]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/utils.c
import gdb-2000-01-31 snapshot
[thirdparty/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c
SS
1/* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 89, 90, 91, 92, 95, 96, 1998 Free Software Foundation, Inc.
3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include <ctype.h>
23#include "gdb_string.h"
c2c6d25f 24#include "event-top.h"
c906108c
SS
25
26#ifdef HAVE_CURSES_H
27#include <curses.h>
28#endif
29#ifdef HAVE_TERM_H
30#include <term.h>
31#endif
32
33/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
34#ifdef reg
35#undef reg
36#endif
37
38#include "signals.h"
39#include "gdbcmd.h"
40#include "serial.h"
41#include "bfd.h"
42#include "target.h"
43#include "demangle.h"
44#include "expression.h"
45#include "language.h"
46#include "annotate.h"
47
48#include <readline/readline.h>
49
917317f4
JM
50#undef XMALLOC
51#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
52
c906108c
SS
53/* readline defines this. */
54#undef savestring
55
56void (*error_begin_hook) PARAMS ((void));
57
2acceee2
JM
58/* Holds the last error message issued by gdb */
59
60static GDB_FILE *gdb_lasterr;
61
c906108c
SS
62/* Prototypes for local functions */
63
64static void vfprintf_maybe_filtered PARAMS ((GDB_FILE *, const char *,
65 va_list, int));
66
67static void fputs_maybe_filtered PARAMS ((const char *, GDB_FILE *, int));
68
69#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
70static void malloc_botch PARAMS ((void));
71#endif
72
c906108c
SS
73static void
74prompt_for_continue PARAMS ((void));
75
c5aa993b 76static void
c906108c
SS
77set_width_command PARAMS ((char *, int, struct cmd_list_element *));
78
79static void
80set_width PARAMS ((void));
81
c906108c 82#ifndef GDB_FILE_ISATTY
c5aa993b 83#define GDB_FILE_ISATTY(GDB_FILE_PTR) (gdb_file_isatty(GDB_FILE_PTR))
c906108c
SS
84#endif
85
86/* Chain of cleanup actions established with make_cleanup,
87 to be executed if an error happens. */
88
c5aa993b
JM
89static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
90static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
91static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
92static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
93/* cleaned up on each error from within an execution command */
94static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
95
96/* Pointer to what is left to do for an execution command after the
97 target stops. Used only in asynchronous mode, by targets that
98 support async execution. The finish and until commands use it. So
99 does the target extended-remote command. */
100struct continuation *cmd_continuation;
c2d11a7d 101struct continuation *intermediate_continuation;
c906108c
SS
102
103/* Nonzero if we have job control. */
104
105int job_control;
106
107/* Nonzero means a quit has been requested. */
108
109int quit_flag;
110
111/* Nonzero means quit immediately if Control-C is typed now, rather
112 than waiting until QUIT is executed. Be careful in setting this;
113 code which executes with immediate_quit set has to be very careful
114 about being able to deal with being interrupted at any time. It is
115 almost always better to use QUIT; the only exception I can think of
116 is being able to quit out of a system call (using EINTR loses if
117 the SIGINT happens between the previous QUIT and the system call).
118 To immediately quit in the case in which a SIGINT happens between
119 the previous QUIT and setting immediate_quit (desirable anytime we
120 expect to block), call QUIT after setting immediate_quit. */
121
122int immediate_quit;
123
124/* Nonzero means that encoded C++ names should be printed out in their
125 C++ form rather than raw. */
126
127int demangle = 1;
128
129/* Nonzero means that encoded C++ names should be printed out in their
130 C++ form even in assembler language displays. If this is set, but
131 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
132
133int asm_demangle = 0;
134
135/* Nonzero means that strings with character values >0x7F should be printed
136 as octal escapes. Zero means just print the value (e.g. it's an
137 international character, and the terminal or window can cope.) */
138
139int sevenbit_strings = 0;
140
141/* String to be printed before error messages, if any. */
142
143char *error_pre_print;
144
145/* String to be printed before quit messages, if any. */
146
147char *quit_pre_print;
148
149/* String to be printed before warning messages, if any. */
150
151char *warning_pre_print = "\nwarning: ";
152
153int pagination_enabled = 1;
c906108c 154\f
c5aa993b 155
c906108c
SS
156/* Add a new cleanup to the cleanup_chain,
157 and return the previous chain pointer
158 to be passed later to do_cleanups or discard_cleanups.
159 Args are FUNCTION to clean up with, and ARG to pass to it. */
160
161struct cleanup *
162make_cleanup (function, arg)
163 void (*function) PARAMS ((PTR));
164 PTR arg;
165{
c5aa993b 166 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
167}
168
169struct cleanup *
170make_final_cleanup (function, arg)
171 void (*function) PARAMS ((PTR));
172 PTR arg;
173{
c5aa993b 174 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 175}
7a292a7a 176
c906108c
SS
177struct cleanup *
178make_run_cleanup (function, arg)
179 void (*function) PARAMS ((PTR));
180 PTR arg;
181{
c5aa993b 182 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 183}
7a292a7a 184
43ff13b4
JM
185struct cleanup *
186make_exec_cleanup (function, arg)
187 void (*function) PARAMS ((PTR));
188 PTR arg;
189{
c5aa993b 190 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
191}
192
6426a772
JM
193struct cleanup *
194make_exec_error_cleanup (function, arg)
195 void (*function) PARAMS ((PTR));
196 PTR arg;
197{
198 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
199}
200
7a292a7a
SS
201static void
202do_freeargv (arg)
203 void *arg;
204{
c5aa993b 205 freeargv ((char **) arg);
7a292a7a
SS
206}
207
208struct cleanup *
209make_cleanup_freeargv (arg)
210 char **arg;
211{
212 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
213}
214
11cf8741
JM
215static void
216do_gdb_file_delete (void *arg)
217{
218 gdb_file_delete (arg);
219}
220
221struct cleanup *
222make_cleanup_gdb_file_delete (struct gdb_file *arg)
223{
224 return make_my_cleanup (&cleanup_chain, do_gdb_file_delete, arg);
225}
226
c906108c
SS
227struct cleanup *
228make_my_cleanup (pmy_chain, function, arg)
229 struct cleanup **pmy_chain;
230 void (*function) PARAMS ((PTR));
231 PTR arg;
232{
233 register struct cleanup *new
c5aa993b 234 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
235 register struct cleanup *old_chain = *pmy_chain;
236
237 new->next = *pmy_chain;
238 new->function = function;
239 new->arg = arg;
240 *pmy_chain = new;
241
242 return old_chain;
243}
244
245/* Discard cleanups and do the actions they describe
246 until we get back to the point OLD_CHAIN in the cleanup_chain. */
247
248void
249do_cleanups (old_chain)
250 register struct cleanup *old_chain;
251{
c5aa993b 252 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
253}
254
255void
256do_final_cleanups (old_chain)
257 register struct cleanup *old_chain;
258{
c5aa993b 259 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
260}
261
262void
263do_run_cleanups (old_chain)
264 register struct cleanup *old_chain;
265{
c5aa993b 266 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
267}
268
43ff13b4
JM
269void
270do_exec_cleanups (old_chain)
271 register struct cleanup *old_chain;
272{
c5aa993b 273 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
274}
275
6426a772
JM
276void
277do_exec_error_cleanups (old_chain)
278 register struct cleanup *old_chain;
279{
280 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
281}
282
c906108c
SS
283void
284do_my_cleanups (pmy_chain, old_chain)
285 register struct cleanup **pmy_chain;
286 register struct cleanup *old_chain;
287{
288 register struct cleanup *ptr;
289 while ((ptr = *pmy_chain) != old_chain)
290 {
291 *pmy_chain = ptr->next; /* Do this first incase recursion */
292 (*ptr->function) (ptr->arg);
293 free (ptr);
294 }
295}
296
297/* Discard cleanups, not doing the actions they describe,
298 until we get back to the point OLD_CHAIN in the cleanup_chain. */
299
300void
301discard_cleanups (old_chain)
302 register struct cleanup *old_chain;
303{
c5aa993b 304 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
305}
306
307void
308discard_final_cleanups (old_chain)
309 register struct cleanup *old_chain;
310{
c5aa993b 311 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
312}
313
6426a772
JM
314void
315discard_exec_error_cleanups (old_chain)
316 register struct cleanup *old_chain;
317{
318 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
319}
320
c906108c
SS
321void
322discard_my_cleanups (pmy_chain, old_chain)
323 register struct cleanup **pmy_chain;
324 register struct cleanup *old_chain;
325{
326 register struct cleanup *ptr;
327 while ((ptr = *pmy_chain) != old_chain)
328 {
329 *pmy_chain = ptr->next;
c5aa993b 330 free ((PTR) ptr);
c906108c
SS
331 }
332}
333
334/* Set the cleanup_chain to 0, and return the old cleanup chain. */
335struct cleanup *
336save_cleanups ()
337{
c5aa993b 338 return save_my_cleanups (&cleanup_chain);
c906108c
SS
339}
340
341struct cleanup *
342save_final_cleanups ()
343{
c5aa993b 344 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
345}
346
347struct cleanup *
348save_my_cleanups (pmy_chain)
c5aa993b 349 struct cleanup **pmy_chain;
c906108c
SS
350{
351 struct cleanup *old_chain = *pmy_chain;
352
353 *pmy_chain = 0;
354 return old_chain;
355}
356
357/* Restore the cleanup chain from a previously saved chain. */
358void
359restore_cleanups (chain)
360 struct cleanup *chain;
361{
c5aa993b 362 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
363}
364
365void
366restore_final_cleanups (chain)
367 struct cleanup *chain;
368{
c5aa993b 369 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
370}
371
372void
373restore_my_cleanups (pmy_chain, chain)
374 struct cleanup **pmy_chain;
375 struct cleanup *chain;
376{
377 *pmy_chain = chain;
378}
379
380/* This function is useful for cleanups.
381 Do
382
c5aa993b
JM
383 foo = xmalloc (...);
384 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
385
386 to arrange to free the object thus allocated. */
387
388void
389free_current_contents (location)
390 char **location;
391{
392 free (*location);
393}
394
395/* Provide a known function that does nothing, to use as a base for
396 for a possibly long chain of cleanups. This is useful where we
397 use the cleanup chain for handling normal cleanups as well as dealing
398 with cleanups that need to be done as a result of a call to error().
