]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
* hppah-nat.c (saved_child_execd_pathname, saved_vfork_state): New.
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
26/* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45#include "bfd.h"
46#include "symtab.h"
4930751a 47#include "dcache.h"
29e57380 48#include "memattr.h"
c906108c 49
c5aa993b
JM
50enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
c5aa993b 58 };
c906108c 59
c5aa993b
JM
60enum thread_control_capabilities
61 {
0d06e24b
JM
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 65 };
c906108c
SS
66
67/* Stuff for target_wait. */
68
69/* Generally, what has the program done? */
c5aa993b
JM
70enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
c906108c 74
0d06e24b
JM
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
c5aa993b 77 TARGET_WAITKIND_STOPPED,
c906108c 78
c5aa993b
JM
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
c906108c 82
c5aa993b
JM
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
c906108c 86
0d06e24b
JM
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
c5aa993b 91 TARGET_WAITKIND_FORKED,
c906108c 92
0d06e24b
JM
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
c5aa993b 96 TARGET_WAITKIND_VFORKED,
c906108c 97
0d06e24b
JM
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
c5aa993b 101 TARGET_WAITKIND_EXECD,
c906108c 102
0d06e24b
JM
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
c5aa993b
JM
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 109
c5aa993b
JM
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
c4093a6a
JM
113 TARGET_WAITKIND_SPURIOUS,
114
8e7d2c16
DJ
115 /* An event has occured, but we should wait again.
116 Remote_async_wait() returns this when there is an event
c4093a6a
JM
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
0d06e24b 123 like for instance the user typing. */
c4093a6a 124 TARGET_WAITKIND_IGNORE
c906108c
SS
125 };
126
c5aa993b
JM
127struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
c906108c 142
2acceee2 143/* Possible types of events that the inferior handler will have to
0d06e24b 144 deal with. */
2acceee2
JM
145enum inferior_event_type
146 {
0d06e24b 147 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
0d06e24b 150 being called. */
2acceee2 151 INF_REG_EVENT,
0d06e24b 152 /* Deal with an error on the inferior. */
2acceee2 153 INF_ERROR,
0d06e24b 154 /* We are called because a timer went off. */
2acceee2 155 INF_TIMER,
0d06e24b 156 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
0d06e24b 161 'step n' like commands. */
c2d11a7d 162 INF_EXEC_CONTINUE
2acceee2
JM
163 };
164
c906108c 165/* Return the string for a signal. */
a14ed312 166extern char *target_signal_to_string (enum target_signal);
c906108c
SS
167
168/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 169extern char *target_signal_to_name (enum target_signal);
c906108c
SS
170
171/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 172enum target_signal target_signal_from_name (char *);
c906108c 173\f
c5aa993b 174
c906108c
SS
175/* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 178 on TARGET_ACTIVITY_FD. */
c906108c
SS
179extern int target_activity_fd;
180/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 181extern int (*target_activity_function) (void);
c906108c 182\f
0d06e24b
JM
183struct thread_info; /* fwd decl for parameter list below: */
184
c906108c 185struct target_ops
c5aa993b
JM
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
c906108c 190 newline, and starts with a one-line descrip-
0d06e24b 191 tion (probably similar to to_longname). */
507f3c78
KB
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
39f77062
KB
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
c5aa993b
JM
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
507f3c78 224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
c906108c
SS
228
229#if 0
c5aa993b 230 /* Enable this after 4.12. */
c906108c 231
c5aa993b
JM
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 238
0d06e24b
JM
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
507f3c78
KB
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
246
247#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
c5aa993b
JM
250#endif /* 0 */
251
507f3c78
KB
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
ccaa32c7
GS
255 int (*to_can_use_hw_breakpoint) (int, int, int);
256 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
258 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
259 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
260 int (*to_stopped_by_watchpoint) (void);
261 CORE_ADDR (*to_stopped_data_address) (void);
262 int (*to_region_size_ok_for_hw_watchpoint) (int);
507f3c78
KB
263 void (*to_terminal_init) (void);
264 void (*to_terminal_inferior) (void);
265 void (*to_terminal_ours_for_output) (void);
266 void (*to_terminal_ours) (void);
a790ad35 267 void (*to_terminal_save_ours) (void);
507f3c78
KB
268 void (*to_terminal_info) (char *, int);
269 void (*to_kill) (void);
270 void (*to_load) (char *, int);
271 int (*to_lookup_symbol) (char *, CORE_ADDR *);
272 void (*to_create_inferior) (char *, char *, char **);
39f77062 273 void (*to_post_startup_inferior) (ptid_t);
507f3c78 274 void (*to_acknowledge_created_inferior) (int);
507f3c78
KB
275 int (*to_insert_fork_catchpoint) (int);
276 int (*to_remove_fork_catchpoint) (int);
