]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
* ld-mips-elf/dyn-sec64.d, ld-mips-elf/dyn-sec64.s,
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
c5aa993b 67 };
c906108c 68
c5aa993b
JM
69enum thread_control_capabilities
70 {
0d06e24b
JM
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 74 };
c906108c
SS
75
76/* Stuff for target_wait. */
77
78/* Generally, what has the program done? */
c5aa993b
JM
79enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
c906108c 83
0d06e24b
JM
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
c5aa993b 86 TARGET_WAITKIND_STOPPED,
c906108c 87
c5aa993b
JM
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
c906108c 91
c5aa993b
JM
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
c906108c 95
0d06e24b
JM
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
c5aa993b 100 TARGET_WAITKIND_FORKED,
c906108c 101
0d06e24b
JM
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
c5aa993b 105 TARGET_WAITKIND_VFORKED,
c906108c 106
0d06e24b
JM
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
c5aa993b 110 TARGET_WAITKIND_EXECD,
c906108c 111
0d06e24b
JM
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
c5aa993b
JM
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 118
c5aa993b
JM
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
c4093a6a
JM
122 TARGET_WAITKIND_SPURIOUS,
123
8e7d2c16
DJ
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
c4093a6a
JM
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
0d06e24b 132 like for instance the user typing. */
c4093a6a 133 TARGET_WAITKIND_IGNORE
c906108c
SS
134 };
135
c5aa993b
JM
136struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
c906108c 151
2acceee2 152/* Possible types of events that the inferior handler will have to
0d06e24b 153 deal with. */
2acceee2
JM
154enum inferior_event_type
155 {
0d06e24b 156 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
0d06e24b 159 being called. */
2146d243 160 INF_REG_EVENT,
0d06e24b 161 /* Deal with an error on the inferior. */
2acceee2 162 INF_ERROR,
0d06e24b 163 /* We are called because a timer went off. */
2acceee2 164 INF_TIMER,
0d06e24b 165 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
0d06e24b 170 'step n' like commands. */
c2d11a7d 171 INF_EXEC_CONTINUE
2acceee2
JM
172 };
173
c906108c 174/* Return the string for a signal. */
a14ed312 175extern char *target_signal_to_string (enum target_signal);
c906108c
SS
176
177/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 178extern char *target_signal_to_name (enum target_signal);
c906108c
SS
179
180/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 181enum target_signal target_signal_from_name (char *);
c906108c 182\f
13547ab6
DJ
183/* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
1e3ff5ad
AC
185
186enum target_object
187{
1e3ff5ad
AC
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
23d964e7
UW
190 /* SPU target specific transfer. See "spu-tdep.c". */
191 TARGET_OBJECT_SPU,
1e3ff5ad 192 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 193 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
194 /* Memory, avoiding GDB's data cache and trusting the executable.
195 Target implementations of to_xfer_partial never need to handle
196 this object, and most callers should not use it. */
197 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
198 /* Kernel Unwind Table. See "ia64-tdep.c". */
199 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
200 /* Transfer auxilliary vector. */
201 TARGET_OBJECT_AUXV,
baf92889 202 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
203 TARGET_OBJECT_WCOOKIE,
204 /* Target memory map in XML format. */
205 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
206 /* Flash memory. This object can be used to write contents to
207 a previously erased flash memory. Using it without erasing
208 flash can have unexpected results. Addresses are physical
209 address on target, and not relative to flash start. */
23181151
DJ
210 TARGET_OBJECT_FLASH,
211 /* Available target-specific features, e.g. registers and coprocessors.
212 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
213 TARGET_OBJECT_AVAILABLE_FEATURES,
214 /* Currently loaded libraries, in XML format. */
215 TARGET_OBJECT_LIBRARIES
2146d243 216 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
217};
218
13547ab6
DJ
219/* Request that OPS transfer up to LEN 8-bit bytes of the target's
220 OBJECT. The OFFSET, for a seekable object, specifies the
221 starting point. The ANNEX can be used to provide additional
222 data-specific information to the target.
1e3ff5ad 223
13547ab6
DJ
224 Return the number of bytes actually transfered, or -1 if the
225 transfer is not supported or otherwise fails. Return of a positive
226 value less than LEN indicates that no further transfer is possible.
227 Unlike the raw to_xfer_partial interface, callers of these
228 functions do not need to retry partial transfers. */
1e3ff5ad 229
1e3ff5ad
AC
230extern LONGEST target_read (struct target_ops *ops,
231 enum target_object object,
1b0ba102 232 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
233 ULONGEST offset, LONGEST len);
234
235extern LONGEST target_write (struct target_ops *ops,
236 enum target_object object,
1b0ba102 237 const char *annex, const gdb_byte *buf,
1e3ff5ad 238 ULONGEST offset, LONGEST len);
b6591e8b 239
a76d924d
DJ
240/* Similar to target_write, except that it also calls PROGRESS with
241 the number of bytes written and the opaque BATON after every
242 successful partial write (and before the first write). This is
243 useful for progress reporting and user interaction while writing
244 data. To abort the transfer, the progress callback can throw an
245 exception. */
246
cf7a04e8
DJ
247LONGEST target_write_with_progress (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, const gdb_byte *buf,
250 ULONGEST offset, LONGEST len,
251 void (*progress) (ULONGEST, void *),
252 void *baton);
253
13547ab6
DJ
254/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
255 be read using OPS. The return value will be -1 if the transfer
256 fails or is not supported; 0 if the object is empty; or the length
257 of the object otherwise. If a positive value is returned, a
258 sufficiently large buffer will be allocated using xmalloc and
259 returned in *BUF_P containing the contents of the object.
