]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/tic6x-tdep.c
gdb: move store/extract integer functions to extract-store-integer.{c,h}
[thirdparty/binutils-gdb.git] / gdb / tic6x-tdep.c
CommitLineData
8cd64e00
YQ
1/* Target dependent code for GDB on TI C6x systems.
2
1d506c26 3 Copyright (C) 2010-2024 Free Software Foundation, Inc.
8cd64e00
YQ
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
ec452525 22#include "extract-store-integer.h"
8cd64e00
YQ
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "trad-frame.h"
82ca8957 27#include "dwarf2/frame.h"
8cd64e00
YQ
28#include "symtab.h"
29#include "inferior.h"
30#include "gdbtypes.h"
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "target.h"
34#include "dis-asm.h"
35#include "regcache.h"
36#include "value.h"
37#include "symfile.h"
38#include "arch-utils.h"
8cd64e00
YQ
39#include "glibc-tdep.h"
40#include "infcall.h"
41#include "regset.h"
42#include "tramp-frame.h"
43#include "linux-tdep.h"
44#include "solib.h"
45#include "objfiles.h"
8cd64e00
YQ
46#include "osabi.h"
47#include "tic6x-tdep.h"
48#include "language.h"
49#include "target-descriptions.h"
325fac50 50#include <algorithm>
8cd64e00 51
8cd64e00
YQ
52#define TIC6X_OPCODE_SIZE 4
53#define TIC6X_FETCH_PACKET_SIZE 32
54
55#define INST_S_BIT(INST) ((INST >> 1) & 1)
56#define INST_X_BIT(INST) ((INST >> 12) & 1)
57
85661b1e
YQ
58const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60
8cd64e00
YQ
61struct tic6x_unwind_cache
62{
63 /* The frame's base, optionally used by the high-level debug info. */
64 CORE_ADDR base;
65
66 /* The previous frame's inner most stack address. Used as this
67 frame ID's stack_addr. */
68 CORE_ADDR cfa;
69
70 /* The address of the first instruction in this function */
71 CORE_ADDR pc;
72
73 /* Which register holds the return address for the frame. */
74 int return_regnum;
75
76 /* The offset of register saved on stack. If register is not saved, the
77 corresponding element is -1. */
78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79};
80
81
82/* Name of TI C6x core registers. */
83static const char *const tic6x_register_names[] =
84{
85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93 "CSR", "PC", /* 32 33 */
94};
95
96/* This array maps the arguments to the register number which passes argument
97 in function call according to C6000 ELF ABI. */
98static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99
100/* This is the implementation of gdbarch method register_name. */
101
102static const char *
103tic6x_register_name (struct gdbarch *gdbarch, int regno)
104{
8cd64e00
YQ
105 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
106 return tdesc_register_name (gdbarch, regno);
107 else if (regno >= ARRAY_SIZE (tic6x_register_names))
108 return "";
109 else
110 return tic6x_register_names[regno];
111}
112
113/* This is the implementation of gdbarch method register_type. */
114
115static struct type *
116tic6x_register_type (struct gdbarch *gdbarch, int regno)
117{
118
119 if (regno == TIC6X_PC_REGNUM)
120 return builtin_type (gdbarch)->builtin_func_ptr;
121 else
122 return builtin_type (gdbarch)->builtin_uint32;
123}
124
125static void
126tic6x_setup_default (struct tic6x_unwind_cache *cache)
127{
128 int i;
129
130 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
131 cache->reg_saved[i] = -1;
132}
133
134static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
135static int tic6x_register_number (int reg, int side, int crosspath);
136
137/* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
138 Bail out early if CURRENT_PC is reached. Returns the address of the first
139 instruction after the prologue. */
140
693be288 141static CORE_ADDR
8cd64e00
YQ
142tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
143 const CORE_ADDR current_pc,
144 struct tic6x_unwind_cache *cache,
8480a37e 145 const frame_info_ptr &this_frame)
8cd64e00 146{
8cd64e00
YQ
147 unsigned int src_reg, base_reg, dst_reg;
148 int i;
149 CORE_ADDR pc = start_pc;
150 CORE_ADDR return_pc = start_pc;
151 int frame_base_offset_to_sp = 0;
152 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
153 int non_stw_insn_counter = 0;
154
155 if (start_pc >= current_pc)
156 return_pc = current_pc;
157
158 cache->base = 0;
159
160 /* The landmarks in prologue is one or two SUB instructions to SP.
