *
7eedccfa
PP
1196symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1197 int flags)
7904e09f 1198{
7eedccfa
PP
1199 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1200 flags);
7904e09f
JB
1201}
1202
1203
d7db6da9
FN
1204/* Call symbol_file_add() with default values and update whatever is
1205 affected by the loading of a new main().
1206 Used when the file is supplied in the gdb command line
1207 and by some targets with special loading requirements.
1208 The auxiliary function, symbol_file_add_main_1(), has the flags
1209 argument for the switches that can only be specified in the symbol_file
1210 command itself. */
5417f6dc 1211
1adeb98a
FN
1212void
1213symbol_file_add_main (char *args, int from_tty)
1214{
d7db6da9
FN
1215 symbol_file_add_main_1 (args, from_tty, 0);
1216}
1217
1218static void
1219symbol_file_add_main_1 (char *args, int from_tty, int flags)
1220{
7eedccfa
PP
1221 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1222 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1223
d7db6da9
FN
1224 /* Getting new symbols may change our opinion about
1225 what is frameless. */
1226 reinit_frame_cache ();
1227
1228 set_initial_language ();
1adeb98a
FN
1229}
1230
1231void
1232symbol_file_clear (int from_tty)
1233{
1234 if ((have_full_symbols () || have_partial_symbols ())
1235 && from_tty
0430b0d6
AS
1236 && (symfile_objfile
1237 ? !query (_("Discard symbol table from `%s'? "),
1238 symfile_objfile->name)
1239 : !query (_("Discard symbol table? "))))
8a3fe4f8 1240 error (_("Not confirmed."));
1adeb98a 1241
0133421a
JK
1242 /* solib descriptors may have handles to objfiles. Wipe them before their
1243 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1244 no_shared_libraries (NULL, from_tty);
1245
0133421a
JK
1246 free_all_objfiles ();
1247
adb7f338 1248 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1249 if (from_tty)
1250 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1251}
1252
5b5d99cf
JB
1253static char *
1254get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1255{
1256 asection *sect;
1257 bfd_size_type debuglink_size;
1258 unsigned long crc32;
1259 char *contents;
1260 int crc_offset;
5417f6dc 1261
5b5d99cf
JB
1262 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1263
1264 if (sect == NULL)
1265 return NULL;
1266
1267 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1268
5b5d99cf
JB
1269 contents = xmalloc (debuglink_size);
1270 bfd_get_section_contents (objfile->obfd, sect, contents,
1271 (file_ptr)0, (bfd_size_type)debuglink_size);
1272
1273 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1274 crc_offset = strlen (contents) + 1;
1275 crc_offset = (crc_offset + 3) & ~3;
1276
1277 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1278
5b5d99cf
JB
1279 *crc32_out = crc32;
1280 return contents;
1281}
1282
1283static int
287ccc17 1284separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1285 struct objfile *parent_objfile)
5b5d99cf
JB
1286{
1287 unsigned long file_crc = 0;
f1838a98 1288 bfd *abfd;
777ea8f1 1289 gdb_byte buffer[8*1024];
5b5d99cf 1290 int count;
32a0e547
JK
1291 struct stat parent_stat, abfd_stat;
1292
1293 /* Find a separate debug info file as if symbols would be present in
1294 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1295 section can contain just the basename of PARENT_OBJFILE without any
1296 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1297 the separate debug infos with the same basename can exist. */
1298
1299 if (strcmp (name, parent_objfile->name) == 0)
1300 return 0;
5b5d99cf 1301
874f5765 1302 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1303
1304 if (!abfd)
5b5d99cf
JB
1305 return 0;
1306
32a0e547
JK
1307 /* Verify symlinks were not the cause of strcmp name difference above.
1308
1309 Some operating systems, e.g. Windows, do not provide a meaningful
1310 st_ino; they always set it to zero. (Windows does provide a
1311 meaningful st_dev.) Do not indicate a duplicate library in that
1312 case. While there is no guarantee that a system that provides
1313 meaningful inode numbers will never set st_ino to zero, this is
1314 merely an optimization, so we do not need to worry about false
1315 negatives. */
1316
1317 if (bfd_stat (abfd, &abfd_stat) == 0
1318 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1319 && abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino
1321 && abfd_stat.st_ino != 0)
1322 {
1323 bfd_close (abfd);
1324 return 0;
1325 }
1326
f1838a98 1327 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329
f1838a98 1330 bfd_close (abfd);
5b5d99cf 1331
287ccc17
JK
1332 if (crc != file_crc)
1333 {
1334 warning (_("the debug information found in \"%s\""
1335 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1336 name, parent_objfile->name);
287ccc17
JK
1337 return 0;
1338 }
1339
1340 return 1;
5b5d99cf
JB
1341}
1342
aa28a74e 1343char *debug_file_directory = NULL;
920d2a44
AC
1344static void
1345show_debug_file_directory (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1347{
1348 fprintf_filtered (file, _("\
1349The directory where separate debug symbols are searched for is \"%s\".\n"),
1350 value);
1351}
5b5d99cf
JB
1352
1353#if ! defined (DEBUG_SUBDIRECTORY)
1354#define DEBUG_SUBDIRECTORY ".debug"
1355#endif
1356
9cce227f
TG
1357char *
1358find_separate_debug_file_by_debuglink (struct objfile *objfile)
1359{
952a6d41 1360 char *basename, *debugdir;
9cce227f
TG
1361 char *dir = NULL;
1362 char *debugfile = NULL;
1363 char *canon_name = NULL;
9cce227f
TG
1364 unsigned long crc32;
1365 int i;
5b5d99cf
JB
1366
1367 basename = get_debug_link_info (objfile, &crc32);
1368
1369 if (basename == NULL)
287ccc17
JK
1370 /* There's no separate debug info, hence there's no way we could
1371 load it => no warning. */
25522fae 1372 goto cleanup_return_debugfile;
5417f6dc 1373
5b5d99cf
JB
1374 dir = xstrdup (objfile->name);
1375
fe36c4f4 1376 /* Strip off the final filename part, leaving the directory name,
569b05a5 1377 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1378 for (i = strlen(dir) - 1; i >= 0; i--)
1379 {
1380 if (IS_DIR_SEPARATOR (dir[i]))
1381 break;
1382 }
569b05a5 1383 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1384 dir[i+1] = '\0';
5417f6dc 1385
1ffa32ee
JK
1386 /* Set I to max (strlen (canon_name), strlen (dir)). */
1387 canon_name = lrealpath (dir);
1388 i = strlen (dir);
1389 if (canon_name && strlen (canon_name) > i)
1390 i = strlen (canon_name);
1391
25522fae
JK
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1396 + strlen (basename)
1397 + 1);
5b5d99cf
JB
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, basename);
1402
32a0e547 1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1404 goto cleanup_return_debugfile;
5417f6dc 1405
5b5d99cf
JB
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, basename);
1411
32a0e547 1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1413 goto cleanup_return_debugfile;
5417f6dc 1414
24ddea62
JK
1415 /* Then try in the global debugfile directories.
1416
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
5417f6dc 1419
24ddea62
JK
1420 debugdir = debug_file_directory;
1421 do
aa28a74e 1422 {
24ddea62
JK
1423 char *debugdir_end;
1424
1425 while (*debugdir == DIRNAME_SEPARATOR)
1426 debugdir++;
1427
1428 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1429 if (debugdir_end == NULL)
1430 debugdir_end = &debugdir[strlen (debugdir)];
1431
1432 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1433 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1434 strcat (debugfile, "/");
24ddea62 1435 strcat (debugfile, dir);
aa28a74e
DJ
1436 strcat (debugfile, basename);
1437
32a0e547 1438 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1439 goto cleanup_return_debugfile;
24ddea62
JK
1440
1441 /* If the file is in the sysroot, try using its base path in the
1442 global debugfile directory. */
1443 if (canon_name
1444 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1445 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1446 {
1447 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1448 debugfile[debugdir_end - debugdir] = 0;
1449 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1450 strcat (debugfile, "/");
1451 strcat (debugfile, basename);
1452
32a0e547 1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1454 goto cleanup_return_debugfile;
1455 }
1456
1457 debugdir = debugdir_end;
aa28a74e 1458 }
24ddea62 1459 while (*debugdir != 0);
aa28a74e 1460
25522fae
JK
1461 xfree (debugfile);
1462 debugfile = NULL;
aa28a74e 1463
25522fae
JK
1464cleanup_return_debugfile:
1465 xfree (canon_name);
5b5d99cf
JB
1466 xfree (basename);
1467 xfree (dir);
25522fae 1468 return debugfile;
5b5d99cf
JB
1469}
1470
1471
c906108c
SS
1472/* This is the symbol-file command. Read the file, analyze its
1473 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1474 the command is rather bizarre:
1475
1476 1. The function buildargv implements various quoting conventions
1477 which are undocumented and have little or nothing in common with
1478 the way things are quoted (or not quoted) elsewhere in GDB.
1479
1480 2. Options are used, which are not generally used in GDB (perhaps
1481 "set mapped on", "set readnow on" would be better)
1482
1483 3. The order of options matters, which is contrary to GNU
c906108c
SS
1484 conventions (because it is confusing and inconvenient). */
1485
1486void
fba45db2 1487symbol_file_command (char *args, int from_tty)
c906108c 1488{
c906108c
SS
1489 dont_repeat ();
1490
1491 if (args == NULL)
1492 {
1adeb98a 1493 symbol_file_clear (from_tty);
c906108c
SS
1494 }
1495 else
1496 {
d1a41061 1497 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1498 int flags = OBJF_USERLOADED;
1499 struct cleanup *cleanups;
1500 char *name = NULL;
1501
7a292a7a 1502 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1503 while (*argv != NULL)
1504 {
78a4a9b9
AC
1505 if (strcmp (*argv, "-readnow") == 0)
1506 flags |= OBJF_READNOW;
1507 else if (**argv == '-')
8a3fe4f8 1508 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1509 else
1510 {
cb2f3a29 1511 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1512 name = *argv;
78a4a9b9 1513 }
cb2f3a29 1514
c906108c
SS
1515 argv++;
1516 }
1517
1518 if (name == NULL)
cb2f3a29
MK
1519 error (_("no symbol file name was specified"));
1520
c906108c
SS
1521 do_cleanups (cleanups);
1522 }
1523}
1524
1525/* Set the initial language.
