]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
* ada-lex.l (HIGH_BYTE_POSN, is_digit_in_base, digit_to_int)
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
f6519ebc
MK
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#if !defined (TARGET_H)
27#define TARGET_H
28
da3331ec
AC
29struct objfile;
30struct ui_file;
31struct mem_attrib;
1e3ff5ad 32struct target_ops;
8181d85f 33struct bp_target_info;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
c5aa993b 67 };
c906108c 68
c5aa993b
JM
69enum thread_control_capabilities
70 {
0d06e24b
JM
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 74 };
c906108c
SS
75
76/* Stuff for target_wait. */
77
78/* Generally, what has the program done? */
c5aa993b
JM
79enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
c906108c 83
0d06e24b
JM
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
c5aa993b 86 TARGET_WAITKIND_STOPPED,
c906108c 87
c5aa993b
JM
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
c906108c 91
c5aa993b
JM
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
c906108c 95
0d06e24b
JM
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
c5aa993b 100 TARGET_WAITKIND_FORKED,
c906108c 101
0d06e24b
JM
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
c5aa993b 105 TARGET_WAITKIND_VFORKED,
c906108c 106
0d06e24b
JM
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
c5aa993b 110 TARGET_WAITKIND_EXECD,
c906108c 111
0d06e24b
JM
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
c5aa993b
JM
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 118
c5aa993b
JM
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
c4093a6a
JM
122 TARGET_WAITKIND_SPURIOUS,
123
8e7d2c16
DJ
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
c4093a6a
JM
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
0d06e24b 132 like for instance the user typing. */
c4093a6a 133 TARGET_WAITKIND_IGNORE
c906108c
SS
134 };
135
c5aa993b
JM
136struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
c906108c 151
2acceee2 152/* Possible types of events that the inferior handler will have to
0d06e24b 153 deal with. */
2acceee2
JM
154enum inferior_event_type
155 {
0d06e24b 156 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
0d06e24b 159 being called. */
2146d243 160 INF_REG_EVENT,
0d06e24b 161 /* Deal with an error on the inferior. */
2acceee2 162 INF_ERROR,
0d06e24b 163 /* We are called because a timer went off. */
2acceee2 164 INF_TIMER,
0d06e24b 165 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
0d06e24b 170 'step n' like commands. */
c2d11a7d 171 INF_EXEC_CONTINUE
2acceee2
JM
172 };
173
c906108c 174/* Return the string for a signal. */
a14ed312 175extern char *target_signal_to_string (enum target_signal);
c906108c
SS
176
177/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 178extern char *target_signal_to_name (enum target_signal);
c906108c
SS
179
180/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 181enum target_signal target_signal_from_name (char *);
c906108c 182\f
13547ab6
DJ
183/* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
1e3ff5ad
AC
185
186enum target_object
187{
1e3ff5ad
AC
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 191 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
baf92889
MK
200 /* StackGhost cookie. See "sparc-tdep.c". */
201 TARGET_OBJECT_WCOOKIE
2146d243
RM
202
203 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
204};
205
13547ab6
DJ
206/* Request that OPS transfer up to LEN 8-bit bytes of the target's
207 OBJECT. The OFFSET, for a seekable object, specifies the
208 starting point. The ANNEX can be used to provide additional
209 data-specific information to the target.
1e3ff5ad 210
13547ab6
DJ
211 Return the number of bytes actually transfered, or -1 if the
212 transfer is not supported or otherwise fails. Return of a positive
213 value less than LEN indicates that no further transfer is possible.
214 Unlike the raw to_xfer_partial interface, callers of these
215 functions do not need to retry partial transfers. */
1e3ff5ad 216
1e3ff5ad
AC
217extern LONGEST target_read (struct target_ops *ops,
218 enum target_object object,
1b0ba102 219 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
220 ULONGEST offset, LONGEST len);
221
222extern LONGEST target_write (struct target_ops *ops,
223 enum target_object object,
1b0ba102 224 const char *annex, const gdb_byte *buf,
1e3ff5ad 225 ULONGEST offset, LONGEST len);
b6591e8b 226
cf7a04e8
DJ
227/* Similar to target_write, except that it also calls PROGRESS
228 with the number of bytes written and the opaque BATON after
229 every partial write. This is useful for progress reporting
230 and user interaction while writing data. To abort the transfer,
231 the progress callback can throw an exception. */
232LONGEST target_write_with_progress (struct target_ops *ops,
233 enum target_object object,
234 const char *annex, const gdb_byte *buf,
235 ULONGEST offset, LONGEST len,
236 void (*progress) (ULONGEST, void *),
237 void *baton);
238
13547ab6
DJ
239/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
240 be read using OPS. The return value will be -1 if the transfer
241 fails or is not supported; 0 if the object is empty; or the length
242 of the object otherwise. If a positive value is returned, a
243 sufficiently large buffer will be allocated using xmalloc and
244 returned in *BUF_P containing the contents of the object.