161 Instructions on setting up dsbt are in the last part of prologue, if
162 needed. In maxim, prologue can be divided to three parts by two
163 `sub sp, xx, sp' insns. */
164
165 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
166 2nd one is optional. */
167 while (pc < current_pc)
168 {
8cd64e00
YQ
169 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
170
171 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
172 || (inst & 0x0ffc) == 0x9c0)
173 {
174 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
175 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
176 INST_S_BIT (inst), 0);
177 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
178 INST_S_BIT (inst), 0);
179
180 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
181 {
182 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
183 offset. The constant offset is decoded in bit 13-17 in all
184 these three kinds of instructions. */
185 unsigned int ucst5 = (inst >> 13) & 0x1f;
186
187 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
188 frame_base_offset_to_sp += ucst5 << 2;
189 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
190 frame_base_offset_to_sp += ucst5 << 1;
191 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
192 frame_base_offset_to_sp += ucst5;
193 else
194 gdb_assert_not_reached ("unexpected instruction");
195
196 return_pc = pc + 4;
197 }
198 }
199 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
200 {
201 /* The y bit determines which file base is read from. */
202 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
203 (inst >> 7) & 1, 0);
204
205 if (base_reg == TIC6X_SP_REGNUM)
206 {
207 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
208 INST_S_BIT (inst), 0);
209
210 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
211
212 return_pc = pc + 4;
213 }
214 non_stw_insn_counter = 0;
215 }
216 else
217 {
218 non_stw_insn_counter++;
219 /* Following instruction sequence may be emitted in prologue:
220
221 <+0>: subah .D2 b15,28,b15
222 <+4>: or .L2X 0,a4,b0
223 <+8>: || stw .D2T2 b14,*+b15(56)
224 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
225 <+16>:|| stw .D2T1 a10,*+b15(48)
226 <+20>:stw .D2T2 b3,*+b15(52)
227 <+24>:stw .D2T1 a4,*+b15(40)
228
229 we should look forward for next instruction instead of breaking loop
230 here. So far, we allow almost two sequential non-stw instructions
231 in prologue. */
232 if (non_stw_insn_counter >= 2)
233 break;
234 }
235
236
237 pc += 4;
238 }
239 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
240 ldw .D2T2 *+b14(0),b14 */
b926417a 241 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
8cd64e00
YQ
242 /* The s bit determines which file dst will be loaded into, same effect as
243 other places. */
244 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
245 /* The y bit (bit 7), instead of s bit, determines which file base be
246 used. */
247 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
248
249 if ((inst & 0x164) == 0x64 /* ldw */
250 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
251 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
252 {
253 return_pc = pc + 4;
254 }
255
256 if (this_frame)
257 {
258 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
259
260 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
261 {
262 /* If the FP now holds an offset from the CFA then this is a frame
263 which uses the frame pointer. */
264
265 cache->cfa = get_frame_register_unsigned (this_frame,
266 TIC6X_FP_REGNUM);
267 }
268 else
269 {
270 /* FP doesn't hold an offset from the CFA. If SP still holds an
271 offset from the CFA then we might be in a function which omits
272 the frame pointer. */
273
274 cache->cfa = cache->base + frame_base_offset_to_sp;
275 }
276 }
277
278 /* Adjust all the saved registers such that they contain addresses
279 instead of offsets. */
280 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
281 if (cache->reg_saved[i] != -1)
282 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
283
284 return return_pc;
285}
286
287/* This is the implementation of gdbarch method skip_prologue. */
288
693be288 289static CORE_ADDR
8cd64e00
YQ
290tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
291{
8cd64e00
YQ
292 CORE_ADDR func_addr;
293 struct tic6x_unwind_cache cache;
294
295 /* See if we can determine the end of the prologue via the symbol table.
296 If so, then return either PC, or the PC after the prologue, whichever is
297 greater. */
298 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
299 {
300 CORE_ADDR post_prologue_pc
301 = skip_prologue_using_sal (gdbarch, func_addr);
302 if (post_prologue_pc != 0)
325fac50 303 return std::max (start_pc, post_prologue_pc);
8cd64e00
YQ
304 }
305
306 /* Can't determine prologue from the symbol table, need to examine
307 instructions. */
308 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
309 NULL);
310}
311
cd6c3b4f
YQ
312/* Implement the breakpoint_kind_from_pc gdbarch method. */
313
d19280ad
YQ
314static int
315tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
316{
317 return 4;
318}
8cd64e00 319
cd6c3b4f
YQ
320/* Implement the sw_breakpoint_from_kind gdbarch method. */
321
948f8e3d 322static const gdb_byte *
d19280ad 323tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
8cd64e00 324{
08106042 325 tic6x_gdbarch_tdep *tdep = gdbarch_tdep<tic6x_gdbarch_tdep> (gdbarch);
8cd64e00 326
d19280ad 327 *size = kind;
8cd64e00
YQ
328
329 if (tdep == NULL || tdep->breakpoint == NULL)
330 {
331 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