260
261 This method should be used for objects sufficiently small to store
262 in a single xmalloc'd buffer, when no fixed bound on the object's
263 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
264 through this function. */
265
266extern LONGEST target_read_alloc (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte **buf_p);
269
159f81f3
DJ
270/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
271 returned as a string, allocated using xmalloc. If an error occurs
272 or the transfer is unsupported, NULL is returned. Empty objects
273 are returned as allocated but empty strings. A warning is issued
274 if the result contains any embedded NUL bytes. */
275
276extern char *target_read_stralloc (struct target_ops *ops,
277 enum target_object object,
278 const char *annex);
279
b6591e8b
AC
280/* Wrappers to target read/write that perform memory transfers. They
281 throw an error if the memory transfer fails.
282
283 NOTE: cagney/2003-10-23: The naming schema is lifted from
284 "frame.h". The parameter order is lifted from get_frame_memory,
285 which in turn lifted it from read_memory. */
286
287extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 288 gdb_byte *buf, LONGEST len);
b6591e8b
AC
289extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
290 CORE_ADDR addr, int len);
1e3ff5ad 291\f
c5aa993b 292
c906108c
SS
293/* If certain kinds of activity happen, target_wait should perform
294 callbacks. */
295/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 296 on TARGET_ACTIVITY_FD. */
c906108c
SS
297extern int target_activity_fd;
298/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 299extern int (*target_activity_function) (void);
c906108c 300\f
0d06e24b
JM
301struct thread_info; /* fwd decl for parameter list below: */
302
c906108c 303struct target_ops
c5aa993b 304 {
258b763a 305 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
306 char *to_shortname; /* Name this target type */
307 char *to_longname; /* Name for printing */
308 char *to_doc; /* Documentation. Does not include trailing
c906108c 309 newline, and starts with a one-line descrip-
0d06e24b 310 tion (probably similar to to_longname). */
bba2d28d
AC
311 /* Per-target scratch pad. */
312 void *to_data;
f1c07ab0
AC
313 /* The open routine takes the rest of the parameters from the
314 command, and (if successful) pushes a new target onto the
315 stack. Targets should supply this routine, if only to provide
316 an error message. */
507f3c78 317 void (*to_open) (char *, int);
f1c07ab0
AC
318 /* Old targets with a static target vector provide "to_close".
319 New re-entrant targets provide "to_xclose" and that is expected
320 to xfree everything (including the "struct target_ops"). */
321 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
322 void (*to_close) (int);
323 void (*to_attach) (char *, int);
324 void (*to_post_attach) (int);
507f3c78 325 void (*to_detach) (char *, int);
597320e7 326 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
327 void (*to_resume) (ptid_t, int, enum target_signal);
328 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
329 void (*to_fetch_registers) (struct regcache *, int);
330 void (*to_store_registers) (struct regcache *, int);
316f2060 331 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
332
333 /* Transfer LEN bytes of memory between GDB address MYADDR and
334 target address MEMADDR. If WRITE, transfer them to the target, else
335 transfer them from the target. TARGET is the target from which we
336 get this function.
337
338 Return value, N, is one of the following:
339
340 0 means that we can't handle this. If errno has been set, it is the
341 error which prevented us from doing it (FIXME: What about bfd_error?).
342
343 positive (call it N) means that we have transferred N bytes
344 starting at MEMADDR. We might be able to handle more bytes
345 beyond this length, but no promises.
346
347 negative (call its absolute value N) means that we cannot
348 transfer right at MEMADDR, but we could transfer at least
c8e73a31 349 something at MEMADDR + N.