1526
cb2f3a29
MK
1527 FIXME: A better solution would be to record the language in the
1528 psymtab when reading partial symbols, and then use it (if known) to
1529 set the language. This would be a win for formats that encode the
1530 language in an easily discoverable place, such as DWARF. For
1531 stabs, we can jump through hoops looking for specially named
1532 symbols or try to intuit the language from the specific type of
1533 stabs we find, but we can't do that until later when we read in
1534 full symbols. */
c906108c 1535
8b60591b 1536void
fba45db2 1537set_initial_language (void)
c906108c 1538{
dd786858 1539 const char *filename;
c5aa993b 1540 enum language lang = language_unknown;
c906108c 1541
ccefe4c4
TT
1542 filename = find_main_filename ();
1543 if (filename != NULL)
1544 lang = deduce_language_from_filename (filename);
cb2f3a29 1545
ccefe4c4
TT
1546 if (lang == language_unknown)
1547 {
1548 /* Make C the default language */
1549 lang = language_c;
c906108c 1550 }
ccefe4c4
TT
1551
1552 set_language (lang);
1553 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1554}
1555
874f5765
TG
1556/* If NAME is a remote name open the file using remote protocol, otherwise
1557 open it normally. */
1558
1559bfd *
1560bfd_open_maybe_remote (const char *name)
1561{
1562 if (remote_filename_p (name))
1563 return remote_bfd_open (name, gnutarget);
1564 else
1565 return bfd_openr (name, gnutarget);
1566}
1567
1568
cb2f3a29
MK
1569/* Open the file specified by NAME and hand it off to BFD for
1570 preliminary analysis. Return a newly initialized bfd *, which
1571 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1572 absolute). In case of trouble, error() is called. */
c906108c
SS
1573
1574bfd *
fba45db2 1575symfile_bfd_open (char *name)
c906108c
SS
1576{
1577 bfd *sym_bfd;
1578 int desc;
1579 char *absolute_name;
1580
f1838a98
UW
1581 if (remote_filename_p (name))
1582 {
1583 name = xstrdup (name);
1584 sym_bfd = remote_bfd_open (name, gnutarget);
1585 if (!sym_bfd)
1586 {
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't open to read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 if (!bfd_check_format (sym_bfd, bfd_object))
1593 {
1594 bfd_close (sym_bfd);
1595 make_cleanup (xfree, name);
1596 error (_("`%s': can't read symbols: %s."), name,
1597 bfd_errmsg (bfd_get_error ()));
1598 }
1599
1600 return sym_bfd;
1601 }
1602
cb2f3a29 1603 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1604
1605 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1606 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1607 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1608#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1609 if (desc < 0)
1610 {
1611 char *exename = alloca (strlen (name) + 5);
433759f7 1612
c906108c 1613 strcat (strcpy (exename, name), ".exe");
014d698b 1614 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1615 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1616 }
1617#endif
1618 if (desc < 0)
1619 {
b8c9b27d 1620 make_cleanup (xfree, name);
c906108c
SS
1621 perror_with_name (name);
1622 }
cb2f3a29
MK
1623
1624 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1625 bfd. It'll be freed in free_objfile(). */
1626 xfree (name);
1627 name = absolute_name;
c906108c 1628
9f76c2cd 1629 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1630 if (!sym_bfd)
1631 {
1632 close (desc);
b8c9b27d 1633 make_cleanup (xfree, name);
f1838a98 1634 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1635 bfd_errmsg (bfd_get_error ()));
1636 }
549c1eea 1637 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1638
1639 if (!bfd_check_format (sym_bfd, bfd_object))
1640 {
cb2f3a29
MK
1641 /* FIXME: should be checking for errors from bfd_close (for one
1642 thing, on error it does not free all the storage associated
1643 with the bfd). */
1644 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1645 make_cleanup (xfree, name);
f1838a98 1646 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1647 bfd_errmsg (bfd_get_error ()));
1648 }
cb2f3a29 1649
4f6f9936
JK
1650 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1651 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1652
cb2f3a29 1653 return sym_bfd;
c906108c
SS
1654}
1655
cb2f3a29
MK
1656/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1657 the section was not found. */
1658
0e931cf0
JB
1659int
1660get_section_index (struct objfile *objfile, char *section_name)
1661{
1662 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1663
0e931cf0
JB
1664 if (sect)
1665 return sect->index;
1666 else
1667 return -1;
1668}
1669
cb2f3a29
MK
1670/* Link SF into the global symtab_fns list. Called on startup by the
1671 _initialize routine in each object file format reader, to register
1672 information about each format the the reader is prepared to
1673 handle. */
c906108c
SS
1674
1675void
fba45db2 1676add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1677{
1678 sf->next = symtab_fns;
1679 symtab_fns = sf;
1680}
1681
cb2f3a29
MK
1682/* Initialize OBJFILE to read symbols from its associated BFD. It
1683 either returns or calls error(). The result is an initialized
1684 struct sym_fns in the objfile structure, that contains cached
1685 information about the symbol file. */
c906108c 1686
31d99776
DJ
1687static struct sym_fns *
1688find_sym_fns (bfd *abfd)
c906108c
SS
1689{
1690 struct sym_fns *sf;
31d99776 1691 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1692
75245b24
MS
1693 if (our_flavour == bfd_target_srec_flavour
1694 || our_flavour == bfd_target_ihex_flavour
1695 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1696 return NULL; /* No symbols. */
75245b24 1697
c5aa993b 1698 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1699 if (our_flavour == sf->sym_flavour)
1700 return sf;
cb2f3a29 1701
8a3fe4f8 1702 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1703 bfd_get_target (abfd));
c906108c
SS
1704}
1705\f
cb2f3a29 1706
c906108c
SS
1707/* This function runs the load command of our current target. */
1708
1709static void
fba45db2 1710load_command (char *arg, int from_tty)
c906108c 1711{
4487aabf
PA
1712 /* The user might be reloading because the binary has changed. Take
1713 this opportunity to check. */
1714 reopen_exec_file ();
1715 reread_symbols ();
1716
c906108c 1717 if (arg == NULL)
1986bccd
AS
1718 {
1719 char *parg;
1720 int count = 0;
1721
1722 parg = arg = get_exec_file (1);
1723
1724 /* Count how many \ " ' tab space there are in the name. */
1725 while ((parg = strpbrk (parg, "\\\"'\t ")))
1726 {
1727 parg++;
1728 count++;
1729 }
1730
1731 if (count)
1732 {
1733 /* We need to quote this string so buildargv can pull it apart. */
1734 char *temp = xmalloc (strlen (arg) + count + 1 );
1735 char *ptemp = temp;
1736 char *prev;
1737
1738 make_cleanup (xfree, temp);
1739
1740 prev = parg = arg;
1741 while ((parg = strpbrk (parg, "\\\"'\t ")))
1742 {
1743 strncpy (ptemp, prev, parg - prev);
1744 ptemp += parg - prev;
1745 prev = parg++;
1746 *ptemp++ = '\\';
1747 }
1748 strcpy (ptemp, prev);
1749
1750 arg = temp;
1751 }
1752 }
1753
c906108c 1754 target_load (arg, from_tty);
2889e661
JB
1755
1756 /* After re-loading the executable, we don't really know which
1757 overlays are mapped any more. */
1758 overlay_cache_invalid = 1;
c906108c
SS
1759}
1760
1761/* This version of "load" should be usable for any target. Currently
1762 it is just used for remote targets, not inftarg.c or core files,
1763 on the theory that only in that case is it useful.
1764
1765 Avoiding xmodem and the like seems like a win (a) because we don't have
1766 to worry about finding it, and (b) On VMS, fork() is very slow and so
1767 we don't want to run a subprocess. On the other hand, I'm not sure how
1768 performance compares. */
917317f4 1769
917317f4
JM
1770static int validate_download = 0;
1771
e4f9b4d5
MS
1772/* Callback service function for generic_load (bfd_map_over_sections). */
1773
1774static void
1775add_section_size_callback (bfd *abfd, asection *asec, void *data)
1776{
1777 bfd_size_type *sum = data;
1778
2c500098 1779 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1780}
1781
1782/* Opaque data for load_section_callback. */
1783struct load_section_data {
1784 unsigned long load_offset;
a76d924d
DJ
1785 struct load_progress_data *progress_data;
1786 VEC(memory_write_request_s) *requests;
1787};
1788
1789/* Opaque data for load_progress. */
1790struct load_progress_data {
1791 /* Cumulative data. */
e4f9b4d5
MS
1792 unsigned long write_count;
1793 unsigned long data_count;
1794 bfd_size_type total_size;
a76d924d
DJ
1795};
1796
1797/* Opaque data for load_progress for a single section. */
1798struct load_progress_section_data {
1799 struct load_progress_data *cumulative;
cf7a04e8 1800
a76d924d 1801 /* Per-section data. */
cf7a04e8
DJ
1802 const char *section_name;
1803 ULONGEST section_sent;
1804 ULONGEST section_size;
1805 CORE_ADDR lma;
1806 gdb_byte *buffer;
e4f9b4d5
MS
1807};
1808
a76d924d 1809/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1810
1811static void
1812load_progress (ULONGEST bytes, void *untyped_arg)
1813{
a76d924d
DJ
1814 struct load_progress_section_data *args = untyped_arg;
1815 struct load_progress_data *totals;
1816
1817 if (args == NULL)
1818 /* Writing padding data. No easy way to get at the cumulative
1819 stats, so just ignore this. */
1820 return;
1821
1822 totals = args->cumulative;
1823
1824 if (bytes == 0 && args->section_sent == 0)
1825 {
1826 /* The write is just starting. Let the user know we've started
1827 this section. */
5af949e3
UW
1828 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1829 args->section_name, hex_string (args->section_size),
1830 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1831 return;
1832 }
cf7a04e8
DJ
1833
1834 if (validate_download)
1835 {
1836 /* Broken memories and broken monitors manifest themselves here
1837 when bring new computers to life. This doubles already slow
1838 downloads. */
1839 /* NOTE: cagney/1999-10-18: A more efficient implementation
1840 might add a verify_memory() method to the target vector and
1841 then use that. remote.c could implement that method using
1842 the ``qCRC'' packet. */
1843 gdb_byte *check = xmalloc (bytes);
1844 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1845
1846 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1847 error (_("Download verify read failed at %s"),
1848 paddress (target_gdbarch, args->lma));
cf7a04e8 1849 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1850 error (_("Download verify compare failed at %s"),
1851 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1852 do_cleanups (verify_cleanups);
1853 }
a76d924d 1854 totals->data_count += bytes;
cf7a04e8
DJ
1855 args->lma += bytes;
1856 args->buffer += bytes;
a76d924d 1857 totals->write_count += 1;
cf7a04e8
DJ
1858 args->section_sent += bytes;
1859 if (quit_flag
1860 || (deprecated_ui_load_progress_hook != NULL
1861 && deprecated_ui_load_progress_hook (args->section_name,
1862 args->section_sent)))
1863 error (_("Canceled the download"));
1864
1865 if (deprecated_show_load_progress != NULL)
1866 deprecated_show_load_progress (args->section_name,
1867 args->section_sent,
1868 args->section_size,
a76d924d
DJ
1869 totals->data_count,
1870 totals->total_size);
cf7a04e8
DJ
1871}
1872
e4f9b4d5
MS
1873/* Callback service function for generic_load (bfd_map_over_sections). */
1874
1875static void
1876load_section_callback (bfd *abfd, asection *asec, void *data)
1877{
a76d924d 1878 struct memory_write_request *new_request;
e4f9b4d5 1879 struct load_section_data *args = data;
a76d924d 1880 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1881 bfd_size_type size = bfd_get_section_size (asec);
1882 gdb_byte *buffer;
cf7a04e8 1883 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1884
cf7a04e8
DJ
1885 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1886 return;