332 return tic6x_bkpt_illegal_opcode_be;
333 else
334 return tic6x_bkpt_illegal_opcode_le;
335 }
336 else
337 return tdep->breakpoint;
338}
339
8cd64e00
YQ
340static void
341tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
342 struct dwarf2_frame_state_reg *reg,
8480a37e 343 const frame_info_ptr &this_frame)
8cd64e00
YQ
344{
345 /* Mark the PC as the destination for the return address. */
346 if (regnum == gdbarch_pc_regnum (gdbarch))
347 reg->how = DWARF2_FRAME_REG_RA;
348
349 /* Mark the stack pointer as the call frame address. */
350 else if (regnum == gdbarch_sp_regnum (gdbarch))
351 reg->how = DWARF2_FRAME_REG_CFA;
352
353 /* The above was taken from the default init_reg in dwarf2-frame.c
354 while the below is c6x specific. */
355
356 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
357 callee-save. */
358 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
359 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
360 else
361 /* All other registers are caller-save. */
362 reg->how = DWARF2_FRAME_REG_UNDEFINED;
363}
364
365/* This is the implementation of gdbarch method unwind_pc. */
366
367static CORE_ADDR
8480a37e 368tic6x_unwind_pc (struct gdbarch *gdbarch, const frame_info_ptr &next_frame)
8cd64e00
YQ
369{
370 gdb_byte buf[8];
371
372 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
373 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
374}
375
8cd64e00
YQ
376/* Frame base handling. */
377
693be288 378static struct tic6x_unwind_cache*
8480a37e 379tic6x_frame_unwind_cache (const frame_info_ptr &this_frame,
8cd64e00
YQ
380 void **this_prologue_cache)
381{
382 struct gdbarch *gdbarch = get_frame_arch (this_frame);
383 CORE_ADDR current_pc;
384 struct tic6x_unwind_cache *cache;
8cd64e00
YQ
385
386 if (*this_prologue_cache)
19ba03f4 387 return (struct tic6x_unwind_cache *) *this_prologue_cache;
8cd64e00
YQ
388
389 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
390 (*this_prologue_cache) = cache;
391
392 cache->return_regnum = TIC6X_RA_REGNUM;
393
394 tic6x_setup_default (cache);
395
396 cache->pc = get_frame_func (this_frame);
397 current_pc = get_frame_pc (this_frame);
398
399 /* Prologue analysis does the rest... */
400 if (cache->pc != 0)
401 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
402
403 return cache;
404}
405
406static void
8480a37e 407tic6x_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
8cd64e00
YQ
408 struct frame_id *this_id)
409{
410 struct tic6x_unwind_cache *cache =
411 tic6x_frame_unwind_cache (this_frame, this_cache);
412
413 /* This marks the outermost frame. */
414 if (cache->base == 0)
415 return;
416
417 (*this_id) = frame_id_build (cache->cfa, cache->pc);
418}
419
420static struct value *
8480a37e 421tic6x_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache,
8cd64e00
YQ
422 int regnum)
423{
424 struct tic6x_unwind_cache *cache =
425 tic6x_frame_unwind_cache (this_frame, this_cache);
426
427 gdb_assert (regnum >= 0);
428
429 /* The PC of the previous frame is stored in the RA register of
430 the current frame. Frob regnum so that we pull the value from
431 the correct place. */
432 if (regnum == TIC6X_PC_REGNUM)
433 regnum = cache->return_regnum;
434
435 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
436 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
437
438 /* If we've worked out where a register is stored then load it from
439 there. */
440 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
441 return frame_unwind_got_memory (this_frame, regnum,
442 cache->reg_saved[regnum]);
443
444 return frame_unwind_got_register (this_frame, regnum, regnum);
445}
446
447static CORE_ADDR
8480a37e 448tic6x_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
8cd64e00
YQ
449{
450 struct tic6x_unwind_cache *info
451 = tic6x_frame_unwind_cache (this_frame, this_cache);
452 return info->base;
453}
454
455static const struct frame_unwind tic6x_frame_unwind =
456{
a154d838 457 "tic6x prologue",
8cd64e00
YQ
458 NORMAL_FRAME,
459 default_frame_unwind_stop_reason,
460 tic6x_frame_this_id,
461 tic6x_frame_prev_register,
462 NULL,
463 default_frame_sniffer
464};
465
466static const struct frame_base tic6x_frame_base =
467{
468 &tic6x_frame_unwind,
469 tic6x_frame_base_address,
470 tic6x_frame_base_address,
471 tic6x_frame_base_address
472};
473
474
475static struct tic6x_unwind_cache *
8480a37e 476tic6x_make_stub_cache (const frame_info_ptr &this_frame)
8cd64e00
YQ
477{
478 struct tic6x_unwind_cache *cache;
479
480 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
481
482 cache->return_regnum = TIC6X_RA_REGNUM;
483
484 tic6x_setup_default (cache);
485
486 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
487
488 return cache;
489}
490
491static void
8480a37e 492tic6x_stub_this_id (const frame_info_ptr &this_frame, void **this_cache,
8cd64e00
YQ
493 struct frame_id *this_id)
494{
495 struct tic6x_unwind_cache *cache;
496
497 if (*this_cache == NULL)
498 *this_cache = tic6x_make_stub_cache (this_frame);
19ba03f4 499 cache = (struct tic6x_unwind_cache *) *this_cache;
8cd64e00
YQ
500
501 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
502}
503
504static int
505tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
8480a37e 506 const frame_info_ptr &this_frame,
8cd64e00
YQ
507 void **this_prologue_cache)
508{
509 CORE_ADDR addr_in_block;
510
511 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 512 if (in_plt_section (addr_in_block))
8cd64e00
YQ
513 return 1;
514
515 return 0;
516}
517
518static const struct frame_unwind tic6x_stub_unwind =