c5aa993b 350
c8e73a31
AC
351 NOTE: cagney/2004-10-01: This has been entirely superseeded by
352 to_xfer_partial and inferior inheritance. */
353
1b0ba102 354 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
355 int len, int write,
356 struct mem_attrib *attrib,
357 struct target_ops *target);
c906108c 358
507f3c78 359 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
360 int (*to_insert_breakpoint) (struct bp_target_info *);
361 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 362 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
363 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
364 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
365 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
366 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
367 int (*to_stopped_by_watchpoint) (void);
74174d2e 368 int to_have_steppable_watchpoint;
7df1a324 369 int to_have_continuable_watchpoint;
4aa7a7f5 370 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 371 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
372 void (*to_terminal_init) (void);
373 void (*to_terminal_inferior) (void);
374 void (*to_terminal_ours_for_output) (void);
375 void (*to_terminal_ours) (void);
a790ad35 376 void (*to_terminal_save_ours) (void);
507f3c78
KB
377 void (*to_terminal_info) (char *, int);
378 void (*to_kill) (void);
379 void (*to_load) (char *, int);
380 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 381 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 382 void (*to_post_startup_inferior) (ptid_t);
507f3c78 383 void (*to_acknowledge_created_inferior) (int);
fa113d1a 384 void (*to_insert_fork_catchpoint) (int);
507f3c78 385 int (*to_remove_fork_catchpoint) (int);
fa113d1a 386 void (*to_insert_vfork_catchpoint) (int);
507f3c78 387 int (*to_remove_vfork_catchpoint) (int);
ee057212 388 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 389 void (*to_insert_exec_catchpoint) (int);
507f3c78 390 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
391 int (*to_has_exited) (int, int, int *);
392 void (*to_mourn_inferior) (void);
393 int (*to_can_run) (void);
39f77062
KB
394 void (*to_notice_signals) (ptid_t ptid);
395 int (*to_thread_alive) (ptid_t ptid);
507f3c78 396 void (*to_find_new_threads) (void);
39f77062 397 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
398 char *(*to_extra_thread_info) (struct thread_info *);
399 void (*to_stop) (void);
d9fcf2fb 400 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 401 char *(*to_pid_to_exec_file) (int pid);
49d03eab 402 void (*to_log_command) (const char *);
c5aa993b 403 enum strata to_stratum;
c5aa993b
JM
404 int to_has_all_memory;
405 int to_has_memory;
406 int to_has_stack;
407 int to_has_registers;
408 int to_has_execution;
409 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
410 struct section_table
411 *to_sections;
412 struct section_table
413 *to_sections_end;
6426a772
JM
414 /* ASYNC target controls */
415 int (*to_can_async_p) (void);
416 int (*to_is_async_p) (void);
0d06e24b
JM
417 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
418 void *context);
ed9a39eb 419 int to_async_mask_value;
2146d243
RM
420 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
421 unsigned long,
422 int, int, int,
423 void *),
be4d1333
MS
424 void *);
425 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
426
427 /* Return the thread-local address at OFFSET in the
428 thread-local storage for the thread PTID and the shared library
429 or executable file given by OBJFILE. If that block of
430 thread-local storage hasn't been allocated yet, this function
431 may return an error. */
432 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 433 CORE_ADDR load_module_addr,
3f47be5c
EZ
434 CORE_ADDR offset);
435
13547ab6
DJ
436 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
437 OBJECT. The OFFSET, for a seekable object, specifies the
438 starting point. The ANNEX can be used to provide additional
439 data-specific information to the target.
440
441 Return the number of bytes actually transfered, zero when no
442 further transfer is possible, and -1 when the transfer is not
443 supported. Return of a positive value smaller than LEN does
444 not indicate the end of the object, only the end of the
445 transfer; higher level code should continue transferring if
446 desired. This is handled in target.c.
447
448 The interface does not support a "retry" mechanism. Instead it
449 assumes that at least one byte will be transfered on each
450 successful call.
451
452 NOTE: cagney/2003-10-17: The current interface can lead to
453 fragmented transfers. Lower target levels should not implement
454 hacks, such as enlarging the transfer, in an attempt to
455 compensate for this. Instead, the target stack should be
456 extended so that it implements supply/collect methods and a
457 look-aside object cache. With that available, the lowest
458 target can safely and freely "push" data up the stack.
459
460 See target_read and target_write for more information. One,
461 and only one, of readbuf or writebuf must be non-NULL. */
462
4b8a223f 463 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 464 enum target_object object, const char *annex,
1b0ba102 465 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 466 ULONGEST offset, LONGEST len);
1e3ff5ad 467
fd79ecee
DJ
468 /* Returns the memory map for the target. A return value of NULL
469 means that no memory map is available. If a memory address
470 does not fall within any returned regions, it's assumed to be
471 RAM. The returned memory regions should not overlap.
472
473 The order of regions does not matter; target_memory_map will
474 sort regions by starting address. For that reason, this
475 function should not be called directly except via
476 target_memory_map.
477
478 This method should not cache data; if the memory map could
479 change unexpectedly, it should be invalidated, and higher
480 layers will re-fetch it. */
481 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
482
a76d924d
DJ
483 /* Erases the region of flash memory starting at ADDRESS, of
484 length LENGTH.
485
486 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
487 on flash block boundaries, as reported by 'to_memory_map'. */
488 void (*to_flash_erase) (struct target_ops *,
489 ULONGEST address, LONGEST length);
490
491 /* Finishes a flash memory write sequence. After this operation
492 all flash memory should be available for writing and the result
493 of reading from areas written by 'to_flash_write' should be
494 equal to what was written. */
495 void (*to_flash_done) (struct target_ops *);
496
424163ea
DJ
497 /* Describe the architecture-specific features of this target.
498 Returns the description found, or NULL if no description
499 was available. */
500 const struct target_desc *(*to_read_description) (struct target_ops *ops);
501
c5aa993b 502 int to_magic;
0d06e24b
JM
503 /* Need sub-structure for target machine related rather than comm related?