245
246 This method should be used for objects sufficiently small to store
247 in a single xmalloc'd buffer, when no fixed bound on the object's
248 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
249 through this function. */
250
251extern LONGEST target_read_alloc (struct target_ops *ops,
252 enum target_object object,
253 const char *annex, gdb_byte **buf_p);
254
159f81f3
DJ
255/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
256 returned as a string, allocated using xmalloc. If an error occurs
257 or the transfer is unsupported, NULL is returned. Empty objects
258 are returned as allocated but empty strings. A warning is issued
259 if the result contains any embedded NUL bytes. */
260
261extern char *target_read_stralloc (struct target_ops *ops,
262 enum target_object object,
263 const char *annex);
264
b6591e8b
AC
265/* Wrappers to target read/write that perform memory transfers. They
266 throw an error if the memory transfer fails.
267
268 NOTE: cagney/2003-10-23: The naming schema is lifted from
269 "frame.h". The parameter order is lifted from get_frame_memory,
270 which in turn lifted it from read_memory. */
271
272extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 273 gdb_byte *buf, LONGEST len);
b6591e8b
AC
274extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
275 CORE_ADDR addr, int len);
1e3ff5ad 276\f
c5aa993b 277
c906108c
SS
278/* If certain kinds of activity happen, target_wait should perform
279 callbacks. */
280/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 281 on TARGET_ACTIVITY_FD. */
c906108c
SS
282extern int target_activity_fd;
283/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 284extern int (*target_activity_function) (void);
c906108c 285\f
0d06e24b
JM
286struct thread_info; /* fwd decl for parameter list below: */
287
c906108c 288struct target_ops
c5aa993b 289 {
258b763a 290 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
291 char *to_shortname; /* Name this target type */
292 char *to_longname; /* Name for printing */
293 char *to_doc; /* Documentation. Does not include trailing
c906108c 294 newline, and starts with a one-line descrip-
0d06e24b 295 tion (probably similar to to_longname). */
bba2d28d
AC
296 /* Per-target scratch pad. */
297 void *to_data;
f1c07ab0
AC
298 /* The open routine takes the rest of the parameters from the
299 command, and (if successful) pushes a new target onto the
300 stack. Targets should supply this routine, if only to provide
301 an error message. */
507f3c78 302 void (*to_open) (char *, int);
f1c07ab0
AC
303 /* Old targets with a static target vector provide "to_close".
304 New re-entrant targets provide "to_xclose" and that is expected
305 to xfree everything (including the "struct target_ops"). */
306 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
307 void (*to_close) (int);
308 void (*to_attach) (char *, int);
309 void (*to_post_attach) (int);
507f3c78 310 void (*to_detach) (char *, int);
597320e7 311 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
312 void (*to_resume) (ptid_t, int, enum target_signal);
313 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
507f3c78
KB
314 void (*to_fetch_registers) (int);
315 void (*to_store_registers) (int);
316 void (*to_prepare_to_store) (void);
c5aa993b
JM
317
318 /* Transfer LEN bytes of memory between GDB address MYADDR and
319 target address MEMADDR. If WRITE, transfer them to the target, else
320 transfer them from the target. TARGET is the target from which we
321 get this function.
322
323 Return value, N, is one of the following:
324
325 0 means that we can't handle this. If errno has been set, it is the
326 error which prevented us from doing it (FIXME: What about bfd_error?).
327
328 positive (call it N) means that we have transferred N bytes
329 starting at MEMADDR. We might be able to handle more bytes
330 beyond this length, but no promises.
331
332 negative (call its absolute value N) means that we cannot
333 transfer right at MEMADDR, but we could transfer at least
c8e73a31 334 something at MEMADDR + N.
c5aa993b 335
c8e73a31
AC
336 NOTE: cagney/2004-10-01: This has been entirely superseeded by
337 to_xfer_partial and inferior inheritance. */
338
1b0ba102 339 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
340 int len, int write,
341 struct mem_attrib *attrib,
342 struct target_ops *target);
c906108c 343
507f3c78 344 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
345 int (*to_insert_breakpoint) (struct bp_target_info *);
346 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 347 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
348 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
349 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
350 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
351 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
352 int (*to_stopped_by_watchpoint) (void);
7df1a324 353 int to_have_continuable_watchpoint;
4aa7a7f5 354 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 355 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
356 void (*to_terminal_init) (void);
357 void (*to_terminal_inferior) (void);
358 void (*to_terminal_ours_for_output) (void);
359 void (*to_terminal_ours) (void);
a790ad35 360 void (*to_terminal_save_ours) (void);
507f3c78
KB
361 void (*to_terminal_info) (char *, int);
362 void (*to_kill) (void);
363 void (*to_load) (char *, int);
364 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 365 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 366 void (*to_post_startup_inferior) (ptid_t);
507f3c78 367 void (*to_acknowledge_created_inferior) (int);
fa113d1a 368 void (*to_insert_fork_catchpoint) (int);
507f3c78 369 int (*to_remove_fork_catchpoint) (int);
fa113d1a 370 void (*to_insert_vfork_catchpoint) (int);
507f3c78 371 int (*to_remove_vfork_catchpoint) (int);
ee057212 372 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 373 void (*to_insert_exec_catchpoint) (int);
507f3c78 374 int (*to_remove_exec_catchpoint) (int);