519{
a154d838 520 "tic6x stub",
8cd64e00
YQ
521 NORMAL_FRAME,
522 default_frame_unwind_stop_reason,
523 tic6x_stub_this_id,
524 tic6x_frame_prev_register,
525 NULL,
526 tic6x_stub_unwind_sniffer
527};
528
529/* Return the instruction on address PC. */
530
531static unsigned long
532tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
533{
534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
535 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
536}
537
538/* Compute the condition of INST if it is a conditional instruction. Always
539 return 1 if INST is not a conditional instruction. */
540
541static int
fb090cfa 542tic6x_condition_true (struct regcache *regcache, unsigned long inst)
8cd64e00
YQ
543{
544 int register_number;
545 int register_value;
546 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
547
548 register_number = register_numbers[(inst >> 29) & 7];
549 if (register_number == -1)
550 return 1;
551
fb090cfa 552 register_value = regcache_raw_get_signed (regcache, register_number);
8cd64e00
YQ
553 if ((inst & 0x10000000) != 0)
554 return register_value == 0;
555 return register_value != 0;
556}
557
558/* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
559 instruction. */
560
561static int
562tic6x_register_number (int reg, int side, int crosspath)
563{
564 int r = (reg & 15) | ((crosspath ^ side) << 4);
565 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
566 r += 37;
567 return r;
568}
569
570static int
571tic6x_extract_signed_field (int value, int low_bit, int bits)
572{
573 int mask = (1 << bits) - 1;
574 int r = (value >> low_bit) & mask;
575 if ((r & (1 << (bits - 1))) != 0)
576 r -= mask + 1;
577 return r;
578}
579
580/* Determine where to set a single step breakpoint. */
581
582static CORE_ADDR
fb090cfa 583tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
8cd64e00 584{
ac7936df 585 struct gdbarch *gdbarch = regcache->arch ();
8cd64e00 586 unsigned long inst;
8cd64e00
YQ
587 int register_number;
588 int last = 0;
589
590 do
591 {
592 inst = tic6x_fetch_instruction (gdbarch, pc);
593
594 last = !(inst & 1);
595
596 if (inst == TIC6X_INST_SWE)
597 {
345bd07c 598 tic6x_gdbarch_tdep *tdep
08106042 599 = gdbarch_tdep<tic6x_gdbarch_tdep> (gdbarch);
8cd64e00
YQ
600
601 if (tdep->syscall_next_pc != NULL)
fb090cfa 602 return tdep->syscall_next_pc (get_current_frame ());
8cd64e00
YQ
603 }
604
fb090cfa 605 if (tic6x_condition_true (regcache, inst))
8cd64e00
YQ
606 {
607 if ((inst & 0x0000007c) == 0x00000010)
608 {
609 /* B with displacement */
610 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
611 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
612 break;
613 }
614 if ((inst & 0x0f83effc) == 0x00000360)
615 {
616 /* B with register */
617
618 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
619 INST_S_BIT (inst),
620 INST_X_BIT (inst));
fb090cfa 621 pc = regcache_raw_get_unsigned (regcache, register_number);
8cd64e00
YQ
622 break;
623 }
624 if ((inst & 0x00001ffc) == 0x00001020)
625 {
626 /* BDEC */
627 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
628 INST_S_BIT (inst), 0);
fb090cfa 629 if (regcache_raw_get_signed (regcache, register_number) >= 0)
8cd64e00
YQ
630 {
631 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
632 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
633 }
634 break;
635 }
636 if ((inst & 0x00001ffc) == 0x00000120)
637 {
638 /* BNOP with displacement */
639 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
640 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
641 break;
642 }
643 if ((inst & 0x0f830ffe) == 0x00800362)
644 {
645 /* BNOP with register */
646 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
647 1, INST_X_BIT (inst));
fb090cfa 648 pc = regcache_raw_get_unsigned (regcache, register_number);
8cd64e00
YQ
649 break;
650 }
651 if ((inst & 0x00001ffc) == 0x00000020)
652 {
653 /* BPOS */
654 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
655 INST_S_BIT (inst), 0);
fb090cfa 656 if (regcache_raw_get_signed (regcache, register_number) >= 0)
8cd64e00
YQ
657 {
658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
659 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
660 }
661 break;
662 }
663 if ((inst & 0xf000007c) == 0x10000010)
664 {
665 /* CALLP */
666 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
667 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
668 break;
669 }
670 }
671 pc += TIC6X_OPCODE_SIZE;
672 }
673 while (!last);
674 return pc;
675}
676
677/* This is the implementation of gdbarch method software_single_step. */
678
a0ff9e1a 679static std::vector<CORE_ADDR>
f5ea389a 680tic6x_software_single_step (struct regcache *regcache)
8cd64e00 681{
fb090cfa 682 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
8cd64e00 683
a0ff9e1a 684 return {next_pc};
8cd64e00
YQ
685}
686
687/* This is the implementation of gdbarch method frame_align. */
688
689static CORE_ADDR
690tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
691{
692 return align_down (addr, 8);
693}
694
8cd64e00
YQ
695/* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
696 value into VALBUF. */
697
698static void
699tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
700 enum bfd_endian byte_order, gdb_byte *valbuf)
701{
df86565b 702 int len = valtype->length ();
8cd64e00
YQ
703
704 /* pointer types are returned in register A4,
705 up to 32-bit types in A4
706 up to 64-bit types in A5:A4 */
707 if (len <= 4)
708 {
709 /* In big-endian,
710 - one-byte structure or union occupies the LSB of single even register.
