]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/valprint.c
2000-04-14 H.J. Lu <hjl@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
d9fcf2fb 2 Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
c5aa993b 3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "obstack.h"
31#include "language.h"
32#include "demangle.h"
33#include "annotate.h"
34#include "valprint.h"
35
36#include <errno.h>
37
38/* Prototypes for local functions */
39
917317f4
JM
40static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
41 int len, int *errnoptr);
42
d9fcf2fb
JM
43static void print_hex_chars (struct ui_file *, unsigned char *,
44 unsigned int);
c906108c
SS
45
46static void show_print PARAMS ((char *, int));
47
48static void set_print PARAMS ((char *, int));
49
50static void set_radix PARAMS ((char *, int));
51
52static void show_radix PARAMS ((char *, int));
53
54static void set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
55
56static void set_input_radix_1 PARAMS ((int, unsigned));
57
58static void set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
59
60static void set_output_radix_1 PARAMS ((int, unsigned));
61
62void _initialize_valprint PARAMS ((void));
63
64/* Maximum number of chars to print for a string pointer value or vector
65 contents, or UINT_MAX for no limit. Note that "set print elements 0"
66 stores UINT_MAX in print_max, which displays in a show command as
67 "unlimited". */
68
69unsigned int print_max;
70#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
71
72/* Default input and output radixes, and output format letter. */
73
74unsigned input_radix = 10;
75unsigned output_radix = 10;
76int output_format = 0;
77
78/* Print repeat counts if there are more than this many repetitions of an
79 element in an array. Referenced by the low level language dependent
80 print routines. */
81
82unsigned int repeat_count_threshold = 10;
83
84/* If nonzero, stops printing of char arrays at first null. */
85
86int stop_print_at_null;
87
88/* Controls pretty printing of structures. */
89
90int prettyprint_structs;
91
92/* Controls pretty printing of arrays. */
93
94int prettyprint_arrays;
95
96/* If nonzero, causes unions inside structures or other unions to be
97 printed. */
98
99int unionprint; /* Controls printing of nested unions. */
100
101/* If nonzero, causes machine addresses to be printed in certain contexts. */
102
103int addressprint; /* Controls printing of machine addresses */
c906108c 104\f
c5aa993b 105
c906108c
SS
106/* Print data of type TYPE located at VALADDR (within GDB), which came from
107 the inferior at address ADDRESS, onto stdio stream STREAM according to
108 FORMAT (a letter, or 0 for natural format using TYPE).
109
110 If DEREF_REF is nonzero, then dereference references, otherwise just print
111 them like pointers.
112
113 The PRETTY parameter controls prettyprinting.
114
115 If the data are a string pointer, returns the number of string characters
116 printed.
117
118 FIXME: The data at VALADDR is in target byte order. If gdb is ever
119 enhanced to be able to debug more than the single target it was compiled
120 for (specific CPU type and thus specific target byte ordering), then
121 either the print routines are going to have to take this into account,
122 or the data is going to have to be passed into here already converted
123 to the host byte ordering, whichever is more convenient. */
124
125
126int
127val_print (type, valaddr, embedded_offset, address,
c5aa993b 128 stream, format, deref_ref, recurse, pretty)
c906108c
SS
129 struct type *type;
130 char *valaddr;
131 int embedded_offset;
132 CORE_ADDR address;
d9fcf2fb 133 struct ui_file *stream;
c906108c
SS
134 int format;
135 int deref_ref;
136 int recurse;
137 enum val_prettyprint pretty;
138{
139 struct type *real_type = check_typedef (type);
140 if (pretty == Val_pretty_default)
141 {
142 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
143 }
c5aa993b 144
c906108c
SS
145 QUIT;
146
147 /* Ensure that the type is complete and not just a stub. If the type is
148 only a stub and we can't find and substitute its complete type, then
149 print appropriate string and return. */
150
151 if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
152 {
153 fprintf_filtered (stream, "<incomplete type>");
154 gdb_flush (stream);
155 return (0);
156 }
c5aa993b 157
c906108c 158 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
c5aa993b 159 stream, format, deref_ref, recurse, pretty));
c906108c
SS
160}
161
162/* Print the value VAL in C-ish syntax on stream STREAM.