277 int (*to_insert_vfork_catchpoint) (int);
278 int (*to_remove_vfork_catchpoint) (int);
507f3c78
KB
279 void (*to_post_follow_vfork) (int, int, int, int);
280 int (*to_insert_exec_catchpoint) (int);
281 int (*to_remove_exec_catchpoint) (int);
507f3c78 282 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
283 int (*to_has_exited) (int, int, int *);
284 void (*to_mourn_inferior) (void);
285 int (*to_can_run) (void);
39f77062
KB
286 void (*to_notice_signals) (ptid_t ptid);
287 int (*to_thread_alive) (ptid_t ptid);
507f3c78 288 void (*to_find_new_threads) (void);
39f77062 289 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
290 char *(*to_extra_thread_info) (struct thread_info *);
291 void (*to_stop) (void);
292 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 293 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
294 struct symtab_and_line *(*to_enable_exception_callback) (enum
295 exception_event_kind,
296 int);
297 struct exception_event_record *(*to_get_current_exception_event) (void);
298 char *(*to_pid_to_exec_file) (int pid);
c5aa993b
JM
299 enum strata to_stratum;
300 struct target_ops
301 *DONT_USE; /* formerly to_next */
302 int to_has_all_memory;
303 int to_has_memory;
304 int to_has_stack;
305 int to_has_registers;
306 int to_has_execution;
307 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
308 struct section_table
309 *to_sections;
310 struct section_table
311 *to_sections_end;
6426a772
JM
312 /* ASYNC target controls */
313 int (*to_can_async_p) (void);
314 int (*to_is_async_p) (void);
0d06e24b
JM
315 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
316 void *context);
ed9a39eb 317 int to_async_mask_value;
be4d1333
MS
318 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
319 unsigned long,
320 int, int, int,
321 void *),
322 void *);
323 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
324
325 /* Return the thread-local address at OFFSET in the
326 thread-local storage for the thread PTID and the shared library
327 or executable file given by OBJFILE. If that block of
328 thread-local storage hasn't been allocated yet, this function
329 may return an error. */
330 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
331 struct objfile *objfile,
332 CORE_ADDR offset);
333
c5aa993b 334 int to_magic;
0d06e24b
JM
335 /* Need sub-structure for target machine related rather than comm related?
336 */
c5aa993b 337 };
c906108c
SS
338
339/* Magic number for checking ops size. If a struct doesn't end with this
340 number, somebody changed the declaration but didn't change all the
341 places that initialize one. */
342
343#define OPS_MAGIC 3840
344
345/* The ops structure for our "current" target process. This should
346 never be NULL. If there is no target, it points to the dummy_target. */
347
c5aa993b 348extern struct target_ops current_target;
c906108c
SS
349
350/* An item on the target stack. */
351
352struct target_stack_item
c5aa993b
JM
353 {
354 struct target_stack_item *next;
355 struct target_ops *target_ops;
356 };
c906108c
SS
357
358/* The target stack. */
359
360extern struct target_stack_item *target_stack;
361
362/* Define easy words for doing these operations on our current target. */
363
364#define target_shortname (current_target.to_shortname)
365#define target_longname (current_target.to_longname)
366
367/* The open routine takes the rest of the parameters from the command,
368 and (if successful) pushes a new target onto the stack.
369 Targets should supply this routine, if only to provide an error message. */
0d06e24b 370
4930751a
C
371#define target_open(name, from_tty) \
372 do { \
373 dcache_invalidate (target_dcache); \
374 (*current_target.to_open) (name, from_tty); \
375 } while (0)
c906108c
SS
376
377/* Does whatever cleanup is required for a target that we are no longer
378 going to be calling. Argument says whether we are quitting gdb and
379 should not get hung in case of errors, or whether we want a clean
380 termination even if it takes a while. This routine is automatically
381 always called just before a routine is popped off the target stack.
382 Closing file descriptors and freeing memory are typical things it should
383 do. */
384
385#define target_close(quitting) \
0d06e24b 386 (*current_target.to_close) (quitting)
c906108c
SS
387
388/* Attaches to a process on the target side. Arguments are as passed
389 to the `attach' command by the user. This routine can be called
390 when the target is not on the target-stack, if the target_can_run
391 routine returns 1; in that case, it must push itself onto the stack.
392 Upon exit, the target should be ready for normal operations, and
393 should be ready to deliver the status of the process immediately
394 (without waiting) to an upcoming target_wait call. */
395
396#define target_attach(args, from_tty) \
0d06e24b 397 (*current_target.to_attach) (args, from_tty)
c906108c
SS
398
399/* The target_attach operation places a process under debugger control,
400 and stops the process.
401
402 This operation provides a target-specific hook that allows the
0d06e24b 403 necessary bookkeeping to be performed after an attach completes. */
c906108c 404#define target_post_attach(pid) \
0d06e24b 405 (*current_target.to_post_attach) (pid)
c906108c
SS
406
407/* Attaches to a process on the target side, if not already attached.