e4f9b4d5 1887
cf7a04e8
DJ
1888 if (size == 0)
1889 return;
e4f9b4d5 1890
a76d924d
DJ
1891 new_request = VEC_safe_push (memory_write_request_s,
1892 args->requests, NULL);
1893 memset (new_request, 0, sizeof (struct memory_write_request));
1894 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1895 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1896 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1897 new_request->data = xmalloc (size);
1898 new_request->baton = section_data;
cf7a04e8 1899
a76d924d 1900 buffer = new_request->data;
cf7a04e8 1901
a76d924d
DJ
1902 section_data->cumulative = args->progress_data;
1903 section_data->section_name = sect_name;
1904 section_data->section_size = size;
1905 section_data->lma = new_request->begin;
1906 section_data->buffer = buffer;
cf7a04e8
DJ
1907
1908 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1909}
1910
1911/* Clean up an entire memory request vector, including load
1912 data and progress records. */
cf7a04e8 1913
a76d924d
DJ
1914static void
1915clear_memory_write_data (void *arg)
1916{
1917 VEC(memory_write_request_s) **vec_p = arg;
1918 VEC(memory_write_request_s) *vec = *vec_p;
1919 int i;
1920 struct memory_write_request *mr;
cf7a04e8 1921
a76d924d
DJ
1922 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1923 {
1924 xfree (mr->data);
1925 xfree (mr->baton);
1926 }
1927 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1928}
1929
c906108c 1930void
917317f4 1931generic_load (char *args, int from_tty)
c906108c 1932{
c906108c 1933 bfd *loadfile_bfd;
2b71414d 1934 struct timeval start_time, end_time;
917317f4 1935 char *filename;
1986bccd 1936 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1937 struct load_section_data cbdata;
a76d924d
DJ
1938 struct load_progress_data total_progress;
1939
e4f9b4d5 1940 CORE_ADDR entry;
1986bccd 1941 char **argv;
e4f9b4d5 1942
a76d924d
DJ
1943 memset (&cbdata, 0, sizeof (cbdata));
1944 memset (&total_progress, 0, sizeof (total_progress));
1945 cbdata.progress_data = &total_progress;
1946
1947 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1948
d1a41061
PP
1949 if (args == NULL)
1950 error_no_arg (_("file to load"));
1986bccd 1951
d1a41061 1952 argv = gdb_buildargv (args);
1986bccd
AS
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
917317f4
JM
1959 {
1960 char *endptr;
ba5f2f8a 1961
1986bccd
AS
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
917317f4 1971 }
c906108c 1972
917317f4 1973 /* Open the file for loading. */
c906108c
SS
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
917317f4 1980
c906108c
SS
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
5c65bbb6 1984 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1985
c5aa993b 1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1987 {
8a3fe4f8 1988 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1989 bfd_errmsg (bfd_get_error ()));
1990 }
c5aa993b 1991
5417f6dc 1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1996
2b71414d 1997 gettimeofday (&start_time, NULL);
c906108c 1998
a76d924d
DJ
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
c906108c 2002
2b71414d 2003 gettimeofday (&end_time, NULL);
ba5f2f8a 2004
e4f9b4d5 2005 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2006 ui_out_text (uiout, "Start address ");
5af949e3 2007 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2008 ui_out_text (uiout, ", load size ");
a76d924d 2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2010 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
fb14de7b 2013 regcache_write_pc (get_current_regcache (), entry);
c906108c 2014
38963c97
DJ
2015 /* Reset breakpoints, now that we have changed the load image. For
2016 instance, breakpoints may have been set (or reset, by
2017 post_create_inferior) while connected to the target but before we
2018 loaded the program. In that case, the prologue analyzer could
2019 have read instructions from the target to find the right
2020 breakpoint locations. Loading has changed the contents of that
2021 memory. */
2022
2023 breakpoint_re_set ();
2024
7ca9f392
AC
2025 /* FIXME: are we supposed to call symbol_file_add or not? According
2026 to a comment from remote-mips.c (where a call to symbol_file_add
2027 was commented out), making the call confuses GDB if more than one
2028 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2029 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2030
a76d924d
DJ
2031 print_transfer_performance (gdb_stdout, total_progress.data_count,
2032 total_progress.write_count,
2033 &start_time, &end_time);
c906108c
SS
2034
2035 do_cleanups (old_cleanups);
2036}
2037
2038/* Report how fast the transfer went. */
2039
917317f4
JM
2040/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2041 replaced by print_transfer_performance (with a very different
2042 function signature). */
2043
c906108c 2044void
fba45db2
KB
2045report_transfer_performance (unsigned long data_count, time_t start_time,
2046 time_t end_time)
c906108c 2047{
2b71414d
DJ
2048 struct timeval start, end;
2049
2050 start.tv_sec = start_time;
2051 start.tv_usec = 0;
2052 end.tv_sec = end_time;
2053 end.tv_usec = 0;
2054
2055 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2056}
2057
2058void
d9fcf2fb 2059print_transfer_performance (struct ui_file *stream,
917317f4
JM
2060 unsigned long data_count,
2061 unsigned long write_count,
2b71414d
DJ
2062 const struct timeval *start_time,
2063 const struct timeval *end_time)
917317f4 2064{
9f43d28c 2065 ULONGEST time_count;
2b71414d
DJ
2066
2067 /* Compute the elapsed time in milliseconds, as a tradeoff between
2068 accuracy and overflow. */
2069 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2070 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2071
8b93c638
JM
2072 ui_out_text (uiout, "Transfer rate: ");
2073 if (time_count > 0)
2074 {
9f43d28c
DJ
2075 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2076
2077 if (ui_out_is_mi_like_p (uiout))
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2080 ui_out_text (uiout, " bits/sec");
2081 }
2082 else if (rate < 1024)
2083 {
2084 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2085 ui_out_text (uiout, " bytes/sec");
2086 }
2087 else
2088 {
2089 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2090 ui_out_text (uiout, " KB/sec");
2091 }
8b93c638
JM
2092 }
2093 else
2094 {
ba5f2f8a 2095 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2096 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2097 }
2098 if (write_count > 0)
2099 {
2100 ui_out_text (uiout, ", ");
ba5f2f8a 2101 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2102 ui_out_text (uiout, " bytes/write");
2103 }
2104 ui_out_text (uiout, ".\n");
c906108c
SS
2105}
2106
2107/* This function allows the addition of incrementally linked object files.
2108 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2109/* Note: ezannoni 2000-04-13 This function/command used to have a
2110 special case syntax for the rombug target (Rombug is the boot
2111 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2112 rombug case, the user doesn't need to supply a text address,
2113 instead a call to target_link() (in target.c) would supply the
2114 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2115
c906108c 2116static void
fba45db2 2117add_symbol_file_command (char *args, int from_tty)
c906108c 2118{
5af949e3 2119 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2120 char *filename = NULL;
2df3850c 2121 int flags = OBJF_USERLOADED;
c906108c 2122 char *arg;
db162d44 2123 int section_index = 0;
2acceee2
JM
2124 int argcnt = 0;
2125 int sec_num = 0;
2126 int i;
db162d44
EZ
2127 int expecting_sec_name = 0;
2128 int expecting_sec_addr = 0;
5b96932b 2129 char **argv;
db162d44 2130
a39a16c4 2131 struct sect_opt
2acceee2 2132 {
2acceee2
JM
2133 char *name;
2134 char *value;
a39a16c4 2135 };
db162d44 2136
a39a16c4
MM
2137 struct section_addr_info *section_addrs;
2138 struct sect_opt *sect_opts = NULL;
2139 size_t num_sect_opts = 0;
3017564a 2140 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2141
a39a16c4 2142 num_sect_opts = 16;
5417f6dc 2143 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2144 * sizeof (struct sect_opt));
2145
c906108c
SS
2146 dont_repeat ();
2147
2148 if (args == NULL)
8a3fe4f8 2149 error (_("add-symbol-file takes a file name and an address"));
c906108c 2150
d1a41061 2151 argv = gdb_buildargv (args);
5b96932b 2152 make_cleanup_freeargv (argv);
db162d44 2153
5b96932b
AS
2154 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2155 {
2156 /* Process the argument. */
db162d44 2157 if (argcnt == 0)
c906108c 2158 {
db162d44
EZ
2159 /* The first argument is the file name. */
2160 filename = tilde_expand (arg);
3017564a 2161 make_cleanup (xfree, filename);
c906108c 2162 }
db162d44 2163 else
7a78ae4e
ND
2164 if (argcnt == 1)
2165 {
2166 /* The second argument is always the text address at which
2167 to load the program. */
2168 sect_opts[section_index].name = ".text";
2169 sect_opts[section_index].value = arg;
f414f22f 2170 if (++section_index >= num_sect_opts)
a39a16c4
MM
2171 {
2172 num_sect_opts *= 2;
5417f6dc 2173 sect_opts = ((struct sect_opt *)
a39a16c4 2174 xrealloc (sect_opts,
5417f6dc 2175 num_sect_opts
a39a16c4
MM
2176 * sizeof (struct sect_opt)));
2177 }
7a78ae4e
ND
2178 }
2179 else
2180 {
2181 /* It's an option (starting with '-') or it's an argument
2182 to an option */
2183
2184 if (*arg == '-')
2185 {
78a4a9b9
AC
2186 if (strcmp (arg, "-readnow") == 0)
2187 flags |= OBJF_READNOW;
2188 else if (strcmp (arg, "-s") == 0)
2189 {
2190 expecting_sec_name = 1;
2191 expecting_sec_addr = 1;
2192 }
7a78ae4e
ND
2193 }
2194 else
2195 {
2196 if (expecting_sec_name)
db162d44 2197 {
7a78ae4e
ND
2198 sect_opts[section_index].name = arg;
2199 expecting_sec_name = 0;
db162d44
EZ
2200 }
2201 else
7a78ae4e
ND
2202 if (expecting_sec_addr)
2203 {
2204 sect_opts[section_index].value = arg;
2205 expecting_sec_addr = 0;
f414f22f 2206 if (++section_index >= num_sect_opts)
a39a16c4
MM
2207 {
2208 num_sect_opts *= 2;
5417f6dc 2209 sect_opts = ((struct sect_opt *)
a39a16c4 2210 xrealloc (sect_opts,
5417f6dc 2211 num_sect_opts
a39a16c4
MM
2212 * sizeof (struct sect_opt)));
2213 }
7a78ae4e
ND
2214 }
2215 else
8a3fe4f8 2216 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2217 }
2218 }
c906108c 2219 }
c906108c 2220
927890d0
JB
2221 /* This command takes at least two arguments. The first one is a
2222 filename, and the second is the address where this file has been
2223 loaded. Abort now if this address hasn't been provided by the
2224 user. */
2225 if (section_index < 1)
2226 error (_("The address where %s has been loaded is missing"), filename);
2227
db162d44
EZ
2228 /* Print the prompt for the query below. And save the arguments into
2229 a sect_addr_info structure to be passed around to other
2230 functions. We have to split this up into separate print
bb599908 2231 statements because hex_string returns a local static
db162d44 2232 string. */
5417f6dc 2233
a3f17187 2234 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2235 section_addrs = alloc_section_addr_info (section_index);
2236 make_cleanup (xfree, section_addrs);
db162d44 2237 for (i = 0; i < section_index; i++)
c906108c 2238 {
db162d44
EZ
2239 CORE_ADDR addr;
2240 char *val = sect_opts[i].value;
2241 char *sec = sect_opts[i].name;
5417f6dc 2242
ae822768 2243 addr = parse_and_eval_address (val);
db162d44 2244
db162d44
EZ
2245 /* Here we store the section offsets in the order they were
2246 entered on the command line. */
a39a16c4
MM
2247 section_addrs->other[sec_num].name = sec;
2248 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2249 printf_unfiltered ("\t%s_addr = %s\n", sec,
2250 paddress (gdbarch, addr));
db162d44
EZ
2251 sec_num++;
2252
5417f6dc 2253 /* The object's sections are initialized when a
db162d44 2254 call is made to build_objfile_section_table (objfile).
