]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#if !defined (TARGET_H)
27#define TARGET_H
28
da3331ec
AC
29struct objfile;
30struct ui_file;
31struct mem_attrib;
1e3ff5ad 32struct target_ops;
8181d85f 33struct bp_target_info;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
fd79ecee 58#include "vec.h"
c906108c 59
c5aa993b
JM
60enum strata
61 {
62 dummy_stratum, /* The lowest of the low */
63 file_stratum, /* Executable files, etc */
64 core_stratum, /* Core dump files */
65 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
66 process_stratum, /* Executing processes */
67 thread_stratum /* Executing threads */
c5aa993b 68 };
c906108c 69
c5aa993b
JM
70enum thread_control_capabilities
71 {
0d06e24b
JM
72 tc_none = 0, /* Default: can't control thread execution. */
73 tc_schedlock = 1, /* Can lock the thread scheduler. */
74 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 75 };
c906108c
SS
76
77/* Stuff for target_wait. */
78
79/* Generally, what has the program done? */
c5aa993b
JM
80enum target_waitkind
81 {
82 /* The program has exited. The exit status is in value.integer. */
83 TARGET_WAITKIND_EXITED,
c906108c 84
0d06e24b
JM
85 /* The program has stopped with a signal. Which signal is in
86 value.sig. */
c5aa993b 87 TARGET_WAITKIND_STOPPED,
c906108c 88
c5aa993b
JM
89 /* The program has terminated with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_SIGNALLED,
c906108c 92
c5aa993b
JM
93 /* The program is letting us know that it dynamically loaded something
94 (e.g. it called load(2) on AIX). */
95 TARGET_WAITKIND_LOADED,
c906108c 96
0d06e24b
JM
97 /* The program has forked. A "related" process' ID is in
98 value.related_pid. I.e., if the child forks, value.related_pid
99 is the parent's ID. */
100
c5aa993b 101 TARGET_WAITKIND_FORKED,
c906108c 102
0d06e24b
JM
103 /* The program has vforked. A "related" process's ID is in
104 value.related_pid. */
105
c5aa993b 106 TARGET_WAITKIND_VFORKED,
c906108c 107
0d06e24b
JM
108 /* The program has exec'ed a new executable file. The new file's
109 pathname is pointed to by value.execd_pathname. */
110
c5aa993b 111 TARGET_WAITKIND_EXECD,
c906108c 112
0d06e24b
JM
113 /* The program has entered or returned from a system call. On
114 HP-UX, this is used in the hardware watchpoint implementation.
115 The syscall's unique integer ID number is in value.syscall_id */
116
c5aa993b
JM
117 TARGET_WAITKIND_SYSCALL_ENTRY,
118 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 119
c5aa993b
JM
120 /* Nothing happened, but we stopped anyway. This perhaps should be handled
121 within target_wait, but I'm not sure target_wait should be resuming the
122 inferior. */
c4093a6a
JM
123 TARGET_WAITKIND_SPURIOUS,
124
8e7d2c16
DJ
125 /* An event has occured, but we should wait again.
126 Remote_async_wait() returns this when there is an event
c4093a6a
JM
127 on the inferior, but the rest of the world is not interested in
128 it. The inferior has not stopped, but has just sent some output
129 to the console, for instance. In this case, we want to go back
130 to the event loop and wait there for another event from the
131 inferior, rather than being stuck in the remote_async_wait()
132 function. This way the event loop is responsive to other events,
0d06e24b 133 like for instance the user typing. */
c4093a6a 134 TARGET_WAITKIND_IGNORE
c906108c
SS
135 };
136
c5aa993b
JM
137struct target_waitstatus
138 {
139 enum target_waitkind kind;
140
141 /* Forked child pid, execd pathname, exit status or signal number. */
142 union
143 {
144 int integer;
145 enum target_signal sig;
146 int related_pid;
147 char *execd_pathname;
148 int syscall_id;
149 }
150 value;
151 };
c906108c 152
2acceee2 153/* Possible types of events that the inferior handler will have to
0d06e24b 154 deal with. */
2acceee2
JM
155enum inferior_event_type
156 {
0d06e24b 157 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
158 INF_QUIT_REQ,
159 /* Process a normal inferior event which will result in target_wait
0d06e24b 160 being called. */
2146d243 161 INF_REG_EVENT,
0d06e24b 162 /* Deal with an error on the inferior. */
2acceee2 163 INF_ERROR,
0d06e24b 164 /* We are called because a timer went off. */
2acceee2 165 INF_TIMER,
0d06e24b 166 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
167 INF_EXEC_COMPLETE,
168 /* We are called to do some stuff after the inferior stops, but we
169 are expected to reenter the proceed() and
170 handle_inferior_event() functions. This is used only in case of
0d06e24b 171 'step n' like commands. */
c2d11a7d 172 INF_EXEC_CONTINUE
2acceee2
JM
173 };
174
c906108c 175/* Return the string for a signal. */
a14ed312 176extern char *target_signal_to_string (enum target_signal);
c906108c
SS
177
178/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 179extern char *target_signal_to_name (enum target_signal);
c906108c
SS
180
181/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 182enum target_signal target_signal_from_name (char *);
c906108c 183\f
13547ab6
DJ
184/* Target objects which can be transfered using target_read,
185 target_write, et cetera. */
1e3ff5ad
AC
186
187enum target_object
188{
1e3ff5ad
AC
189 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
190 TARGET_OBJECT_AVR,
191 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 192 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
193 /* Memory, avoiding GDB's data cache and trusting the executable.
194 Target implementations of to_xfer_partial never need to handle
195 this object, and most callers should not use it. */
196 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
197 /* Kernel Unwind Table. See "ia64-tdep.c". */
198 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
199 /* Transfer auxilliary vector. */
200 TARGET_OBJECT_AUXV,
baf92889 201 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
202 TARGET_OBJECT_WCOOKIE,
203 /* Target memory map in XML format. */
204 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
205 /* Flash memory. This object can be used to write contents to
206 a previously erased flash memory. Using it without erasing
207 flash can have unexpected results. Addresses are physical
208 address on target, and not relative to flash start. */
209 TARGET_OBJECT_FLASH
2146d243
RM
210
211 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
212};
213
13547ab6
DJ
214/* Request that OPS transfer up to LEN 8-bit bytes of the target's
215 OBJECT. The OFFSET, for a seekable object, specifies the
216 starting point. The ANNEX can be used to provide additional
217 data-specific information to the target.