399 In such cases, we may not be certain where the first cleanup is, unless
400 we have a do-nothing one to always use as the base. */
401
402/* ARGSUSED */
403void
404null_cleanup (arg)
c5aa993b 405 PTR arg;
c906108c
SS
406{
407}
408
43ff13b4 409/* Add a continuation to the continuation list, the gloabl list
c2d11a7d 410 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4
JM
411void
412add_continuation (continuation_hook, arg_list)
c5aa993b
JM
413 void (*continuation_hook) PARAMS ((struct continuation_arg *));
414 struct continuation_arg *arg_list;
43ff13b4 415{
c5aa993b 416 struct continuation *continuation_ptr;
43ff13b4 417
c5aa993b
JM
418 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
419 continuation_ptr->continuation_hook = continuation_hook;
420 continuation_ptr->arg_list = arg_list;
421 continuation_ptr->next = cmd_continuation;
422 cmd_continuation = continuation_ptr;
43ff13b4
JM
423}
424
425/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
426 continuations. There is a problem though. In some cases new
427 continuations may be added while we are in the middle of this
428 loop. If this happens they will be added in the front, and done
429 before we have a chance of exhausting those that were already
430 there. We need to then save the beginning of the list in a pointer
431 and do the continuations from there on, instead of using the
432 global beginning of list as our iteration pointer.*/
c5aa993b 433void
43ff13b4 434do_all_continuations ()
c2d11a7d
JM
435{
436 struct continuation *continuation_ptr;
437 struct continuation *saved_continuation;
438
439 /* Copy the list header into another pointer, and set the global
440 list header to null, so that the global list can change as a side
441 effect of invoking the continuations and the processing of
442 the preexisting continuations will not be affected. */
443 continuation_ptr = cmd_continuation;
444 cmd_continuation = NULL;
445
446 /* Work now on the list we have set aside. */
447 while (continuation_ptr)
448 {
449 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
450 saved_continuation = continuation_ptr;
451 continuation_ptr = continuation_ptr->next;
452 free (saved_continuation);
453 }
454}
455
456/* Walk down the cmd_continuation list, and get rid of all the
457 continuations. */
458void
459discard_all_continuations ()
43ff13b4 460{
c5aa993b 461 struct continuation *continuation_ptr;
43ff13b4 462
c5aa993b
JM
463 while (cmd_continuation)
464 {
c5aa993b
JM
465 continuation_ptr = cmd_continuation;
466 cmd_continuation = continuation_ptr->next;
467 free (continuation_ptr);
468 }
43ff13b4 469}
c2c6d25f 470
c2d11a7d
JM
471/* Add a continuation to the continuation list, the gloabl list
472 intermediate_continuation. The new continuation will be added at the front.*/
473void
474add_intermediate_continuation (continuation_hook, arg_list)
475 void (*continuation_hook) PARAMS ((struct continuation_arg *));
476 struct continuation_arg *arg_list;
477{
478 struct continuation *continuation_ptr;
479
480 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
481 continuation_ptr->continuation_hook = continuation_hook;
482 continuation_ptr->arg_list = arg_list;
483 continuation_ptr->next = intermediate_continuation;
484 intermediate_continuation = continuation_ptr;
485}
486
487/* Walk down the cmd_continuation list, and execute all the
488 continuations. There is a problem though. In some cases new
489 continuations may be added while we are in the middle of this
490 loop. If this happens they will be added in the front, and done
491 before we have a chance of exhausting those that were already
492 there. We need to then save the beginning of the list in a pointer
493 and do the continuations from there on, instead of using the
494 global beginning of list as our iteration pointer.*/
495void
496do_all_intermediate_continuations ()
497{
498 struct continuation *continuation_ptr;
499 struct continuation *saved_continuation;
500
501 /* Copy the list header into another pointer, and set the global
502 list header to null, so that the global list can change as a side
503 effect of invoking the continuations and the processing of
504 the preexisting continuations will not be affected. */
505 continuation_ptr = intermediate_continuation;
506 intermediate_continuation = NULL;
507
508 /* Work now on the list we have set aside. */
509 while (continuation_ptr)
510 {
511 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
512 saved_continuation = continuation_ptr;
513 continuation_ptr = continuation_ptr->next;
514 free (saved_continuation);
515 }
516}
517
c2c6d25f
JM
518/* Walk down the cmd_continuation list, and get rid of all the
519 continuations. */
520void
c2d11a7d 521discard_all_intermediate_continuations ()
c2c6d25f
JM
522{
523 struct continuation *continuation_ptr;
524
c2d11a7d 525 while (intermediate_continuation)
c2c6d25f 526 {
c2d11a7d
JM
527 continuation_ptr = intermediate_continuation;
528 intermediate_continuation = continuation_ptr->next;
c2c6d25f
JM
529 free (continuation_ptr);
530 }
531}
532
c906108c 533\f
c5aa993b 534
c906108c
SS
535/* Print a warning message. Way to use this is to call warning_begin,
536 output the warning message (use unfiltered output to gdb_stderr),
537 ending in a newline. There is not currently a warning_end that you
538 call afterwards, but such a thing might be added if it is useful
539 for a GUI to separate warning messages from other output.
540
541 FIXME: Why do warnings use unfiltered output and errors filtered?
542 Is this anything other than a historical accident? */
543
544void
545warning_begin ()
546{
547 target_terminal_ours ();
c5aa993b 548 wrap_here (""); /* Force out any buffered output */
c906108c
SS
549 gdb_flush (gdb_stdout);
550 if (warning_pre_print)
551 fprintf_unfiltered (gdb_stderr, warning_pre_print);
552}
553
554/* Print a warning message.
555 The first argument STRING is the warning message, used as a fprintf string,
556 and the remaining args are passed as arguments to it.
557 The primary difference between warnings and errors is that a warning
558 does not force the return to command level. */
559
c906108c 560void
c5aa993b 561warning (const char *string,...)
c906108c
SS
562{
563 va_list args;
c906108c 564 va_start (args, string);
c906108c
SS
565 if (warning_hook)
566 (*warning_hook) (string, args);
567 else
c5aa993b
JM
568 {
569 warning_begin ();
570 vfprintf_unfiltered (gdb_stderr, string, args);
571 fprintf_unfiltered (gdb_stderr, "\n");
572 va_end (args);
573 }
c906108c
SS
574}
575
576/* Start the printing of an error message. Way to use this is to call
577 this, output the error message (use filtered output to gdb_stderr
578 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
579 in a newline, and then call return_to_top_level (RETURN_ERROR).
580 error() provides a convenient way to do this for the special case
581 that the error message can be formatted with a single printf call,
582 but this is more general. */
583void
584error_begin ()
585{
586 if (error_begin_hook)
587 error_begin_hook ();
588
589 target_terminal_ours ();
c5aa993b 590 wrap_here (""); /* Force out any buffered output */
c906108c
SS
591 gdb_flush (gdb_stdout);
592
593 annotate_error_begin ();
594
595 if (error_pre_print)
596 fprintf_filtered (gdb_stderr, error_pre_print);
597}
598
599/* Print an error message and return to command level.
600 The first argument STRING is the error message, used as a fprintf string,
601 and the remaining args are passed as arguments to it. */
602
4ce44c66
JM
603NORETURN void
604verror (const char *string, va_list args)
605{
c2d11a7d
JM
606 char *err_string;
607 struct cleanup *err_string_cleanup;
4ce44c66
JM
608 /* FIXME: cagney/1999-11-10: All error calls should come here.
609 Unfortunatly some code uses the sequence: error_begin(); print
610 error message; return_to_top_level. That code should be
611 flushed. */
612 error_begin ();
c2d11a7d
JM
613 /* NOTE: It's tempting to just do the following...
614 vfprintf_filtered (gdb_stderr, string, args);
615 and then follow with a similar looking statement to cause the message
616 to also go to gdb_lasterr. But if we do this, we'll be traversing the
617 va_list twice which works on some platforms and fails miserably on
618 others. */
619 /* Save it as the last error */
4ce44c66
JM
620 gdb_file_rewind (gdb_lasterr);
621 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
622 /* Retrieve the last error and print it to gdb_stderr */
623 err_string = error_last_message ();
624 err_string_cleanup = make_cleanup (free, err_string);
625 fputs_filtered (err_string, gdb_stderr);
626 fprintf_filtered (gdb_stderr, "\n");
627 do_cleanups (err_string_cleanup);
4ce44c66
JM
628 return_to_top_level (RETURN_ERROR);
629}
630
c906108c 631NORETURN void
c5aa993b 632error (const char *string,...)
c906108c
SS
633{
634 va_list args;
c906108c 635 va_start (args, string);
4ce44c66
JM
636 verror (string, args);
637 va_end (args);
c906108c
SS
638}
639
2acceee2
JM
640NORETURN void
641error_stream (GDB_FILE *stream)
642{
4ce44c66
JM
643 long size;
644 char *msg = gdb_file_xstrdup (stream, &size);
645 make_cleanup (free, msg);
646 error ("%s", msg);
2acceee2
JM
647}
648
649/* Get the last error message issued by gdb */
650
651char *
652error_last_message (void)
653{
4ce44c66
JM
654 long len;
655 return gdb_file_xstrdup (gdb_lasterr, &len);
2acceee2 656}
4ce44c66 657
2acceee2
JM
658/* This is to be called by main() at the very beginning */
659
660void
661error_init (void)
662{
4ce44c66 663 gdb_lasterr = mem_fileopen ();
2acceee2 664}
c906108c 665
96baa820
JM
666/* Print a message reporting an internal error. Ask the user if they
667 want to continue, dump core, or just exit. */
c906108c 668
c906108c 669NORETURN void
4ce44c66 670internal_verror (const char *fmt, va_list ap)
c906108c 671{
96baa820
JM
672 static char msg[] = "Internal GDB error: recursive internal error.\n";
673 static int dejavu = 0;
7be570e7
JM
674 int continue_p;
675 int dump_core_p;
c906108c 676
96baa820
JM
677 /* don't allow infinite error recursion. */
678 switch (dejavu)
679 {
680 case 0:
681 dejavu = 1;
682 break;
683 case 1:
684 dejavu = 2;
685 fputs_unfiltered (msg, gdb_stderr);
686 abort ();
687 default:
688 dejavu = 3;
689 write (STDERR_FILENO, msg, sizeof (msg));
690 exit (1);
691 }
c906108c 692
96baa820 693 /* Try to get the message out */
7be570e7 694 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
4ce44c66 695 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 696 fputs_unfiltered ("\n", gdb_stderr);
c906108c 697
7be570e7
JM
698 /* Default (no case) is to quit GDB. When in batch mode this
699 lessens the likelhood of GDB going into an infinate loop. */
700 continue_p = query ("\
701An internal GDB error was detected. This may make make further\n\
702debugging unreliable. Continue this debugging session? ");
703
704 /* Default (no case) is to not dump core. Lessen the chance of GDB
705 leaving random core files around. */
706 dump_core_p = query ("\
707Create a core file containing the current state of GDB? ");
708
709 if (continue_p)
710 {
711 if (dump_core_p)
712 {
713 if (fork () == 0)
714 abort ();
715 }
716 }
717 else
718 {
719 if (dump_core_p)
720 abort ();
721 else
722 exit (1);
723 }
96baa820
JM
724
725 dejavu = 0;
726 return_to_top_level (RETURN_ERROR);
c906108c
SS
727}
728
4ce44c66
JM
729NORETURN void
730internal_error (char *string, ...)