408 (If already attached, takes no action.)
409
410 This operation can be used to follow the child process of a fork.
411 On some targets, such child processes of an original inferior process
412 are automatically under debugger control, and thus do not require an
413 actual attach operation. */
414
415#define target_require_attach(args, from_tty) \
0d06e24b 416 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
417
418/* Takes a program previously attached to and detaches it.
419 The program may resume execution (some targets do, some don't) and will
420 no longer stop on signals, etc. We better not have left any breakpoints
421 in the program or it'll die when it hits one. ARGS is arguments
422 typed by the user (e.g. a signal to send the process). FROM_TTY
423 says whether to be verbose or not. */
424
a14ed312 425extern void target_detach (char *, int);
c906108c
SS
426
427/* Detaches from a process on the target side, if not already dettached.
428 (If already detached, takes no action.)
429
430 This operation can be used to follow the parent process of a fork.
431 On some targets, such child processes of an original inferior process
432 are automatically under debugger control, and thus do require an actual
433 detach operation.
434
435 PID is the process id of the child to detach from.
436 ARGS is arguments typed by the user (e.g. a signal to send the process).
437 FROM_TTY says whether to be verbose or not. */
438
0d06e24b
JM
439#define target_require_detach(pid, args, from_tty) \
440 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c 441
39f77062 442/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
443 single-step or to run free; SIGGNAL is the signal to be given to
444 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
445 pass TARGET_SIGNAL_DEFAULT. */
446
39f77062 447#define target_resume(ptid, step, siggnal) \
4930751a
C
448 do { \
449 dcache_invalidate(target_dcache); \
39f77062 450 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 451 } while (0)
c906108c 452
b5a2688f
AC
453/* Wait for process pid to do something. PTID = -1 to wait for any
454 pid to do something. Return pid of child, or -1 in case of error;
c906108c 455 store status through argument pointer STATUS. Note that it is
b5a2688f 456 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
457 the debugging target from the stack; GDB isn't prepared to get back
458 to the prompt with a debugging target but without the frame cache,
459 stop_pc, etc., set up. */
460
39f77062
KB
461#define target_wait(ptid, status) \
462 (*current_target.to_wait) (ptid, status)
c906108c
SS
463
464/* The target_wait operation waits for a process event to occur, and
465 thereby stop the process.
466
467 On some targets, certain events may happen in sequences. gdb's
468 correct response to any single event of such a sequence may require
469 knowledge of what earlier events in the sequence have been seen.
470
471 This operation provides a target-specific hook that allows the
0d06e24b 472 necessary bookkeeping to be performed to track such sequences. */
c906108c 473
39f77062
KB
474#define target_post_wait(ptid, status) \
475 (*current_target.to_post_wait) (ptid, status)
c906108c 476
17dee195 477/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
478
479#define target_fetch_registers(regno) \
0d06e24b 480 (*current_target.to_fetch_registers) (regno)
c906108c
SS
481
482/* Store at least register REGNO, or all regs if REGNO == -1.
483 It can store as many registers as it wants to, so target_prepare_to_store
484 must have been previously called. Calls error() if there are problems. */
485
486#define target_store_registers(regs) \
0d06e24b 487 (*current_target.to_store_registers) (regs)
c906108c
SS
488
489/* Get ready to modify the registers array. On machines which store
490 individual registers, this doesn't need to do anything. On machines
491 which store all the registers in one fell swoop, this makes sure
492 that REGISTERS contains all the registers from the program being
493 debugged. */
494
495#define target_prepare_to_store() \
0d06e24b 496 (*current_target.to_prepare_to_store) ()
c906108c 497
4930751a
C
498extern DCACHE *target_dcache;
499
29e57380
C
500extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
501 struct mem_attrib *attrib);
4930751a 502
a14ed312 503extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 504
a14ed312 505extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 506
4930751a 507extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 508
29e57380
C
509extern int xfer_memory (CORE_ADDR, char *, int, int,
510 struct mem_attrib *, struct target_ops *);
c906108c 511
29e57380
C
512extern int child_xfer_memory (CORE_ADDR, char *, int, int,
513 struct mem_attrib *, struct target_ops *);
c906108c 514
917317f4
JM
515/* Make a single attempt at transfering LEN bytes. On a successful
516 transfer, the number of bytes actually transfered is returned and
517 ERR is set to 0. When a transfer fails, -1 is returned (the number
518 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 519 non-zero error indication. */
917317f4 520
ed9a39eb
JM
521extern int
522target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 523
ed9a39eb
JM
524extern int
525target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 526
a14ed312 527extern char *child_pid_to_exec_file (int);
c906108c 528
a14ed312 529extern char *child_core_file_to_sym_file (char *);
c906108c
SS
530
531#if defined(CHILD_POST_ATTACH)
a14ed312 532extern void child_post_attach (int);
c906108c
SS
533#endif
534
39f77062 535extern void child_post_wait (ptid_t, int);
c906108c 536
39f77062 537extern void child_post_startup_inferior (ptid_t);
c906108c 538