1e3ff5ad 218
13547ab6
DJ
219 Return the number of bytes actually transfered, or -1 if the
220 transfer is not supported or otherwise fails. Return of a positive
221 value less than LEN indicates that no further transfer is possible.
222 Unlike the raw to_xfer_partial interface, callers of these
223 functions do not need to retry partial transfers. */
1e3ff5ad 224
1e3ff5ad
AC
225extern LONGEST target_read (struct target_ops *ops,
226 enum target_object object,
1b0ba102 227 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
228 ULONGEST offset, LONGEST len);
229
230extern LONGEST target_write (struct target_ops *ops,
231 enum target_object object,
1b0ba102 232 const char *annex, const gdb_byte *buf,
1e3ff5ad 233 ULONGEST offset, LONGEST len);
b6591e8b 234
a76d924d
DJ
235/* Similar to target_write, except that it also calls PROGRESS with
236 the number of bytes written and the opaque BATON after every
237 successful partial write (and before the first write). This is
238 useful for progress reporting and user interaction while writing
239 data. To abort the transfer, the progress callback can throw an
240 exception. */
241
cf7a04e8
DJ
242LONGEST target_write_with_progress (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, const gdb_byte *buf,
245 ULONGEST offset, LONGEST len,
246 void (*progress) (ULONGEST, void *),
247 void *baton);
248
13547ab6
DJ
249/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
250 be read using OPS. The return value will be -1 if the transfer
251 fails or is not supported; 0 if the object is empty; or the length
252 of the object otherwise. If a positive value is returned, a
253 sufficiently large buffer will be allocated using xmalloc and
254 returned in *BUF_P containing the contents of the object.
255
256 This method should be used for objects sufficiently small to store
257 in a single xmalloc'd buffer, when no fixed bound on the object's
258 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
259 through this function. */
260
261extern LONGEST target_read_alloc (struct target_ops *ops,
262 enum target_object object,
263 const char *annex, gdb_byte **buf_p);
264
159f81f3
DJ
265/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
266 returned as a string, allocated using xmalloc. If an error occurs
267 or the transfer is unsupported, NULL is returned. Empty objects
268 are returned as allocated but empty strings. A warning is issued
269 if the result contains any embedded NUL bytes. */
270
271extern char *target_read_stralloc (struct target_ops *ops,
272 enum target_object object,
273 const char *annex);
274
b6591e8b
AC
275/* Wrappers to target read/write that perform memory transfers. They
276 throw an error if the memory transfer fails.
277
278 NOTE: cagney/2003-10-23: The naming schema is lifted from
279 "frame.h". The parameter order is lifted from get_frame_memory,
280 which in turn lifted it from read_memory. */
281
282extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 283 gdb_byte *buf, LONGEST len);
b6591e8b
AC
284extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
285 CORE_ADDR addr, int len);
1e3ff5ad 286\f
c5aa993b 287
c906108c
SS
288/* If certain kinds of activity happen, target_wait should perform
289 callbacks. */
290/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 291 on TARGET_ACTIVITY_FD. */
c906108c
SS
292extern int target_activity_fd;
293/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 294extern int (*target_activity_function) (void);
c906108c 295\f
0d06e24b
JM
296struct thread_info; /* fwd decl for parameter list below: */
297
c906108c 298struct target_ops
c5aa993b 299 {
258b763a 300 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
301 char *to_shortname; /* Name this target type */
302 char *to_longname; /* Name for printing */
303 char *to_doc; /* Documentation. Does not include trailing
c906108c 304 newline, and starts with a one-line descrip-
0d06e24b 305 tion (probably similar to to_longname). */
bba2d28d
AC
306 /* Per-target scratch pad. */
307 void *to_data;
f1c07ab0
AC
308 /* The open routine takes the rest of the parameters from the
309 command, and (if successful) pushes a new target onto the
310 stack. Targets should supply this routine, if only to provide
311 an error message. */
507f3c78 312 void (*to_open) (char *, int);
f1c07ab0
AC
313 /* Old targets with a static target vector provide "to_close".
314 New re-entrant targets provide "to_xclose" and that is expected
315 to xfree everything (including the "struct target_ops"). */
316 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
317 void (*to_close) (int);
318 void (*to_attach) (char *, int);
319 void (*to_post_attach) (int);
507f3c78 320 void (*to_detach) (char *, int);
597320e7 321 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
322 void (*to_resume) (ptid_t, int, enum target_signal);
323 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
507f3c78
KB
324 void (*to_fetch_registers) (int);
325 void (*to_store_registers) (int);
326 void (*to_prepare_to_store) (void);
c5aa993b
JM
327
328 /* Transfer LEN bytes of memory between GDB address MYADDR and
329 target address MEMADDR. If WRITE, transfer them to the target, else
330 transfer them from the target. TARGET is the target from which we
331 get this function.
332
333 Return value, N, is one of the following:
334
335 0 means that we can't handle this. If errno has been set, it is the
336 error which prevented us from doing it (FIXME: What about bfd_error?).
337
338 positive (call it N) means that we have transferred N bytes
339 starting at MEMADDR. We might be able to handle more bytes
340 beyond this length, but no promises.