731{
732 va_list ap;
733 va_start (ap, string);
734 internal_verror (string, ap);
735 va_end (ap);
736}
737
c906108c
SS
738/* The strerror() function can return NULL for errno values that are
739 out of range. Provide a "safe" version that always returns a
740 printable string. */
741
742char *
743safe_strerror (errnum)
744 int errnum;
745{
746 char *msg;
747 static char buf[32];
748
749 if ((msg = strerror (errnum)) == NULL)
750 {
751 sprintf (buf, "(undocumented errno %d)", errnum);
752 msg = buf;
753 }
754 return (msg);
755}
756
757/* The strsignal() function can return NULL for signal values that are
758 out of range. Provide a "safe" version that always returns a
759 printable string. */
760
761char *
762safe_strsignal (signo)
763 int signo;
764{
765 char *msg;
766 static char buf[32];
767
768 if ((msg = strsignal (signo)) == NULL)
769 {
770 sprintf (buf, "(undocumented signal %d)", signo);
771 msg = buf;
772 }
773 return (msg);
774}
775
776
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
782perror_with_name (string)
783 char *string;
784{
785 char *err;
786 char *combined;
787
788 err = safe_strerror (errno);
789 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
790 strcpy (combined, string);
791 strcat (combined, ": ");
792 strcat (combined, err);
793
794 /* I understand setting these is a matter of taste. Still, some people
795 may clear errno but not know about bfd_error. Doing this here is not
796 unreasonable. */
797 bfd_set_error (bfd_error_no_error);
798 errno = 0;
799
c5aa993b 800 error ("%s.", combined);
c906108c
SS
801}
802
803/* Print the system error message for ERRCODE, and also mention STRING
804 as the file name for which the error was encountered. */
805
806void
807print_sys_errmsg (string, errcode)
808 char *string;
809 int errcode;
810{
811 char *err;
812 char *combined;
813
814 err = safe_strerror (errcode);
815 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
816 strcpy (combined, string);
817 strcat (combined, ": ");
818 strcat (combined, err);
819
820 /* We want anything which was printed on stdout to come out first, before
821 this message. */
822 gdb_flush (gdb_stdout);
823 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
824}
825
826/* Control C eventually causes this to be called, at a convenient time. */
827
828void
829quit ()
830{
831 serial_t gdb_stdout_serial = serial_fdopen (1);
832
833 target_terminal_ours ();
834
835 /* We want all output to appear now, before we print "Quit". We
836 have 3 levels of buffering we have to flush (it's possible that
837 some of these should be changed to flush the lower-level ones
838 too): */
839
840 /* 1. The _filtered buffer. */
c5aa993b 841 wrap_here ((char *) 0);
c906108c
SS
842
843 /* 2. The stdio buffer. */
844 gdb_flush (gdb_stdout);
845 gdb_flush (gdb_stderr);
846
847 /* 3. The system-level buffer. */
848 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
849 SERIAL_UN_FDOPEN (gdb_stdout_serial);
850
851 annotate_error_begin ();
852
853 /* Don't use *_filtered; we don't want to prompt the user to continue. */
854 if (quit_pre_print)
855 fprintf_unfiltered (gdb_stderr, quit_pre_print);
856
7be570e7
JM
857#ifdef __MSDOS__
858 /* No steenking SIGINT will ever be coming our way when the
859 program is resumed. Don't lie. */
860 fprintf_unfiltered (gdb_stderr, "Quit\n");
861#else
c906108c 862 if (job_control
c5aa993b
JM
863 /* If there is no terminal switching for this target, then we can't
864 possibly get screwed by the lack of job control. */
c906108c
SS
865 || current_target.to_terminal_ours == NULL)
866 fprintf_unfiltered (gdb_stderr, "Quit\n");
867 else
868 fprintf_unfiltered (gdb_stderr,
c5aa993b 869 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 870#endif
c906108c
SS
871 return_to_top_level (RETURN_QUIT);
872}
873
874
7be570e7 875#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
876
877/*
878 * Windows translates all keyboard and mouse events
879 * into a message which is appended to the message
880 * queue for the process.
881 */
882
c5aa993b
JM
883void
884notice_quit ()
c906108c 885{
c5aa993b 886 int k = win32pollquit ();
c906108c
SS
887 if (k == 1)
888 quit_flag = 1;
889 else if (k == 2)
890 immediate_quit = 1;
891}
892
4ce44c66 893#else /* !defined(_MSC_VER) */
c906108c 894
c5aa993b
JM
895void
896notice_quit ()
c906108c
SS
897{
898 /* Done by signals */
899}
900
4ce44c66 901#endif /* !defined(_MSC_VER) */
c906108c 902
c906108c 903/* Control C comes here */
c906108c
SS
904void
905request_quit (signo)
906 int signo;
907{
908 quit_flag = 1;
909 /* Restore the signal handler. Harmless with BSD-style signals, needed
910 for System V-style signals. So just always do it, rather than worrying
911 about USG defines and stuff like that. */
912 signal (signo, request_quit);
913
914#ifdef REQUEST_QUIT
915 REQUEST_QUIT;
916#else
c5aa993b 917 if (immediate_quit)
c906108c
SS
918 quit ();
919#endif
920}
c906108c
SS
921\f
922/* Memory management stuff (malloc friends). */
923
924/* Make a substitute size_t for non-ANSI compilers. */
925
926#ifndef HAVE_STDDEF_H
927#ifndef size_t
928#define size_t unsigned int
929#endif
930#endif
931
932#if !defined (USE_MMALLOC)
933
ed9a39eb
JM
934void *
935mcalloc (void *md, size_t number, size_t size)
936{
937 return calloc (number, size);
938}
939
c906108c
SS
940PTR
941mmalloc (md, size)
942 PTR md;
943 size_t size;
944{
945 return malloc (size);
946}
947
948PTR
949mrealloc (md, ptr, size)
950 PTR md;
951 PTR ptr;
952 size_t size;
953{
c5aa993b 954 if (ptr == 0) /* Guard against old realloc's */
c906108c
SS
955 return malloc (size);
956 else
957 return realloc (ptr, size);
958}
959
960void
961mfree (md, ptr)
962 PTR md;
963 PTR ptr;
964{
965 free (ptr);
966}
967
c5aa993b 968#endif /* USE_MMALLOC */
c906108c
SS
969
970#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
971
972void
973init_malloc (md)
974 PTR md;
975{
976}
977
978#else /* Have mmalloc and want corruption checking */
979
980static void
981malloc_botch ()
982{
96baa820
JM
983 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
984 abort ();
c906108c
SS
985}
986
987/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
988 by MD, to detect memory corruption. Note that MD may be NULL to specify
989 the default heap that grows via sbrk.
990
991 Note that for freshly created regions, we must call mmcheckf prior to any
992 mallocs in the region. Otherwise, any region which was allocated prior to
993 installing the checking hooks, which is later reallocated or freed, will
994 fail the checks! The mmcheck function only allows initial hooks to be
995 installed before the first mmalloc. However, anytime after we have called
996 mmcheck the first time to install the checking hooks, we can call it again
997 to update the function pointer to the memory corruption handler.
998
999 Returns zero on failure, non-zero on success. */
1000
1001#ifndef MMCHECK_FORCE
1002#define MMCHECK_FORCE 0
1003#endif
1004
1005void
1006init_malloc (md)
1007 PTR md;
1008{
1009 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1010 {
1011 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
1012 to something other than dummy_target, until after
1013 initialize_all_files(). */
c906108c
SS
1014
1015 fprintf_unfiltered
1016 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1017 fprintf_unfiltered
1018 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1019 }
1020
1021 mmtrace ();
1022}
1023
1024#endif /* Have mmalloc and want corruption checking */
1025
1026/* Called when a memory allocation fails, with the number of bytes of
1027 memory requested in SIZE. */
1028
1029NORETURN void
1030nomem (size)
1031 long size;
1032{
1033 if (size > 0)
1034 {
96baa820 1035 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1036 }
1037 else
1038 {
96baa820 1039 internal_error ("virtual memory exhausted.");
c906108c
SS
1040 }
1041}
1042
1043/* Like mmalloc but get error if no storage available, and protect against
1044 the caller wanting to allocate zero bytes. Whether to return NULL for
1045 a zero byte request, or translate the request into a request for one
1046 byte of zero'd storage, is a religious issue. */
1047
1048PTR
1049xmmalloc (md, size)
1050 PTR md;
1051 long size;
1052{
1053 register PTR val;
1054
1055 if (size == 0)
1056 {
1057 val = NULL;
1058 }
1059 else if ((val = mmalloc (md, size)) == NULL)
1060 {
1061 nomem (size);
1062 }
1063 return (val);
1064}
1065
1066/* Like mrealloc but get error if no storage available. */
1067
1068PTR
1069xmrealloc (md, ptr, size)
1070 PTR md;
1071 PTR ptr;
1072 long size;
1073{
1074 register PTR val;
1075
1076 if (ptr != NULL)
1077 {
1078 val = mrealloc (md, ptr, size);
1079 }
1080 else
1081 {
1082 val = mmalloc (md, size);
1083 }
1084 if (val == NULL)
1085 {
1086 nomem (size);
1087 }
1088 return (val);
1089}
1090
1091/* Like malloc but get error if no storage available, and protect against
1092 the caller wanting to allocate zero bytes. */
1093
1094PTR
1095xmalloc (size)
1096 size_t size;
1097{
1098 return (xmmalloc ((PTR) NULL, size));
1099}
1100
ed9a39eb
JM
1101/* Like calloc but get error if no storage available */
1102
1103PTR
1104xcalloc (size_t number, size_t size)
1105{
1106 void *mem = mcalloc (NULL, number, size);
1107 if (mem == NULL)
1108 nomem (number * size);
1109 return mem;
1110}
1111
c906108c
SS
1112/* Like mrealloc but get error if no storage available. */
1113
1114PTR
1115xrealloc (ptr, size)
1116 PTR ptr;
1117 size_t size;
1118{
1119 return (xmrealloc ((PTR) NULL, ptr, size));
1120}
c906108c 1121\f
c5aa993b 1122
c906108c
SS
1123/* My replacement for the read system call.
1124 Used like `read' but keeps going if `read' returns too soon. */
1125
1126int
1127myread (desc, addr, len)
1128 int desc;
1129 char *addr;
1130 int len;
1131{
1132 register int val;
1133 int orglen = len;
1134
1135 while (len > 0)
1136 {
1137 val = read (desc, addr, len);
1138 if (val < 0)
1139 return val;
1140 if (val == 0)
1141 return orglen - len;
1142 len -= val;
1143 addr += val;
1144 }
1145 return orglen;
1146}
1147\f
1148/* Make a copy of the string at PTR with SIZE characters
1149 (and add a null character at the end in the copy).