a14ed312 539extern void child_acknowledge_created_inferior (int);
c906108c 540
a14ed312 541extern int child_insert_fork_catchpoint (int);
c906108c 542
a14ed312 543extern int child_remove_fork_catchpoint (int);
c906108c 544
a14ed312 545extern int child_insert_vfork_catchpoint (int);
c906108c 546
a14ed312 547extern int child_remove_vfork_catchpoint (int);
c906108c 548
a14ed312 549extern void child_acknowledge_created_inferior (int);
c906108c 550
a14ed312 551extern void child_post_follow_vfork (int, int, int, int);
c906108c 552
a14ed312 553extern int child_insert_exec_catchpoint (int);
c906108c 554
a14ed312 555extern int child_remove_exec_catchpoint (int);
c906108c 556
a14ed312 557extern int child_reported_exec_events_per_exec_call (void);
c906108c 558
a14ed312 559extern int child_has_exited (int, int, int *);
c906108c 560
39f77062 561extern int child_thread_alive (ptid_t);
c906108c 562
47932f85
DJ
563/* From infrun.c. */
564
565extern int inferior_has_forked (int pid, int *child_pid);
566
567extern int inferior_has_vforked (int pid, int *child_pid);
568
569extern int inferior_has_execd (int pid, char **execd_pathname);
570
c906108c
SS
571/* From exec.c */
572
a14ed312 573extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
574
575/* Print a line about the current target. */
576
577#define target_files_info() \
0d06e24b 578 (*current_target.to_files_info) (&current_target)
c906108c
SS
579
580/* Insert a breakpoint at address ADDR in the target machine.
581 SAVE is a pointer to memory allocated for saving the
582 target contents. It is guaranteed by the caller to be long enough
583 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
584 an errno value. */
585
586#define target_insert_breakpoint(addr, save) \
0d06e24b 587 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
588
589/* Remove a breakpoint at address ADDR in the target machine.
590 SAVE is a pointer to the same save area
591 that was previously passed to target_insert_breakpoint.
592 Result is 0 for success, or an errno value. */
593
594#define target_remove_breakpoint(addr, save) \
0d06e24b 595 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
596
597/* Initialize the terminal settings we record for the inferior,
598 before we actually run the inferior. */
599
600#define target_terminal_init() \
0d06e24b 601 (*current_target.to_terminal_init) ()
c906108c
SS
602
603/* Put the inferior's terminal settings into effect.
604 This is preparation for starting or resuming the inferior. */
605
606#define target_terminal_inferior() \
0d06e24b 607 (*current_target.to_terminal_inferior) ()
c906108c
SS
608
609/* Put some of our terminal settings into effect,
610 enough to get proper results from our output,
611 but do not change into or out of RAW mode
612 so that no input is discarded.
613
614 After doing this, either terminal_ours or terminal_inferior
615 should be called to get back to a normal state of affairs. */
616
617#define target_terminal_ours_for_output() \
0d06e24b 618 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
619
620/* Put our terminal settings into effect.
621 First record the inferior's terminal settings
622 so they can be restored properly later. */
623
624#define target_terminal_ours() \
0d06e24b 625 (*current_target.to_terminal_ours) ()
c906108c 626
a790ad35
SC
627/* Save our terminal settings.
628 This is called from TUI after entering or leaving the curses
629 mode. Since curses modifies our terminal this call is here
630 to take this change into account. */
631
632#define target_terminal_save_ours() \
633 (*current_target.to_terminal_save_ours) ()
634
c906108c
SS
635/* Print useful information about our terminal status, if such a thing
636 exists. */
637
638#define target_terminal_info(arg, from_tty) \
0d06e24b 639 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
640
641/* Kill the inferior process. Make it go away. */
642
643#define target_kill() \
0d06e24b 644 (*current_target.to_kill) ()
c906108c 645
0d06e24b
JM
646/* Load an executable file into the target process. This is expected
647 to not only bring new code into the target process, but also to
648 update GDB's symbol tables to match. */
c906108c 649
11cf8741 650extern void target_load (char *arg, int from_tty);
c906108c
SS
651
652/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
653 name. ADDRP is a CORE_ADDR * pointing to where the value of the
654 symbol should be returned. The result is 0 if successful, nonzero
655 if the symbol does not exist in the target environment. This
656 function should not call error() if communication with the target
657 is interrupted, since it is called from symbol reading, but should
658 return nonzero, possibly doing a complain(). */
c906108c 659
0d06e24b
JM
660#define target_lookup_symbol(name, addrp) \
661 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 662
39f77062 663/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
664 EXEC_FILE is the file to run.
665 ALLARGS is a string containing the arguments to the program.
666 ENV is the environment vector to pass. Errors reported with error().
667 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 668
c906108c 669#define target_create_inferior(exec_file, args, env) \
0d06e24b 670 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
671
672
673/* Some targets (such as ttrace-based HPUX) don't allow us to request
674 notification of inferior events such as fork and vork immediately
675 after the inferior is created. (This because of how gdb gets an
676 inferior created via invoking a shell to do it. In such a scenario,
677 if the shell init file has commands in it, the shell will fork and
678 exec for each of those commands, and we will see each such fork
679 event. Very bad.)