711 - for two-byte structure or union, the first byte occupies byte 1 of
712 register and the second byte occupies byte 0.
713 so, we read the contents in VAL from the LSBs of register. */
714 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
73bb0000 715 regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
8cd64e00 716 else
dca08e1f 717 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
8cd64e00
YQ
718 }
719 else if (len <= 8)
720 {
721 /* For a 5-8 byte structure or union in big-endian, the first byte
722 occupies byte 3 (the MSB) of the upper (odd) register and the
723 remaining bytes fill the decreasingly significant bytes. 5-7
724 byte structures or unions have padding in the LSBs of the
725 lower (even) register. */
726 if (byte_order == BFD_ENDIAN_BIG)
727 {
dca08e1f
SM
728 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
729 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
8cd64e00
YQ
730 }
731 else
732 {
dca08e1f
SM
733 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
734 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
8cd64e00
YQ
735 }
736 }
737}
738
739/* Write into appropriate registers a function return value
740 of type TYPE, given in virtual format. */
741
742static void
743tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
744 enum bfd_endian byte_order, const gdb_byte *valbuf)
745{
df86565b 746 int len = valtype->length ();
8cd64e00
YQ
747
748 /* return values of up to 8 bytes are returned in A5:A4 */
749
750 if (len <= 4)
751 {
752 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
e4c4a59b 753 regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
8cd64e00 754 else
b66f5587 755 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
8cd64e00
YQ
756 }
757 else if (len <= 8)
758 {
759 if (byte_order == BFD_ENDIAN_BIG)
760 {
b66f5587
SM
761 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
762 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
8cd64e00
YQ
763 }
764 else
765 {
b66f5587
SM
766 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
767 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
8cd64e00
YQ
768 }
769 }
770}
771
772/* This is the implementation of gdbarch method return_value. */
773
774static enum return_value_convention
6a3a010b 775tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
8cd64e00
YQ
776 struct type *type, struct regcache *regcache,
777 gdb_byte *readbuf, const gdb_byte *writebuf)
778{
18648a37
YQ
779 /* In C++, when function returns an object, even its size is small
780 enough, it stii has to be passed via reference, pointed by register
781 A3. */
782 if (current_language->la_language == language_cplus)
783 {
784 if (type != NULL)
785 {
f168693b 786 type = check_typedef (type);
9d084466 787 if (!(language_pass_by_reference (type).trivially_copyable))
18648a37
YQ
788 return RETURN_VALUE_STRUCT_CONVENTION;
789 }
790 }
791
df86565b 792 if (type->length () > 8)
8cd64e00
YQ
793 return RETURN_VALUE_STRUCT_CONVENTION;
794
795 if (readbuf)
796 tic6x_extract_return_value (type, regcache,
797 gdbarch_byte_order (gdbarch), readbuf);
798 if (writebuf)
799 tic6x_store_return_value (type, regcache,
800 gdbarch_byte_order (gdbarch), writebuf);
801
802 return RETURN_VALUE_REGISTER_CONVENTION;
803}
804
8cd64e00
YQ
805/* Get the alignment requirement of TYPE. */
806
807static int
808tic6x_arg_type_alignment (struct type *type)
809{
df86565b 810 int len = check_typedef (type)->length ();
78134374 811 enum type_code typecode = check_typedef (type)->code ();
8cd64e00
YQ
812
813 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
814 {
815 /* The stack alignment of a structure (and union) passed by value is the
816 smallest power of two greater than or equal to its size.