504 */
c5aa993b 505 };
c906108c
SS
506
507/* Magic number for checking ops size. If a struct doesn't end with this
508 number, somebody changed the declaration but didn't change all the
509 places that initialize one. */
510
511#define OPS_MAGIC 3840
512
513/* The ops structure for our "current" target process. This should
514 never be NULL. If there is no target, it points to the dummy_target. */
515
c5aa993b 516extern struct target_ops current_target;
c906108c 517
c906108c
SS
518/* Define easy words for doing these operations on our current target. */
519
520#define target_shortname (current_target.to_shortname)
521#define target_longname (current_target.to_longname)
522
f1c07ab0
AC
523/* Does whatever cleanup is required for a target that we are no
524 longer going to be calling. QUITTING indicates that GDB is exiting
525 and should not get hung on an error (otherwise it is important to
526 perform clean termination, even if it takes a while). This routine
527 is automatically always called when popping the target off the
528 target stack (to_beneath is undefined). Closing file descriptors
529 and freeing all memory allocated memory are typical things it
530 should do. */
531
532void target_close (struct target_ops *targ, int quitting);
c906108c
SS
533
534/* Attaches to a process on the target side. Arguments are as passed
535 to the `attach' command by the user. This routine can be called
536 when the target is not on the target-stack, if the target_can_run
2146d243 537 routine returns 1; in that case, it must push itself onto the stack.
c906108c 538 Upon exit, the target should be ready for normal operations, and
2146d243 539 should be ready to deliver the status of the process immediately
c906108c
SS
540 (without waiting) to an upcoming target_wait call. */
541
542#define target_attach(args, from_tty) \
0d06e24b 543 (*current_target.to_attach) (args, from_tty)
c906108c
SS
544
545/* The target_attach operation places a process under debugger control,
546 and stops the process.
547
548 This operation provides a target-specific hook that allows the
0d06e24b 549 necessary bookkeeping to be performed after an attach completes. */
c906108c 550#define target_post_attach(pid) \
0d06e24b 551 (*current_target.to_post_attach) (pid)
c906108c 552
c906108c
SS
553/* Takes a program previously attached to and detaches it.
554 The program may resume execution (some targets do, some don't) and will
555 no longer stop on signals, etc. We better not have left any breakpoints
556 in the program or it'll die when it hits one. ARGS is arguments
557 typed by the user (e.g. a signal to send the process). FROM_TTY
558 says whether to be verbose or not. */
559
a14ed312 560extern void target_detach (char *, int);
c906108c 561
6ad8ae5c
DJ
562/* Disconnect from the current target without resuming it (leaving it
563 waiting for a debugger). */
564
565extern void target_disconnect (char *, int);
566
39f77062 567/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
568 single-step or to run free; SIGGNAL is the signal to be given to
569 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
570 pass TARGET_SIGNAL_DEFAULT. */
571
39f77062 572#define target_resume(ptid, step, siggnal) \
4930751a
C
573 do { \
574 dcache_invalidate(target_dcache); \
39f77062 575 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 576 } while (0)
c906108c 577
b5a2688f
AC
578/* Wait for process pid to do something. PTID = -1 to wait for any
579 pid to do something. Return pid of child, or -1 in case of error;
c906108c 580 store status through argument pointer STATUS. Note that it is
b5a2688f 581 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
582 the debugging target from the stack; GDB isn't prepared to get back
583 to the prompt with a debugging target but without the frame cache,
584 stop_pc, etc., set up. */
585
39f77062
KB
586#define target_wait(ptid, status) \
587 (*current_target.to_wait) (ptid, status)
c906108c 588
17dee195 589/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 590
56be3814
UW
591#define target_fetch_registers(regcache, regno) \
592 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
593
594/* Store at least register REGNO, or all regs if REGNO == -1.
595 It can store as many registers as it wants to, so target_prepare_to_store
596 must have been previously called. Calls error() if there are problems. */
597
56be3814
UW
598#define target_store_registers(regcache, regs) \
599 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
600
601/* Get ready to modify the registers array. On machines which store
602 individual registers, this doesn't need to do anything. On machines
603 which store all the registers in one fell swoop, this makes sure
604 that REGISTERS contains all the registers from the program being
605 debugged. */
606
316f2060
UW
607#define target_prepare_to_store(regcache) \
608 (*current_target.to_prepare_to_store) (regcache)
c906108c 609
4930751a
C
610extern DCACHE *target_dcache;
611
a14ed312 612extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 613
fc1a4b47 614extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 615
fc1a4b47 616extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 617 int len);
c906108c 618
1b0ba102 619extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 620 struct mem_attrib *, struct target_ops *);
c906108c 621
fd79ecee
DJ
622/* Fetches the target's memory map. If one is found it is sorted
623 and returned, after some consistency checking. Otherwise, NULL
624 is returned. */
625VEC(mem_region_s) *target_memory_map (void);
626
a76d924d
DJ
627/* Erase the specified flash region. */
628void target_flash_erase (ULONGEST address, LONGEST length);
629
630/* Finish a sequence of flash operations. */
631void target_flash_done (void);
632
633/* Describes a request for a memory write operation. */
634struct memory_write_request
635 {
636 /* Begining address that must be written. */
637 ULONGEST begin;
638 /* Past-the-end address. */
639 ULONGEST end;
640 /* The data to write. */
641 gdb_byte *data;
642 /* A callback baton for progress reporting for this request. */
643 void *baton;
644 };
645typedef struct memory_write_request memory_write_request_s;
646DEF_VEC_O(memory_write_request_s);
647
648/* Enumeration specifying different flash preservation behaviour. */
649enum flash_preserve_mode
650 {
651 flash_preserve,
652 flash_discard
653 };
654
655/* Write several memory blocks at once. This version can be more
656 efficient than making several calls to target_write_memory, in
657 particular because it can optimize accesses to flash memory.
658
659 Moreover, this is currently the only memory access function in gdb
660 that supports writing to flash memory, and it should be used for
661 all cases where access to flash memory is desirable.