c5aa993b 680
0d06e24b
JM
681 Such targets will supply an appropriate definition for this function. */
682
39f77062
KB
683#define target_post_startup_inferior(ptid) \
684 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
685
686/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
687 some synchronization between gdb and the new inferior process, PID. */
688
c906108c 689#define target_acknowledge_created_inferior(pid) \
0d06e24b 690 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 691
0d06e24b
JM
692/* On some targets, we can catch an inferior fork or vfork event when
693 it occurs. These functions insert/remove an already-created
694 catchpoint for such events. */
c906108c 695
c906108c 696#define target_insert_fork_catchpoint(pid) \
0d06e24b 697 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
698
699#define target_remove_fork_catchpoint(pid) \
0d06e24b 700 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
701
702#define target_insert_vfork_catchpoint(pid) \
0d06e24b 703 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
704
705#define target_remove_vfork_catchpoint(pid) \
0d06e24b 706 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 707
c906108c
SS
708/* An inferior process has been created via a vfork() system call.
709 The debugger has followed the parent, the child, or both. The
710 process of setting up for that follow may have required some
711 target-specific trickery to track the sequence of reported events.
712 If so, this function should be defined by those targets that
713 require the debugger to perform cleanup or initialization after
0d06e24b
JM
714 the vfork follow. */
715
c906108c 716#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 717 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
718
719/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
720 occurs. These functions insert/remove an already-created
721 catchpoint for such events. */
722
c906108c 723#define target_insert_exec_catchpoint(pid) \
0d06e24b 724 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 725
c906108c 726#define target_remove_exec_catchpoint(pid) \
0d06e24b 727 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 728
c906108c
SS
729/* Returns the number of exec events that are reported when a process
730 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
731 events are being reported. */
732
c906108c 733#define target_reported_exec_events_per_exec_call() \
0d06e24b 734 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 735
c906108c 736/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
737 exit code of PID, if any. */
738
c906108c 739#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 740 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
741
742/* The debugger has completed a blocking wait() call. There is now
0d06e24b 743 some process event that must be processed. This function should
c906108c 744 be defined by those targets that require the debugger to perform
0d06e24b 745 cleanup or internal state changes in response to the process event. */
c906108c
SS
746
747/* The inferior process has died. Do what is right. */
748
749#define target_mourn_inferior() \
0d06e24b 750 (*current_target.to_mourn_inferior) ()
c906108c
SS
751
752/* Does target have enough data to do a run or attach command? */
753
754#define target_can_run(t) \
0d06e24b 755 ((t)->to_can_run) ()
c906108c
SS
756
757/* post process changes to signal handling in the inferior. */
758
39f77062
KB
759#define target_notice_signals(ptid) \
760 (*current_target.to_notice_signals) (ptid)
c906108c
SS
761
762/* Check to see if a thread is still alive. */
763
39f77062
KB
764#define target_thread_alive(ptid) \
765 (*current_target.to_thread_alive) (ptid)
c906108c 766
b83266a0
SS
767/* Query for new threads and add them to the thread list. */
768
769#define target_find_new_threads() \
0d06e24b 770 (*current_target.to_find_new_threads) (); \
b83266a0 771
0d06e24b
JM
772/* Make target stop in a continuable fashion. (For instance, under
773 Unix, this should act like SIGSTOP). This function is normally
774 used by GUIs to implement a stop button. */
c906108c
SS
775
776#define target_stop current_target.to_stop
777
778/* Queries the target side for some information. The first argument is a
779 letter specifying the type of the query, which is used to determine who
780 should process it. The second argument is a string that specifies which
781 information is desired and the third is a buffer that carries back the
782 response from the target side. The fourth parameter is the size of the
0d06e24b 783 output buffer supplied. */
c5aa993b 784
c906108c 785#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 786 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 787
96baa820
JM
788/* Send the specified COMMAND to the target's monitor
789 (shell,interpreter) for execution. The result of the query is
0d06e24b 790 placed in OUTBUF. */
96baa820
JM
791
792#define target_rcmd(command, outbuf) \
793 (*current_target.to_rcmd) (command, outbuf)
794
795
c906108c
SS
796/* Get the symbol information for a breakpointable routine called when
797 an exception event occurs.