341
342 negative (call its absolute value N) means that we cannot
343 transfer right at MEMADDR, but we could transfer at least
c8e73a31 344 something at MEMADDR + N.
c5aa993b 345
c8e73a31
AC
346 NOTE: cagney/2004-10-01: This has been entirely superseeded by
347 to_xfer_partial and inferior inheritance. */
348
1b0ba102 349 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
350 int len, int write,
351 struct mem_attrib *attrib,
352 struct target_ops *target);
c906108c 353
507f3c78 354 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
355 int (*to_insert_breakpoint) (struct bp_target_info *);
356 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 357 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
358 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
359 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
360 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
361 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
362 int (*to_stopped_by_watchpoint) (void);
7df1a324 363 int to_have_continuable_watchpoint;
4aa7a7f5 364 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 365 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
366 void (*to_terminal_init) (void);
367 void (*to_terminal_inferior) (void);
368 void (*to_terminal_ours_for_output) (void);
369 void (*to_terminal_ours) (void);
a790ad35 370 void (*to_terminal_save_ours) (void);
507f3c78
KB
371 void (*to_terminal_info) (char *, int);
372 void (*to_kill) (void);
373 void (*to_load) (char *, int);
374 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 375 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 376 void (*to_post_startup_inferior) (ptid_t);
507f3c78 377 void (*to_acknowledge_created_inferior) (int);
fa113d1a 378 void (*to_insert_fork_catchpoint) (int);
507f3c78 379 int (*to_remove_fork_catchpoint) (int);
fa113d1a 380 void (*to_insert_vfork_catchpoint) (int);
507f3c78 381 int (*to_remove_vfork_catchpoint) (int);
ee057212 382 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 383 void (*to_insert_exec_catchpoint) (int);
507f3c78 384 int (*to_remove_exec_catchpoint) (int);
507f3c78 385 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
386 int (*to_has_exited) (int, int, int *);
387 void (*to_mourn_inferior) (void);
388 int (*to_can_run) (void);
39f77062
KB
389 void (*to_notice_signals) (ptid_t ptid);
390 int (*to_thread_alive) (ptid_t ptid);
507f3c78 391 void (*to_find_new_threads) (void);
39f77062 392 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
393 char *(*to_extra_thread_info) (struct thread_info *);
394 void (*to_stop) (void);
d9fcf2fb 395 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
396 struct symtab_and_line *(*to_enable_exception_callback) (enum
397 exception_event_kind,
398 int);
399 struct exception_event_record *(*to_get_current_exception_event) (void);
400 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 401 enum strata to_stratum;
c5aa993b
JM
402 int to_has_all_memory;
403 int to_has_memory;
404 int to_has_stack;
405 int to_has_registers;
406 int to_has_execution;
407 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
408 struct section_table
409 *to_sections;
410 struct section_table
411 *to_sections_end;
6426a772
JM
412 /* ASYNC target controls */
413 int (*to_can_async_p) (void);
414 int (*to_is_async_p) (void);
0d06e24b
JM
415 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
416 void *context);
ed9a39eb 417 int to_async_mask_value;
2146d243
RM
418 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
419 unsigned long,
420 int, int, int,
421 void *),
be4d1333
MS
422 void *);
423 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
424
425 /* Return the thread-local address at OFFSET in the
426 thread-local storage for the thread PTID and the shared library
427 or executable file given by OBJFILE. If that block of
428 thread-local storage hasn't been allocated yet, this function
429 may return an error. */
430 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 431 CORE_ADDR load_module_addr,
3f47be5c
EZ
432 CORE_ADDR offset);
433
13547ab6
DJ
434 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
435 OBJECT. The OFFSET, for a seekable object, specifies the
436 starting point. The ANNEX can be used to provide additional
437 data-specific information to the target.
438
439 Return the number of bytes actually transfered, zero when no
440 further transfer is possible, and -1 when the transfer is not
441 supported. Return of a positive value smaller than LEN does
442 not indicate the end of the object, only the end of the
443 transfer; higher level code should continue transferring if
444 desired. This is handled in target.c.
445
446 The interface does not support a "retry" mechanism. Instead it
447 assumes that at least one byte will be transfered on each
448 successful call.
449
450 NOTE: cagney/2003-10-17: The current interface can lead to
451 fragmented transfers. Lower target levels should not implement
452 hacks, such as enlarging the transfer, in an attempt to
453 compensate for this. Instead, the target stack should be
454 extended so that it implements supply/collect methods and a
455 look-aside object cache. With that available, the lowest
456 target can safely and freely "push" data up the stack.
457
458 See target_read and target_write for more information. One,
459 and only one, of readbuf or writebuf must be non-NULL. */
460
4b8a223f 461 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 462 enum target_object object, const char *annex,
1b0ba102 463 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 464 ULONGEST offset, LONGEST len);
1e3ff5ad 465
fd79ecee
DJ
466 /* Returns the memory map for the target. A return value of NULL
467 means that no memory map is available. If a memory address
468 does not fall within any returned regions, it's assumed to be
469 RAM. The returned memory regions should not overlap.
470
471 The order of regions does not matter; target_memory_map will
472 sort regions by starting address. For that reason, this
473 function should not be called directly except via
474 target_memory_map.
475
476 This method should not cache data; if the memory map could
477 change unexpectedly, it should be invalidated, and higher
478 layers will re-fetch it. */
479 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
480
a76d924d
DJ
481 /* Erases the region of flash memory starting at ADDRESS, of
482 length LENGTH.
483
484 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
485 on flash block boundaries, as reported by 'to_memory_map'. */
486 void (*to_flash_erase) (struct target_ops *,
487 ULONGEST address, LONGEST length);
488
489 /* Finishes a flash memory write sequence. After this operation
490 all flash memory should be available for writing and the result
491 of reading from areas written by 'to_flash_write' should be
492 equal to what was written. */
493 void (*to_flash_done) (struct target_ops *);
494
424163ea
DJ
495 /* Describe the architecture-specific features of this target.
496 Returns the description found, or NULL if no description
497 was available. */
498 const struct target_desc *(*to_read_description) (struct target_ops *ops);
499
c5aa993b 500 int to_magic;
0d06e24b
JM
501 /* Need sub-structure for target machine related rather than comm related?