5417f6dc 2255 This happens in reread_symbols.
db162d44
EZ
2256 At this point, we don't know what file type this is,
2257 so we can't determine what section names are valid. */
2acceee2 2258 }
db162d44 2259
2acceee2 2260 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2261 error (_("Not confirmed."));
c906108c 2262
7eedccfa
PP
2263 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2264 section_addrs, flags);
c906108c
SS
2265
2266 /* Getting new symbols may change our opinion about what is
2267 frameless. */
2268 reinit_frame_cache ();
db162d44 2269 do_cleanups (my_cleanups);
c906108c
SS
2270}
2271\f
70992597 2272
c906108c
SS
2273/* Re-read symbols if a symbol-file has changed. */
2274void
fba45db2 2275reread_symbols (void)
c906108c
SS
2276{
2277 struct objfile *objfile;
2278 long new_modtime;
2279 int reread_one = 0;
2280 struct stat new_statbuf;
2281 int res;
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed */
2288
c5aa993b
JM
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
9cce227f
TG
2291 /* solib-sunos.c creates one objfile with obfd. */
2292 if (objfile->obfd == NULL)
2293 continue;
2294
2295 /* Separate debug objfiles are handled in the main objfile. */
2296 if (objfile->separate_debug_objfile_backlink)
2297 continue;
2298
02aeec7b
JB
2299 /* If this object is from an archive (what you usually create with
2300 `ar', often called a `static library' on most systems, though
2301 a `shared library' on AIX is also an archive), then you should
2302 stat on the archive name, not member name. */
9cce227f
TG
2303 if (objfile->obfd->my_archive)
2304 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2305 else
9cce227f
TG
2306 res = stat (objfile->name, &new_statbuf);
2307 if (res != 0)
2308 {
2309 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2310 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2311 objfile->name);
2312 continue;
2313 }
2314 new_modtime = new_statbuf.st_mtime;
2315 if (new_modtime != objfile->mtime)
2316 {
2317 struct cleanup *old_cleanups;
2318 struct section_offsets *offsets;
2319 int num_offsets;
2320 char *obfd_filename;
2321
2322 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2323 objfile->name);
2324
2325 /* There are various functions like symbol_file_add,
2326 symfile_bfd_open, syms_from_objfile, etc., which might
2327 appear to do what we want. But they have various other
2328 effects which we *don't* want. So we just do stuff
2329 ourselves. We don't worry about mapped files (for one thing,
2330 any mapped file will be out of date). */
2331
2332 /* If we get an error, blow away this objfile (not sure if
2333 that is the correct response for things like shared
2334 libraries). */
2335 old_cleanups = make_cleanup_free_objfile (objfile);
2336 /* We need to do this whenever any symbols go away. */
2337 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2338
2339 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2340 bfd_get_filename (exec_bfd)) == 0)
2341 {
2342 /* Reload EXEC_BFD without asking anything. */
2343
2344 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2345 }
2346
2347 /* Clean up any state BFD has sitting around. We don't need
2348 to close the descriptor but BFD lacks a way of closing the
2349 BFD without closing the descriptor. */
2350 obfd_filename = bfd_get_filename (objfile->obfd);
2351 if (!bfd_close (objfile->obfd))
2352 error (_("Can't close BFD for %s: %s"), objfile->name,
2353 bfd_errmsg (bfd_get_error ()));
874f5765 2354 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2355 if (objfile->obfd == NULL)
2356 error (_("Can't open %s to read symbols."), objfile->name);
2357 else
2358 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2359 /* bfd_openr sets cacheable to true, which is what we want. */
2360 if (!bfd_check_format (objfile->obfd, bfd_object))
2361 error (_("Can't read symbols from %s: %s."), objfile->name,
2362 bfd_errmsg (bfd_get_error ()));
2363
2364 /* Save the offsets, we will nuke them with the rest of the
2365 objfile_obstack. */
2366 num_offsets = objfile->num_sections;
2367 offsets = ((struct section_offsets *)
2368 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2369 memcpy (offsets, objfile->section_offsets,
2370 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2371
2372 /* Remove any references to this objfile in the global
2373 value lists. */
2374 preserve_values (objfile);
2375
2376 /* Nuke all the state that we will re-read. Much of the following
2377 code which sets things to NULL really is necessary to tell
2378 other parts of GDB that there is nothing currently there.
2379
2380 Try to keep the freeing order compatible with free_objfile. */
2381
2382 if (objfile->sf != NULL)
2383 {
2384 (*objfile->sf->sym_finish) (objfile);
2385 }
2386
2387 clear_objfile_data (objfile);
2388
15d123c9 2389 /* Free the separate debug objfiles. It will be
9cce227f 2390 automatically recreated by sym_read. */
15d123c9 2391 free_objfile_separate_debug (objfile);
9cce227f
TG
2392
2393 /* FIXME: Do we have to free a whole linked list, or is this
2394 enough? */
2395 if (objfile->global_psymbols.list)
2396 xfree (objfile->global_psymbols.list);
2397 memset (&objfile->global_psymbols, 0,
2398 sizeof (objfile->global_psymbols));
2399 if (objfile->static_psymbols.list)
2400 xfree (objfile->static_psymbols.list);
2401 memset (&objfile->static_psymbols, 0,
2402 sizeof (objfile->static_psymbols));
2403
2404 /* Free the obstacks for non-reusable objfiles */
2405 bcache_xfree (objfile->psymbol_cache);
2406 objfile->psymbol_cache = bcache_xmalloc ();
2407 bcache_xfree (objfile->macro_cache);
2408 objfile->macro_cache = bcache_xmalloc ();
2409 bcache_xfree (objfile->filename_cache);
2410 objfile->filename_cache = bcache_xmalloc ();
2411 if (objfile->demangled_names_hash != NULL)
2412 {
2413 htab_delete (objfile->demangled_names_hash);
2414 objfile->demangled_names_hash = NULL;
2415 }
2416 obstack_free (&objfile->objfile_obstack, 0);
2417 objfile->sections = NULL;
2418 objfile->symtabs = NULL;
2419 objfile->psymtabs = NULL;
2420 objfile->psymtabs_addrmap = NULL;
2421 objfile->free_psymtabs = NULL;
2422 objfile->cp_namespace_symtab = NULL;
34eaf542 2423 objfile->template_symbols = NULL;
9cce227f
TG
2424 objfile->msymbols = NULL;
2425 objfile->deprecated_sym_private = NULL;
2426 objfile->minimal_symbol_count = 0;
2427 memset (&objfile->msymbol_hash, 0,
2428 sizeof (objfile->msymbol_hash));
2429 memset (&objfile->msymbol_demangled_hash, 0,
2430 sizeof (objfile->msymbol_demangled_hash));
2431
2432 objfile->psymbol_cache = bcache_xmalloc ();
2433 objfile->macro_cache = bcache_xmalloc ();
2434 objfile->filename_cache = bcache_xmalloc ();
2435 /* obstack_init also initializes the obstack so it is
2436 empty. We could use obstack_specify_allocation but
2437 gdb_obstack.h specifies the alloc/dealloc
2438 functions. */
2439 obstack_init (&objfile->objfile_obstack);
2440 if (build_objfile_section_table (objfile))
2441 {
2442 error (_("Can't find the file sections in `%s': %s"),
2443 objfile->name, bfd_errmsg (bfd_get_error ()));
2444 }
2445 terminate_minimal_symbol_table (objfile);
2446
2447 /* We use the same section offsets as from last time. I'm not
2448 sure whether that is always correct for shared libraries. */
2449 objfile->section_offsets = (struct section_offsets *)
2450 obstack_alloc (&objfile->objfile_obstack,
2451 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2452 memcpy (objfile->section_offsets, offsets,
2453 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2454 objfile->num_sections = num_offsets;
2455
2456 /* What the hell is sym_new_init for, anyway? The concept of
2457 distinguishing between the main file and additional files
2458 in this way seems rather dubious. */
2459 if (objfile == symfile_objfile)
c906108c 2460 {
9cce227f 2461 (*objfile->sf->sym_new_init) (objfile);
c906108c 2462 }
9cce227f
TG
2463
2464 (*objfile->sf->sym_init) (objfile);
2465 clear_complaints (&symfile_complaints, 1, 1);
2466 /* Do not set flags as this is safe and we don't want to be
2467 verbose. */
2468 (*objfile->sf->sym_read) (objfile, 0);
2469 if (!objfile_has_symbols (objfile))
c906108c 2470 {
9cce227f
TG
2471 wrap_here ("");
2472 printf_unfiltered (_("(no debugging symbols found)\n"));
2473 wrap_here ("");
c5aa993b 2474 }
9cce227f
TG
2475
2476 /* We're done reading the symbol file; finish off complaints. */
2477 clear_complaints (&symfile_complaints, 0, 1);
2478
2479 /* Getting new symbols may change our opinion about what is
2480 frameless. */
2481
2482 reinit_frame_cache ();
2483
2484 /* Discard cleanups as symbol reading was successful. */
2485 discard_cleanups (old_cleanups);
2486
2487 /* If the mtime has changed between the time we set new_modtime
2488 and now, we *want* this to be out of date, so don't call stat
2489 again now. */
2490 objfile->mtime = new_modtime;
2491 reread_one = 1;
2492 init_entry_point_info (objfile);
c906108c
SS
2493 }
2494 }
c906108c
SS
2495
2496 if (reread_one)
ea53e89f 2497 {
ff3536bc
UW
2498 /* Notify objfiles that we've modified objfile sections. */
2499 objfiles_changed ();
2500
ea53e89f
JB
2501 clear_symtab_users ();
2502 /* At least one objfile has changed, so we can consider that
2503 the executable we're debugging has changed too. */
781b42b0 2504 observer_notify_executable_changed ();
ea53e89f 2505 }
c906108c 2506}
c906108c
SS
2507\f
2508
c5aa993b
JM
2509
2510typedef struct
2511{
2512 char *ext;
c906108c 2513 enum language lang;
c5aa993b
JM
2514}
2515filename_language;
c906108c 2516
c5aa993b 2517static filename_language *filename_language_table;
c906108c
SS
2518static int fl_table_size, fl_table_next;
2519
2520static void
fba45db2 2521add_filename_language (char *ext, enum language lang)
c906108c
SS
2522{
2523 if (fl_table_next >= fl_table_size)
2524 {
2525 fl_table_size += 10;
5417f6dc 2526 filename_language_table =
25bf3106
PM
2527 xrealloc (filename_language_table,
2528 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2529 }
2530
4fcf66da 2531 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2532 filename_language_table[fl_table_next].lang = lang;
2533 fl_table_next++;
2534}
2535
2536static char *ext_args;
920d2a44
AC
2537static void
2538show_ext_args (struct ui_file *file, int from_tty,
2539 struct cmd_list_element *c, const char *value)
2540{
2541 fprintf_filtered (file, _("\
2542Mapping between filename extension and source language is \"%s\".\n"),
2543 value);
2544}
c906108c
SS
2545
2546static void
26c41df3 2547set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2548{
2549 int i;
2550 char *cp = ext_args;
2551 enum language lang;
2552
2553 /* First arg is filename extension, starting with '.' */
2554 if (*cp != '.')