798 Intended mainly for C++, and for those
799 platforms/implementations where such a callback mechanism is available,
800 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 801 different mechanisms for debugging exceptions. */
c906108c
SS
802
803#define target_enable_exception_callback(kind, enable) \
0d06e24b 804 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 805
0d06e24b 806/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 807
c906108c 808#define target_get_current_exception_event() \
0d06e24b 809 (*current_target.to_get_current_exception_event) ()
c906108c
SS
810
811/* Pointer to next target in the chain, e.g. a core file and an exec file. */
812
813#define target_next \
0d06e24b 814 (current_target.to_next)
c906108c
SS
815
816/* Does the target include all of memory, or only part of it? This
817 determines whether we look up the target chain for other parts of
818 memory if this target can't satisfy a request. */
819
820#define target_has_all_memory \
0d06e24b 821 (current_target.to_has_all_memory)
c906108c
SS
822
823/* Does the target include memory? (Dummy targets don't.) */
824
825#define target_has_memory \
0d06e24b 826 (current_target.to_has_memory)
c906108c
SS
827
828/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
829 we start a process.) */
c5aa993b 830
c906108c 831#define target_has_stack \
0d06e24b 832 (current_target.to_has_stack)
c906108c
SS
833
834/* Does the target have registers? (Exec files don't.) */
835
836#define target_has_registers \
0d06e24b 837 (current_target.to_has_registers)
c906108c
SS
838
839/* Does the target have execution? Can we make it jump (through
840 hoops), or pop its stack a few times? FIXME: If this is to work that
841 way, it needs to check whether an inferior actually exists.
842 remote-udi.c and probably other targets can be the current target
843 when the inferior doesn't actually exist at the moment. Right now
844 this just tells us whether this target is *capable* of execution. */
845
846#define target_has_execution \
0d06e24b 847 (current_target.to_has_execution)
c906108c
SS
848
849/* Can the target support the debugger control of thread execution?
850 a) Can it lock the thread scheduler?
851 b) Can it switch the currently running thread? */
852
853#define target_can_lock_scheduler \
0d06e24b 854 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
855
856#define target_can_switch_threads \
0d06e24b 857 (current_target.to_has_thread_control & tc_switch)
c906108c 858
6426a772
JM
859/* Can the target support asynchronous execution? */
860#define target_can_async_p() (current_target.to_can_async_p ())
861
862/* Is the target in asynchronous execution mode? */
863#define target_is_async_p() (current_target.to_is_async_p())
864
865/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
866#define target_async(CALLBACK,CONTEXT) \
867 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 868
ed9a39eb
JM
869/* This is to be used ONLY within run_stack_dummy(). It
870 provides a workaround, to have inferior function calls done in
871 sychronous mode, even though the target is asynchronous. After
872 target_async_mask(0) is called, calls to target_can_async_p() will
873 return FALSE , so that target_resume() will not try to start the
874 target asynchronously. After the inferior stops, we IMMEDIATELY
875 restore the previous nature of the target, by calling
876 target_async_mask(1). After that, target_can_async_p() will return
877 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
878
879 FIXME ezannoni 1999-12-13: we won't need this once we move
880 the turning async on and off to the single execution commands,
0d06e24b 881 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
882
883#define target_async_mask_value \
0d06e24b 884 (current_target.to_async_mask_value)
ed9a39eb
JM
885
886extern int target_async_mask (int mask);
887
a14ed312 888extern void target_link (char *, CORE_ADDR *);
c906108c
SS
889
890/* Converts a process id to a string. Usually, the string just contains
891 `process xyz', but on some systems it may contain
892 `process xyz thread abc'. */
893
ed9a39eb
JM
894#undef target_pid_to_str
895#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
896
897#ifndef target_tid_to_str
898#define target_tid_to_str(PID) \
0d06e24b 899 target_pid_to_str (PID)
39f77062 900extern char *normal_pid_to_str (ptid_t ptid);
c906108c 901#endif
c5aa993b 902
0d06e24b
JM
903/* Return a short string describing extra information about PID,
904 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
905 is okay. */
906
907#define target_extra_thread_info(TP) \
908 (current_target.to_extra_thread_info (TP))
ed9a39eb 909
11cf8741
JM
910/*
911 * New Objfile Event Hook:
912 *
913 * Sometimes a GDB component wants to get notified whenever a new
914 * objfile is loaded. Mainly this is used by thread-debugging
915 * implementations that need to know when symbols for the target
916 * thread implemenation are available.
917 *
918 * The old way of doing this is to define a macro 'target_new_objfile'
919 * that points to the function that you want to be called on every
920 * objfile/shlib load.
921 *
922 * The new way is to grab the function pointer, 'target_new_objfile_hook',
923 * and point it to the function that you want to be called on every
924 * objfile/shlib load.