502 */
c5aa993b 503 };
c906108c
SS
504
505/* Magic number for checking ops size. If a struct doesn't end with this
506 number, somebody changed the declaration but didn't change all the
507 places that initialize one. */
508
509#define OPS_MAGIC 3840
510
511/* The ops structure for our "current" target process. This should
512 never be NULL. If there is no target, it points to the dummy_target. */
513
c5aa993b 514extern struct target_ops current_target;
c906108c 515
c906108c
SS
516/* Define easy words for doing these operations on our current target. */
517
518#define target_shortname (current_target.to_shortname)
519#define target_longname (current_target.to_longname)
520
f1c07ab0
AC
521/* Does whatever cleanup is required for a target that we are no
522 longer going to be calling. QUITTING indicates that GDB is exiting
523 and should not get hung on an error (otherwise it is important to
524 perform clean termination, even if it takes a while). This routine
525 is automatically always called when popping the target off the
526 target stack (to_beneath is undefined). Closing file descriptors
527 and freeing all memory allocated memory are typical things it
528 should do. */
529
530void target_close (struct target_ops *targ, int quitting);
c906108c
SS
531
532/* Attaches to a process on the target side. Arguments are as passed
533 to the `attach' command by the user. This routine can be called
534 when the target is not on the target-stack, if the target_can_run
2146d243 535 routine returns 1; in that case, it must push itself onto the stack.
c906108c 536 Upon exit, the target should be ready for normal operations, and
2146d243 537 should be ready to deliver the status of the process immediately
c906108c
SS
538 (without waiting) to an upcoming target_wait call. */
539
540#define target_attach(args, from_tty) \
0d06e24b 541 (*current_target.to_attach) (args, from_tty)
c906108c
SS
542
543/* The target_attach operation places a process under debugger control,
544 and stops the process.
545
546 This operation provides a target-specific hook that allows the
0d06e24b 547 necessary bookkeeping to be performed after an attach completes. */
c906108c 548#define target_post_attach(pid) \
0d06e24b 549 (*current_target.to_post_attach) (pid)
c906108c 550
c906108c
SS
551/* Takes a program previously attached to and detaches it.
552 The program may resume execution (some targets do, some don't) and will
553 no longer stop on signals, etc. We better not have left any breakpoints
554 in the program or it'll die when it hits one. ARGS is arguments
555 typed by the user (e.g. a signal to send the process). FROM_TTY
556 says whether to be verbose or not. */
557
a14ed312 558extern void target_detach (char *, int);
c906108c 559
6ad8ae5c
DJ
560/* Disconnect from the current target without resuming it (leaving it
561 waiting for a debugger). */
562
563extern void target_disconnect (char *, int);
564
39f77062 565/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
566 single-step or to run free; SIGGNAL is the signal to be given to
567 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
568 pass TARGET_SIGNAL_DEFAULT. */
569
39f77062 570#define target_resume(ptid, step, siggnal) \
4930751a
C
571 do { \
572 dcache_invalidate(target_dcache); \
39f77062 573 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 574 } while (0)
c906108c 575
b5a2688f
AC
576/* Wait for process pid to do something. PTID = -1 to wait for any
577 pid to do something. Return pid of child, or -1 in case of error;
c906108c 578 store status through argument pointer STATUS. Note that it is
b5a2688f 579 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
580 the debugging target from the stack; GDB isn't prepared to get back
581 to the prompt with a debugging target but without the frame cache,
582 stop_pc, etc., set up. */
583
39f77062
KB
584#define target_wait(ptid, status) \
585 (*current_target.to_wait) (ptid, status)
c906108c 586
17dee195 587/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
588
589#define target_fetch_registers(regno) \
0d06e24b 590 (*current_target.to_fetch_registers) (regno)
c906108c
SS
591
592/* Store at least register REGNO, or all regs if REGNO == -1.
593 It can store as many registers as it wants to, so target_prepare_to_store
594 must have been previously called. Calls error() if there are problems. */
595
596#define target_store_registers(regs) \
0d06e24b 597 (*current_target.to_store_registers) (regs)
c906108c
SS
598
599/* Get ready to modify the registers array. On machines which store
600 individual registers, this doesn't need to do anything. On machines
601 which store all the registers in one fell swoop, this makes sure
602 that REGISTERS contains all the registers from the program being
603 debugged. */
604
605#define target_prepare_to_store() \
0d06e24b 606 (*current_target.to_prepare_to_store) ()
c906108c 607
4930751a
C
608extern DCACHE *target_dcache;
609
a14ed312 610extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 611
fc1a4b47 612extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 613
fc1a4b47 614extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 615 int len);
c906108c 616
1b0ba102 617extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 618 struct mem_attrib *, struct target_ops *);
c906108c 619
6c932e54 620extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 621 struct mem_attrib *, struct target_ops *);
c906108c 622
fd79ecee
DJ
623/* Fetches the target's memory map. If one is found it is sorted
624 and returned, after some consistency checking. Otherwise, NULL
625 is returned. */
626VEC(mem_region_s) *target_memory_map (void);
627
a76d924d
DJ
628/* Erase the specified flash region. */
629void target_flash_erase (ULONGEST address, LONGEST length);
630
631/* Finish a sequence of flash operations. */
632void target_flash_done (void);
633
634/* Describes a request for a memory write operation. */
635struct memory_write_request
636 {
637 /* Begining address that must be written. */
638 ULONGEST begin;
639 /* Past-the-end address. */
640 ULONGEST end;
641 /* The data to write. */
642 gdb_byte *data;
643 /* A callback baton for progress reporting for this request. */
644 void *baton;
645 };
646typedef struct memory_write_request memory_write_request_s;
647DEF_VEC_O(memory_write_request_s);
648
649/* Enumeration specifying different flash preservation behaviour. */
650enum flash_preserve_mode
651 {
652 flash_preserve,
653 flash_discard
654 };
655
656/* Write several memory blocks at once. This version can be more
657 efficient than making several calls to target_write_memory, in
658 particular because it can optimize accesses to flash memory.
659
660 Moreover, this is currently the only memory access function in gdb
661 that supports writing to flash memory, and it should be used for
662 all cases where access to flash memory is desirable.