1150 Uses malloc to get the space. Returns the address of the copy. */
1151
1152char *
1153savestring (ptr, size)
1154 const char *ptr;
1155 int size;
1156{
1157 register char *p = (char *) xmalloc (size + 1);
1158 memcpy (p, ptr, size);
1159 p[size] = 0;
1160 return p;
1161}
1162
1163char *
1164msavestring (md, ptr, size)
1165 PTR md;
1166 const char *ptr;
1167 int size;
1168{
1169 register char *p = (char *) xmmalloc (md, size + 1);
1170 memcpy (p, ptr, size);
1171 p[size] = 0;
1172 return p;
1173}
1174
1175/* The "const" is so it compiles under DGUX (which prototypes strsave
1176 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1177 Doesn't real strsave return NULL if out of memory? */
1178char *
1179strsave (ptr)
1180 const char *ptr;
1181{
1182 return savestring (ptr, strlen (ptr));
1183}
1184
1185char *
1186mstrsave (md, ptr)
1187 PTR md;
1188 const char *ptr;
1189{
1190 return (msavestring (md, ptr, strlen (ptr)));
1191}
1192
1193void
1194print_spaces (n, file)
1195 register int n;
1196 register GDB_FILE *file;
1197{
392a587b 1198 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1199}
1200
1201/* Print a host address. */
1202
1203void
d4f3574e 1204gdb_print_host_address (void *addr, struct gdb_file *stream)
c906108c
SS
1205{
1206
1207 /* We could use the %p conversion specifier to fprintf if we had any
1208 way of knowing whether this host supports it. But the following
1209 should work on the Alpha and on 32 bit machines. */
1210
c5aa993b 1211 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1212}
1213
1214/* Ask user a y-or-n question and return 1 iff answer is yes.
1215 Takes three args which are given to printf to print the question.
1216 The first, a control string, should end in "? ".
1217 It should not say how to answer, because we do that. */
1218
1219/* VARARGS */
1220int
c5aa993b 1221query (char *ctlstr,...)
c906108c
SS
1222{
1223 va_list args;
1224 register int answer;
1225 register int ans2;
1226 int retval;
1227
c906108c 1228 va_start (args, ctlstr);
c906108c
SS
1229
1230 if (query_hook)
1231 {
1232 return query_hook (ctlstr, args);
1233 }
1234
1235 /* Automatically answer "yes" if input is not from a terminal. */
1236 if (!input_from_terminal_p ())
1237 return 1;
1238#ifdef MPW
1239 /* FIXME Automatically answer "yes" if called from MacGDB. */
1240 if (mac_app)
1241 return 1;
1242#endif /* MPW */
1243
1244 while (1)
1245 {
1246 wrap_here (""); /* Flush any buffered output */
1247 gdb_flush (gdb_stdout);
1248
1249 if (annotation_level > 1)
1250 printf_filtered ("\n\032\032pre-query\n");
1251
1252 vfprintf_filtered (gdb_stdout, ctlstr, args);
1253 printf_filtered ("(y or n) ");
1254
1255 if (annotation_level > 1)
1256 printf_filtered ("\n\032\032query\n");
1257
1258#ifdef MPW
1259 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1260 have a prompt on the front of it. */
c906108c
SS
1261 if (!mac_app)
1262 fputs_unfiltered ("\n", gdb_stdout);
1263#endif /* MPW */
1264
c5aa993b 1265 wrap_here ("");
c906108c
SS
1266 gdb_flush (gdb_stdout);
1267
1268#if defined(TUI)
c5aa993b 1269 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1270#endif
1271 answer = fgetc (stdin);
1272#if defined(TUI)
1273 else
c5aa993b 1274 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1275
1276#endif
1277 clearerr (stdin); /* in case of C-d */
1278 if (answer == EOF) /* C-d */
c5aa993b 1279 {
c906108c
SS
1280 retval = 1;
1281 break;
1282 }
1283 /* Eat rest of input line, to EOF or newline */
1284 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1285 do
c906108c
SS
1286 {
1287#if defined(TUI)
c5aa993b 1288 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1289#endif
1290 ans2 = fgetc (stdin);
1291#if defined(TUI)
1292 else
c5aa993b 1293 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1294#endif
1295 clearerr (stdin);
1296 }
c5aa993b
JM
1297 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1298 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1299
1300 if (answer >= 'a')
1301 answer -= 040;
1302 if (answer == 'Y')
1303 {
1304 retval = 1;
1305 break;
1306 }
1307 if (answer == 'N')
1308 {
1309 retval = 0;
1310 break;
1311 }
1312 printf_filtered ("Please answer y or n.\n");
1313 }
1314
1315 if (annotation_level > 1)
1316 printf_filtered ("\n\032\032post-query\n");
1317 return retval;
1318}
c906108c 1319\f
c5aa993b 1320
c906108c
SS
1321/* Parse a C escape sequence. STRING_PTR points to a variable
1322 containing a pointer to the string to parse. That pointer
1323 should point to the character after the \. That pointer
1324 is updated past the characters we use. The value of the
1325 escape sequence is returned.
1326
1327 A negative value means the sequence \ newline was seen,
1328 which is supposed to be equivalent to nothing at all.
1329
1330 If \ is followed by a null character, we return a negative
1331 value and leave the string pointer pointing at the null character.
1332
1333 If \ is followed by 000, we return 0 and leave the string pointer
1334 after the zeros. A value of 0 does not mean end of string. */
1335
1336int
1337parse_escape (string_ptr)
1338 char **string_ptr;
1339{
1340 register int c = *(*string_ptr)++;
1341 switch (c)
1342 {
1343 case 'a':
1344 return 007; /* Bell (alert) char */
1345 case 'b':
1346 return '\b';
1347 case 'e': /* Escape character */
1348 return 033;
1349 case 'f':
1350 return '\f';
1351 case 'n':
1352 return '\n';
1353 case 'r':
1354 return '\r';
1355 case 't':
1356 return '\t';
1357 case 'v':
1358 return '\v';
1359 case '\n':
1360 return -2;
1361 case 0:
1362 (*string_ptr)--;
1363 return 0;
1364 case '^':
1365 c = *(*string_ptr)++;
1366 if (c == '\\')
1367 c = parse_escape (string_ptr);
1368 if (c == '?')
1369 return 0177;
1370 return (c & 0200) | (c & 037);
c5aa993b 1371
c906108c
SS
1372 case '0':
1373 case '1':
1374 case '2':
1375 case '3':
1376 case '4':
1377 case '5':
1378 case '6':
1379 case '7':
1380 {
1381 register int i = c - '0';
1382 register int count = 0;
1383 while (++count < 3)
1384 {
1385 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1386 {
1387 i *= 8;
1388 i += c - '0';
1389 }
1390 else
1391 {
1392 (*string_ptr)--;
1393 break;
1394 }
1395 }
1396 return i;
1397 }
1398 default:
1399 return c;
1400 }
1401}
1402\f
1403/* Print the character C on STREAM as part of the contents of a literal
1404 string whose delimiter is QUOTER. Note that this routine should only
1405 be call for printing things which are independent of the language
1406 of the program being debugged. */
1407
43e526b9
JM
1408static void printchar PARAMS ((int c, void (*do_fputs) (const char *, GDB_FILE*), void (*do_fprintf) (GDB_FILE*, const char *, ...), GDB_FILE *stream, int quoter));
1409
1410static void
1411printchar (c, do_fputs, do_fprintf, stream, quoter)
1412 int c;
1413 void (*do_fputs) PARAMS ((const char *, GDB_FILE*));
1414 void (*do_fprintf) PARAMS ((GDB_FILE*, const char *, ...));
c906108c
SS
1415 GDB_FILE *stream;
1416 int quoter;
1417{
1418
1419 c &= 0xFF; /* Avoid sign bit follies */
1420
c5aa993b
JM
1421 if (c < 0x20 || /* Low control chars */
1422 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1423 (sevenbit_strings && c >= 0x80))
1424 { /* high order bit set */
1425 switch (c)
1426 {
1427 case '\n':
43e526b9 1428 do_fputs ("\\n", stream);
c5aa993b
JM
1429 break;
1430 case '\b':
43e526b9 1431 do_fputs ("\\b", stream);
c5aa993b
JM
1432 break;
1433 case '\t':
43e526b9 1434 do_fputs ("\\t", stream);
c5aa993b
JM
1435 break;
1436 case '\f':
43e526b9 1437 do_fputs ("\\f", stream);
c5aa993b
JM
1438 break;
1439 case '\r':
43e526b9 1440 do_fputs ("\\r", stream);
c5aa993b
JM
1441 break;
1442 case '\033':
43e526b9 1443 do_fputs ("\\e", stream);
c5aa993b
JM
1444 break;
1445 case '\007':
43e526b9 1446 do_fputs ("\\a", stream);
c5aa993b
JM
1447 break;
1448 default:
43e526b9 1449 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1450 break;
1451 }
1452 }
1453 else
1454 {
1455 if (c == '\\' || c == quoter)
43e526b9
JM
1456 do_fputs ("\\", stream);
1457 do_fprintf (stream, "%c", c);
c5aa993b 1458 }
c906108c 1459}
43e526b9
JM
1460
1461/* Print the character C on STREAM as part of the contents of a
1462 literal string whose delimiter is QUOTER. Note that these routines
1463 should only be call for printing things which are independent of
1464 the language of the program being debugged. */
1465
1466void
1467fputstr_filtered (str, quoter, stream)
1468 const char *str;
1469 int quoter;
1470 GDB_FILE *stream;
1471{
1472 while (*str)
1473 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1474}
1475
1476void
1477fputstr_unfiltered (str, quoter, stream)
1478 const char *str;
1479 int quoter;
1480 GDB_FILE *stream;
1481{
1482 while (*str)
1483 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1484}
1485
1486void
1487fputstrn_unfiltered (str, n, quoter, stream)
1488 const char *str;
1489 int n;
1490 int quoter;
1491 GDB_FILE *stream;
1492{
1493 int i;
1494 for (i = 0; i < n; i++)
1495 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1496}
1497
c906108c 1498\f
c5aa993b 1499
c906108c
SS
1500/* Number of lines per page or UINT_MAX if paging is disabled. */
1501static unsigned int lines_per_page;
e514a9d6 1502/* Number of chars per line or UNIT_MAX if line folding is disabled. */
c906108c
SS
1503static unsigned int chars_per_line;
1504/* Current count of lines printed on this page, chars on this line. */
1505static unsigned int lines_printed, chars_printed;
1506
1507/* Buffer and start column of buffered text, for doing smarter word-
1508 wrapping. When someone calls wrap_here(), we start buffering output
1509 that comes through fputs_filtered(). If we see a newline, we just
1510 spit it out and forget about the wrap_here(). If we see another
1511 wrap_here(), we spit it out and remember the newer one. If we see
1512 the end of the line, we spit out a newline, the indent, and then
1513 the buffered output. */
1514
1515/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1516 are waiting to be output (they have already been counted in chars_printed).