8a3fe4f8 2555 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2556
2557 /* Find end of first arg. */
c5aa993b 2558 while (*cp && !isspace (*cp))
c906108c
SS
2559 cp++;
2560
2561 if (*cp == '\0')
8a3fe4f8 2562 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2563 ext_args);
2564
2565 /* Null-terminate first arg */
c5aa993b 2566 *cp++ = '\0';
c906108c
SS
2567
2568 /* Find beginning of second arg, which should be a source language. */
2569 while (*cp && isspace (*cp))
2570 cp++;
2571
2572 if (*cp == '\0')
8a3fe4f8 2573 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2574 ext_args);
2575
2576 /* Lookup the language from among those we know. */
2577 lang = language_enum (cp);
2578
2579 /* Now lookup the filename extension: do we already know it? */
2580 for (i = 0; i < fl_table_next; i++)
2581 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2582 break;
2583
2584 if (i >= fl_table_next)
2585 {
2586 /* new file extension */
2587 add_filename_language (ext_args, lang);
2588 }
2589 else
2590 {
2591 /* redefining a previously known filename extension */
2592
2593 /* if (from_tty) */
2594 /* query ("Really make files of type %s '%s'?", */
2595 /* ext_args, language_str (lang)); */
2596
b8c9b27d 2597 xfree (filename_language_table[i].ext);
4fcf66da 2598 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2599 filename_language_table[i].lang = lang;
2600 }
2601}
2602
2603static void
fba45db2 2604info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2605{
2606 int i;
2607
a3f17187 2608 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2609 printf_filtered ("\n\n");
2610 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2611 printf_filtered ("\t%s\t- %s\n",
2612 filename_language_table[i].ext,
c906108c
SS
2613 language_str (filename_language_table[i].lang));
2614}
2615
2616static void
fba45db2 2617init_filename_language_table (void)
c906108c
SS
2618{
2619 if (fl_table_size == 0) /* protect against repetition */
2620 {
2621 fl_table_size = 20;
2622 fl_table_next = 0;
c5aa993b 2623 filename_language_table =
c906108c 2624 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2625 add_filename_language (".c", language_c);
6aecb9c2 2626 add_filename_language (".d", language_d);
c5aa993b
JM
2627 add_filename_language (".C", language_cplus);
2628 add_filename_language (".cc", language_cplus);
2629 add_filename_language (".cp", language_cplus);
2630 add_filename_language (".cpp", language_cplus);
2631 add_filename_language (".cxx", language_cplus);
2632 add_filename_language (".c++", language_cplus);
2633 add_filename_language (".java", language_java);
c906108c 2634 add_filename_language (".class", language_java);
da2cf7e0 2635 add_filename_language (".m", language_objc);
c5aa993b
JM
2636 add_filename_language (".f", language_fortran);
2637 add_filename_language (".F", language_fortran);
fd5700c7
JK
2638 add_filename_language (".for", language_fortran);
2639 add_filename_language (".FOR", language_fortran);
2640 add_filename_language (".ftn", language_fortran);
2641 add_filename_language (".FTN", language_fortran);
2642 add_filename_language (".fpp", language_fortran);
2643 add_filename_language (".FPP", language_fortran);
2644 add_filename_language (".f90", language_fortran);
2645 add_filename_language (".F90", language_fortran);
2646 add_filename_language (".f95", language_fortran);
2647 add_filename_language (".F95", language_fortran);
2648 add_filename_language (".f03", language_fortran);
2649 add_filename_language (".F03", language_fortran);
2650 add_filename_language (".f08", language_fortran);
2651 add_filename_language (".F08", language_fortran);
c5aa993b 2652 add_filename_language (".s", language_asm);
aa707ed0 2653 add_filename_language (".sx", language_asm);
c5aa993b 2654 add_filename_language (".S", language_asm);
c6fd39cd
PM
2655 add_filename_language (".pas", language_pascal);
2656 add_filename_language (".p", language_pascal);
2657 add_filename_language (".pp", language_pascal);
963a6417
PH
2658 add_filename_language (".adb", language_ada);
2659 add_filename_language (".ads", language_ada);
2660 add_filename_language (".a", language_ada);
2661 add_filename_language (".ada", language_ada);
dde59185 2662 add_filename_language (".dg", language_ada);
c906108c
SS
2663 }
2664}
2665
2666enum language
dd786858 2667deduce_language_from_filename (const char *filename)
c906108c
SS
2668{
2669 int i;
2670 char *cp;
2671
2672 if (filename != NULL)
2673 if ((cp = strrchr (filename, '.')) != NULL)
2674 for (i = 0; i < fl_table_next; i++)
2675 if (strcmp (cp, filename_language_table[i].ext) == 0)
2676 return filename_language_table[i].lang;
2677
2678 return language_unknown;
2679}
2680\f
2681/* allocate_symtab:
2682
2683 Allocate and partly initialize a new symbol table. Return a pointer
2684 to it. error() if no space.
2685
2686 Caller must set these fields:
c5aa993b
JM
2687 LINETABLE(symtab)
2688 symtab->blockvector
2689 symtab->dirname
2690 symtab->free_code
2691 symtab->free_ptr
c906108c
SS
2692 */
2693
2694struct symtab *
fba45db2 2695allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2696{
52f0bd74 2697 struct symtab *symtab;
c906108c
SS
2698
2699 symtab = (struct symtab *)
4a146b47 2700 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2701 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2702 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2703 objfile->filename_cache);
c5aa993b
JM
2704 symtab->fullname = NULL;
2705 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2706 symtab->debugformat = "unknown";
c906108c
SS
2707
2708 /* Hook it to the objfile it comes from */
2709
c5aa993b
JM
2710 symtab->objfile = objfile;
2711 symtab->next = objfile->symtabs;
2712 objfile->symtabs = symtab;
c906108c 2713
c906108c
SS
2714 return (symtab);
2715}
c906108c 2716\f
c5aa993b 2717
c906108c
SS
2718/* Reset all data structures in gdb which may contain references to symbol
2719 table data. */
2720
2721void
fba45db2 2722clear_symtab_users (void)
c906108c
SS
2723{
2724 /* Someday, we should do better than this, by only blowing away
2725 the things that really need to be blown. */
c0501be5
DJ
2726
2727 /* Clear the "current" symtab first, because it is no longer valid.
2728 breakpoint_re_set may try to access the current symtab. */
2729 clear_current_source_symtab_and_line ();
2730
c906108c 2731 clear_displays ();
c906108c 2732 breakpoint_re_set ();
6c95b8df 2733 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2734 clear_pc_function_cache ();
06d3b283 2735 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2736
2737 /* Clear globals which might have pointed into a removed objfile.
2738 FIXME: It's not clear which of these are supposed to persist
2739 between expressions and which ought to be reset each time. */
2740 expression_context_block = NULL;
2741 innermost_block = NULL;
8756216b
DP
2742
2743 /* Varobj may refer to old symbols, perform a cleanup. */
2744 varobj_invalidate ();
2745
c906108c
SS
2746}
2747
74b7792f
AC
2748static void
2749clear_symtab_users_cleanup (void *ignore)
2750{
2751 clear_symtab_users ();
2752}
c906108c 2753\f
c906108c
SS
2754/* OVERLAYS:
2755 The following code implements an abstraction for debugging overlay sections.
2756
2757 The target model is as follows:
2758 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2759 same VMA, each with its own unique LMA (or load address).
c906108c 2760 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2761 sections, one by one, from the load address into the VMA address.
5417f6dc 2762 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2763 sections should be considered to be mapped from the VMA to the LMA.
2764 This information is used for symbol lookup, and memory read/write.
5417f6dc 2765 For instance, if a section has been mapped then its contents
c5aa993b 2766 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2767
2768 Two levels of debugger support for overlays are available. One is
2769 "manual", in which the debugger relies on the user to tell it which
2770 overlays are currently mapped. This level of support is
2771 implemented entirely in the core debugger, and the information about
2772 whether a section is mapped is kept in the objfile->obj_section table.
2773
2774 The second level of support is "automatic", and is only available if
2775 the target-specific code provides functionality to read the target's
2776 overlay mapping table, and translate its contents for the debugger
2777 (by updating the mapped state information in the obj_section tables).
2778
2779 The interface is as follows:
c5aa993b
JM
2780 User commands:
2781 overlay map <name> -- tell gdb to consider this section mapped
2782 overlay unmap <name> -- tell gdb to consider this section unmapped
2783 overlay list -- list the sections that GDB thinks are mapped
2784 overlay read-target -- get the target's state of what's mapped
2785 overlay off/manual/auto -- set overlay debugging state
2786 Functional interface:
2787 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2788 section, return that section.