663
664 REQUESTS is the vector (see vec.h) of memory_write_request.
665 PRESERVE_FLASH_P indicates what to do with blocks which must be
666 erased, but not completely rewritten.
667 PROGRESS_CB is a function that will be periodically called to provide
668 feedback to user. It will be called with the baton corresponding
669 to the request currently being written. It may also be called
670 with a NULL baton, when preserved flash sectors are being rewritten.
671
672 The function returns 0 on success, and error otherwise. */
673int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
674 enum flash_preserve_mode preserve_flash_p,
675 void (*progress_cb) (ULONGEST, void *));
676
677
a14ed312 678extern char *child_pid_to_exec_file (int);
c906108c 679
a14ed312 680extern char *child_core_file_to_sym_file (char *);
c906108c
SS
681
682#if defined(CHILD_POST_ATTACH)
a14ed312 683extern void child_post_attach (int);
c906108c
SS
684#endif
685
39f77062 686extern void child_post_startup_inferior (ptid_t);
c906108c 687
a14ed312 688extern void child_acknowledge_created_inferior (int);
c906108c 689
fa113d1a 690extern void child_insert_fork_catchpoint (int);
c906108c 691
a14ed312 692extern int child_remove_fork_catchpoint (int);
c906108c 693
fa113d1a 694extern void child_insert_vfork_catchpoint (int);
c906108c 695
a14ed312 696extern int child_remove_vfork_catchpoint (int);
c906108c 697
a14ed312 698extern void child_acknowledge_created_inferior (int);
c906108c 699
ee057212 700extern int child_follow_fork (struct target_ops *, int);
c906108c 701
fa113d1a 702extern void child_insert_exec_catchpoint (int);
c906108c 703
a14ed312 704extern int child_remove_exec_catchpoint (int);
c906108c 705
a14ed312 706extern int child_reported_exec_events_per_exec_call (void);
c906108c 707
a14ed312 708extern int child_has_exited (int, int, int *);
c906108c 709
39f77062 710extern int child_thread_alive (ptid_t);
c906108c 711
47932f85
DJ
712/* From infrun.c. */
713
714extern int inferior_has_forked (int pid, int *child_pid);
715
716extern int inferior_has_vforked (int pid, int *child_pid);
717
718extern int inferior_has_execd (int pid, char **execd_pathname);
719
c906108c
SS
720/* From exec.c */
721
a14ed312 722extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
723
724/* Print a line about the current target. */
725
726#define target_files_info() \
0d06e24b 727 (*current_target.to_files_info) (&current_target)
c906108c 728
8181d85f
DJ
729/* Insert a breakpoint at address BP_TGT->placed_address in the target
730 machine. Result is 0 for success, or an errno value. */
c906108c 731
8181d85f
DJ
732#define target_insert_breakpoint(bp_tgt) \
733 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 734
8181d85f
DJ
735/* Remove a breakpoint at address BP_TGT->placed_address in the target
736 machine. Result is 0 for success, or an errno value. */
c906108c 737
8181d85f
DJ
738#define target_remove_breakpoint(bp_tgt) \
739 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
740
741/* Initialize the terminal settings we record for the inferior,
742 before we actually run the inferior. */
743
744#define target_terminal_init() \
0d06e24b 745 (*current_target.to_terminal_init) ()
c906108c
SS
746
747/* Put the inferior's terminal settings into effect.
748 This is preparation for starting or resuming the inferior. */
749
750#define target_terminal_inferior() \
0d06e24b 751 (*current_target.to_terminal_inferior) ()
c906108c
SS
752
753/* Put some of our terminal settings into effect,
754 enough to get proper results from our output,
755 but do not change into or out of RAW mode
756 so that no input is discarded.
757
758 After doing this, either terminal_ours or terminal_inferior
759 should be called to get back to a normal state of affairs. */
760
761#define target_terminal_ours_for_output() \
0d06e24b 762 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
763
764/* Put our terminal settings into effect.
765 First record the inferior's terminal settings
766 so they can be restored properly later. */
767
768#define target_terminal_ours() \
0d06e24b 769 (*current_target.to_terminal_ours) ()
c906108c 770
a790ad35
SC
771/* Save our terminal settings.
772 This is called from TUI after entering or leaving the curses
773 mode. Since curses modifies our terminal this call is here
774 to take this change into account. */
775
776#define target_terminal_save_ours() \
777 (*current_target.to_terminal_save_ours) ()
778
c906108c
SS
779/* Print useful information about our terminal status, if such a thing
780 exists. */
781
782#define target_terminal_info(arg, from_tty) \
0d06e24b 783 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
784
785/* Kill the inferior process. Make it go away. */
786
787#define target_kill() \
0d06e24b 788 (*current_target.to_kill) ()
c906108c 789
0d06e24b
JM
790/* Load an executable file into the target process. This is expected
791 to not only bring new code into the target process, but also to
1986bccd
AS
792 update GDB's symbol tables to match.
793
794 ARG contains command-line arguments, to be broken down with
795 buildargv (). The first non-switch argument is the filename to
796 load, FILE; the second is a number (as parsed by strtoul (..., ...,
797 0)), which is an offset to apply to the load addresses of FILE's
798 sections. The target may define switches, or other non-switch
799 arguments, as it pleases. */
c906108c 800
11cf8741 801extern void target_load (char *arg, int from_tty);
c906108c
SS
802
803/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
804 name. ADDRP is a CORE_ADDR * pointing to where the value of the
805 symbol should be returned. The result is 0 if successful, nonzero
806 if the symbol does not exist in the target environment. This
807 function should not call error() if communication with the target
808 is interrupted, since it is called from symbol reading, but should
809 return nonzero, possibly doing a complain(). */
c906108c 810
0d06e24b
JM
811#define target_lookup_symbol(name, addrp) \
812 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 813
39f77062 814/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
815 EXEC_FILE is the file to run.
816 ALLARGS is a string containing the arguments to the program.
817 ENV is the environment vector to pass. Errors reported with error().
818 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 819
c27cda74
AC
820#define target_create_inferior(exec_file, args, env, FROM_TTY) \
821 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
822
823
824/* Some targets (such as ttrace-based HPUX) don't allow us to request
825 notification of inferior events such as fork and vork immediately
826 after the inferior is created. (This because of how gdb gets an
827 inferior created via invoking a shell to do it. In such a scenario,
828 if the shell init file has commands in it, the shell will fork and
829 exec for each of those commands, and we will see each such fork
830 event. Very bad.)