507f3c78 375 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
376 int (*to_has_exited) (int, int, int *);
377 void (*to_mourn_inferior) (void);
378 int (*to_can_run) (void);
39f77062
KB
379 void (*to_notice_signals) (ptid_t ptid);
380 int (*to_thread_alive) (ptid_t ptid);
507f3c78 381 void (*to_find_new_threads) (void);
39f77062 382 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
383 char *(*to_extra_thread_info) (struct thread_info *);
384 void (*to_stop) (void);
d9fcf2fb 385 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
386 struct symtab_and_line *(*to_enable_exception_callback) (enum
387 exception_event_kind,
388 int);
389 struct exception_event_record *(*to_get_current_exception_event) (void);
390 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 391 enum strata to_stratum;
c5aa993b
JM
392 int to_has_all_memory;
393 int to_has_memory;
394 int to_has_stack;
395 int to_has_registers;
396 int to_has_execution;
397 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
398 struct section_table
399 *to_sections;
400 struct section_table
401 *to_sections_end;
6426a772
JM
402 /* ASYNC target controls */
403 int (*to_can_async_p) (void);
404 int (*to_is_async_p) (void);
0d06e24b
JM
405 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
406 void *context);
ed9a39eb 407 int to_async_mask_value;
2146d243
RM
408 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
409 unsigned long,
410 int, int, int,
411 void *),
be4d1333
MS
412 void *);
413 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
414
415 /* Return the thread-local address at OFFSET in the
416 thread-local storage for the thread PTID and the shared library
417 or executable file given by OBJFILE. If that block of
418 thread-local storage hasn't been allocated yet, this function
419 may return an error. */
420 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 421 CORE_ADDR load_module_addr,
3f47be5c
EZ
422 CORE_ADDR offset);
423
13547ab6
DJ
424 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
425 OBJECT. The OFFSET, for a seekable object, specifies the
426 starting point. The ANNEX can be used to provide additional
427 data-specific information to the target.
428
429 Return the number of bytes actually transfered, zero when no
430 further transfer is possible, and -1 when the transfer is not
431 supported. Return of a positive value smaller than LEN does
432 not indicate the end of the object, only the end of the
433 transfer; higher level code should continue transferring if
434 desired. This is handled in target.c.
435
436 The interface does not support a "retry" mechanism. Instead it
437 assumes that at least one byte will be transfered on each
438 successful call.
439
440 NOTE: cagney/2003-10-17: The current interface can lead to
441 fragmented transfers. Lower target levels should not implement
442 hacks, such as enlarging the transfer, in an attempt to
443 compensate for this. Instead, the target stack should be
444 extended so that it implements supply/collect methods and a
445 look-aside object cache. With that available, the lowest
446 target can safely and freely "push" data up the stack.
447
448 See target_read and target_write for more information. One,
449 and only one, of readbuf or writebuf must be non-NULL. */
450
4b8a223f 451 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 452 enum target_object object, const char *annex,
1b0ba102 453 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 454 ULONGEST offset, LONGEST len);
1e3ff5ad 455
c5aa993b 456 int to_magic;
0d06e24b
JM
457 /* Need sub-structure for target machine related rather than comm related?
458 */
c5aa993b 459 };
c906108c
SS
460
461/* Magic number for checking ops size. If a struct doesn't end with this
462 number, somebody changed the declaration but didn't change all the
463 places that initialize one. */
464
465#define OPS_MAGIC 3840
466
467/* The ops structure for our "current" target process. This should
468 never be NULL. If there is no target, it points to the dummy_target. */
469
c5aa993b 470extern struct target_ops current_target;
c906108c 471
c906108c
SS
472/* Define easy words for doing these operations on our current target. */
473
474#define target_shortname (current_target.to_shortname)
475#define target_longname (current_target.to_longname)
476
f1c07ab0
AC
477/* Does whatever cleanup is required for a target that we are no
478 longer going to be calling. QUITTING indicates that GDB is exiting
479 and should not get hung on an error (otherwise it is important to
480 perform clean termination, even if it takes a while). This routine
481 is automatically always called when popping the target off the
482 target stack (to_beneath is undefined). Closing file descriptors
483 and freeing all memory allocated memory are typical things it
484 should do. */
485
486void target_close (struct target_ops *targ, int quitting);
c906108c
SS
487
488/* Attaches to a process on the target side. Arguments are as passed
489 to the `attach' command by the user. This routine can be called
490 when the target is not on the target-stack, if the target_can_run
2146d243 491 routine returns 1; in that case, it must push itself onto the stack.
c906108c 492 Upon exit, the target should be ready for normal operations, and
2146d243 493 should be ready to deliver the status of the process immediately
c906108c
SS
494 (without waiting) to an upcoming target_wait call. */
495
496#define target_attach(args, from_tty) \
0d06e24b 497 (*current_target.to_attach) (args, from_tty)
c906108c
SS
498
499/* The target_attach operation places a process under debugger control,
500 and stops the process.
501
502 This operation provides a target-specific hook that allows the
0d06e24b 503 necessary bookkeeping to be performed after an attach completes. */
c906108c 504#define target_post_attach(pid) \
0d06e24b 505 (*current_target.to_post_attach) (pid)
c906108c 506
c906108c
SS
507/* Takes a program previously attached to and detaches it.