662
663 REQUESTS is the vector (see vec.h) of memory_write_request.
664 PRESERVE_FLASH_P indicates what to do with blocks which must be
665 erased, but not completely rewritten.
666 PROGRESS_CB is a function that will be periodically called to provide
667 feedback to user. It will be called with the baton corresponding
668 to the request currently being written. It may also be called
669 with a NULL baton, when preserved flash sectors are being rewritten.
670
671 The function returns 0 on success, and error otherwise. */
672int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
673 enum flash_preserve_mode preserve_flash_p,
674 void (*progress_cb) (ULONGEST, void *));
675
47932f85
DJ
676/* From infrun.c. */
677
678extern int inferior_has_forked (int pid, int *child_pid);
679
680extern int inferior_has_vforked (int pid, int *child_pid);
681
682extern int inferior_has_execd (int pid, char **execd_pathname);
683
c906108c
SS
684/* From exec.c */
685
a14ed312 686extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
687
688/* Print a line about the current target. */
689
690#define target_files_info() \
0d06e24b 691 (*current_target.to_files_info) (&current_target)
c906108c 692
8181d85f
DJ
693/* Insert a breakpoint at address BP_TGT->placed_address in the target
694 machine. Result is 0 for success, or an errno value. */
c906108c 695
8181d85f
DJ
696#define target_insert_breakpoint(bp_tgt) \
697 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 698
8181d85f
DJ
699/* Remove a breakpoint at address BP_TGT->placed_address in the target
700 machine. Result is 0 for success, or an errno value. */
c906108c 701
8181d85f
DJ
702#define target_remove_breakpoint(bp_tgt) \
703 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
704
705/* Initialize the terminal settings we record for the inferior,
706 before we actually run the inferior. */
707
708#define target_terminal_init() \
0d06e24b 709 (*current_target.to_terminal_init) ()
c906108c
SS
710
711/* Put the inferior's terminal settings into effect.
712 This is preparation for starting or resuming the inferior. */
713
714#define target_terminal_inferior() \
0d06e24b 715 (*current_target.to_terminal_inferior) ()
c906108c
SS
716
717/* Put some of our terminal settings into effect,
718 enough to get proper results from our output,
719 but do not change into or out of RAW mode
720 so that no input is discarded.
721
722 After doing this, either terminal_ours or terminal_inferior
723 should be called to get back to a normal state of affairs. */
724
725#define target_terminal_ours_for_output() \
0d06e24b 726 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
727
728/* Put our terminal settings into effect.
729 First record the inferior's terminal settings
730 so they can be restored properly later. */
731
732#define target_terminal_ours() \
0d06e24b 733 (*current_target.to_terminal_ours) ()
c906108c 734
a790ad35
SC
735/* Save our terminal settings.
736 This is called from TUI after entering or leaving the curses
737 mode. Since curses modifies our terminal this call is here
738 to take this change into account. */
739
740#define target_terminal_save_ours() \
741 (*current_target.to_terminal_save_ours) ()
742
c906108c
SS
743/* Print useful information about our terminal status, if such a thing
744 exists. */
745
746#define target_terminal_info(arg, from_tty) \
0d06e24b 747 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
748
749/* Kill the inferior process. Make it go away. */
750
751#define target_kill() \
0d06e24b 752 (*current_target.to_kill) ()
c906108c 753
0d06e24b
JM
754/* Load an executable file into the target process. This is expected
755 to not only bring new code into the target process, but also to
1986bccd
AS
756 update GDB's symbol tables to match.
757
758 ARG contains command-line arguments, to be broken down with
759 buildargv (). The first non-switch argument is the filename to
760 load, FILE; the second is a number (as parsed by strtoul (..., ...,
761 0)), which is an offset to apply to the load addresses of FILE's
762 sections. The target may define switches, or other non-switch
763 arguments, as it pleases. */
c906108c 764
11cf8741 765extern void target_load (char *arg, int from_tty);
c906108c
SS
766
767/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
768 name. ADDRP is a CORE_ADDR * pointing to where the value of the
769 symbol should be returned. The result is 0 if successful, nonzero
770 if the symbol does not exist in the target environment. This
771 function should not call error() if communication with the target
772 is interrupted, since it is called from symbol reading, but should
773 return nonzero, possibly doing a complain(). */
c906108c 774
0d06e24b
JM
775#define target_lookup_symbol(name, addrp) \
776 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 777
39f77062 778/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
779 EXEC_FILE is the file to run.
780 ALLARGS is a string containing the arguments to the program.
781 ENV is the environment vector to pass. Errors reported with error().
782 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 783
c27cda74
AC
784#define target_create_inferior(exec_file, args, env, FROM_TTY) \
785 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
786
787
788/* Some targets (such as ttrace-based HPUX) don't allow us to request
789 notification of inferior events such as fork and vork immediately
790 after the inferior is created. (This because of how gdb gets an
791 inferior created via invoking a shell to do it. In such a scenario,
792 if the shell init file has commands in it, the shell will fork and
793 exec for each of those commands, and we will see each such fork
794 event. Very bad.)