c5aa993b 831
0d06e24b
JM
832 Such targets will supply an appropriate definition for this function. */
833
39f77062
KB
834#define target_post_startup_inferior(ptid) \
835 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
836
837/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
838 some synchronization between gdb and the new inferior process, PID. */
839
c906108c 840#define target_acknowledge_created_inferior(pid) \
0d06e24b 841 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 842
0d06e24b
JM
843/* On some targets, we can catch an inferior fork or vfork event when
844 it occurs. These functions insert/remove an already-created
845 catchpoint for such events. */
c906108c 846
c906108c 847#define target_insert_fork_catchpoint(pid) \
0d06e24b 848 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
849
850#define target_remove_fork_catchpoint(pid) \
0d06e24b 851 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
852
853#define target_insert_vfork_catchpoint(pid) \
0d06e24b 854 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
855
856#define target_remove_vfork_catchpoint(pid) \
0d06e24b 857 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 858
6604731b
DJ
859/* If the inferior forks or vforks, this function will be called at
860 the next resume in order to perform any bookkeeping and fiddling
861 necessary to continue debugging either the parent or child, as
862 requested, and releasing the other. Information about the fork
863 or vfork event is available via get_last_target_status ().
864 This function returns 1 if the inferior should not be resumed
865 (i.e. there is another event pending). */
0d06e24b 866
ee057212 867int target_follow_fork (int follow_child);
c906108c
SS
868
869/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
870 occurs. These functions insert/remove an already-created
871 catchpoint for such events. */
872
c906108c 873#define target_insert_exec_catchpoint(pid) \
0d06e24b 874 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 875
c906108c 876#define target_remove_exec_catchpoint(pid) \
0d06e24b 877 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 878
c906108c
SS
879/* Returns the number of exec events that are reported when a process
880 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
881 events are being reported. */
882
c906108c 883#define target_reported_exec_events_per_exec_call() \
0d06e24b 884 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 885
c906108c 886/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
887 exit code of PID, if any. */
888
c906108c 889#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 890 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
891
892/* The debugger has completed a blocking wait() call. There is now
2146d243 893 some process event that must be processed. This function should
c906108c 894 be defined by those targets that require the debugger to perform
0d06e24b 895 cleanup or internal state changes in response to the process event. */
c906108c
SS
896
897/* The inferior process has died. Do what is right. */
898
899#define target_mourn_inferior() \
0d06e24b 900 (*current_target.to_mourn_inferior) ()
c906108c
SS
901
902/* Does target have enough data to do a run or attach command? */
903
904#define target_can_run(t) \
0d06e24b 905 ((t)->to_can_run) ()
c906108c
SS
906
907/* post process changes to signal handling in the inferior. */
908
39f77062
KB
909#define target_notice_signals(ptid) \
910 (*current_target.to_notice_signals) (ptid)
c906108c
SS
911
912/* Check to see if a thread is still alive. */
913
39f77062
KB
914#define target_thread_alive(ptid) \
915 (*current_target.to_thread_alive) (ptid)
c906108c 916
b83266a0
SS
917/* Query for new threads and add them to the thread list. */
918
919#define target_find_new_threads() \
0d06e24b 920 (*current_target.to_find_new_threads) (); \
b83266a0 921
0d06e24b
JM
922/* Make target stop in a continuable fashion. (For instance, under
923 Unix, this should act like SIGSTOP). This function is normally
924 used by GUIs to implement a stop button. */
c906108c
SS
925
926#define target_stop current_target.to_stop
927
96baa820
JM
928/* Send the specified COMMAND to the target's monitor
929 (shell,interpreter) for execution. The result of the query is
0d06e24b 930 placed in OUTBUF. */
96baa820
JM
931
932#define target_rcmd(command, outbuf) \
933 (*current_target.to_rcmd) (command, outbuf)
934
935
c906108c 936/* Get the symbol information for a breakpointable routine called when
2146d243 937 an exception event occurs.
c906108c
SS
938 Intended mainly for C++, and for those
939 platforms/implementations where such a callback mechanism is available,
940 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 941 different mechanisms for debugging exceptions. */
c906108c
SS
942
943#define target_enable_exception_callback(kind, enable) \
0d06e24b 944 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 945
0d06e24b 946/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 947
c906108c 948#define target_get_current_exception_event() \
0d06e24b 949 (*current_target.to_get_current_exception_event) ()
c906108c 950
c906108c
SS
951/* Does the target include all of memory, or only part of it? This
952 determines whether we look up the target chain for other parts of
953 memory if this target can't satisfy a request. */
954
955#define target_has_all_memory \
0d06e24b 956 (current_target.to_has_all_memory)
c906108c
SS
957
958/* Does the target include memory? (Dummy targets don't.) */
959
960#define target_has_memory \
0d06e24b 961 (current_target.to_has_memory)
c906108c
SS
962
963/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
964 we start a process.) */
c5aa993b 965
c906108c 966#define target_has_stack \
0d06e24b 967 (current_target.to_has_stack)
c906108c
SS
968
969/* Does the target have registers? (Exec files don't.) */
970
971#define target_has_registers \
0d06e24b 972 (current_target.to_has_registers)
c906108c
SS
973
974/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
975 hoops), or pop its stack a few times? This means that the current
976 target is currently executing; for some targets, that's the same as
977 whether or not the target is capable of execution, but there are
978 also targets which can be current while not executing. In that
979 case this will become true after target_create_inferior or
980 target_attach. */
c906108c
SS
981
982#define target_has_execution \
0d06e24b 983 (current_target.to_has_execution)
c906108c
SS
984
985/* Can the target support the debugger control of thread execution?