508 The program may resume execution (some targets do, some don't) and will
509 no longer stop on signals, etc. We better not have left any breakpoints
510 in the program or it'll die when it hits one. ARGS is arguments
511 typed by the user (e.g. a signal to send the process). FROM_TTY
512 says whether to be verbose or not. */
513
a14ed312 514extern void target_detach (char *, int);
c906108c 515
6ad8ae5c
DJ
516/* Disconnect from the current target without resuming it (leaving it
517 waiting for a debugger). */
518
519extern void target_disconnect (char *, int);
520
39f77062 521/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
522 single-step or to run free; SIGGNAL is the signal to be given to
523 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
524 pass TARGET_SIGNAL_DEFAULT. */
525
39f77062 526#define target_resume(ptid, step, siggnal) \
4930751a
C
527 do { \
528 dcache_invalidate(target_dcache); \
39f77062 529 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 530 } while (0)
c906108c 531
b5a2688f
AC
532/* Wait for process pid to do something. PTID = -1 to wait for any
533 pid to do something. Return pid of child, or -1 in case of error;
c906108c 534 store status through argument pointer STATUS. Note that it is
b5a2688f 535 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
536 the debugging target from the stack; GDB isn't prepared to get back
537 to the prompt with a debugging target but without the frame cache,
538 stop_pc, etc., set up. */
539
39f77062
KB
540#define target_wait(ptid, status) \
541 (*current_target.to_wait) (ptid, status)
c906108c 542
17dee195 543/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
544
545#define target_fetch_registers(regno) \
0d06e24b 546 (*current_target.to_fetch_registers) (regno)
c906108c
SS
547
548/* Store at least register REGNO, or all regs if REGNO == -1.
549 It can store as many registers as it wants to, so target_prepare_to_store
550 must have been previously called. Calls error() if there are problems. */
551
552#define target_store_registers(regs) \
0d06e24b 553 (*current_target.to_store_registers) (regs)
c906108c
SS
554
555/* Get ready to modify the registers array. On machines which store
556 individual registers, this doesn't need to do anything. On machines
557 which store all the registers in one fell swoop, this makes sure
558 that REGISTERS contains all the registers from the program being
559 debugged. */
560
561#define target_prepare_to_store() \
0d06e24b 562 (*current_target.to_prepare_to_store) ()
c906108c 563
4930751a
C
564extern DCACHE *target_dcache;
565
a14ed312 566extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 567
fc1a4b47 568extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 569
fc1a4b47 570extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 571 int len);
c906108c 572
1b0ba102 573extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 574 struct mem_attrib *, struct target_ops *);
c906108c 575
6c932e54 576extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 577 struct mem_attrib *, struct target_ops *);
c906108c 578
a14ed312 579extern char *child_pid_to_exec_file (int);
c906108c 580
a14ed312 581extern char *child_core_file_to_sym_file (char *);
c906108c
SS
582
583#if defined(CHILD_POST_ATTACH)
a14ed312 584extern void child_post_attach (int);
c906108c
SS
585#endif
586
39f77062 587extern void child_post_startup_inferior (ptid_t);
c906108c 588
a14ed312 589extern void child_acknowledge_created_inferior (int);
c906108c 590
fa113d1a 591extern void child_insert_fork_catchpoint (int);
c906108c 592
a14ed312 593extern int child_remove_fork_catchpoint (int);
c906108c 594
fa113d1a 595extern void child_insert_vfork_catchpoint (int);
c906108c 596
a14ed312 597extern int child_remove_vfork_catchpoint (int);
c906108c 598
a14ed312 599extern void child_acknowledge_created_inferior (int);
c906108c 600
ee057212 601extern int child_follow_fork (struct target_ops *, int);
c906108c 602
fa113d1a 603extern void child_insert_exec_catchpoint (int);
c906108c 604
a14ed312 605extern int child_remove_exec_catchpoint (int);
c906108c 606
a14ed312 607extern int child_reported_exec_events_per_exec_call (void);
c906108c 608
a14ed312 609extern int child_has_exited (int, int, int *);
c906108c 610
39f77062 611extern int child_thread_alive (ptid_t);
c906108c 612
47932f85
DJ
613/* From infrun.c. */
614
615extern int inferior_has_forked (int pid, int *child_pid);
616
617extern int inferior_has_vforked (int pid, int *child_pid);
618
619extern int inferior_has_execd (int pid, char **execd_pathname);
620
c906108c
SS
621/* From exec.c */
622
a14ed312 623extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
624
625/* Print a line about the current target. */
626
627#define target_files_info() \
0d06e24b 628 (*current_target.to_files_info) (&current_target)
c906108c 629
8181d85f
DJ
630/* Insert a breakpoint at address BP_TGT->placed_address in the target
631 machine. Result is 0 for success, or an errno value. */
c906108c 632
8181d85f
DJ
633#define target_insert_breakpoint(bp_tgt) \
634 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 635
8181d85f
DJ
636/* Remove a breakpoint at address BP_TGT->placed_address in the target
637 machine. Result is 0 for success, or an errno value. */
c906108c 638
8181d85f
DJ
639#define target_remove_breakpoint(bp_tgt) \
640 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
641
642/* Initialize the terminal settings we record for the inferior,
643 before we actually run the inferior. */
644
645#define target_terminal_init() \
0d06e24b 646 (*current_target.to_terminal_init) ()
c906108c
SS
647
648/* Put the inferior's terminal settings into effect.