817 This cannot exceed 8 bytes, which is the largest allowable size for
818 a structure passed by value. */
819
820 if (len <= 2)
821 return len;
822 else if (len <= 4)
823 return 4;
824 else if (len <= 8)
825 return 8;
826 else
827 gdb_assert_not_reached ("unexpected length of data");
828 }
829 else
830 {
831 if (len <= 4)
832 return 4;
833 else if (len == 8)
834 {
835 if (typecode == TYPE_CODE_COMPLEX)
836 return 4;
837 else
838 return 8;
839 }
840 else if (len == 16)
841 {
842 if (typecode == TYPE_CODE_COMPLEX)
843 return 8;
844 else
845 return 16;
846 }
847 else
f34652de 848 internal_error (_("unexpected length %d of type"),
8cd64e00
YQ
849 len);
850 }
851}
852
853/* This is the implementation of gdbarch method push_dummy_call. */
854
855static CORE_ADDR
856tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
857 struct regcache *regcache, CORE_ADDR bp_addr,
858 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
859 function_call_return_method return_method,
860 CORE_ADDR struct_addr)
8cd64e00
YQ
861{
862 int argreg = 0;
863 int argnum;
8cd64e00
YQ
864 int stack_offset = 4;
865 int references_offset = 4;
8cd64e00 866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d0c97917 867 struct type *func_type = function->type ();
8cd64e00
YQ
868 /* The first arg passed on stack. Mostly the first 10 args are passed by
869 registers. */
870 int first_arg_on_stack = 10;
8cd64e00 871
8cd64e00
YQ
872 /* Set the return address register to point to the entry point of
873 the program, where a breakpoint lies in wait. */
874 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
875
876 /* The caller must pass an argument in A3 containing a destination address
877 for the returned value. The callee returns the object by copying it to
878 the address in A3. */
cf84fa6b 879 if (return_method == return_method_struct)
8cd64e00 880 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
8cd64e00
YQ
881
882 /* Determine the type of this function. */
883 func_type = check_typedef (func_type);
78134374 884 if (func_type->code () == TYPE_CODE_PTR)
27710edb 885 func_type = check_typedef (func_type->target_type ());
8cd64e00 886
78134374
SM
887 gdb_assert (func_type->code () == TYPE_CODE_FUNC
888 || func_type->code () == TYPE_CODE_METHOD);
8cd64e00
YQ
889
890 /* For a variadic C function, the last explicitly declared argument and all
891 remaining arguments are passed on the stack. */
a409645d 892 if (func_type->has_varargs ())
1f704f76 893 first_arg_on_stack = func_type->num_fields () - 1;
8cd64e00 894
18648a37
YQ
895 /* Now make space on the stack for the args. */
896 for (argnum = 0; argnum < nargs; argnum++)
8cd64e00 897 {
d0c97917 898 int len = align_up (args[argnum]->type ()->length (), 4);
8cd64e00
YQ
899 if (argnum >= 10 - argreg)
900 references_offset += len;
901 stack_offset += len;
902 }
903 sp -= stack_offset;
904 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
905 Stack Alignment. */
906 sp = align_down (sp, 8);
907 stack_offset = 4;
908
909 /* Now load as many as possible of the first arguments into
910 registers, and push the rest onto the stack. Loop through args
911 from first to last. */
18648a37 912 for (argnum = 0; argnum < nargs; argnum++)
8cd64e00
YQ
913 {
914 const gdb_byte *val;
915 struct value *arg = args[argnum];
d0c97917 916 struct type *arg_type = check_typedef (arg->type ());
df86565b 917 int len = arg_type->length ();
78134374 918 enum type_code typecode = arg_type->code ();
8cd64e00 919
efaf1ae0 920 val = arg->contents ().data ();
8cd64e00
YQ
921
922 /* Copy the argument to general registers or the stack in
dda83cd7 923 register-sized pieces. */
8cd64e00
YQ
924 if (argreg < first_arg_on_stack)
925 {
926 if (len <= 4)
927 {
928 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
929 {
930 /* In big-endian,
931 - one-byte structure or union occupies the LSB of single
932 even register.
933 - for two-byte structure or union, the first byte
934 occupies byte 1 of register and the second byte occupies
935 byte 0.
936 so, we write the contents in VAL to the lsp of
937 register. */
938 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
e4c4a59b
SM
939 regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
940 val);
8cd64e00 941 else
b66f5587 942 regcache->cooked_write (arg_regs[argreg], val);
8cd64e00
YQ
943 }
944 else
945 {
946 /* The argument is being passed by value in a single
947 register. */
948 CORE_ADDR regval = extract_unsigned_integer (val, len,
949 byte_order);
950
951 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
952 regval);
953 }
954 }
955 else
956 {
957 if (len <= 8)
958 {
959 if (typecode == TYPE_CODE_STRUCT
960 || typecode == TYPE_CODE_UNION)
961 {
962 /* For a 5-8 byte structure or union in big-endian, the
dda83cd7
SM
963 first byte occupies byte 3 (the MSB) of the upper (odd)
964 register and the remaining bytes fill the decreasingly
965 significant bytes. 5-7 byte structures or unions have
966 padding in the LSBs of the lower (even) register. */
8cd64e00
YQ
967 if (byte_order == BFD_ENDIAN_BIG)
968 {
b66f5587 969 regcache->cooked_write (arg_regs[argreg] + 1, val);
e4c4a59b
SM
970 regcache->cooked_write_part (arg_regs[argreg], 0,
971 len - 4, val + 4);
8cd64e00
YQ
972 }
973 else
974 {
b66f5587 975 regcache->cooked_write (arg_regs[argreg], val);
e4c4a59b
SM
976 regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
977 len - 4, val + 4);
8cd64e00
YQ
978 }
979 }
980 else
981 {
982 /* The argument is being passed by value in a pair of
dda83cd7 983 registers. */
8cd64e00
YQ
984 ULONGEST regval = extract_unsigned_integer (val, len,
985 byte_order);
986
987 regcache_cooked_write_unsigned (regcache,
988 arg_regs[argreg],
989 regval);
990 regcache_cooked_write_unsigned (regcache,
991 arg_regs[argreg] + 1,
992 regval >> 32);
993 }
994 }
995 else
996 {
997 /* The argument is being passed by reference in a single
998 register. */
999 CORE_ADDR addr;
1000
1001 /* It is not necessary to adjust REFERENCES_OFFSET to
1002 8-byte aligned in some cases, in which 4-byte alignment
1003 is sufficient. For simplicity, we adjust
1004 REFERENCES_OFFSET to 8-byte aligned. */
1005 references_offset = align_up (references_offset, 8);
1006
1007 addr = sp + references_offset;
1008 write_memory (addr, val, len);
1009 references_offset += align_up (len, 4);
1010 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1011 addr);
1012 }
1013 }
1014 argreg++;
1015 }
1016 else
1017 {
1018 /* The argument is being passed on the stack. */
1019 CORE_ADDR addr;
1020
1021 /* There are six different cases of alignment, and these rules can
1022 be found in tic6x_arg_type_alignment:
1023
1024 1) 4-byte aligned if size is less than or equal to 4 byte, such
1025 as short, int, struct, union etc.