1517 When wrap_buffer[0] is null, the buffer is empty. */
1518static char *wrap_buffer;
1519
1520/* Pointer in wrap_buffer to the next character to fill. */
1521static char *wrap_pointer;
1522
1523/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1524 is non-zero. */
1525static char *wrap_indent;
1526
1527/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1528 is not in effect. */
1529static int wrap_column;
c906108c 1530\f
c5aa993b 1531
c906108c
SS
1532/* Inialize the lines and chars per page */
1533void
c5aa993b 1534init_page_info ()
c906108c
SS
1535{
1536#if defined(TUI)
c5aa993b 1537 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1538 {
1539 lines_per_page = cmdWin->generic.height;
1540 chars_per_line = cmdWin->generic.width;
1541 }
1542 else
1543#endif
1544 {
1545 /* These defaults will be used if we are unable to get the correct
1546 values from termcap. */
1547#if defined(__GO32__)
c5aa993b
JM
1548 lines_per_page = ScreenRows ();
1549 chars_per_line = ScreenCols ();
1550#else
c906108c
SS
1551 lines_per_page = 24;
1552 chars_per_line = 80;
1553
1554#if !defined (MPW) && !defined (_WIN32)
1555 /* No termcap under MPW, although might be cool to do something
1556 by looking at worksheet or console window sizes. */
1557 /* Initialize the screen height and width from termcap. */
1558 {
c5aa993b 1559 char *termtype = getenv ("TERM");
c906108c 1560
c5aa993b
JM
1561 /* Positive means success, nonpositive means failure. */
1562 int status;
c906108c 1563
c5aa993b
JM
1564 /* 2048 is large enough for all known terminals, according to the
1565 GNU termcap manual. */
1566 char term_buffer[2048];
c906108c 1567
c5aa993b
JM
1568 if (termtype)
1569 {
c906108c
SS
1570 status = tgetent (term_buffer, termtype);
1571 if (status > 0)
1572 {
c5aa993b 1573 int val;
c906108c 1574 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1575
1576 val = tgetnum ("li");
1577 if (val >= 0 && !running_in_emacs)
1578 lines_per_page = val;
1579 else
1580 /* The number of lines per page is not mentioned
c906108c
SS
1581 in the terminal description. This probably means
1582 that paging is not useful (e.g. emacs shell window),
1583 so disable paging. */
c5aa993b
JM
1584 lines_per_page = UINT_MAX;
1585
1586 val = tgetnum ("co");
1587 if (val >= 0)
1588 chars_per_line = val;
c906108c 1589 }
c5aa993b 1590 }
c906108c
SS
1591 }
1592#endif /* MPW */
1593
1594#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1595
1596 /* If there is a better way to determine the window size, use it. */
1597 SIGWINCH_HANDLER (SIGWINCH);
1598#endif
1599#endif
1600 /* If the output is not a terminal, don't paginate it. */
1601 if (!GDB_FILE_ISATTY (gdb_stdout))
c5aa993b
JM
1602 lines_per_page = UINT_MAX;
1603 } /* the command_line_version */
1604 set_width ();
c906108c
SS
1605}
1606
1607static void
c5aa993b 1608set_width ()
c906108c
SS
1609{
1610 if (chars_per_line == 0)
c5aa993b 1611 init_page_info ();
c906108c
SS
1612
1613 if (!wrap_buffer)
1614 {
1615 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1616 wrap_buffer[0] = '\0';
1617 }
1618 else
1619 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1620 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1621}
1622
1623/* ARGSUSED */
c5aa993b 1624static void
c906108c
SS
1625set_width_command (args, from_tty, c)
1626 char *args;
1627 int from_tty;
1628 struct cmd_list_element *c;
1629{
1630 set_width ();
1631}
1632
1633/* Wait, so the user can read what's on the screen. Prompt the user
1634 to continue by pressing RETURN. */
1635
1636static void
1637prompt_for_continue ()
1638{
1639 char *ignore;
1640 char cont_prompt[120];
1641
1642 if (annotation_level > 1)
1643 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1644
1645 strcpy (cont_prompt,
1646 "---Type <return> to continue, or q <return> to quit---");
1647 if (annotation_level > 1)
1648 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1649
1650 /* We must do this *before* we call gdb_readline, else it will eventually
1651 call us -- thinking that we're trying to print beyond the end of the
1652 screen. */
1653 reinitialize_more_filter ();
1654
1655 immediate_quit++;
1656 /* On a real operating system, the user can quit with SIGINT.
1657 But not on GO32.
1658
1659 'q' is provided on all systems so users don't have to change habits
1660 from system to system, and because telling them what to do in
1661 the prompt is more user-friendly than expecting them to think of
1662 SIGINT. */
1663 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1664 whereas control-C to gdb_readline will cause the user to get dumped
1665 out to DOS. */
1666 ignore = readline (cont_prompt);
1667
1668 if (annotation_level > 1)
1669 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1670
1671 if (ignore)
1672 {
1673 char *p = ignore;
1674 while (*p == ' ' || *p == '\t')
1675 ++p;
1676 if (p[0] == 'q')
0f71a2f6 1677 {
6426a772 1678 if (!event_loop_p)
0f71a2f6
JM
1679 request_quit (SIGINT);
1680 else
c5aa993b 1681 async_request_quit (0);
0f71a2f6 1682 }
c906108c
SS
1683 free (ignore);
1684 }
1685 immediate_quit--;
1686
1687 /* Now we have to do this again, so that GDB will know that it doesn't
1688 need to save the ---Type <return>--- line at the top of the screen. */
1689 reinitialize_more_filter ();
1690
1691 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1692}
1693
1694/* Reinitialize filter; ie. tell it to reset to original values. */
1695
1696void
1697reinitialize_more_filter ()
1698{
1699 lines_printed = 0;
1700 chars_printed = 0;
1701}
1702
1703/* Indicate that if the next sequence of characters overflows the line,
1704 a newline should be inserted here rather than when it hits the end.
1705 If INDENT is non-null, it is a string to be printed to indent the
1706 wrapped part on the next line. INDENT must remain accessible until
1707 the next call to wrap_here() or until a newline is printed through
1708 fputs_filtered().
1709
1710 If the line is already overfull, we immediately print a newline and
1711 the indentation, and disable further wrapping.
1712
1713 If we don't know the width of lines, but we know the page height,
1714 we must not wrap words, but should still keep track of newlines
1715 that were explicitly printed.
1716
1717 INDENT should not contain tabs, as that will mess up the char count
1718 on the next line. FIXME.
1719
1720 This routine is guaranteed to force out any output which has been
1721 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1722 used to force out output from the wrap_buffer. */
1723
1724void
c5aa993b 1725wrap_here (indent)
c906108c
SS
1726 char *indent;
1727{
1728 /* This should have been allocated, but be paranoid anyway. */
1729 if (!wrap_buffer)
1730 abort ();
1731
1732 if (wrap_buffer[0])
1733 {
1734 *wrap_pointer = '\0';
1735 fputs_unfiltered (wrap_buffer, gdb_stdout);
1736 }
1737 wrap_pointer = wrap_buffer;
1738 wrap_buffer[0] = '\0';
c5aa993b 1739 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1740 {
1741 wrap_column = 0;
1742 }
1743 else if (chars_printed >= chars_per_line)
1744 {
1745 puts_filtered ("\n");
1746 if (indent != NULL)
1747 puts_filtered (indent);
1748 wrap_column = 0;
1749 }
1750 else
1751 {
1752 wrap_column = chars_printed;
1753 if (indent == NULL)
1754 wrap_indent = "";
1755 else
1756 wrap_indent = indent;
1757 }
1758}
1759
1760/* Ensure that whatever gets printed next, using the filtered output
1761 commands, starts at the beginning of the line. I.E. if there is
1762 any pending output for the current line, flush it and start a new
1763 line. Otherwise do nothing. */
1764
1765void
1766begin_line ()
1767{
1768 if (chars_printed > 0)
1769 {
1770 puts_filtered ("\n");
1771 }
1772}
1773
ac9a91a7 1774
c906108c
SS
1775/* Like fputs but if FILTER is true, pause after every screenful.
1776
1777 Regardless of FILTER can wrap at points other than the final
1778 character of a line.
1779
1780 Unlike fputs, fputs_maybe_filtered does not return a value.
1781 It is OK for LINEBUFFER to be NULL, in which case just don't print
1782 anything.
1783
1784 Note that a longjmp to top level may occur in this routine (only if
1785 FILTER is true) (since prompt_for_continue may do so) so this
1786 routine should not be called when cleanups are not in place. */
1787
1788static void
1789fputs_maybe_filtered (linebuffer, stream, filter)
1790 const char *linebuffer;
1791 GDB_FILE *stream;
1792 int filter;
1793{
1794 const char *lineptr;
1795
1796 if (linebuffer == 0)
1797 return;
1798
1799 /* Don't do any filtering if it is disabled. */
7a292a7a 1800 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1801 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1802 {
1803 fputs_unfiltered (linebuffer, stream);
1804 return;
1805 }
1806
1807 /* Go through and output each character. Show line extension
1808 when this is necessary; prompt user for new page when this is
1809 necessary. */
c5aa993b 1810
c906108c
SS
1811 lineptr = linebuffer;
1812 while (*lineptr)
1813 {
1814 /* Possible new page. */
1815 if (filter &&
1816 (lines_printed >= lines_per_page - 1))
1817 prompt_for_continue ();
1818
1819 while (*lineptr && *lineptr != '\n')
1820 {
1821 /* Print a single line. */
1822 if (*lineptr == '\t')
1823 {
1824 if (wrap_column)
1825 *wrap_pointer++ = '\t';
1826 else
1827 fputc_unfiltered ('\t', stream);
1828 /* Shifting right by 3 produces the number of tab stops
1829 we have already passed, and then adding one and
c5aa993b 1830 shifting left 3 advances to the next tab stop. */
c906108c
SS
1831 chars_printed = ((chars_printed >> 3) + 1) << 3;
1832 lineptr++;
1833 }
1834 else
1835 {
1836 if (wrap_column)
1837 *wrap_pointer++ = *lineptr;
1838 else
c5aa993b 1839 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1840 chars_printed++;
1841 lineptr++;
1842 }
c5aa993b 1843
c906108c
SS
1844 if (chars_printed >= chars_per_line)
1845 {
1846 unsigned int save_chars = chars_printed;
1847
1848 chars_printed = 0;
1849 lines_printed++;
1850 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1851 if chars_per_line is right, we probably just overflowed
1852 anyway; if it's wrong, let us keep going. */
c906108c
SS
1853 if (wrap_column)
1854 fputc_unfiltered ('\n', stream);
1855
1856 /* Possible new page. */
1857 if (lines_printed >= lines_per_page - 1)
1858 prompt_for_continue ();
1859
1860 /* Now output indentation and wrapped string */
1861 if (wrap_column)
1862 {
1863 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1864 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1865 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1866 /* FIXME, this strlen is what prevents wrap_indent from
1867 containing tabs. However, if we recurse to print it
1868 and count its chars, we risk trouble if wrap_indent is
1869 longer than (the user settable) chars_per_line.