5417f6dc 2789 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2790 the pc, either in its VMA or its LMA
714835d5 2791 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2792 section_is_overlay(sect): true if section's VMA != LMA
2793 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2794 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2795 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2796 overlay_mapped_address(...): map an address from section's LMA to VMA
2797 overlay_unmapped_address(...): map an address from section's VMA to LMA
2798 symbol_overlayed_address(...): Return a "current" address for symbol:
2799 either in VMA or LMA depending on whether
2800 the symbol's section is currently mapped
c906108c
SS
2801 */
2802
2803/* Overlay debugging state: */
2804
d874f1e2 2805enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2806int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2807
c906108c 2808/* Function: section_is_overlay (SECTION)
5417f6dc 2809 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2810 SECTION is loaded at an address different from where it will "run". */
2811
2812int
714835d5 2813section_is_overlay (struct obj_section *section)
c906108c 2814{
714835d5
UW
2815 if (overlay_debugging && section)
2816 {
2817 bfd *abfd = section->objfile->obfd;
2818 asection *bfd_section = section->the_bfd_section;
2819
2820 if (bfd_section_lma (abfd, bfd_section) != 0
2821 && bfd_section_lma (abfd, bfd_section)
2822 != bfd_section_vma (abfd, bfd_section))
2823 return 1;
2824 }
c906108c
SS
2825
2826 return 0;
2827}
2828
2829/* Function: overlay_invalidate_all (void)
2830 Invalidate the mapped state of all overlay sections (mark it as stale). */
2831
2832static void
fba45db2 2833overlay_invalidate_all (void)
c906108c 2834{
c5aa993b 2835 struct objfile *objfile;
c906108c
SS
2836 struct obj_section *sect;
2837
2838 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2839 if (section_is_overlay (sect))
2840 sect->ovly_mapped = -1;
c906108c
SS
2841}
2842
714835d5 2843/* Function: section_is_mapped (SECTION)
5417f6dc 2844 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2845
2846 Access to the ovly_mapped flag is restricted to this function, so
2847 that we can do automatic update. If the global flag
2848 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2849 overlay_invalidate_all. If the mapped state of the particular
2850 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2851
714835d5
UW
2852int
2853section_is_mapped (struct obj_section *osect)
c906108c 2854{
9216df95
UW
2855 struct gdbarch *gdbarch;
2856
714835d5 2857 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2858 return 0;
2859
c5aa993b 2860 switch (overlay_debugging)
c906108c
SS
2861 {
2862 default:
d874f1e2 2863 case ovly_off:
c5aa993b 2864 return 0; /* overlay debugging off */
d874f1e2 2865 case ovly_auto: /* overlay debugging automatic */
1c772458 2866 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2867 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2868 gdbarch = get_objfile_arch (osect->objfile);
2869 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2870 {
2871 if (overlay_cache_invalid)
2872 {
2873 overlay_invalidate_all ();
2874 overlay_cache_invalid = 0;
2875 }
2876 if (osect->ovly_mapped == -1)
9216df95 2877 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2878 }
2879 /* fall thru to manual case */
d874f1e2 2880 case ovly_on: /* overlay debugging manual */
c906108c
SS
2881 return osect->ovly_mapped == 1;
2882 }
2883}
2884
c906108c
SS
2885/* Function: pc_in_unmapped_range
2886 If PC falls into the lma range of SECTION, return true, else false. */
2887
2888CORE_ADDR
714835d5 2889pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2890{
714835d5
UW
2891 if (section_is_overlay (section))
2892 {
2893 bfd *abfd = section->objfile->obfd;
2894 asection *bfd_section = section->the_bfd_section;
fbd35540 2895
714835d5
UW
2896 /* We assume the LMA is relocated by the same offset as the VMA. */
2897 bfd_vma size = bfd_get_section_size (bfd_section);
2898 CORE_ADDR offset = obj_section_offset (section);
2899
2900 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2901 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2902 return 1;
2903 }
c906108c 2904
c906108c
SS
2905 return 0;
2906}
2907
2908/* Function: pc_in_mapped_range
2909 If PC falls into the vma range of SECTION, return true, else false. */
2910
2911CORE_ADDR
714835d5 2912pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2913{
714835d5
UW
2914 if (section_is_overlay (section))
2915 {
2916 if (obj_section_addr (section) <= pc
2917 && pc < obj_section_endaddr (section))
2918 return 1;
2919 }
c906108c 2920
c906108c
SS
2921 return 0;
2922}
2923
9ec8e6a0
JB
2924
2925/* Return true if the mapped ranges of sections A and B overlap, false
2926 otherwise. */
b9362cc7 2927static int
714835d5 2928sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2929{
714835d5
UW
2930 CORE_ADDR a_start = obj_section_addr (a);
2931 CORE_ADDR a_end = obj_section_endaddr (a);
2932 CORE_ADDR b_start = obj_section_addr (b);
2933 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2934
2935 return (a_start < b_end && b_start < a_end);
2936}
2937
c906108c
SS
2938/* Function: overlay_unmapped_address (PC, SECTION)
2939 Returns the address corresponding to PC in the unmapped (load) range.
2940 May be the same as PC. */
2941
2942CORE_ADDR
714835d5 2943overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2944{
714835d5
UW
2945 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2946 {
2947 bfd *abfd = section->objfile->obfd;
2948 asection *bfd_section = section->the_bfd_section;
fbd35540 2949
714835d5
UW
2950 return pc + bfd_section_lma (abfd, bfd_section)
2951 - bfd_section_vma (abfd, bfd_section);
2952 }
c906108c
SS
2953
2954 return pc;
2955}
2956
2957/* Function: overlay_mapped_address (PC, SECTION)
2958 Returns the address corresponding to PC in the mapped (runtime) range.
2959 May be the same as PC. */
2960
2961CORE_ADDR
714835d5 2962overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2963{
714835d5
UW
2964 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2965 {
2966 bfd *abfd = section->objfile->obfd;
2967 asection *bfd_section = section->the_bfd_section;
fbd35540 2968
714835d5
UW
2969 return pc + bfd_section_vma (abfd, bfd_section)
2970 - bfd_section_lma (abfd, bfd_section);
2971 }
c906108c
SS
2972
2973 return pc;
2974}
2975
2976
5417f6dc 2977/* Function: symbol_overlayed_address
c906108c
SS
2978 Return one of two addresses (relative to the VMA or to the LMA),
2979 depending on whether the section is mapped or not. */
2980
c5aa993b 2981CORE_ADDR
714835d5 2982symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
2983{
2984 if (overlay_debugging)
2985 {
2986 /* If the symbol has no section, just return its regular address. */
2987 if (section == 0)
2988 return address;
2989 /* If the symbol's section is not an overlay, just return its address */
2990 if (!section_is_overlay (section))
2991 return address;
2992 /* If the symbol's section is mapped, just return its address */
2993 if (section_is_mapped (section))
2994 return address;
2995 /*
2996 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2997 * then return its LOADED address rather than its vma address!!
2998 */
2999 return overlay_unmapped_address (address, section);
3000 }
3001 return address;
3002}
3003
5417f6dc 3004/* Function: find_pc_overlay (PC)
c906108c
SS
3005 Return the best-match overlay section for PC:
3006 If PC matches a mapped overlay section's VMA, return that section.
3007 Else if PC matches an unmapped section's VMA, return that section.
3008 Else if PC matches an unmapped section's LMA, return that section. */
3009
714835d5 3010struct obj_section *
fba45db2 3011find_pc_overlay (CORE_ADDR pc)
c906108c 3012{
c5aa993b 3013 struct objfile *objfile;
c906108c
SS
3014 struct obj_section *osect, *best_match = NULL;
3015
3016 if (overlay_debugging)
3017 ALL_OBJSECTIONS (objfile, osect)
714835d5 3018 if (section_is_overlay (osect))
c5aa993b 3019 {
714835d5 3020 if (pc_in_mapped_range (pc, osect))
c5aa993b 3021 {
714835d5
UW
3022 if (section_is_mapped (osect))
3023 return osect;
c5aa993b
JM
3024 else
3025 best_match = osect;
3026 }
714835d5 3027 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3028 best_match = osect;
3029 }
714835d5 3030 return best_match;
c906108c
SS
3031}
3032
3033/* Function: find_pc_mapped_section (PC)
5417f6dc 3034 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3035 currently marked as MAPPED, return that section. Else return NULL. */
3036
714835d5 3037struct obj_section *
fba45db2 3038find_pc_mapped_section (CORE_ADDR pc)
c906108c 3039{
c5aa993b 3040 struct objfile *objfile;
c906108c
SS
3041 struct obj_section *osect;
3042
3043 if (overlay_debugging)
3044 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3045 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3046 return osect;
c906108c
SS
3047
3048 return NULL;
3049}
3050
3051/* Function: list_overlays_command
3052 Print a list of mapped sections and their PC ranges */
3053
3054void
fba45db2 3055list_overlays_command (char *args, int from_tty)
c906108c 3056{
c5aa993b
JM
3057 int nmapped = 0;
3058 struct objfile *objfile;
c906108c
SS
3059 struct obj_section *osect;
3060
3061 if (overlay_debugging)
3062 ALL_OBJSECTIONS (objfile, osect)
714835d5 3063 if (section_is_mapped (osect))
c5aa993b 3064 {
5af949e3 3065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3066 const char *name;
3067 bfd_vma lma, vma;
3068 int size;
3069
3070 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3071 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3072 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3073 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3074
3075 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3076 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3077 puts_filtered (" - ");
5af949e3 3078 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3079 printf_filtered (", mapped at ");
5af949e3 3080 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3081 puts_filtered (" - ");
5af949e3 3082 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3083 puts_filtered ("\n");
3084
3085 nmapped++;
3086 }
c906108c 3087 if (nmapped == 0)
a3f17187 3088 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3089}
3090
3091/* Function: map_overlay_command
3092 Mark the named section as mapped (ie. residing at its VMA address). */
3093
3094void
fba45db2 3095map_overlay_command (char *args, int from_tty)
c906108c 3096{
c5aa993b
JM
3097 struct objfile *objfile, *objfile2;
3098 struct obj_section *sec, *sec2;
c906108c
SS
3099
3100 if (!overlay_debugging)
8a3fe4f8 3101 error (_("\
515ad16c 3102Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3103the 'overlay manual' command."));
c906108c
SS
3104
3105 if (args == 0 || *args == 0)
8a3fe4f8 3106 error (_("Argument required: name of an overlay section"));
c906108c
SS
3107
3108 /* First, find a section matching the user supplied argument */
3109 ALL_OBJSECTIONS (objfile, sec)
3110 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3111 {
3112 /* Now, check to see if the section is an overlay. */
714835d5 3113 if (!section_is_overlay (sec))
c5aa993b
JM
3114 continue; /* not an overlay section */
3115
3116 /* Mark the overlay as "mapped" */
3117 sec->ovly_mapped = 1;
3118
3119 /* Next, make a pass and unmap any sections that are
3120 overlapped by this new section: */
3121 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3122 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3123 {
3124 if (info_verbose)
a3f17187 3125 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3126 bfd_section_name (objfile->obfd,
3127 sec2->the_bfd_section));
3128 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3129 }
3130 return;
3131 }
8a3fe4f8 3132 error (_("No overlay section called %s"), args);
c906108c
SS
3133}
3134
3135/* Function: unmap_overlay_command
5417f6dc 3136 Mark the overlay section as unmapped
c906108c
SS
3137 (ie. resident in its LMA address range, rather than the VMA range). */
3138
3139void
fba45db2 3140unmap_overlay_command (char *args, int from_tty)
c906108c 3141{
c5aa993b 3142 struct objfile *objfile;
c906108c
SS
3143 struct obj_section *sec;
3144
3145 if (!overlay_debugging)
8a3fe4f8 3146 error (_("\
515ad16c 3147Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3148the 'overlay manual' command."));
c906108c
SS
3149
3150 if (args == 0 || *args == 0)
8a3fe4f8 3151 error (_("Argument required: name of an overlay section"));
c906108c
SS
3152
3153 /* First, find a section matching the user supplied argument */
3154 ALL_OBJSECTIONS (objfile, sec)
3155 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3156 {
3157 if (!sec->ovly_mapped)
8a3fe4f8 3158 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3159 sec->ovly_mapped = 0;
3160 return;
3161 }
8a3fe4f8 3162 error (_("No overlay section called %s"), args);