c5aa993b 795
0d06e24b
JM
796 Such targets will supply an appropriate definition for this function. */
797
39f77062
KB
798#define target_post_startup_inferior(ptid) \
799 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
800
801/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
802 some synchronization between gdb and the new inferior process, PID. */
803
c906108c 804#define target_acknowledge_created_inferior(pid) \
0d06e24b 805 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 806
0d06e24b
JM
807/* On some targets, we can catch an inferior fork or vfork event when
808 it occurs. These functions insert/remove an already-created
809 catchpoint for such events. */
c906108c 810
c906108c 811#define target_insert_fork_catchpoint(pid) \
0d06e24b 812 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
813
814#define target_remove_fork_catchpoint(pid) \
0d06e24b 815 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
816
817#define target_insert_vfork_catchpoint(pid) \
0d06e24b 818 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
819
820#define target_remove_vfork_catchpoint(pid) \
0d06e24b 821 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 822
6604731b
DJ
823/* If the inferior forks or vforks, this function will be called at
824 the next resume in order to perform any bookkeeping and fiddling
825 necessary to continue debugging either the parent or child, as
826 requested, and releasing the other. Information about the fork
827 or vfork event is available via get_last_target_status ().
828 This function returns 1 if the inferior should not be resumed
829 (i.e. there is another event pending). */
0d06e24b 830
ee057212 831int target_follow_fork (int follow_child);
c906108c
SS
832
833/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
834 occurs. These functions insert/remove an already-created
835 catchpoint for such events. */
836
c906108c 837#define target_insert_exec_catchpoint(pid) \
0d06e24b 838 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 839
c906108c 840#define target_remove_exec_catchpoint(pid) \
0d06e24b 841 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 842
c906108c 843/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
844 exit code of PID, if any. */
845
c906108c 846#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 847 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
848
849/* The debugger has completed a blocking wait() call. There is now
2146d243 850 some process event that must be processed. This function should
c906108c 851 be defined by those targets that require the debugger to perform
0d06e24b 852 cleanup or internal state changes in response to the process event. */
c906108c
SS
853
854/* The inferior process has died. Do what is right. */
855
856#define target_mourn_inferior() \
0d06e24b 857 (*current_target.to_mourn_inferior) ()
c906108c
SS
858
859/* Does target have enough data to do a run or attach command? */
860
861#define target_can_run(t) \
0d06e24b 862 ((t)->to_can_run) ()
c906108c
SS
863
864/* post process changes to signal handling in the inferior. */
865
39f77062
KB
866#define target_notice_signals(ptid) \
867 (*current_target.to_notice_signals) (ptid)
c906108c
SS
868
869/* Check to see if a thread is still alive. */
870
39f77062
KB
871#define target_thread_alive(ptid) \
872 (*current_target.to_thread_alive) (ptid)
c906108c 873
b83266a0
SS
874/* Query for new threads and add them to the thread list. */
875
876#define target_find_new_threads() \
4becf47c 877 (*current_target.to_find_new_threads) ()
b83266a0 878
0d06e24b
JM
879/* Make target stop in a continuable fashion. (For instance, under
880 Unix, this should act like SIGSTOP). This function is normally
881 used by GUIs to implement a stop button. */
c906108c
SS
882
883#define target_stop current_target.to_stop
884
96baa820
JM
885/* Send the specified COMMAND to the target's monitor
886 (shell,interpreter) for execution. The result of the query is
0d06e24b 887 placed in OUTBUF. */
96baa820
JM
888
889#define target_rcmd(command, outbuf) \
890 (*current_target.to_rcmd) (command, outbuf)
891
892
c906108c
SS
893/* Does the target include all of memory, or only part of it? This
894 determines whether we look up the target chain for other parts of
895 memory if this target can't satisfy a request. */
896
897#define target_has_all_memory \
0d06e24b 898 (current_target.to_has_all_memory)
c906108c
SS
899
900/* Does the target include memory? (Dummy targets don't.) */
901
902#define target_has_memory \
0d06e24b 903 (current_target.to_has_memory)
c906108c
SS
904
905/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
906 we start a process.) */
c5aa993b 907
c906108c 908#define target_has_stack \
0d06e24b 909 (current_target.to_has_stack)
c906108c
SS
910
911/* Does the target have registers? (Exec files don't.) */
912
913#define target_has_registers \
0d06e24b 914 (current_target.to_has_registers)
c906108c
SS
915
916/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
917 hoops), or pop its stack a few times? This means that the current
918 target is currently executing; for some targets, that's the same as
919 whether or not the target is capable of execution, but there are
920 also targets which can be current while not executing. In that
921 case this will become true after target_create_inferior or
922 target_attach. */
c906108c
SS
923
924#define target_has_execution \
0d06e24b 925 (current_target.to_has_execution)
c906108c
SS
926
927/* Can the target support the debugger control of thread execution?
928 a) Can it lock the thread scheduler?