1870 Note also that this can set chars_printed > chars_per_line
1871 if we are printing a long string. */
1872 chars_printed = strlen (wrap_indent)
c5aa993b 1873 + (save_chars - wrap_column);
c906108c
SS
1874 wrap_pointer = wrap_buffer; /* Reset buffer */
1875 wrap_buffer[0] = '\0';
c5aa993b
JM
1876 wrap_column = 0; /* And disable fancy wrap */
1877 }
c906108c
SS
1878 }
1879 }
1880
1881 if (*lineptr == '\n')
1882 {
1883 chars_printed = 0;
c5aa993b 1884 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1885 lines_printed++;
1886 fputc_unfiltered ('\n', stream);
1887 lineptr++;
1888 }
1889 }
1890}
1891
1892void
1893fputs_filtered (linebuffer, stream)
1894 const char *linebuffer;
1895 GDB_FILE *stream;
1896{
1897 fputs_maybe_filtered (linebuffer, stream, 1);
1898}
1899
1900int
1901putchar_unfiltered (c)
1902 int c;
1903{
11cf8741
JM
1904 char buf = c;
1905 gdb_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1906 return c;
1907}
1908
1909int
1910fputc_unfiltered (c, stream)
1911 int c;
c5aa993b 1912 GDB_FILE *stream;
c906108c 1913{
11cf8741
JM
1914 char buf = c;
1915 gdb_file_write (stream, &buf, 1);
c906108c
SS
1916 return c;
1917}
1918
1919int
1920fputc_filtered (c, stream)
1921 int c;
c5aa993b 1922 GDB_FILE *stream;
c906108c
SS
1923{
1924 char buf[2];
1925
1926 buf[0] = c;
1927 buf[1] = 0;
1928 fputs_filtered (buf, stream);
1929 return c;
1930}
1931
1932/* puts_debug is like fputs_unfiltered, except it prints special
1933 characters in printable fashion. */
1934
1935void
1936puts_debug (prefix, string, suffix)
1937 char *prefix;
1938 char *string;
1939 char *suffix;
1940{
1941 int ch;
1942
1943 /* Print prefix and suffix after each line. */
1944 static int new_line = 1;
1945 static int return_p = 0;
1946 static char *prev_prefix = "";
1947 static char *prev_suffix = "";
1948
1949 if (*string == '\n')
1950 return_p = 0;
1951
1952 /* If the prefix is changing, print the previous suffix, a new line,
1953 and the new prefix. */
c5aa993b 1954 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1955 {
9846de1b
JM
1956 fputs_unfiltered (prev_suffix, gdb_stdlog);
1957 fputs_unfiltered ("\n", gdb_stdlog);
1958 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1959 }
1960
1961 /* Print prefix if we printed a newline during the previous call. */
1962 if (new_line)
1963 {
1964 new_line = 0;
9846de1b 1965 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1966 }
1967
1968 prev_prefix = prefix;
1969 prev_suffix = suffix;
1970
1971 /* Output characters in a printable format. */
1972 while ((ch = *string++) != '\0')
1973 {
1974 switch (ch)
c5aa993b 1975 {
c906108c
SS
1976 default:
1977 if (isprint (ch))
9846de1b 1978 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1979
1980 else
9846de1b 1981 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1982 break;
1983
c5aa993b
JM
1984 case '\\':
1985 fputs_unfiltered ("\\\\", gdb_stdlog);
1986 break;
1987 case '\b':
1988 fputs_unfiltered ("\\b", gdb_stdlog);
1989 break;
1990 case '\f':
1991 fputs_unfiltered ("\\f", gdb_stdlog);
1992 break;
1993 case '\n':
1994 new_line = 1;
1995 fputs_unfiltered ("\\n", gdb_stdlog);
1996 break;
1997 case '\r':
1998 fputs_unfiltered ("\\r", gdb_stdlog);
1999 break;
2000 case '\t':
2001 fputs_unfiltered ("\\t", gdb_stdlog);
2002 break;
2003 case '\v':
2004 fputs_unfiltered ("\\v", gdb_stdlog);
2005 break;
2006 }
c906108c
SS
2007
2008 return_p = ch == '\r';
2009 }
2010
2011 /* Print suffix if we printed a newline. */
2012 if (new_line)
2013 {
9846de1b
JM
2014 fputs_unfiltered (suffix, gdb_stdlog);
2015 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2016 }
2017}
2018
2019
2020/* Print a variable number of ARGS using format FORMAT. If this
2021 information is going to put the amount written (since the last call
2022 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2023 call prompt_for_continue to get the users permision to continue.
2024
2025 Unlike fprintf, this function does not return a value.
2026
2027 We implement three variants, vfprintf (takes a vararg list and stream),
2028 fprintf (takes a stream to write on), and printf (the usual).
2029
2030 Note also that a longjmp to top level may occur in this routine
2031 (since prompt_for_continue may do so) so this routine should not be
2032 called when cleanups are not in place. */
2033
2034static void
2035vfprintf_maybe_filtered (stream, format, args, filter)
2036 GDB_FILE *stream;
2037 const char *format;
2038 va_list args;
2039 int filter;
2040{
2041 char *linebuffer;
2042 struct cleanup *old_cleanups;
2043
2044 vasprintf (&linebuffer, format, args);
2045 if (linebuffer == NULL)
2046 {
2047 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2048 exit (1);
2049 }
2050 old_cleanups = make_cleanup (free, linebuffer);
2051 fputs_maybe_filtered (linebuffer, stream, filter);
2052 do_cleanups (old_cleanups);
2053}
2054
2055
2056void
2057vfprintf_filtered (stream, format, args)
2058 GDB_FILE *stream;
2059 const char *format;
2060 va_list args;
2061{
2062 vfprintf_maybe_filtered (stream, format, args, 1);
2063}
2064
2065void
2066vfprintf_unfiltered (stream, format, args)
2067 GDB_FILE *stream;
2068 const char *format;
2069 va_list args;
2070{
2071 char *linebuffer;
2072 struct cleanup *old_cleanups;
2073
2074 vasprintf (&linebuffer, format, args);
2075 if (linebuffer == NULL)
2076 {
2077 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2078 exit (1);
2079 }
2080 old_cleanups = make_cleanup (free, linebuffer);
2081 fputs_unfiltered (linebuffer, stream);
2082 do_cleanups (old_cleanups);
2083}
2084
2085void
2086vprintf_filtered (format, args)
2087 const char *format;
2088 va_list args;
2089{
2090 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2091}
2092
2093void
2094vprintf_unfiltered (format, args)
2095 const char *format;
2096 va_list args;
2097{
2098 vfprintf_unfiltered (gdb_stdout, format, args);
2099}
2100
c906108c 2101void
c5aa993b 2102fprintf_filtered (GDB_FILE * stream, const char *format,...)
c906108c
SS
2103{
2104 va_list args;
c906108c 2105 va_start (args, format);
c906108c
SS
2106 vfprintf_filtered (stream, format, args);
2107 va_end (args);
2108}
2109
c906108c 2110void
c5aa993b 2111fprintf_unfiltered (GDB_FILE * stream, const char *format,...)
c906108c
SS
2112{
2113 va_list args;
c906108c 2114 va_start (args, format);
c906108c
SS
2115 vfprintf_unfiltered (stream, format, args);
2116 va_end (args);
2117}
2118
2119/* Like fprintf_filtered, but prints its result indented.
2120 Called as fprintfi_filtered (spaces, stream, format, ...); */
2121
c906108c 2122void
c5aa993b 2123fprintfi_filtered (int spaces, GDB_FILE * stream, const char *format,...)
c906108c
SS
2124{
2125 va_list args;
c906108c 2126 va_start (args, format);
c906108c
SS
2127 print_spaces_filtered (spaces, stream);
2128
2129 vfprintf_filtered (stream, format, args);
2130 va_end (args);
2131}
2132
2133
c906108c 2134void
c5aa993b 2135printf_filtered (const char *format,...)
c906108c
SS
2136{
2137 va_list args;
c906108c 2138 va_start (args, format);
c906108c
SS
2139 vfprintf_filtered (gdb_stdout, format, args);
2140 va_end (args);
2141}
2142
2143
c906108c 2144void
c5aa993b 2145printf_unfiltered (const char *format,...)
c906108c
SS
2146{
2147 va_list args;
c906108c 2148 va_start (args, format);
c906108c
SS
2149 vfprintf_unfiltered (gdb_stdout, format, args);
2150 va_end (args);
2151}
2152
2153/* Like printf_filtered, but prints it's result indented.
2154 Called as printfi_filtered (spaces, format, ...); */
2155
c906108c 2156void
c5aa993b 2157printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2158{
2159 va_list args;
c906108c 2160 va_start (args, format);
c906108c
SS
2161 print_spaces_filtered (spaces, gdb_stdout);
2162 vfprintf_filtered (gdb_stdout, format, args);
2163 va_end (args);
2164}
2165
2166/* Easy -- but watch out!
2167
2168 This routine is *not* a replacement for puts()! puts() appends a newline.
2169 This one doesn't, and had better not! */
2170
2171void
2172puts_filtered (string)
2173 const char *string;
2174{
2175 fputs_filtered (string, gdb_stdout);
2176}
2177
2178void
2179puts_unfiltered (string)
2180 const char *string;
2181{
2182 fputs_unfiltered (string, gdb_stdout);
2183}
2184
2185/* Return a pointer to N spaces and a null. The pointer is good
2186 until the next call to here. */
2187char *
2188n_spaces (n)
2189 int n;
2190{
392a587b
JM
2191 char *t;
2192 static char *spaces = 0;
2193 static int max_spaces = -1;
c906108c
SS
2194
2195 if (n > max_spaces)
2196 {
2197 if (spaces)
2198 free (spaces);
c5aa993b
JM
2199 spaces = (char *) xmalloc (n + 1);
2200 for (t = spaces + n; t != spaces;)
c906108c
SS
2201 *--t = ' ';
2202 spaces[n] = '\0';
2203 max_spaces = n;
2204 }
2205
2206 return spaces + max_spaces - n;
2207}
2208
2209/* Print N spaces. */
2210void
2211print_spaces_filtered (n, stream)
2212 int n;
2213 GDB_FILE *stream;
2214{
2215 fputs_filtered (n_spaces (n), stream);
2216}
2217\f
2218/* C++ demangler stuff. */
2219
2220/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2221 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2222 If the name is not mangled, or the language for the name is unknown, or
2223 demangling is off, the name is printed in its "raw" form. */
2224
2225void
2226fprintf_symbol_filtered (stream, name, lang, arg_mode)
2227 GDB_FILE *stream;
2228 char *name;
2229 enum language lang;
2230 int arg_mode;
2231{
2232 char *demangled;
2233
2234 if (name != NULL)
2235 {
2236 /* If user wants to see raw output, no problem. */
2237 if (!demangle)
2238 {
2239 fputs_filtered (name, stream);
2240 }
2241 else
2242 {
2243 switch (lang)
2244 {
2245 case language_cplus:
2246 demangled = cplus_demangle (name, arg_mode);
2247 break;
2248 case language_java:
2249 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2250 break;
2251 case language_chill:
2252 demangled = chill_demangle (name);
2253 break;
2254 default:
2255 demangled = NULL;
2256 break;
2257 }
2258 fputs_filtered (demangled ? demangled : name, stream);
2259 if (demangled != NULL)
2260 {
2261 free (demangled);
2262 }
2263 }
2264 }
2265}
2266
2267/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2268 differences in whitespace. Returns 0 if they match, non-zero if they
2269 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2270
c906108c
SS
2271 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2272 This "feature" is useful when searching for matching C++ function names
2273 (such as if the user types 'break FOO', where FOO is a mangled C++
2274 function). */
2275
2276int
2277strcmp_iw (string1, string2)
2278 const char *string1;
2279 const char *string2;
2280{
2281 while ((*string1 != '\0') && (*string2 != '\0'))
2282 {
2283 while (isspace (*string1))
2284 {
2285 string1++;
2286 }
2287 while (isspace (*string2))
2288 {
2289 string2++;
2290 }
2291 if (*string1 != *string2)
2292 {
2293 break;
2294 }
2295 if (*string1 != '\0')
2296 {
2297 string1++;
2298 string2++;
2299 }
2300 }
2301 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2302}
c906108c 2303\f
c5aa993b 2304
c906108c 2305/*
c5aa993b
JM
2306 ** subset_compare()
2307 ** Answer whether string_to_compare is a full or partial match to
2308 ** template_string. The partial match must be in sequence starting
2309 ** at index 0.