649 This is preparation for starting or resuming the inferior. */
650
651#define target_terminal_inferior() \
0d06e24b 652 (*current_target.to_terminal_inferior) ()
c906108c
SS
653
654/* Put some of our terminal settings into effect,
655 enough to get proper results from our output,
656 but do not change into or out of RAW mode
657 so that no input is discarded.
658
659 After doing this, either terminal_ours or terminal_inferior
660 should be called to get back to a normal state of affairs. */
661
662#define target_terminal_ours_for_output() \
0d06e24b 663 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
664
665/* Put our terminal settings into effect.
666 First record the inferior's terminal settings
667 so they can be restored properly later. */
668
669#define target_terminal_ours() \
0d06e24b 670 (*current_target.to_terminal_ours) ()
c906108c 671
a790ad35
SC
672/* Save our terminal settings.
673 This is called from TUI after entering or leaving the curses
674 mode. Since curses modifies our terminal this call is here
675 to take this change into account. */
676
677#define target_terminal_save_ours() \
678 (*current_target.to_terminal_save_ours) ()
679
c906108c
SS
680/* Print useful information about our terminal status, if such a thing
681 exists. */
682
683#define target_terminal_info(arg, from_tty) \
0d06e24b 684 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
685
686/* Kill the inferior process. Make it go away. */
687
688#define target_kill() \
0d06e24b 689 (*current_target.to_kill) ()
c906108c 690
0d06e24b
JM
691/* Load an executable file into the target process. This is expected
692 to not only bring new code into the target process, but also to
1986bccd
AS
693 update GDB's symbol tables to match.
694
695 ARG contains command-line arguments, to be broken down with
696 buildargv (). The first non-switch argument is the filename to
697 load, FILE; the second is a number (as parsed by strtoul (..., ...,
698 0)), which is an offset to apply to the load addresses of FILE's
699 sections. The target may define switches, or other non-switch
700 arguments, as it pleases. */
c906108c 701
11cf8741 702extern void target_load (char *arg, int from_tty);
c906108c
SS
703
704/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
705 name. ADDRP is a CORE_ADDR * pointing to where the value of the
706 symbol should be returned. The result is 0 if successful, nonzero
707 if the symbol does not exist in the target environment. This
708 function should not call error() if communication with the target
709 is interrupted, since it is called from symbol reading, but should
710 return nonzero, possibly doing a complain(). */
c906108c 711
0d06e24b
JM
712#define target_lookup_symbol(name, addrp) \
713 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 714
39f77062 715/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
716 EXEC_FILE is the file to run.
717 ALLARGS is a string containing the arguments to the program.
718 ENV is the environment vector to pass. Errors reported with error().
719 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 720
c27cda74
AC
721#define target_create_inferior(exec_file, args, env, FROM_TTY) \
722 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
723
724
725/* Some targets (such as ttrace-based HPUX) don't allow us to request
726 notification of inferior events such as fork and vork immediately
727 after the inferior is created. (This because of how gdb gets an
728 inferior created via invoking a shell to do it. In such a scenario,
729 if the shell init file has commands in it, the shell will fork and
730 exec for each of those commands, and we will see each such fork
731 event. Very bad.)
c5aa993b 732
0d06e24b
JM
733 Such targets will supply an appropriate definition for this function. */
734
39f77062
KB
735#define target_post_startup_inferior(ptid) \
736 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
737
738/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
739 some synchronization between gdb and the new inferior process, PID. */
740
c906108c 741#define target_acknowledge_created_inferior(pid) \
0d06e24b 742 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 743
0d06e24b
JM
744/* On some targets, we can catch an inferior fork or vfork event when
745 it occurs. These functions insert/remove an already-created
746 catchpoint for such events. */
c906108c 747
c906108c 748#define target_insert_fork_catchpoint(pid) \
0d06e24b 749 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
750
751#define target_remove_fork_catchpoint(pid) \
0d06e24b 752 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
753
754#define target_insert_vfork_catchpoint(pid) \
0d06e24b 755 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
756
757#define target_remove_vfork_catchpoint(pid) \
0d06e24b 758 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 759
6604731b
DJ
760/* If the inferior forks or vforks, this function will be called at
761 the next resume in order to perform any bookkeeping and fiddling
762 necessary to continue debugging either the parent or child, as
763 requested, and releasing the other. Information about the fork
764 or vfork event is available via get_last_target_status ().