c906108c
SS
3163}
3164
3165/* Function: overlay_auto_command
3166 A utility command to turn on overlay debugging.
3167 Possibly this should be done via a set/show command. */
3168
3169static void
fba45db2 3170overlay_auto_command (char *args, int from_tty)
c906108c 3171{
d874f1e2 3172 overlay_debugging = ovly_auto;
1900040c 3173 enable_overlay_breakpoints ();
c906108c 3174 if (info_verbose)
a3f17187 3175 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3176}
3177
3178/* Function: overlay_manual_command
3179 A utility command to turn on overlay debugging.
3180 Possibly this should be done via a set/show command. */
3181
3182static void
fba45db2 3183overlay_manual_command (char *args, int from_tty)
c906108c 3184{
d874f1e2 3185 overlay_debugging = ovly_on;
1900040c 3186 disable_overlay_breakpoints ();
c906108c 3187 if (info_verbose)
a3f17187 3188 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3189}
3190
3191/* Function: overlay_off_command
3192 A utility command to turn on overlay debugging.
3193 Possibly this should be done via a set/show command. */
3194
3195static void
fba45db2 3196overlay_off_command (char *args, int from_tty)
c906108c 3197{
d874f1e2 3198 overlay_debugging = ovly_off;
1900040c 3199 disable_overlay_breakpoints ();
c906108c 3200 if (info_verbose)
a3f17187 3201 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3202}
3203
3204static void
fba45db2 3205overlay_load_command (char *args, int from_tty)
c906108c 3206{
e17c207e
UW
3207 struct gdbarch *gdbarch = get_current_arch ();
3208
3209 if (gdbarch_overlay_update_p (gdbarch))
3210 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3211 else
8a3fe4f8 3212 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3213}
3214
3215/* Function: overlay_command
3216 A place-holder for a mis-typed command */
3217
3218/* Command list chain containing all defined "overlay" subcommands. */
3219struct cmd_list_element *overlaylist;
3220
3221static void
fba45db2 3222overlay_command (char *args, int from_tty)
c906108c 3223{
c5aa993b 3224 printf_unfiltered
c906108c
SS
3225 ("\"overlay\" must be followed by the name of an overlay command.\n");
3226 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3227}
3228
3229
3230/* Target Overlays for the "Simplest" overlay manager:
3231
5417f6dc
RM
3232 This is GDB's default target overlay layer. It works with the
3233 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3234 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3235 so targets that use a different runtime overlay manager can
c906108c
SS
3236 substitute their own overlay_update function and take over the
3237 function pointer.
3238
3239 The overlay_update function pokes around in the target's data structures
3240 to see what overlays are mapped, and updates GDB's overlay mapping with
3241 this information.
3242
3243 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3244 unsigned _novlys; /# number of overlay sections #/
3245 unsigned _ovly_table[_novlys][4] = {
3246 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3247 {..., ..., ..., ...},
3248 }
3249 unsigned _novly_regions; /# number of overlay regions #/
3250 unsigned _ovly_region_table[_novly_regions][3] = {
3251 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3252 {..., ..., ...},
3253 }
c906108c
SS
3254 These functions will attempt to update GDB's mappedness state in the
3255 symbol section table, based on the target's mappedness state.
3256
3257 To do this, we keep a cached copy of the target's _ovly_table, and
3258 attempt to detect when the cached copy is invalidated. The main
3259 entry point is "simple_overlay_update(SECT), which looks up SECT in
3260 the cached table and re-reads only the entry for that section from
3261 the target (whenever possible).
3262 */
3263
3264/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3265static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3266#if 0
c5aa993b 3267static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3268#endif
c5aa993b 3269static unsigned cache_novlys = 0;
c906108c 3270#if 0
c5aa993b 3271static unsigned cache_novly_regions = 0;
c906108c
SS
3272#endif
3273static CORE_ADDR cache_ovly_table_base = 0;
3274#if 0
3275static CORE_ADDR cache_ovly_region_table_base = 0;
3276#endif
c5aa993b
JM
3277enum ovly_index
3278 {
3279 VMA, SIZE, LMA, MAPPED
3280 };
c906108c
SS
3281
3282/* Throw away the cached copy of _ovly_table */
3283static void
fba45db2 3284simple_free_overlay_table (void)
c906108c
SS
3285{
3286 if (cache_ovly_table)
b8c9b27d 3287 xfree (cache_ovly_table);
c5aa993b 3288 cache_novlys = 0;
c906108c
SS
3289 cache_ovly_table = NULL;
3290 cache_ovly_table_base = 0;
3291}
3292
3293#if 0
3294/* Throw away the cached copy of _ovly_region_table */
3295static void
fba45db2 3296simple_free_overlay_region_table (void)
c906108c
SS
3297{
3298 if (cache_ovly_region_table)
b8c9b27d 3299 xfree (cache_ovly_region_table);
c5aa993b 3300 cache_novly_regions = 0;
c906108c
SS
3301 cache_ovly_region_table = NULL;
3302 cache_ovly_region_table_base = 0;
3303}
3304#endif
3305
9216df95 3306/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3307 Convert to host order. int LEN is number of ints */
3308static void
9216df95 3309read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3310 int len, int size, enum bfd_endian byte_order)
c906108c 3311{
34c0bd93 3312 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3313 gdb_byte *buf = alloca (len * size);
c5aa993b 3314 int i;
c906108c 3315
9216df95 3316 read_memory (memaddr, buf, len * size);
c906108c 3317 for (i = 0; i < len; i++)
e17a4113 3318 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3319}
3320
3321/* Find and grab a copy of the target _ovly_table
3322 (and _novlys, which is needed for the table's size) */
c5aa993b 3323static int
fba45db2 3324simple_read_overlay_table (void)
c906108c 3325{
0d43edd1 3326 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3327 struct gdbarch *gdbarch;
3328 int word_size;
e17a4113 3329 enum bfd_endian byte_order;
c906108c
SS
3330
3331 simple_free_overlay_table ();
9b27852e 3332 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3333 if (! novlys_msym)
c906108c 3334 {
8a3fe4f8 3335 error (_("Error reading inferior's overlay table: "
0d43edd1 3336 "couldn't find `_novlys' variable\n"
8a3fe4f8 3337 "in inferior. Use `overlay manual' mode."));
0d43edd1 3338 return 0;
c906108c 3339 }
0d43edd1 3340
9b27852e 3341 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3342 if (! ovly_table_msym)
3343 {
8a3fe4f8 3344 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3345 "`_ovly_table' array\n"
8a3fe4f8 3346 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3347 return 0;
3348 }
3349
9216df95
UW
3350 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3351 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3352 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3353
e17a4113
UW
3354 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3355 4, byte_order);
0d43edd1
JB
3356 cache_ovly_table
3357 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3358 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3359 read_target_long_array (cache_ovly_table_base,
777ea8f1 3360 (unsigned int *) cache_ovly_table,
e17a4113 3361 cache_novlys * 4, word_size, byte_order);
0d43edd1 3362
c5aa993b 3363 return 1; /* SUCCESS */
c906108c
SS
3364}
3365
3366#if 0
3367/* Find and grab a copy of the target _ovly_region_table
3368 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3369static int
fba45db2 3370simple_read_overlay_region_table (void)
c906108c
SS
3371{
3372 struct minimal_symbol *msym;
e17a4113
UW
3373 struct gdbarch *gdbarch;
3374 int word_size;
3375 enum bfd_endian byte_order;
c906108c
SS
3376
3377 simple_free_overlay_region_table ();
9b27852e 3378 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3379 if (msym == NULL)
c5aa993b 3380 return 0; /* failure */
e17a4113
UW
3381
3382 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3383 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3384 byte_order = gdbarch_byte_order (gdbarch);
3385
3386 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3387 4, byte_order);
3388
c906108c
SS
3389 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3390 if (cache_ovly_region_table != NULL)
3391 {
9b27852e 3392 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3393 if (msym != NULL)
3394 {
3395 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3396 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3397 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3398 cache_novly_regions * 3,
3399 word_size, byte_order);
c906108c 3400 }
c5aa993b
JM
3401 else
3402 return 0; /* failure */
c906108c 3403 }
c5aa993b
JM
3404 else
3405 return 0; /* failure */
3406 return 1; /* SUCCESS */
c906108c
SS
3407}
3408#endif
3409
5417f6dc 3410/* Function: simple_overlay_update_1
c906108c
SS
3411 A helper function for simple_overlay_update. Assuming a cached copy
3412 of _ovly_table exists, look through it to find an entry whose vma,
3413 lma and size match those of OSECT. Re-read the entry and make sure
3414 it still matches OSECT (else the table may no longer be valid).
3415 Set OSECT's mapped state to match the entry. Return: 1 for
3416 success, 0 for failure. */
3417
3418static int
fba45db2 3419simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3420{
3421 int i, size;
fbd35540
MS
3422 bfd *obfd = osect->objfile->obfd;
3423 asection *bsect = osect->the_bfd_section;
9216df95
UW
3424 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3425 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3426 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3427
2c500098 3428 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3429 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3430 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3431 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3432 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3433 {
9216df95
UW
3434 read_target_long_array (cache_ovly_table_base + i * word_size,
3435 (unsigned int *) cache_ovly_table[i],
e17a4113 3436 4, word_size, byte_order);
fbd35540
MS
3437 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3438 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3439 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3440 {
3441 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3442 return 1;
3443 }
fbd35540 3444 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3445 return 0;
3446 }
3447 return 0;
3448}
3449
3450/* Function: simple_overlay_update
5417f6dc
RM
3451 If OSECT is NULL, then update all sections' mapped state
3452 (after re-reading the entire target _ovly_table).