2310 */
c906108c 2311int
7a292a7a 2312subset_compare (string_to_compare, template_string)
c5aa993b
JM
2313 char *string_to_compare;
2314 char *template_string;
7a292a7a
SS
2315{
2316 int match;
c5aa993b
JM
2317 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2318 strlen (string_to_compare) <= strlen (template_string))
2319 match = (strncmp (template_string,
2320 string_to_compare,
2321 strlen (string_to_compare)) == 0);
7a292a7a
SS
2322 else
2323 match = 0;
2324 return match;
2325}
c906108c
SS
2326
2327
7a292a7a
SS
2328static void pagination_on_command PARAMS ((char *arg, int from_tty));
2329static void
2330pagination_on_command (arg, from_tty)
c5aa993b
JM
2331 char *arg;
2332 int from_tty;
c906108c
SS
2333{
2334 pagination_enabled = 1;
2335}
2336
7a292a7a
SS
2337static void pagination_on_command PARAMS ((char *arg, int from_tty));
2338static void
2339pagination_off_command (arg, from_tty)
c5aa993b
JM
2340 char *arg;
2341 int from_tty;
c906108c
SS
2342{
2343 pagination_enabled = 0;
2344}
c906108c 2345\f
c5aa993b 2346
c906108c
SS
2347void
2348initialize_utils ()
2349{
2350 struct cmd_list_element *c;
2351
c5aa993b
JM
2352 c = add_set_cmd ("width", class_support, var_uinteger,
2353 (char *) &chars_per_line,
2354 "Set number of characters gdb thinks are in a line.",
2355 &setlist);
c906108c
SS
2356 add_show_from_set (c, &showlist);
2357 c->function.sfunc = set_width_command;
2358
2359 add_show_from_set
2360 (add_set_cmd ("height", class_support,
c5aa993b 2361 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2362 "Set number of lines gdb thinks are in a page.", &setlist),
2363 &showlist);
c5aa993b 2364
c906108c
SS
2365 init_page_info ();
2366
2367 /* If the output is not a terminal, don't paginate it. */
2368 if (!GDB_FILE_ISATTY (gdb_stdout))
2369 lines_per_page = UINT_MAX;
2370
c5aa993b 2371 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2372
2373 add_show_from_set
c5aa993b
JM
2374 (add_set_cmd ("demangle", class_support, var_boolean,
2375 (char *) &demangle,
2376 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2377 &setprintlist),
2378 &showprintlist);
2379
2380 add_show_from_set
2381 (add_set_cmd ("pagination", class_support,
c5aa993b 2382 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2383 "Set state of pagination.", &setlist),
2384 &showlist);
2385 if (xdb_commands)
2386 {
c5aa993b
JM
2387 add_com ("am", class_support, pagination_on_command,
2388 "Enable pagination");
2389 add_com ("sm", class_support, pagination_off_command,
2390 "Disable pagination");
c906108c
SS
2391 }
2392
2393 add_show_from_set
c5aa993b
JM
2394 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2395 (char *) &sevenbit_strings,
2396 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2397 &setprintlist),
2398 &showprintlist);
2399
2400 add_show_from_set
c5aa993b
JM
2401 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2402 (char *) &asm_demangle,
2403 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2404 &setprintlist),
2405 &showprintlist);
2406}
2407
2408/* Machine specific function to handle SIGWINCH signal. */
2409
2410#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2411SIGWINCH_HANDLER_BODY
c906108c
SS
2412#endif
2413\f
2414/* Support for converting target fp numbers into host DOUBLEST format. */
2415
2416/* XXX - This code should really be in libiberty/floatformat.c, however
2417 configuration issues with libiberty made this very difficult to do in the
2418 available time. */
2419
2420#include "floatformat.h"
2421#include <math.h> /* ldexp */
2422
2423/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2424 going to bother with trying to muck around with whether it is defined in
2425 a system header, what we do if not, etc. */
2426#define FLOATFORMAT_CHAR_BIT 8
2427
2428static unsigned long get_field PARAMS ((unsigned char *,
2429 enum floatformat_byteorders,
2430 unsigned int,
2431 unsigned int,
2432 unsigned int));
2433
2434/* Extract a field which starts at START and is LEN bytes long. DATA and
2435 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2436static unsigned long
2437get_field (data, order, total_len, start, len)
2438 unsigned char *data;
2439 enum floatformat_byteorders order;
2440 unsigned int total_len;
2441 unsigned int start;
2442 unsigned int len;
2443{
2444 unsigned long result;
2445 unsigned int cur_byte;
2446 int cur_bitshift;
2447
2448 /* Start at the least significant part of the field. */
c906108c 2449 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2450 {
2451 /* We start counting from the other end (i.e, from the high bytes
2452 rather than the low bytes). As such, we need to be concerned
2453 with what happens if bit 0 doesn't start on a byte boundary.
2454 I.e, we need to properly handle the case where total_len is
2455 not evenly divisible by 8. So we compute ``excess'' which
2456 represents the number of bits from the end of our starting
2457 byte needed to get to bit 0. */
2458 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2459 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2460 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2461 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2462 - FLOATFORMAT_CHAR_BIT;
2463 }
2464 else
2465 {
2466 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2467 cur_bitshift =
2468 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2469 }
2470 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2471 result = *(data + cur_byte) >> (-cur_bitshift);
2472 else
2473 result = 0;
c906108c
SS
2474 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2475 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2476 ++cur_byte;
2477 else
2478 --cur_byte;
2479
2480 /* Move towards the most significant part of the field. */
2481 while (cur_bitshift < len)
2482 {
0fda6bd2 2483 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2484 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2485 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2486 ++cur_byte;
2487 else
2488 --cur_byte;
2489 }
0fda6bd2
JM
2490 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2491 /* Mask out bits which are not part of the field */
2492 result &= ((1UL << len) - 1);
c906108c
SS
2493 return result;
2494}
c5aa993b 2495
c906108c
SS
2496/* Convert from FMT to a DOUBLEST.
2497 FROM is the address of the extended float.
2498 Store the DOUBLEST in *TO. */
2499
2500void
2501floatformat_to_doublest (fmt, from, to)
2502 const struct floatformat *fmt;
2503 char *from;
2504 DOUBLEST *to;
2505{
c5aa993b 2506 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2507 DOUBLEST dto;
2508 long exponent;
2509 unsigned long mant;
2510 unsigned int mant_bits, mant_off;
2511 int mant_bits_left;
2512 int special_exponent; /* It's a NaN, denorm or zero */
2513
2514 /* If the mantissa bits are not contiguous from one end of the
2515 mantissa to the other, we need to make a private copy of the
2516 source bytes that is in the right order since the unpacking
2517 algorithm assumes that the bits are contiguous.
2518
2519 Swap the bytes individually rather than accessing them through
2520 "long *" since we have no guarantee that they start on a long
2521 alignment, and also sizeof(long) for the host could be different
2522 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2523 for the target is 4. */
2524
c5aa993b 2525 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2526 {
2527 static unsigned char *newfrom;
2528 unsigned char *swapin, *swapout;
2529 int longswaps;
2530
c5aa993b 2531 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2532 longswaps >>= 3;
c5aa993b 2533
c906108c
SS
2534 if (newfrom == NULL)
2535 {
c5aa993b 2536 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2537 }
2538 swapout = newfrom;
2539 swapin = ufrom;
2540 ufrom = newfrom;
2541 while (longswaps-- > 0)
2542 {
2543 /* This is ugly, but efficient */
2544 *swapout++ = swapin[4];
2545 *swapout++ = swapin[5];
2546 *swapout++ = swapin[6];
2547 *swapout++ = swapin[7];
2548 *swapout++ = swapin[0];
2549 *swapout++ = swapin[1];
2550 *swapout++ = swapin[2];
2551 *swapout++ = swapin[3];
2552 swapin += 8;
2553 }
2554 }
2555
2556 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2557 fmt->exp_start, fmt->exp_len);
2558 /* Note that if exponent indicates a NaN, we can't really do anything useful
2559 (not knowing if the host has NaN's, or how to build one). So it will
2560 end up as an infinity or something close; that is OK. */
2561
2562 mant_bits_left = fmt->man_len;
2563 mant_off = fmt->man_start;
2564 dto = 0.0;
2565
2566 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2567
11cf8741
JM
2568/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2569 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2570 if (!special_exponent)
2571 exponent -= fmt->exp_bias;
11cf8741
JM
2572 else if (exponent == 0)
2573 exponent = 1 - fmt->exp_bias;
c906108c
SS
2574
2575 /* Build the result algebraically. Might go infinite, underflow, etc;
2576 who cares. */
2577
2578/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2579 increment the exponent by one to account for the integer bit. */
2580
2581 if (!special_exponent)
7a292a7a
SS
2582 {
2583 if (fmt->intbit == floatformat_intbit_no)
2584 dto = ldexp (1.0, exponent);
2585 else
2586 exponent++;
2587 }
c906108c
SS
2588
2589 while (mant_bits_left > 0)
2590 {
2591 mant_bits = min (mant_bits_left, 32);
2592
2593 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2594 mant_off, mant_bits);
c906108c 2595
c5aa993b 2596 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2597 exponent -= mant_bits;
2598 mant_off += mant_bits;
2599 mant_bits_left -= mant_bits;
2600 }
2601
2602 /* Negate it if negative. */
2603 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2604 dto = -dto;
2605 *to = dto;
2606}
2607\f
2608static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2609 unsigned int,
2610 unsigned int,
2611 unsigned int,
2612 unsigned long));
2613
2614/* Set a field which starts at START and is LEN bytes long. DATA and
2615 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2616static void
2617put_field (data, order, total_len, start, len, stuff_to_put)
2618 unsigned char *data;
2619 enum floatformat_byteorders order;
2620 unsigned int total_len;
2621 unsigned int start;
2622 unsigned int len;
2623 unsigned long stuff_to_put;
2624{
2625 unsigned int cur_byte;
2626 int cur_bitshift;
2627
2628 /* Start at the least significant part of the field. */
c906108c 2629 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2630 {
2631 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2632 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2633 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2634 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2635 - FLOATFORMAT_CHAR_BIT;
2636 }
2637 else
2638 {