163 FORMAT is a format-letter, or 0 for print in natural format of data type.
164 If the object printed is a string pointer, returns
165 the number of string bytes printed. */
166
167int
168value_print (val, stream, format, pretty)
169 value_ptr val;
d9fcf2fb 170 struct ui_file *stream;
c906108c
SS
171 int format;
172 enum val_prettyprint pretty;
173{
174 if (val == 0)
175 {
176 printf_filtered ("<address of value unknown>");
177 return 0;
178 }
179 if (VALUE_OPTIMIZED_OUT (val))
180 {
181 printf_filtered ("<value optimized out>");
182 return 0;
183 }
184 return LA_VALUE_PRINT (val, stream, format, pretty);
185}
186
187/* Called by various <lang>_val_print routines to print
188 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
189 value. STREAM is where to print the value. */
190
191void
192val_print_type_code_int (type, valaddr, stream)
193 struct type *type;
194 char *valaddr;
d9fcf2fb 195 struct ui_file *stream;
c906108c
SS
196{
197 if (TYPE_LENGTH (type) > sizeof (LONGEST))
198 {
199 LONGEST val;
200
201 if (TYPE_UNSIGNED (type)
202 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
203 &val))
204 {
205 print_longest (stream, 'u', 0, val);
206 }
207 else
208 {
209 /* Signed, or we couldn't turn an unsigned value into a
210 LONGEST. For signed values, one could assume two's
211 complement (a reasonable assumption, I think) and do
212 better than this. */
213 print_hex_chars (stream, (unsigned char *) valaddr,
214 TYPE_LENGTH (type));
215 }
216 }
217 else
218 {
219#ifdef PRINT_TYPELESS_INTEGER
220 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
221#else
222 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
223 unpack_long (type, valaddr));
224#endif
225 }
226}
227
228/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
229 The raison d'etre of this function is to consolidate printing of
230 LONG_LONG's into this one function. Some platforms have long longs but
231 don't have a printf() that supports "ll" in the format string. We handle
232 these by seeing if the number is representable as either a signed or
233 unsigned long, depending upon what format is desired, and if not we just
234 bail out and print the number in hex.
235
236 The format chars b,h,w,g are from print_scalar_formatted(). If USE_LOCAL,
237 format it according to the current language (this should be used for most
238 integers which GDB prints, the exception is things like protocols where
239 the format of the integer is a protocol thing, not a user-visible thing).
c5aa993b 240 */
c906108c
SS
241
242#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
d9fcf2fb
JM
243static void print_decimal (struct ui_file * stream, char *sign,
244 int use_local, ULONGEST val_ulong);
c906108c
SS
245static void
246print_decimal (stream, sign, use_local, val_ulong)
d9fcf2fb 247 struct ui_file *stream;
c906108c
SS
248 char *sign;
249 int use_local;
250 ULONGEST val_ulong;
251{
252 unsigned long temp[3];
253 int i = 0;
254 do
255 {
256 temp[i] = val_ulong % (1000 * 1000 * 1000);
257 val_ulong /= (1000 * 1000 * 1000);
258 i++;
259 }
260 while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
261 switch (i)
262 {
263 case 1:
264 fprintf_filtered (stream, "%s%lu",
265 sign, temp[0]);
266 break;
267 case 2:
268 fprintf_filtered (stream, "%s%lu%09lu",
269 sign, temp[1], temp[0]);
270 break;
271 case 3:
272 fprintf_filtered (stream, "%s%lu%09lu%09lu",
273 sign, temp[2], temp[1], temp[0]);
274 break;
275 default:
276 abort ();
277 }
278 return;
279}
280#endif
281
282void
283print_longest (stream, format, use_local, val_long)
d9fcf2fb 284 struct ui_file *stream;
c906108c
SS
285 int format;
286 int use_local;
287 LONGEST val_long;
288{
289#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
290 if (sizeof (long) < sizeof (LONGEST))
291 {
292 switch (format)
293 {
294 case 'd':
295 {
296 /* Print a signed value, that doesn't fit in a long */
297 if ((long) val_long != val_long)
298 {
299 if (val_long < 0)
300 print_decimal (stream, "-", use_local, -val_long);
301 else
302 print_decimal (stream, "", use_local, val_long);
303 return;
304 }
305 break;
306 }
307 case 'u':
308 {
309 /* Print an unsigned value, that doesn't fit in a long */
310 if ((unsigned long) val_long != (ULONGEST) val_long)
311 {
312 print_decimal (stream, "", use_local, val_long);
313 return;
314 }
315 break;
316 }
317 case 'x':
318 case 'o':
319 case 'b':
320 case 'h':
321 case 'w':
322 case 'g':
323 /* Print as unsigned value, must fit completely in unsigned long */
324 {
325 unsigned long temp = val_long;
326 if (temp != val_long)
327 {
328 /* Urk, can't represent value in long so print in hex.