986 a) Can it lock the thread scheduler?
987 b) Can it switch the currently running thread? */
988
989#define target_can_lock_scheduler \
0d06e24b 990 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
991
992#define target_can_switch_threads \
0d06e24b 993 (current_target.to_has_thread_control & tc_switch)
c906108c 994
6426a772
JM
995/* Can the target support asynchronous execution? */
996#define target_can_async_p() (current_target.to_can_async_p ())
997
998/* Is the target in asynchronous execution mode? */
999#define target_is_async_p() (current_target.to_is_async_p())
1000
1001/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1002#define target_async(CALLBACK,CONTEXT) \
1003 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1004
04714b91
AC
1005/* This is to be used ONLY within call_function_by_hand(). It provides
1006 a workaround, to have inferior function calls done in sychronous
1007 mode, even though the target is asynchronous. After
ed9a39eb
JM
1008 target_async_mask(0) is called, calls to target_can_async_p() will
1009 return FALSE , so that target_resume() will not try to start the
1010 target asynchronously. After the inferior stops, we IMMEDIATELY
1011 restore the previous nature of the target, by calling
1012 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1013 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1014
1015 FIXME ezannoni 1999-12-13: we won't need this once we move
1016 the turning async on and off to the single execution commands,
0d06e24b 1017 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1018
1019#define target_async_mask_value \
0d06e24b 1020 (current_target.to_async_mask_value)
ed9a39eb 1021
2146d243 1022extern int target_async_mask (int mask);
ed9a39eb 1023
c906108c
SS
1024/* Converts a process id to a string. Usually, the string just contains
1025 `process xyz', but on some systems it may contain
1026 `process xyz thread abc'. */
1027
ed9a39eb
JM
1028#undef target_pid_to_str
1029#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1030
1031#ifndef target_tid_to_str
1032#define target_tid_to_str(PID) \
0d06e24b 1033 target_pid_to_str (PID)
39f77062 1034extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1035#endif
c5aa993b 1036
0d06e24b
JM
1037/* Return a short string describing extra information about PID,
1038 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1039 is okay. */
1040
1041#define target_extra_thread_info(TP) \
1042 (current_target.to_extra_thread_info (TP))
ed9a39eb 1043
11cf8741
JM
1044/*
1045 * New Objfile Event Hook:
1046 *
1047 * Sometimes a GDB component wants to get notified whenever a new
2146d243 1048 * objfile is loaded. Mainly this is used by thread-debugging
11cf8741
JM
1049 * implementations that need to know when symbols for the target
1050 * thread implemenation are available.
1051 *
1052 * The old way of doing this is to define a macro 'target_new_objfile'
1053 * that points to the function that you want to be called on every
1054 * objfile/shlib load.
9a4105ab
AC
1055
1056 The new way is to grab the function pointer,
1057 'deprecated_target_new_objfile_hook', and point it to the function
1058 that you want to be called on every objfile/shlib load.
1059
1060 If multiple clients are willing to be cooperative, they can each
1061 save a pointer to the previous value of
1062 deprecated_target_new_objfile_hook before modifying it, and arrange
1063 for their function to call the previous function in the chain. In
1064 that way, multiple clients can receive this notification (something
1065 like with signal handlers). */
1066
1067extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c
SS
1068
1069#ifndef target_pid_or_tid_to_str
1070#define target_pid_or_tid_to_str(ID) \
0d06e24b 1071 target_pid_to_str (ID)
c906108c
SS
1072#endif
1073
1074/* Attempts to find the pathname of the executable file
1075 that was run to create a specified process.
1076
1077 The process PID must be stopped when this operation is used.
c5aa993b 1078
c906108c
SS
1079 If the executable file cannot be determined, NULL is returned.
1080
1081 Else, a pointer to a character string containing the pathname
1082 is returned. This string should be copied into a buffer by
1083 the client if the string will not be immediately used, or if
0d06e24b 1084 it must persist. */
c906108c
SS
1085
1086#define target_pid_to_exec_file(pid) \
0d06e24b 1087 (current_target.to_pid_to_exec_file) (pid)
c906108c 1088
be4d1333
MS
1089/*
1090 * Iterator function for target memory regions.
1091 * Calls a callback function once for each memory region 'mapped'
1092 * in the child process. Defined as a simple macro rather than
2146d243 1093 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1094 */
1095
1096#define target_find_memory_regions(FUNC, DATA) \
1097 (current_target.to_find_memory_regions) (FUNC, DATA)
1098
1099/*
1100 * Compose corefile .note section.