1026 2) 8-byte aligned if size is less than or equal to 8-byte, such
1027 as double, long long,
1028 3) 4-byte aligned if it is of type _Complex float, even its size
1029 is 8-byte.
1030 4) 8-byte aligned if it is of type _Complex double or _Complex
1031 long double, even its size is 16-byte. Because, the address of
1032 variable is passed as reference.
1033 5) struct and union larger than 8-byte are passed by reference, so
1034 it is 4-byte aligned.
1035 6) struct and union of size between 4 byte and 8 byte varies.
1036 alignment of struct variable is the alignment of its first field,
1037 while alignment of union variable is the max of all its fields'
1038 alignment. */
1039
1040 if (len <= 4)
1041 ; /* Default is 4-byte aligned. Nothing to be done. */
1042 else if (len <= 8)
1043 stack_offset = align_up (stack_offset,
1044 tic6x_arg_type_alignment (arg_type));
1045 else if (len == 16)
1046 {
1047 /* _Complex double or _Complex long double */
1048 if (typecode == TYPE_CODE_COMPLEX)
1049 {
1050 /* The argument is being passed by reference on stack. */
8cd64e00
YQ
1051 references_offset = align_up (references_offset, 8);
1052
1053 addr = sp + references_offset;
1054 /* Store variable on stack. */
1055 write_memory (addr, val, len);
1056
1057 references_offset += align_up (len, 4);
1058
1059 /* Pass the address of variable on stack as reference. */
1060 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1061 addr);
1062 len = 4;
1063
1064 }
1065 else
f34652de 1066 internal_error (_("unexpected type %d of arg %d"),
8cd64e00
YQ
1067 typecode, argnum);
1068 }
1069 else
f34652de 1070 internal_error (_("unexpected length %d of arg %d"), len, argnum);
8cd64e00
YQ
1071
1072 addr = sp + stack_offset;
1073 write_memory (addr, val, len);
1074 stack_offset += align_up (len, 4);
1075 }
1076 }
1077
1078 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1079
1080 /* Return adjusted stack pointer. */
1081 return sp;
1082}
1083
c9cf6e20 1084/* This is the implementation of gdbarch method stack_frame_destroyed_p. */
8cd64e00
YQ
1085
1086static int
c9cf6e20 1087tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
8cd64e00
YQ
1088{
1089 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1090 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1091 if ((inst & 0x0f83effc) == 0x360)
1092 {
1093 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1094 INST_S_BIT (inst),
1095 INST_X_BIT (inst));
1096 if (src2 == TIC6X_RA_REGNUM)
1097 return 1;
1098 }
1099
1100 return 0;
1101}
1102
1103/* This is the implementation of gdbarch method get_longjmp_target. */
1104
1105static int
8480a37e 1106tic6x_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
8cd64e00
YQ
1107{
1108 struct gdbarch *gdbarch = get_frame_arch (frame);
1109 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1110 CORE_ADDR jb_addr;
e362b510 1111 gdb_byte buf[4];
8cd64e00
YQ
1112
1113 /* JMP_BUF is passed by reference in A4. */
1114 jb_addr = get_frame_register_unsigned (frame, 4);
1115
1116 /* JMP_BUF contains 13 elements of type int, and return address is stored
1117 in the last slot. */
1118 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1119 return 0;
1120
1121 *pc = extract_unsigned_integer (buf, 4, byte_order);
1122
1123 return 1;
1124}
1125
18648a37
YQ
1126/* This is the implementation of gdbarch method
1127 return_in_first_hidden_param_p. */
1128
1129static int
1130tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1131 struct type *type)
1132{
1133 return 0;
1134}
1135
8cd64e00
YQ
1136static struct gdbarch *
1137tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1138{
c1e1314d 1139 tdesc_arch_data_up tdesc_data;
8cd64e00
YQ
1140 const struct target_desc *tdesc = info.target_desc;
1141 int has_gp = 0;
1142
1143 /* Check any target description for validity. */
1144 if (tdesc_has_registers (tdesc))
1145 {
1146 const struct tdesc_feature *feature;
1147 int valid_p, i;
1148
1149 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1150
1151 if (feature == NULL)
1152 return NULL;
1153
1154 tdesc_data = tdesc_data_alloc ();
1155
1156 valid_p = 1;
1157 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
c1e1314d 1158 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
8cd64e00
YQ
1159 tic6x_register_names[i]);
1160
1161 /* CSR */
c1e1314d 1162 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i++,
8cd64e00 1163 tic6x_register_names[TIC6X_CSR_REGNUM]);
c1e1314d 1164 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i++,
8cd64e00
YQ
1165 tic6x_register_names[TIC6X_PC_REGNUM]);
1166