925 *
926 * If multiple clients are willing to be cooperative, they can each
927 * save a pointer to the previous value of target_new_objfile_hook
928 * before modifying it, and arrange for their function to call the
929 * previous function in the chain. In that way, multiple clients
930 * can receive this notification (something like with signal handlers).
931 */
c906108c 932
507f3c78 933extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
934
935#ifndef target_pid_or_tid_to_str
936#define target_pid_or_tid_to_str(ID) \
0d06e24b 937 target_pid_to_str (ID)
c906108c
SS
938#endif
939
940/* Attempts to find the pathname of the executable file
941 that was run to create a specified process.
942
943 The process PID must be stopped when this operation is used.
c5aa993b 944
c906108c
SS
945 If the executable file cannot be determined, NULL is returned.
946
947 Else, a pointer to a character string containing the pathname
948 is returned. This string should be copied into a buffer by
949 the client if the string will not be immediately used, or if
0d06e24b 950 it must persist. */
c906108c
SS
951
952#define target_pid_to_exec_file(pid) \
0d06e24b 953 (current_target.to_pid_to_exec_file) (pid)
c906108c 954
be4d1333
MS
955/*
956 * Iterator function for target memory regions.
957 * Calls a callback function once for each memory region 'mapped'
958 * in the child process. Defined as a simple macro rather than
959 * as a function macro so that it can be tested for nullity.
960 */
961
962#define target_find_memory_regions(FUNC, DATA) \
963 (current_target.to_find_memory_regions) (FUNC, DATA)
964
965/*
966 * Compose corefile .note section.
967 */
968
969#define target_make_corefile_notes(BFD, SIZE_P) \
970 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
971
3f47be5c
EZ
972/* Thread-local values. */
973#define target_get_thread_local_address \
974 (current_target.to_get_thread_local_address)
975#define target_get_thread_local_address_p() \
976 (target_get_thread_local_address != NULL)
977
9d8a64cb 978/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
979
980#ifndef TARGET_SYMFILE_POSTREAD
981#define TARGET_SYMFILE_POSTREAD(OBJFILE)
982#endif
983
9d8a64cb 984/* Hook to call target dependent code just after inferior target process has
c906108c
SS
985 started. */
986
987#ifndef TARGET_CREATE_INFERIOR_HOOK
988#define TARGET_CREATE_INFERIOR_HOOK(PID)
989#endif
990
991/* Hardware watchpoint interfaces. */
992
993/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
994 write). */
995
996#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
997#define STOPPED_BY_WATCHPOINT(w) \
998 (*current_target.to_stopped_by_watchpoint) ()
c906108c
SS
999#endif
1000
1001/* HP-UX supplies these operations, which respectively disable and enable
1002 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1003 on that platform. See wait_for_inferior's use of these. */
1004
c906108c
SS
1005#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1006#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1007#endif
1008
1009#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1010#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1011#endif
1012
ccaa32c7 1013/* Provide defaults for hardware watchpoint functions. */
c906108c 1014
ccaa32c7
GS
1015/* If the *_hw_beakpoint functions have not been defined
1016 elsewhere use the definitions in the target vector. */
c906108c
SS
1017
1018/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1019 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1020 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1021 (including this one?). OTHERTYPE is who knows what... */
1022
ccaa32c7
GS
1023#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1024#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1025 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1026#endif
c906108c
SS
1027
1028#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1029#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
ccaa32c7 1030 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
c906108c
SS
1031#endif
1032
c906108c
SS
1033
1034/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1035 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1036 success, non-zero for failure. */
1037
ccaa32c7
GS
1038#ifndef target_insert_watchpoint
1039#define target_insert_watchpoint(addr, len, type) \
1040 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1041
ccaa32c7
GS
1042#define target_remove_watchpoint(addr, len, type) \
1043 (*current_target.to_remove_watchpoint) (addr, len, type)
1044#endif
c906108c
SS
1045
1046#ifndef target_insert_hw_breakpoint
ccaa32c7
GS
1047#define target_insert_hw_breakpoint(addr, save) \
1048 (*current_target.to_insert_hw_breakpoint) (addr, save)
1049
1050#define target_remove_hw_breakpoint(addr, save) \
1051 (*current_target.to_remove_hw_breakpoint) (addr, save)
c906108c
SS
1052#endif
1053
1054#ifndef target_stopped_data_address
ccaa32c7
GS
1055#define target_stopped_data_address() \
1056 (*current_target.to_stopped_data_address) ()
c906108c
SS
1057#endif
1058
1059/* If defined, then we need to decr pc by this much after a hardware break-
1060 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1061
1062#ifndef DECR_PC_AFTER_HW_BREAK
1063#define DECR_PC_AFTER_HW_BREAK 0
1064#endif
1065
1066/* Sometimes gdb may pick up what appears to be a valid target address
1067 from a minimal symbol, but the value really means, essentially,
1068 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1069 is run. Therefore, do not attempt to use this as a PC." */
1070
c906108c
SS
1071#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1072#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1073#endif
1074
1075/* This will only be defined by a target that supports catching vfork events,
1076 such as HP-UX.