3453 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3454 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3455 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3456 re-read the entire cache, and go ahead and update all sections. */
3457
1c772458 3458void
fba45db2 3459simple_overlay_update (struct obj_section *osect)
c906108c 3460{
c5aa993b 3461 struct objfile *objfile;
c906108c
SS
3462
3463 /* Were we given an osect to look up? NULL means do all of them. */
3464 if (osect)
3465 /* Have we got a cached copy of the target's overlay table? */
3466 if (cache_ovly_table != NULL)
3467 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3468 if (cache_ovly_table_base ==
9b27852e 3469 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3470 /* Then go ahead and try to look up this single section in the cache */
3471 if (simple_overlay_update_1 (osect))
3472 /* Found it! We're done. */
3473 return;
3474
3475 /* Cached table no good: need to read the entire table anew.
3476 Or else we want all the sections, in which case it's actually
3477 more efficient to read the whole table in one block anyway. */
3478
0d43edd1
JB
3479 if (! simple_read_overlay_table ())
3480 return;
3481
c906108c
SS
3482 /* Now may as well update all sections, even if only one was requested. */
3483 ALL_OBJSECTIONS (objfile, osect)
714835d5 3484 if (section_is_overlay (osect))
c5aa993b
JM
3485 {
3486 int i, size;
fbd35540
MS
3487 bfd *obfd = osect->objfile->obfd;
3488 asection *bsect = osect->the_bfd_section;
c5aa993b 3489
2c500098 3490 size = bfd_get_section_size (bsect);
c5aa993b 3491 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3492 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3493 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3494 /* && cache_ovly_table[i][SIZE] == size */ )
3495 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3496 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3497 break; /* finished with inner for loop: break out */
3498 }
3499 }
c906108c
SS
3500}
3501
086df311
DJ
3502/* Set the output sections and output offsets for section SECTP in
3503 ABFD. The relocation code in BFD will read these offsets, so we
3504 need to be sure they're initialized. We map each section to itself,
3505 with no offset; this means that SECTP->vma will be honored. */
3506
3507static void
3508symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3509{
3510 sectp->output_section = sectp;
3511 sectp->output_offset = 0;
3512}
3513
ac8035ab
TG
3514/* Default implementation for sym_relocate. */
3515
3516
3517bfd_byte *
3518default_symfile_relocate (struct objfile *objfile, asection *sectp,
3519 bfd_byte *buf)
3520{
3521 bfd *abfd = objfile->obfd;
3522
3523 /* We're only interested in sections with relocation
3524 information. */
3525 if ((sectp->flags & SEC_RELOC) == 0)
3526 return NULL;
3527
3528 /* We will handle section offsets properly elsewhere, so relocate as if
3529 all sections begin at 0. */
3530 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3531
3532 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3533}
3534
086df311
DJ
3535/* Relocate the contents of a debug section SECTP in ABFD. The
3536 contents are stored in BUF if it is non-NULL, or returned in a
3537 malloc'd buffer otherwise.
3538
3539 For some platforms and debug info formats, shared libraries contain
3540 relocations against the debug sections (particularly for DWARF-2;
3541 one affected platform is PowerPC GNU/Linux, although it depends on
3542 the version of the linker in use). Also, ELF object files naturally
3543 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3544 the relocations in order to get the locations of symbols correct.
3545 Another example that may require relocation processing, is the
3546 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3547 debug section. */
086df311
DJ
3548
3549bfd_byte *
ac8035ab
TG
3550symfile_relocate_debug_section (struct objfile *objfile,
3551 asection *sectp, bfd_byte *buf)
086df311 3552{
ac8035ab 3553 gdb_assert (objfile->sf->sym_relocate);
086df311 3554
ac8035ab 3555 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3556}
c906108c 3557
31d99776
DJ
3558struct symfile_segment_data *
3559get_symfile_segment_data (bfd *abfd)
3560{
3561 struct sym_fns *sf = find_sym_fns (abfd);
3562
3563 if (sf == NULL)
3564 return NULL;
3565
3566 return sf->sym_segments (abfd);
3567}
3568
3569void
3570free_symfile_segment_data (struct symfile_segment_data *data)
3571{
3572 xfree (data->segment_bases);
3573 xfree (data->segment_sizes);
3574 xfree (data->segment_info);
3575 xfree (data);
3576}
3577
28c32713
JB
3578
3579/* Given:
3580 - DATA, containing segment addresses from the object file ABFD, and
3581 the mapping from ABFD's sections onto the segments that own them,
3582 and
3583 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3584 segment addresses reported by the target,
3585 store the appropriate offsets for each section in OFFSETS.
3586
3587 If there are fewer entries in SEGMENT_BASES than there are segments
3588 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3589
8d385431
DJ
3590 If there are more entries, then ignore the extra. The target may
3591 not be able to distinguish between an empty data segment and a
3592 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3593int
3594symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3595 struct section_offsets *offsets,
3596 int num_segment_bases,
3597 const CORE_ADDR *segment_bases)
3598{
3599 int i;
3600 asection *sect;
3601
28c32713
JB
3602 /* It doesn't make sense to call this function unless you have some
3603 segment base addresses. */
202b96c1 3604 gdb_assert (num_segment_bases > 0);
28c32713 3605
31d99776
DJ
3606 /* If we do not have segment mappings for the object file, we
3607 can not relocate it by segments. */
3608 gdb_assert (data != NULL);
3609 gdb_assert (data->num_segments > 0);
3610
31d99776
DJ
3611 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3612 {
31d99776
DJ
3613 int which = data->segment_info[i];
3614
28c32713
JB
3615 gdb_assert (0 <= which && which <= data->num_segments);
3616
3617 /* Don't bother computing offsets for sections that aren't
3618 loaded as part of any segment. */
3619 if (! which)
3620 continue;
3621
3622 /* Use the last SEGMENT_BASES entry as the address of any extra
3623 segments mentioned in DATA->segment_info. */
31d99776 3624 if (which > num_segment_bases)
28c32713 3625 which = num_segment_bases;
31d99776 3626
28c32713
JB
3627 offsets->offsets[i] = (segment_bases[which - 1]
3628 - data->segment_bases[which - 1]);
31d99776
DJ
3629 }
3630
3631 return 1;
3632}
3633
3634static void
3635symfile_find_segment_sections (struct objfile *objfile)
3636{
3637 bfd *abfd = objfile->obfd;
3638 int i;
3639 asection *sect;
3640 struct symfile_segment_data *data;
3641
3642 data = get_symfile_segment_data (objfile->obfd);
3643 if (data == NULL)
3644 return;
3645
3646 if (data->num_segments != 1 && data->num_segments != 2)
3647 {
3648 free_symfile_segment_data (data);
3649 return;
3650 }
3651
3652 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3653 {
31d99776
DJ
3654 int which = data->segment_info[i];
3655
3656 if (which == 1)
3657 {
3658 if (objfile->sect_index_text == -1)
3659 objfile->sect_index_text = sect->index;
3660
3661 if (objfile->sect_index_rodata == -1)
3662 objfile->sect_index_rodata = sect->index;
3663 }
3664 else if (which == 2)
3665 {
3666 if (objfile->sect_index_data == -1)
3667 objfile->sect_index_data = sect->index;
3668
3669 if (objfile->sect_index_bss == -1)
3670 objfile->sect_index_bss = sect->index;
3671 }
3672 }
3673
3674 free_symfile_segment_data (data);
3675}
3676
c906108c 3677void
fba45db2 3678_initialize_symfile (void)
c906108c
SS
3679{
3680 struct cmd_list_element *c;
c5aa993b 3681
1a966eab
AC
3682 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3683Load symbol table from executable file FILE.\n\
c906108c 3684The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3685to execute."), &cmdlist);
5ba2abeb 3686 set_cmd_completer (c, filename_completer);
c906108c 3687
1a966eab 3688 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3689Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3690Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3691ADDR is the starting address of the file's text.\n\
db162d44
EZ
3692The optional arguments are section-name section-address pairs and\n\
3693should be specified if the data and bss segments are not contiguous\n\
1a966eab 3694with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3695 &cmdlist);
5ba2abeb 3696 set_cmd_completer (c, filename_completer);
c906108c 3697
1a966eab
AC
3698 c = add_cmd ("load", class_files, load_command, _("\
3699Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3700for access from GDB.\n\
3701A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3702 set_cmd_completer (c, filename_completer);
c906108c 3703
5bf193a2
AC
3704 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3705 &symbol_reloading, _("\
3706Set dynamic symbol table reloading multiple times in one run."), _("\
3707Show dynamic symbol table reloading multiple times in one run."), NULL,
3708 NULL,
920d2a44 3709 show_symbol_reloading,
5bf193a2 3710 &setlist, &showlist);
c906108c 3711
c5aa993b 3712 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3713 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3714 "overlay ", 0, &cmdlist);
3715
3716 add_com_alias ("ovly", "overlay", class_alias, 1);
3717 add_com_alias ("ov", "overlay", class_alias, 1);
3718
c5aa993b 3719 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3720 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3721
c5aa993b 3722 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3723 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3724
c5aa993b 3725 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3726 _("List mappings of overlay sections."), &overlaylist);
c906108c 3727
c5aa993b 3728 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3729 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3730 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3731 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3732 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3733 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3734 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3735 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3736
3737 /* Filename extension to source language lookup table: */
3738 init_filename_language_table ();
26c41df3
AC
3739 add_setshow_string_noescape_cmd ("extension-language", class_files,
3740 &ext_args, _("\
3741Set mapping between filename extension and source language."), _("\
3742Show mapping between filename extension and source language."), _("\
3743Usage: set extension-language .foo bar"),
3744 set_ext_lang_command,
920d2a44 3745 show_ext_args,
26c41df3 3746 &setlist, &showlist);
c906108c 3747
c5aa993b 3748 add_info ("extensions", info_ext_lang_command,
1bedd215 3749 _("All filename extensions associated with a source language."));
917317f4 3750
525226b5
AC
3751 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3752 &debug_file_directory, _("\
24ddea62
JK
3753Set the directories where separate debug symbols are searched for."), _("\
3754Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3755Separate debug symbols are first searched for in the same\n\
3756directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3757and lastly at the path of the directory of the binary with\n\
24ddea62 3758each global debug-file-directory component prepended."),
525226b5 3759 NULL,
920d2a44 3760 show_debug_file_directory,
525226b5 3761 &setlist, &showlist);
c906108c 3762}