1101 */
1102
1103#define target_make_corefile_notes(BFD, SIZE_P) \
1104 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1105
3f47be5c
EZ
1106/* Thread-local values. */
1107#define target_get_thread_local_address \
1108 (current_target.to_get_thread_local_address)
1109#define target_get_thread_local_address_p() \
1110 (target_get_thread_local_address != NULL)
1111
9d8a64cb 1112/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1113 started. */
1114
1115#ifndef TARGET_CREATE_INFERIOR_HOOK
1116#define TARGET_CREATE_INFERIOR_HOOK(PID)
1117#endif
1118
1119/* Hardware watchpoint interfaces. */
1120
1121/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1122 write). */
1123
1124#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1125#define STOPPED_BY_WATCHPOINT(w) \
1126 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1127#endif
7df1a324
KW
1128
1129/* Non-zero if we have continuable watchpoints */
1130
1131#ifndef HAVE_CONTINUABLE_WATCHPOINT
1132#define HAVE_CONTINUABLE_WATCHPOINT \
1133 (current_target.to_have_continuable_watchpoint)
1134#endif
c906108c 1135
ccaa32c7 1136/* Provide defaults for hardware watchpoint functions. */
c906108c 1137
2146d243 1138/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1139 elsewhere use the definitions in the target vector. */
c906108c
SS
1140
1141/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1142 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1143 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1144 (including this one?). OTHERTYPE is who knows what... */
1145
ccaa32c7
GS
1146#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1147#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1148 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1149#endif
c906108c 1150
e0d24f8d
WZ
1151#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1152#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1153 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1154#endif
1155
c906108c
SS
1156
1157/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1158 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1159 success, non-zero for failure. */
1160
ccaa32c7
GS
1161#ifndef target_insert_watchpoint
1162#define target_insert_watchpoint(addr, len, type) \
1163 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1164
ccaa32c7
GS
1165#define target_remove_watchpoint(addr, len, type) \
1166 (*current_target.to_remove_watchpoint) (addr, len, type)
1167#endif
c906108c
SS
1168
1169#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1170#define target_insert_hw_breakpoint(bp_tgt) \
1171 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1172
8181d85f
DJ
1173#define target_remove_hw_breakpoint(bp_tgt) \
1174 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1175#endif
1176
4aa7a7f5
JJ
1177extern int target_stopped_data_address_p (struct target_ops *);
1178
c906108c 1179#ifndef target_stopped_data_address
4aa7a7f5
JJ
1180#define target_stopped_data_address(target, x) \
1181 (*target.to_stopped_data_address) (target, x)
1182#else
1183/* Horrible hack to get around existing macros :-(. */
1184#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1185#endif
1186
424163ea
DJ
1187extern const struct target_desc *target_read_description (struct target_ops *);
1188
c906108c
SS
1189/* Routines for maintenance of the target structures...
1190
1191 add_target: Add a target to the list of all possible targets.
1192
1193 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1194 targets, within its particular stratum of the stack. Result
1195 is 0 if now atop the stack, nonzero if not on top (maybe
1196 should warn user).
c906108c
SS
1197
1198 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1199 no matter where it is on the list. Returns 0 if no
1200 change, 1 if removed from stack.
c906108c 1201
c5aa993b 1202 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1203
a14ed312 1204extern void add_target (struct target_ops *);
c906108c 1205
a14ed312 1206extern int push_target (struct target_ops *);
c906108c 1207
a14ed312 1208extern int unpush_target (struct target_ops *);
c906108c 1209
fd79ecee
DJ
1210extern void target_pre_inferior (int);
1211
a14ed312 1212extern void target_preopen (int);
c906108c 1213
a14ed312 1214extern void pop_target (void);
c906108c 1215
9e35dae4
DJ
1216extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1217 CORE_ADDR offset);
1218
52bb452f
DJ
1219/* Mark a pushed target as running or exited, for targets which do not
1220 automatically pop when not active. */
1221
1222void target_mark_running (struct target_ops *);
1223
1224void target_mark_exited (struct target_ops *);
1225
c906108c
SS
1226/* Struct section_table maps address ranges to file sections. It is
1227 mostly used with BFD files, but can be used without (e.g. for handling
1228 raw disks, or files not in formats handled by BFD). */
1229
c5aa993b
JM
1230struct section_table
1231 {
1232 CORE_ADDR addr; /* Lowest address in section */
1233 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1234
7be0c536 1235 struct bfd_section *the_bfd_section;
c906108c 1236
c5aa993b
JM
1237 bfd *bfd; /* BFD file pointer */
1238 };
c906108c 1239
8db32d44
AC
1240/* Return the "section" containing the specified address. */
1241struct section_table *target_section_by_addr (struct target_ops *target,
1242 CORE_ADDR addr);
1243
1244
c906108c
SS
1245/* From mem-break.c */
1246
8181d85f 1247extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1248
8181d85f 1249extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1250
8181d85f 1251extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1252
8181d85f 1253extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1254
c906108c
SS
1255
1256/* From target.c */
1257
a14ed312 1258extern void initialize_targets (void);
c906108c 1259
a14ed312 1260extern void noprocess (void);
c906108c 1261
a14ed312 1262extern void find_default_attach (char *, int);
c906108c 1263
c27cda74 1264extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1265
a14ed312 1266extern struct target_ops *find_run_target (void);
7a292a7a 1267
a14ed312 1268extern struct target_ops *find_core_target (void);
6426a772 1269
a14ed312 1270extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1271
570b8f7c
AC
1272extern int target_resize_to_sections (struct target_ops *target,
1273 int num_added);
07cd4b97
JB
1274
1275extern void remove_target_sections (bfd *abfd);
1276
c906108c
SS
1277\f
1278/* Stuff that should be shared among the various remote targets. */
1279
1280/* Debugging level. 0 is off, and non-zero values mean to print some debug
1281 information (higher values, more information). */
1282extern int remote_debug;
1283
1284/* Speed in bits per second, or -1 which means don't mess with the speed. */
1285extern int baud_rate;
1286/* Timeout limit for response from target. */
1287extern int remote_timeout;
1288
c906108c
SS
1289\f
1290/* Functions for helping to write a native target. */
1291
1292/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1293extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1294
c2d11a7d 1295/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1296 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1297/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1298 to the shorter target_signal_p() because it is far less ambigious.
1299 In this context ``target_signal'' refers to GDB's internal
1300 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1301 refers to the target operating system's signal. Confused? */
1302
c2d11a7d
JM
1303extern int target_signal_to_host_p (enum target_signal signo);
1304
1305/* Convert between host signal numbers and enum target_signal's.
1306 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1307 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1308/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1309 refering to the target operating system's signal numbering.
1310 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1311 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1312 internal representation of a target operating system's signal. */
1313
a14ed312
KB
1314extern enum target_signal target_signal_from_host (int);
1315extern int target_signal_to_host (enum target_signal);
c906108c
SS
1316
1317/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1318extern enum target_signal target_signal_from_command (int);
c906108c
SS
1319
1320/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1321extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1322\f
1323/* Imported from machine dependent code */
1324
c906108c 1325/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1326void target_ignore (void);
c906108c 1327
1df84f13 1328extern struct target_ops deprecated_child_ops;
5ac10fd1 1329
c5aa993b 1330#endif /* !defined (TARGET_H) */