1077
1078 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1079 child process after it has exec'd, causes the parent process to resume as
1080 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1081 define this to a function that prevents that from happening. */
c906108c
SS
1082#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1083#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1084#endif
1085
1086/* This will only be defined by a target that supports catching vfork events,
1087 such as HP-UX.
1088
1089 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1090 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1091 vfork event will be delivered to us. */
1092
c906108c
SS
1093#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1094#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1095#endif
1096
1097/* Routines for maintenance of the target structures...
1098
1099 add_target: Add a target to the list of all possible targets.
1100
1101 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1102 targets, within its particular stratum of the stack. Result
1103 is 0 if now atop the stack, nonzero if not on top (maybe
1104 should warn user).
c906108c
SS
1105
1106 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1107 no matter where it is on the list. Returns 0 if no
1108 change, 1 if removed from stack.
c906108c 1109
c5aa993b 1110 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1111
a14ed312 1112extern void add_target (struct target_ops *);
c906108c 1113
a14ed312 1114extern int push_target (struct target_ops *);
c906108c 1115
a14ed312 1116extern int unpush_target (struct target_ops *);
c906108c 1117
a14ed312 1118extern void target_preopen (int);
c906108c 1119
a14ed312 1120extern void pop_target (void);
c906108c
SS
1121
1122/* Struct section_table maps address ranges to file sections. It is
1123 mostly used with BFD files, but can be used without (e.g. for handling
1124 raw disks, or files not in formats handled by BFD). */
1125
c5aa993b
JM
1126struct section_table
1127 {
1128 CORE_ADDR addr; /* Lowest address in section */
1129 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1130
c5aa993b 1131 sec_ptr the_bfd_section;
c906108c 1132
c5aa993b
JM
1133 bfd *bfd; /* BFD file pointer */
1134 };
c906108c
SS
1135
1136/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1137 Returns 0 if OK, 1 on error. */
1138
1139extern int
a14ed312 1140build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1141
1142/* From mem-break.c */
1143
a14ed312 1144extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1145
a14ed312 1146extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1147
a14ed312 1148extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1149
a14ed312 1150extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1151
f4f9705a
AC
1152extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1153 int *lenptr);
c906108c
SS
1154
1155
1156/* From target.c */
1157
a14ed312 1158extern void initialize_targets (void);
c906108c 1159
a14ed312 1160extern void noprocess (void);
c906108c 1161
a14ed312 1162extern void find_default_attach (char *, int);
c906108c 1163
a14ed312 1164extern void find_default_require_attach (char *, int);
c906108c 1165
a14ed312 1166extern void find_default_require_detach (int, char *, int);
c906108c 1167
a14ed312 1168extern void find_default_create_inferior (char *, char *, char **);
c906108c 1169
a14ed312 1170extern struct target_ops *find_run_target (void);
7a292a7a 1171
a14ed312 1172extern struct target_ops *find_core_target (void);
6426a772 1173
a14ed312 1174extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1175
1176extern int
a14ed312 1177target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1178
1179extern void remove_target_sections (bfd *abfd);
1180
c906108c
SS
1181\f
1182/* Stuff that should be shared among the various remote targets. */
1183
1184/* Debugging level. 0 is off, and non-zero values mean to print some debug
1185 information (higher values, more information). */
1186extern int remote_debug;
1187
1188/* Speed in bits per second, or -1 which means don't mess with the speed. */
1189extern int baud_rate;
1190/* Timeout limit for response from target. */
1191extern int remote_timeout;
1192
c906108c
SS
1193\f
1194/* Functions for helping to write a native target. */
1195
1196/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1197extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1198
c2d11a7d 1199/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1200 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1201/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1202 to the shorter target_signal_p() because it is far less ambigious.
1203 In this context ``target_signal'' refers to GDB's internal
1204 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1205 refers to the target operating system's signal. Confused? */
1206
c2d11a7d
JM
1207extern int target_signal_to_host_p (enum target_signal signo);
1208
1209/* Convert between host signal numbers and enum target_signal's.
1210 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1211 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1212/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1213 refering to the target operating system's signal numbering.
1214 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1215 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1216 internal representation of a target operating system's signal. */
1217
a14ed312
KB
1218extern enum target_signal target_signal_from_host (int);
1219extern int target_signal_to_host (enum target_signal);
c906108c
SS
1220
1221/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1222extern enum target_signal target_signal_from_command (int);
c906108c
SS
1223
1224/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1225extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1226\f
1227/* Imported from machine dependent code */
1228
c906108c 1229/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1230void target_ignore (void);
c906108c 1231
c5aa993b 1232#endif /* !defined (TARGET_H) */