929 b) Can it switch the currently running thread? */
930
931#define target_can_lock_scheduler \
0d06e24b 932 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
933
934#define target_can_switch_threads \
0d06e24b 935 (current_target.to_has_thread_control & tc_switch)
c906108c 936
6426a772
JM
937/* Can the target support asynchronous execution? */
938#define target_can_async_p() (current_target.to_can_async_p ())
939
940/* Is the target in asynchronous execution mode? */
941#define target_is_async_p() (current_target.to_is_async_p())
942
943/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
944#define target_async(CALLBACK,CONTEXT) \
945 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 946
04714b91
AC
947/* This is to be used ONLY within call_function_by_hand(). It provides
948 a workaround, to have inferior function calls done in sychronous
949 mode, even though the target is asynchronous. After
ed9a39eb
JM
950 target_async_mask(0) is called, calls to target_can_async_p() will
951 return FALSE , so that target_resume() will not try to start the
952 target asynchronously. After the inferior stops, we IMMEDIATELY
953 restore the previous nature of the target, by calling
954 target_async_mask(1). After that, target_can_async_p() will return
04714b91 955 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
956
957 FIXME ezannoni 1999-12-13: we won't need this once we move
958 the turning async on and off to the single execution commands,
0d06e24b 959 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
960
961#define target_async_mask_value \
0d06e24b 962 (current_target.to_async_mask_value)
ed9a39eb 963
2146d243 964extern int target_async_mask (int mask);
ed9a39eb 965
c906108c
SS
966/* Converts a process id to a string. Usually, the string just contains
967 `process xyz', but on some systems it may contain
968 `process xyz thread abc'. */
969
ed9a39eb
JM
970#undef target_pid_to_str
971#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
972
973#ifndef target_tid_to_str
974#define target_tid_to_str(PID) \
0d06e24b 975 target_pid_to_str (PID)
39f77062 976extern char *normal_pid_to_str (ptid_t ptid);
c906108c 977#endif
c5aa993b 978
0d06e24b
JM
979/* Return a short string describing extra information about PID,
980 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
981 is okay. */
982
983#define target_extra_thread_info(TP) \
984 (current_target.to_extra_thread_info (TP))
ed9a39eb 985
c906108c
SS
986/* Attempts to find the pathname of the executable file
987 that was run to create a specified process.
988
989 The process PID must be stopped when this operation is used.
c5aa993b 990
c906108c
SS
991 If the executable file cannot be determined, NULL is returned.
992
993 Else, a pointer to a character string containing the pathname
994 is returned. This string should be copied into a buffer by
995 the client if the string will not be immediately used, or if
0d06e24b 996 it must persist. */
c906108c
SS
997
998#define target_pid_to_exec_file(pid) \
0d06e24b 999 (current_target.to_pid_to_exec_file) (pid)
c906108c 1000
be4d1333
MS
1001/*
1002 * Iterator function for target memory regions.
1003 * Calls a callback function once for each memory region 'mapped'
1004 * in the child process. Defined as a simple macro rather than
2146d243 1005 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1006 */
1007
1008#define target_find_memory_regions(FUNC, DATA) \
1009 (current_target.to_find_memory_regions) (FUNC, DATA)
1010
1011/*
1012 * Compose corefile .note section.
1013 */
1014
1015#define target_make_corefile_notes(BFD, SIZE_P) \
1016 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1017
3f47be5c
EZ
1018/* Thread-local values. */
1019#define target_get_thread_local_address \
1020 (current_target.to_get_thread_local_address)
1021#define target_get_thread_local_address_p() \
1022 (target_get_thread_local_address != NULL)
1023
c906108c
SS
1024
1025/* Hardware watchpoint interfaces. */
1026
1027/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1028 write). */
1029
1030#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1031#define STOPPED_BY_WATCHPOINT(w) \
1032 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1033#endif
7df1a324 1034
74174d2e
UW
1035/* Non-zero if we have steppable watchpoints */
1036
1037#ifndef HAVE_STEPPABLE_WATCHPOINT
1038#define HAVE_STEPPABLE_WATCHPOINT \
1039 (current_target.to_have_steppable_watchpoint)
1040#endif
1041
7df1a324
KW
1042/* Non-zero if we have continuable watchpoints */
1043
1044#ifndef HAVE_CONTINUABLE_WATCHPOINT
1045#define HAVE_CONTINUABLE_WATCHPOINT \
1046 (current_target.to_have_continuable_watchpoint)
1047#endif
c906108c 1048
ccaa32c7 1049/* Provide defaults for hardware watchpoint functions. */
c906108c 1050
2146d243 1051/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1052 elsewhere use the definitions in the target vector. */
c906108c
SS
1053
1054/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1055 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1056 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1057 (including this one?). OTHERTYPE is who knows what... */
1058
ccaa32c7
GS
1059#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1060#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1061 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1062#endif
c906108c 1063
e0d24f8d
WZ
1064#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1065#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1066 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1067#endif
1068
c906108c
SS
1069
1070/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1071 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1072 success, non-zero for failure. */
1073
ccaa32c7
GS
1074#ifndef target_insert_watchpoint
1075#define target_insert_watchpoint(addr, len, type) \
1076 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1077
ccaa32c7
GS
1078#define target_remove_watchpoint(addr, len, type) \
1079 (*current_target.to_remove_watchpoint) (addr, len, type)
1080#endif
c906108c
SS
1081
1082#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1083#define target_insert_hw_breakpoint(bp_tgt) \
1084 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1085
8181d85f
DJ
1086#define target_remove_hw_breakpoint(bp_tgt) \
1087 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1088#endif
1089
4aa7a7f5
JJ
1090extern int target_stopped_data_address_p (struct target_ops *);
1091
c906108c 1092#ifndef target_stopped_data_address
4aa7a7f5
JJ
1093#define target_stopped_data_address(target, x) \
1094 (*target.to_stopped_data_address) (target, x)
1095#else
1096/* Horrible hack to get around existing macros :-(. */
1097#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1098#endif
1099
424163ea
DJ
1100extern const struct target_desc *target_read_description (struct target_ops *);
1101
49d03eab
MR
1102/* Command logging facility. */
1103
1104#define target_log_command(p) \
1105 do \
1106 if (current_target.to_log_command) \
1107 (*current_target.to_log_command) (p); \
1108 while (0)
1109
c906108c
SS
1110/* Routines for maintenance of the target structures...