765 This function returns 1 if the inferior should not be resumed
766 (i.e. there is another event pending). */
0d06e24b 767
ee057212 768int target_follow_fork (int follow_child);
c906108c
SS
769
770/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
771 occurs. These functions insert/remove an already-created
772 catchpoint for such events. */
773
c906108c 774#define target_insert_exec_catchpoint(pid) \
0d06e24b 775 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 776
c906108c 777#define target_remove_exec_catchpoint(pid) \
0d06e24b 778 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 779
c906108c
SS
780/* Returns the number of exec events that are reported when a process
781 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
782 events are being reported. */
783
c906108c 784#define target_reported_exec_events_per_exec_call() \
0d06e24b 785 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 786
c906108c 787/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
788 exit code of PID, if any. */
789
c906108c 790#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 791 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
792
793/* The debugger has completed a blocking wait() call. There is now
2146d243 794 some process event that must be processed. This function should
c906108c 795 be defined by those targets that require the debugger to perform
0d06e24b 796 cleanup or internal state changes in response to the process event. */
c906108c
SS
797
798/* The inferior process has died. Do what is right. */
799
800#define target_mourn_inferior() \
0d06e24b 801 (*current_target.to_mourn_inferior) ()
c906108c
SS
802
803/* Does target have enough data to do a run or attach command? */
804
805#define target_can_run(t) \
0d06e24b 806 ((t)->to_can_run) ()
c906108c
SS
807
808/* post process changes to signal handling in the inferior. */
809
39f77062
KB
810#define target_notice_signals(ptid) \
811 (*current_target.to_notice_signals) (ptid)
c906108c
SS
812
813/* Check to see if a thread is still alive. */
814
39f77062
KB
815#define target_thread_alive(ptid) \
816 (*current_target.to_thread_alive) (ptid)
c906108c 817
b83266a0
SS
818/* Query for new threads and add them to the thread list. */
819
820#define target_find_new_threads() \
0d06e24b 821 (*current_target.to_find_new_threads) (); \
b83266a0 822
0d06e24b
JM
823/* Make target stop in a continuable fashion. (For instance, under
824 Unix, this should act like SIGSTOP). This function is normally
825 used by GUIs to implement a stop button. */
c906108c
SS
826
827#define target_stop current_target.to_stop
828
96baa820
JM
829/* Send the specified COMMAND to the target's monitor
830 (shell,interpreter) for execution. The result of the query is
0d06e24b 831 placed in OUTBUF. */
96baa820
JM
832
833#define target_rcmd(command, outbuf) \
834 (*current_target.to_rcmd) (command, outbuf)
835
836
c906108c 837/* Get the symbol information for a breakpointable routine called when
2146d243 838 an exception event occurs.
c906108c
SS
839 Intended mainly for C++, and for those
840 platforms/implementations where such a callback mechanism is available,
841 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 842 different mechanisms for debugging exceptions. */
c906108c
SS
843
844#define target_enable_exception_callback(kind, enable) \
0d06e24b 845 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 846
0d06e24b 847/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 848
c906108c 849#define target_get_current_exception_event() \
0d06e24b 850 (*current_target.to_get_current_exception_event) ()
c906108c 851
c906108c
SS
852/* Does the target include all of memory, or only part of it? This
853 determines whether we look up the target chain for other parts of
854 memory if this target can't satisfy a request. */
855
856#define target_has_all_memory \
0d06e24b 857 (current_target.to_has_all_memory)
c906108c
SS
858
859/* Does the target include memory? (Dummy targets don't.) */
860
861#define target_has_memory \
0d06e24b 862 (current_target.to_has_memory)
c906108c
SS
863
864/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
865 we start a process.) */
c5aa993b 866
c906108c 867#define target_has_stack \
0d06e24b 868 (current_target.to_has_stack)
c906108c
SS
869
870/* Does the target have registers? (Exec files don't.) */
871
872#define target_has_registers \
0d06e24b 873 (current_target.to_has_registers)
c906108c
SS
874
875/* Does the target have execution? Can we make it jump (through
876 hoops), or pop its stack a few times? FIXME: If this is to work that
877 way, it needs to check whether an inferior actually exists.
878 remote-udi.c and probably other targets can be the current target
879 when the inferior doesn't actually exist at the moment. Right now
880 this just tells us whether this target is *capable* of execution. */
881
882#define target_has_execution \
0d06e24b 883 (current_target.to_has_execution)
c906108c
SS
884
885/* Can the target support the debugger control of thread execution?
886 a) Can it lock the thread scheduler?
887 b) Can it switch the currently running thread? */
888
889#define target_can_lock_scheduler \
0d06e24b 890 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
891
892#define target_can_switch_threads \
0d06e24b 893 (current_target.to_has_thread_control & tc_switch)
c906108c 894
6426a772
JM
895/* Can the target support asynchronous execution? */
896#define target_can_async_p() (current_target.to_can_async_p ())
897
898/* Is the target in asynchronous execution mode? */
899#define target_is_async_p() (current_target.to_is_async_p())
900
901/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
902#define target_async(CALLBACK,CONTEXT) \
903 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 904
04714b91
AC
905/* This is to be used ONLY within call_function_by_hand(). It provides
906 a workaround, to have inferior function calls done in sychronous
907 mode, even though the target is asynchronous. After
ed9a39eb
JM
908 target_async_mask(0) is called, calls to target_can_async_p() will
909 return FALSE , so that target_resume() will not try to start the
910 target asynchronously. After the inferior stops, we IMMEDIATELY
911 restore the previous nature of the target, by calling
912 target_async_mask(1). After that, target_can_async_p() will return
04714b91 913 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
914
915 FIXME ezannoni 1999-12-13: we won't need this once we move
916 the turning async on and off to the single execution commands,
0d06e24b 917 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
918
919#define target_async_mask_value \
0d06e24b 920 (current_target.to_async_mask_value)
ed9a39eb 921
2146d243 922extern int target_async_mask (int mask);
ed9a39eb 923
c906108c
SS
924/* Converts a process id to a string. Usually, the string just contains
925 `process xyz', but on some systems it may contain
926 `process xyz thread abc'. */
927
ed9a39eb
JM
928#undef target_pid_to_str
929#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
930
931#ifndef target_tid_to_str
932#define target_tid_to_str(PID) \
0d06e24b 933 target_pid_to_str (PID)
39f77062 934extern char *normal_pid_to_str (ptid_t ptid);
c906108c 935#endif
c5aa993b 936
0d06e24b
JM
937/* Return a short string describing extra information about PID,
938 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
939 is okay. */
940
941#define target_extra_thread_info(TP) \
942 (current_target.to_extra_thread_info (TP))
ed9a39eb 943
11cf8741
JM
944/*
945 * New Objfile Event Hook:
946 *
947 * Sometimes a GDB component wants to get notified whenever a new
2146d243 948 * objfile is loaded. Mainly this is used by thread-debugging
11cf8741
JM
949 * implementations that need to know when symbols for the target
950 * thread implemenation are available.