1167 if (!valid_p)
c1e1314d 1168 return NULL;
8cd64e00
YQ
1169
1170 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1171 if (feature)
1172 {
1173 int j = 0;
1174 static const char *const gp[] =
1175 {
1176 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1177 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1178 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1179 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1180 };
1181
1182 has_gp = 1;
1183 valid_p = 1;
1184 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
c1e1314d
TT
1185 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1186 i++, gp[j]);
8cd64e00
YQ
1187
1188 if (!valid_p)
c1e1314d 1189 return NULL;
8cd64e00
YQ
1190 }
1191
1192 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1193 if (feature)
1194 {
c1e1314d
TT
1195 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1196 i++, "TSR");
1197 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1198 i++, "ILC");
1199 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1200 i++, "RILC");
8cd64e00
YQ
1201
1202 if (!valid_p)
c1e1314d 1203 return NULL;
8cd64e00
YQ
1204 }
1205
1206 }
1207
1208 /* Find a candidate among extant architectures. */
1209 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1210 arches != NULL;
1211 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1212 {
345bd07c 1213 tic6x_gdbarch_tdep *tdep
08106042 1214 = gdbarch_tdep<tic6x_gdbarch_tdep> (arches->gdbarch);
8cd64e00
YQ
1215
1216 if (has_gp != tdep->has_gp)
1217 continue;
1218
1219 if (tdep && tdep->breakpoint)
1220 return arches->gdbarch;
1221 }
1222
2b16913c
SM
1223 gdbarch *gdbarch
1224 = gdbarch_alloc (&info, gdbarch_tdep_up (new tic6x_gdbarch_tdep));
1225 tic6x_gdbarch_tdep *tdep = gdbarch_tdep<tic6x_gdbarch_tdep> (gdbarch);
8cd64e00
YQ
1226
1227 tdep->has_gp = has_gp;
8cd64e00
YQ
1228
1229 /* Data type sizes. */
1230 set_gdbarch_ptr_bit (gdbarch, 32);
1231 set_gdbarch_addr_bit (gdbarch, 32);
1232 set_gdbarch_short_bit (gdbarch, 16);
1233 set_gdbarch_int_bit (gdbarch, 32);
1234 set_gdbarch_long_bit (gdbarch, 32);
1235 set_gdbarch_long_long_bit (gdbarch, 64);
1236 set_gdbarch_float_bit (gdbarch, 32);
1237 set_gdbarch_double_bit (gdbarch, 64);
1238
1239 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1240 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1241
1242 /* The register set. */
1243 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1244 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1245 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1246
1247 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1248 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1249
1250 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1251
1252 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
04180708
YQ
1253 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1254 tic6x_breakpoint_kind_from_pc);
1255 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1256 tic6x_sw_breakpoint_from_kind);
8cd64e00
YQ
1257
1258 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
8cd64e00
YQ
1259
1260 /* Unwinding. */
1261 dwarf2_append_unwinders (gdbarch);
1262
1263 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1264 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
195abc10 1265 frame_base_set_default (gdbarch, &tic6x_frame_base);
8cd64e00
YQ
1266
1267 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1268
1269 /* Single stepping. */
1270 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1271
8cd64e00
YQ
1272 /* Call dummy code. */
1273 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1274
8cd64e00
YQ
1275 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1276
8cd64e00
YQ
1277 /* Enable inferior call support. */
1278 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1279
1280 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1281
c9cf6e20 1282 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
8cd64e00 1283
18648a37
YQ
1284 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1285 tic6x_return_in_first_hidden_param_p);
1286
8cd64e00
YQ
1287 /* Hook in ABI-specific overrides, if they have been registered. */
1288 gdbarch_init_osabi (info, gdbarch);
1289
c1e1314d
TT
1290 if (tdesc_data != nullptr)
1291 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8cd64e00
YQ
1292
1293 return gdbarch;
1294}
1295
6c265988 1296void _initialize_tic6x_tdep ();
8cd64e00 1297void
6c265988 1298_initialize_tic6x_tdep ()
8cd64e00 1299{
ec29a63c 1300 gdbarch_register (bfd_arch_tic6x, tic6x_gdbarch_init);
8cd64e00 1301}