1111
1112 add_target: Add a target to the list of all possible targets.
1113
1114 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1115 targets, within its particular stratum of the stack. Result
1116 is 0 if now atop the stack, nonzero if not on top (maybe
1117 should warn user).
c906108c
SS
1118
1119 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1120 no matter where it is on the list. Returns 0 if no
1121 change, 1 if removed from stack.
c906108c 1122
c5aa993b 1123 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1124
a14ed312 1125extern void add_target (struct target_ops *);
c906108c 1126
a14ed312 1127extern int push_target (struct target_ops *);
c906108c 1128
a14ed312 1129extern int unpush_target (struct target_ops *);
c906108c 1130
fd79ecee
DJ
1131extern void target_pre_inferior (int);
1132
a14ed312 1133extern void target_preopen (int);
c906108c 1134
a14ed312 1135extern void pop_target (void);
c906108c 1136
9e35dae4
DJ
1137extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1138 CORE_ADDR offset);
1139
52bb452f
DJ
1140/* Mark a pushed target as running or exited, for targets which do not
1141 automatically pop when not active. */
1142
1143void target_mark_running (struct target_ops *);
1144
1145void target_mark_exited (struct target_ops *);
1146
c906108c
SS
1147/* Struct section_table maps address ranges to file sections. It is
1148 mostly used with BFD files, but can be used without (e.g. for handling
1149 raw disks, or files not in formats handled by BFD). */
1150
c5aa993b
JM
1151struct section_table
1152 {
1153 CORE_ADDR addr; /* Lowest address in section */
1154 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1155
7be0c536 1156 struct bfd_section *the_bfd_section;
c906108c 1157
c5aa993b
JM
1158 bfd *bfd; /* BFD file pointer */
1159 };
c906108c 1160
8db32d44
AC
1161/* Return the "section" containing the specified address. */
1162struct section_table *target_section_by_addr (struct target_ops *target,
1163 CORE_ADDR addr);
1164
1165
c906108c
SS
1166/* From mem-break.c */
1167
8181d85f 1168extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1169
8181d85f 1170extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1171
ae4b2284 1172extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1173
ae4b2284 1174extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1175
c906108c
SS
1176
1177/* From target.c */
1178
a14ed312 1179extern void initialize_targets (void);
c906108c 1180
a14ed312 1181extern void noprocess (void);
c906108c 1182
8edfe269
DJ
1183extern void target_require_runnable (void);
1184
a14ed312 1185extern void find_default_attach (char *, int);
c906108c 1186
c27cda74 1187extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1188
a14ed312 1189extern struct target_ops *find_run_target (void);
7a292a7a 1190
a14ed312 1191extern struct target_ops *find_core_target (void);
6426a772 1192
a14ed312 1193extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1194
570b8f7c
AC
1195extern int target_resize_to_sections (struct target_ops *target,
1196 int num_added);
07cd4b97
JB
1197
1198extern void remove_target_sections (bfd *abfd);
1199
c906108c
SS
1200\f
1201/* Stuff that should be shared among the various remote targets. */
1202
1203/* Debugging level. 0 is off, and non-zero values mean to print some debug
1204 information (higher values, more information). */
1205extern int remote_debug;
1206
1207/* Speed in bits per second, or -1 which means don't mess with the speed. */
1208extern int baud_rate;
1209/* Timeout limit for response from target. */
1210extern int remote_timeout;
1211
c906108c
SS
1212\f
1213/* Functions for helping to write a native target. */
1214
1215/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1216extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1217
c2d11a7d 1218/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1219 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1220/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1221 to the shorter target_signal_p() because it is far less ambigious.
1222 In this context ``target_signal'' refers to GDB's internal
1223 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1224 refers to the target operating system's signal. Confused? */
1225
c2d11a7d
JM
1226extern int target_signal_to_host_p (enum target_signal signo);
1227
1228/* Convert between host signal numbers and enum target_signal's.
1229 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1230 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1231/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1232 refering to the target operating system's signal numbering.
1233 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1234 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1235 internal representation of a target operating system's signal. */
1236
a14ed312
KB
1237extern enum target_signal target_signal_from_host (int);
1238extern int target_signal_to_host (enum target_signal);
c906108c
SS
1239
1240/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1241extern enum target_signal target_signal_from_command (int);
c906108c
SS
1242
1243/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1244extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1245
1246/* Set the show memory breakpoints mode to show, and installs a cleanup
1247 to restore it back to the current value. */
1248extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1249
c906108c
SS
1250\f
1251/* Imported from machine dependent code */
1252
c906108c 1253/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1254void target_ignore (void);
c906108c 1255
1df84f13 1256extern struct target_ops deprecated_child_ops;
5ac10fd1 1257
c5aa993b 1258#endif /* !defined (TARGET_H) */