951 *
952 * The old way of doing this is to define a macro 'target_new_objfile'
953 * that points to the function that you want to be called on every
954 * objfile/shlib load.
9a4105ab
AC
955
956 The new way is to grab the function pointer,
957 'deprecated_target_new_objfile_hook', and point it to the function
958 that you want to be called on every objfile/shlib load.
959
960 If multiple clients are willing to be cooperative, they can each
961 save a pointer to the previous value of
962 deprecated_target_new_objfile_hook before modifying it, and arrange
963 for their function to call the previous function in the chain. In
964 that way, multiple clients can receive this notification (something
965 like with signal handlers). */
966
967extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c
SS
968
969#ifndef target_pid_or_tid_to_str
970#define target_pid_or_tid_to_str(ID) \
0d06e24b 971 target_pid_to_str (ID)
c906108c
SS
972#endif
973
974/* Attempts to find the pathname of the executable file
975 that was run to create a specified process.
976
977 The process PID must be stopped when this operation is used.
c5aa993b 978
c906108c
SS
979 If the executable file cannot be determined, NULL is returned.
980
981 Else, a pointer to a character string containing the pathname
982 is returned. This string should be copied into a buffer by
983 the client if the string will not be immediately used, or if
0d06e24b 984 it must persist. */
c906108c
SS
985
986#define target_pid_to_exec_file(pid) \
0d06e24b 987 (current_target.to_pid_to_exec_file) (pid)
c906108c 988
be4d1333
MS
989/*
990 * Iterator function for target memory regions.
991 * Calls a callback function once for each memory region 'mapped'
992 * in the child process. Defined as a simple macro rather than
2146d243 993 * as a function macro so that it can be tested for nullity.
be4d1333
MS
994 */
995
996#define target_find_memory_regions(FUNC, DATA) \
997 (current_target.to_find_memory_regions) (FUNC, DATA)
998
999/*
1000 * Compose corefile .note section.
1001 */
1002
1003#define target_make_corefile_notes(BFD, SIZE_P) \
1004 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1005
3f47be5c
EZ
1006/* Thread-local values. */
1007#define target_get_thread_local_address \
1008 (current_target.to_get_thread_local_address)
1009#define target_get_thread_local_address_p() \
1010 (target_get_thread_local_address != NULL)
1011
9d8a64cb 1012/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1013 started. */
1014
1015#ifndef TARGET_CREATE_INFERIOR_HOOK
1016#define TARGET_CREATE_INFERIOR_HOOK(PID)
1017#endif
1018
1019/* Hardware watchpoint interfaces. */
1020
1021/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1022 write). */
1023
1024#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1025#define STOPPED_BY_WATCHPOINT(w) \
1026 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1027#endif
7df1a324
KW
1028
1029/* Non-zero if we have continuable watchpoints */
1030
1031#ifndef HAVE_CONTINUABLE_WATCHPOINT
1032#define HAVE_CONTINUABLE_WATCHPOINT \
1033 (current_target.to_have_continuable_watchpoint)
1034#endif
c906108c 1035
ccaa32c7 1036/* Provide defaults for hardware watchpoint functions. */
c906108c 1037
2146d243 1038/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1039 elsewhere use the definitions in the target vector. */
c906108c
SS
1040
1041/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1042 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1043 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1044 (including this one?). OTHERTYPE is who knows what... */
1045
ccaa32c7
GS
1046#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1047#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1048 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1049#endif
c906108c 1050
e0d24f8d
WZ
1051#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1052#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1053 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1054#endif
1055
c906108c
SS
1056
1057/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1058 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1059 success, non-zero for failure. */
1060
ccaa32c7
GS
1061#ifndef target_insert_watchpoint
1062#define target_insert_watchpoint(addr, len, type) \
1063 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1064
ccaa32c7
GS
1065#define target_remove_watchpoint(addr, len, type) \
1066 (*current_target.to_remove_watchpoint) (addr, len, type)
1067#endif
c906108c
SS
1068
1069#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1070#define target_insert_hw_breakpoint(bp_tgt) \
1071 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1072
8181d85f
DJ
1073#define target_remove_hw_breakpoint(bp_tgt) \
1074 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1075#endif
1076
4aa7a7f5
JJ
1077extern int target_stopped_data_address_p (struct target_ops *);
1078
c906108c 1079#ifndef target_stopped_data_address
4aa7a7f5
JJ
1080#define target_stopped_data_address(target, x) \
1081 (*target.to_stopped_data_address) (target, x)
1082#else
1083/* Horrible hack to get around existing macros :-(. */
1084#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1085#endif
1086
c906108c
SS
1087/* This will only be defined by a target that supports catching vfork events,
1088 such as HP-UX.