2639 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2640 cur_bitshift =
2641 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2642 }
2643 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2644 {
2645 *(data + cur_byte) &=
2646 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2647 << (-cur_bitshift));
2648 *(data + cur_byte) |=
2649 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2650 }
c906108c
SS
2651 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2652 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2653 ++cur_byte;
2654 else
2655 --cur_byte;
2656
2657 /* Move towards the most significant part of the field. */
2658 while (cur_bitshift < len)
2659 {
2660 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2661 {
2662 /* This is the last byte. */
2663 *(data + cur_byte) &=
2664 ~((1 << (len - cur_bitshift)) - 1);
2665 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2666 }
2667 else
2668 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2669 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2670 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2671 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2672 ++cur_byte;
2673 else
2674 --cur_byte;
2675 }
2676}
2677
2678#ifdef HAVE_LONG_DOUBLE
2679/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2680 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2681 frexp, but operates on the long double data type. */
2682
2683static long double ldfrexp PARAMS ((long double value, int *eptr));
2684
2685static long double
2686ldfrexp (value, eptr)
2687 long double value;
2688 int *eptr;
2689{
2690 long double tmp;
2691 int exp;
2692
2693 /* Unfortunately, there are no portable functions for extracting the exponent
2694 of a long double, so we have to do it iteratively by multiplying or dividing
2695 by two until the fraction is between 0.5 and 1.0. */
2696
2697 if (value < 0.0l)
2698 value = -value;
2699
2700 tmp = 1.0l;
2701 exp = 0;
2702
2703 if (value >= tmp) /* Value >= 1.0 */
2704 while (value >= tmp)
2705 {
2706 tmp *= 2.0l;
2707 exp++;
2708 }
2709 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2710 {
2711 while (value < tmp)
2712 {
2713 tmp /= 2.0l;
2714 exp--;
2715 }
2716 tmp *= 2.0l;
2717 exp++;
2718 }
2719
2720 *eptr = exp;
c5aa993b 2721 return value / tmp;
c906108c
SS
2722}
2723#endif /* HAVE_LONG_DOUBLE */
2724
2725
2726/* The converse: convert the DOUBLEST *FROM to an extended float
2727 and store where TO points. Neither FROM nor TO have any alignment
2728 restrictions. */
2729
2730void
2731floatformat_from_doublest (fmt, from, to)
2732 CONST struct floatformat *fmt;
2733 DOUBLEST *from;
2734 char *to;
2735{
2736 DOUBLEST dfrom;
2737 int exponent;
2738 DOUBLEST mant;
2739 unsigned int mant_bits, mant_off;
2740 int mant_bits_left;
c5aa993b 2741 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2742
2743 memcpy (&dfrom, from, sizeof (dfrom));
2744 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2745 if (dfrom == 0)
2746 return; /* Result is zero */
2747 if (dfrom != dfrom) /* Result is NaN */
2748 {
2749 /* From is NaN */
2750 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2751 fmt->exp_len, fmt->exp_nan);
2752 /* Be sure it's not infinity, but NaN value is irrel */
2753 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2754 32, 1);
2755 return;
2756 }
2757
2758 /* If negative, set the sign bit. */
2759 if (dfrom < 0)
2760 {
2761 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2762 dfrom = -dfrom;
2763 }
2764
2765 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2766 {
2767 /* Infinity exponent is same as NaN's. */
2768 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2769 fmt->exp_len, fmt->exp_nan);
2770 /* Infinity mantissa is all zeroes. */
2771 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2772 fmt->man_len, 0);
2773 return;
2774 }
2775
2776#ifdef HAVE_LONG_DOUBLE
2777 mant = ldfrexp (dfrom, &exponent);
2778#else
2779 mant = frexp (dfrom, &exponent);
2780#endif
2781
2782 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2783 exponent + fmt->exp_bias - 1);
2784
2785 mant_bits_left = fmt->man_len;
2786 mant_off = fmt->man_start;
2787 while (mant_bits_left > 0)
2788 {
2789 unsigned long mant_long;
2790 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2791
2792 mant *= 4294967296.0;
c5aa993b 2793 mant_long = (unsigned long) mant;
c906108c
SS
2794 mant -= mant_long;
2795
2796 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2797 If we are discarding a zero, we should be (but are not) creating
2798 a denormalized number which means adjusting the exponent
2799 (I think). */
c906108c
SS
2800 if (mant_bits_left == fmt->man_len
2801 && fmt->intbit == floatformat_intbit_no)
2802 {
2803 mant_long <<= 1;
2804 mant_bits -= 1;
2805 }
2806
2807 if (mant_bits < 32)
2808 {
2809 /* The bits we want are in the most significant MANT_BITS bits of
2810 mant_long. Move them to the least significant. */
2811 mant_long >>= 32 - mant_bits;
2812 }
2813
2814 put_field (uto, fmt->byteorder, fmt->totalsize,
2815 mant_off, mant_bits, mant_long);
2816 mant_off += mant_bits;
2817 mant_bits_left -= mant_bits;
2818 }
c5aa993b 2819 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2820 {
2821 int count;
2822 unsigned char *swaplow = uto;
2823 unsigned char *swaphigh = uto + 4;
2824 unsigned char tmp;
2825
2826 for (count = 0; count < 4; count++)
2827 {
2828 tmp = *swaplow;
2829 *swaplow++ = *swaphigh;
2830 *swaphigh++ = tmp;
2831 }
2832 }
2833}
2834
2835/* temporary storage using circular buffer */
2836#define NUMCELLS 16
2837#define CELLSIZE 32
c5aa993b
JM
2838static char *
2839get_cell ()
c906108c
SS
2840{
2841 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2842 static int cell = 0;
2843 if (++cell >= NUMCELLS)
2844 cell = 0;
c906108c
SS
2845 return buf[cell];
2846}
2847
2848/* print routines to handle variable size regs, etc.
2849
2850 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2851 unsigned long or unsigned long long, determined at configure time.
2852 If t_addr is an unsigned long long and sizeof (unsigned long long)
2853 is greater than sizeof (unsigned long), then I believe this code will
2854 probably lose, at least for little endian machines. I believe that
2855 it would also be better to eliminate the switch on the absolute size
2856 of t_addr and replace it with a sequence of if statements that compare
2857 sizeof t_addr with sizeof the various types and do the right thing,
2858 which includes knowing whether or not the host supports long long.
2859 -fnf
2860
2861 */
2862
d4f3574e
SS
2863int
2864strlen_paddr (void)
2865{
2866 return (TARGET_PTR_BIT / 8 * 2);
2867}
2868
2869
104c1213
JM
2870/* eliminate warning from compiler on 32-bit systems */
2871static int thirty_two = 32;
c906108c 2872
c5aa993b 2873char *
104c1213 2874paddr (CORE_ADDR addr)
c906108c 2875{
c5aa993b 2876 char *paddr_str = get_cell ();
104c1213 2877 switch (TARGET_PTR_BIT / 8)
c906108c 2878 {
c5aa993b
JM
2879 case 8:
2880 sprintf (paddr_str, "%08lx%08lx",
2881 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2882 break;
2883 case 4:
2884 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2885 break;
2886 case 2:
2887 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2888 break;
2889 default:
2890 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2891 }
2892 return paddr_str;
2893}
2894
c5aa993b 2895char *
104c1213 2896paddr_nz (CORE_ADDR addr)
c906108c 2897{
c5aa993b 2898 char *paddr_str = get_cell ();
104c1213 2899 switch (TARGET_PTR_BIT / 8)
c906108c 2900 {
c5aa993b
JM
2901 case 8:
2902 {
2903 unsigned long high = (unsigned long) (addr >> thirty_two);
2904 if (high == 0)
2905 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2906 else
2907 sprintf (paddr_str, "%lx%08lx",
2908 high, (unsigned long) (addr & 0xffffffff));
c906108c 2909 break;
c5aa993b
JM
2910 }
2911 case 4:
2912 sprintf (paddr_str, "%lx", (unsigned long) addr);
2913 break;
2914 case 2:
2915 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2916 break;
2917 default:
2918 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2919 }
2920 return paddr_str;
2921}
2922
104c1213
JM
2923static void
2924decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2925{
2926 /* steal code from valprint.c:print_decimal(). Should this worry
2927 about the real size of addr as the above does? */
2928 unsigned long temp[3];
2929 int i = 0;
2930 do
2931 {
2932 temp[i] = addr % (1000 * 1000 * 1000);
2933 addr /= (1000 * 1000 * 1000);
2934 i++;
2935 }
2936 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2937 switch (i)
2938 {
2939 case 1:
2940 sprintf (paddr_str, "%s%lu",
2941 sign, temp[0]);
2942 break;
2943 case 2:
2944 sprintf (paddr_str, "%s%lu%09lu",
2945 sign, temp[1], temp[0]);
2946 break;
2947 case 3:
2948 sprintf (paddr_str, "%s%lu%09lu%09lu",
2949 sign, temp[2], temp[1], temp[0]);
2950 break;
2951 default:
2952 abort ();
2953 }
2954}
2955
2956char *
2957paddr_u (CORE_ADDR addr)
2958{
2959 char *paddr_str = get_cell ();
2960 decimal2str (paddr_str, "", addr);
2961 return paddr_str;
2962}
2963
2964char *
2965paddr_d (LONGEST addr)
2966{
2967 char *paddr_str = get_cell ();
2968 if (addr < 0)
2969 decimal2str (paddr_str, "-", -addr);
2970 else
2971 decimal2str (paddr_str, "", addr);
2972 return paddr_str;
2973}
2974
2975char *
2976preg (reg)
2977 t_reg reg;
2978{
2979 char *preg_str = get_cell ();
2980 switch (sizeof (t_reg))
2981 {
2982 case 8:
2983 sprintf (preg_str, "%08lx%08lx",
2984 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2985 break;
2986 case 4:
2987 sprintf (preg_str, "%08lx", (unsigned long) reg);
2988 break;
2989 case 2:
2990 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2991 break;
2992 default:
2993 sprintf (preg_str, "%lx", (unsigned long) reg);
2994 }
2995 return preg_str;
2996}
2997
c5aa993b
JM
2998char *
2999preg_nz (reg)
3000 t_reg reg;
c906108c 3001{
c5aa993b
JM
3002 char *preg_str = get_cell ();
3003 switch (sizeof (t_reg))
c906108c 3004 {
c5aa993b
JM
3005 case 8:
3006 {
3007 unsigned long high = (unsigned long) (reg >> thirty_two);
3008 if (high == 0)
3009 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3010 else
3011 sprintf (preg_str, "%lx%08lx",
3012 high, (unsigned long) (reg & 0xffffffff));
c906108c 3013 break;
c5aa993b
JM
3014 }
3015 case 4:
3016 sprintf (preg_str, "%lx", (unsigned long) reg);
3017 break;
3018 case 2:
3019 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3020 break;
3021 default:
3022 sprintf (preg_str, "%lx", (unsigned long) reg);
c906108c
SS
3023 }
3024 return preg_str;
3025}
392a587b
JM
3026
3027/* Helper functions for INNER_THAN */
3028int
3029core_addr_lessthan (lhs, rhs)
3030 CORE_ADDR lhs;
3031 CORE_ADDR rhs;
3032{
3033 return (lhs < rhs);
3034}
3035
3036int
3037core_addr_greaterthan (lhs, rhs)
3038 CORE_ADDR lhs;
3039 CORE_ADDR rhs;
3040{
3041 return (lhs > rhs);
3042}