1089
1090 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1091 child process after it has exec'd, causes the parent process to resume as
1092 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1093 define this to a function that prevents that from happening. */
c906108c
SS
1094#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1095#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1096#endif
1097
1098/* This will only be defined by a target that supports catching vfork events,
1099 such as HP-UX.
1100
1101 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1102 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1103 vfork event will be delivered to us. */
1104
c906108c
SS
1105#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1106#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1107#endif
1108
1109/* Routines for maintenance of the target structures...
1110
1111 add_target: Add a target to the list of all possible targets.
1112
1113 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1114 targets, within its particular stratum of the stack. Result
1115 is 0 if now atop the stack, nonzero if not on top (maybe
1116 should warn user).
c906108c
SS
1117
1118 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1119 no matter where it is on the list. Returns 0 if no
1120 change, 1 if removed from stack.
c906108c 1121
c5aa993b 1122 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1123
a14ed312 1124extern void add_target (struct target_ops *);
c906108c 1125
a14ed312 1126extern int push_target (struct target_ops *);
c906108c 1127
a14ed312 1128extern int unpush_target (struct target_ops *);
c906108c 1129
a14ed312 1130extern void target_preopen (int);
c906108c 1131
a14ed312 1132extern void pop_target (void);
c906108c
SS
1133
1134/* Struct section_table maps address ranges to file sections. It is
1135 mostly used with BFD files, but can be used without (e.g. for handling
1136 raw disks, or files not in formats handled by BFD). */
1137
c5aa993b
JM
1138struct section_table
1139 {
1140 CORE_ADDR addr; /* Lowest address in section */
1141 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1142
7be0c536 1143 struct bfd_section *the_bfd_section;
c906108c 1144
c5aa993b
JM
1145 bfd *bfd; /* BFD file pointer */
1146 };
c906108c 1147
8db32d44
AC
1148/* Return the "section" containing the specified address. */
1149struct section_table *target_section_by_addr (struct target_ops *target,
1150 CORE_ADDR addr);
1151
1152
c906108c
SS
1153/* From mem-break.c */
1154
8181d85f 1155extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1156
8181d85f 1157extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1158
8181d85f 1159extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1160
8181d85f 1161extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1162
c906108c
SS
1163
1164/* From target.c */
1165
a14ed312 1166extern void initialize_targets (void);
c906108c 1167
a14ed312 1168extern void noprocess (void);
c906108c 1169
a14ed312 1170extern void find_default_attach (char *, int);
c906108c 1171
c27cda74 1172extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1173
a14ed312 1174extern struct target_ops *find_run_target (void);
7a292a7a 1175
a14ed312 1176extern struct target_ops *find_core_target (void);
6426a772 1177
a14ed312 1178extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1179
570b8f7c
AC
1180extern int target_resize_to_sections (struct target_ops *target,
1181 int num_added);
07cd4b97
JB
1182
1183extern void remove_target_sections (bfd *abfd);
1184
c906108c
SS
1185\f
1186/* Stuff that should be shared among the various remote targets. */
1187
1188/* Debugging level. 0 is off, and non-zero values mean to print some debug
1189 information (higher values, more information). */
1190extern int remote_debug;
1191
1192/* Speed in bits per second, or -1 which means don't mess with the speed. */
1193extern int baud_rate;
1194/* Timeout limit for response from target. */
1195extern int remote_timeout;
1196
c906108c
SS
1197\f
1198/* Functions for helping to write a native target. */
1199
1200/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1201extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1202
c2d11a7d 1203/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1204 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1205/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1206 to the shorter target_signal_p() because it is far less ambigious.
1207 In this context ``target_signal'' refers to GDB's internal
1208 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1209 refers to the target operating system's signal. Confused? */
1210
c2d11a7d
JM
1211extern int target_signal_to_host_p (enum target_signal signo);
1212
1213/* Convert between host signal numbers and enum target_signal's.
1214 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1215 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1216/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1217 refering to the target operating system's signal numbering.
1218 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1219 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1220 internal representation of a target operating system's signal. */
1221
a14ed312
KB
1222extern enum target_signal target_signal_from_host (int);
1223extern int target_signal_to_host (enum target_signal);
c906108c
SS
1224
1225/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1226extern enum target_signal target_signal_from_command (int);
c906108c
SS
1227
1228/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1229extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1230\f
1231/* Imported from machine dependent code */
1232
c906108c 1233/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1234void target_ignore (void);
c906108c 1235
1df84f13 1236extern struct target_ops deprecated_child_ops;
5ac10fd1 1237
c5aa993b 1238#endif /* !defined (TARGET_H) */