329 Do shift in two operations so that if sizeof (long)
330 == sizeof (LONGEST) we can avoid warnings from
331 picky compilers about shifts >= the size of the
332 shiftee in bits */
333 unsigned long vbot = (unsigned long) val_long;
334 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
335 unsigned long vtop = temp >> 1;
336 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
337 return;
338 }
339 break;
340 }
341 }
342 }
343#endif
344
345#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
346 switch (format)
347 {
348 case 'd':
349 fprintf_filtered (stream,
350 use_local ? local_decimal_format_custom ("ll")
c5aa993b 351 : "%lld",
c906108c
SS
352 val_long);
353 break;
354 case 'u':
355 fprintf_filtered (stream, "%llu", val_long);
356 break;
357 case 'x':
358 fprintf_filtered (stream,
359 use_local ? local_hex_format_custom ("ll")
c5aa993b 360 : "%llx",
c906108c
SS
361 val_long);
362 break;
363 case 'o':
364 fprintf_filtered (stream,
365 use_local ? local_octal_format_custom ("ll")
c5aa993b 366 : "%llo",
c906108c
SS
367 val_long);
368 break;
369 case 'b':
370 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
371 break;
372 case 'h':
373 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
374 break;
375 case 'w':
376 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
377 break;
378 case 'g':
379 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
380 break;
381 default:
382 abort ();
383 }
c5aa993b 384#else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
c906108c
SS
385 /* In the following it is important to coerce (val_long) to a long. It does
386 nothing if !LONG_LONG, but it will chop off the top half (which we know
387 we can ignore) if the host supports long longs. */
388
389 switch (format)
390 {
391 case 'd':
392 fprintf_filtered (stream,
393 use_local ? local_decimal_format_custom ("l")
c5aa993b 394 : "%ld",
c906108c
SS
395 (long) val_long);
396 break;
397 case 'u':
398 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
399 break;
400 case 'x':
401 fprintf_filtered (stream,
402 use_local ? local_hex_format_custom ("l")
c5aa993b 403 : "%lx",
c906108c
SS
404 (unsigned long) val_long);
405 break;
406 case 'o':
407 fprintf_filtered (stream,
408 use_local ? local_octal_format_custom ("l")
c5aa993b 409 : "%lo",
c906108c
SS
410 (unsigned long) val_long);
411 break;
412 case 'b':
413 fprintf_filtered (stream, local_hex_format_custom ("02l"),
414 (unsigned long) val_long);
415 break;
416 case 'h':
417 fprintf_filtered (stream, local_hex_format_custom ("04l"),
418 (unsigned long) val_long);
419 break;
420 case 'w':
421 fprintf_filtered (stream, local_hex_format_custom ("08l"),
422 (unsigned long) val_long);
423 break;
424 case 'g':
425 fprintf_filtered (stream, local_hex_format_custom ("016l"),
426 (unsigned long) val_long);
427 break;
428 default:
429 abort ();
430 }
431#endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
432}
433
7a292a7a 434#if 0
c906108c
SS
435void
436strcat_longest (format, use_local, val_long, buf, buflen)
437 int format;
438 int use_local;
439 LONGEST val_long;
440 char *buf;
441 int buflen; /* ignored, for now */
442{
443#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
444 long vtop, vbot;
445
446 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
447 vbot = (long) val_long;
448
449 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
c5aa993b 450 || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
c906108c
SS
451 {
452 sprintf (buf, "0x%lx%08lx", vtop, vbot);
453 return;
454 }
455#endif
456
457#ifdef PRINTF_HAS_LONG_LONG
458 switch (format)
459 {
460 case 'd':
461 sprintf (buf,
c5aa993b 462 (use_local ? local_decimal_format_custom ("ll") : "%lld"),
c906108c
SS
463 val_long);
464 break;
465 case 'u':
c5aa993b 466 sprintf (buf, "%llu", val_long);
c906108c
SS
467 break;
468 case 'x':
469 sprintf (buf,
c5aa993b
JM
470 (use_local ? local_hex_format_custom ("ll") : "%llx"),
471
c906108c
SS
472 val_long);
473 break;
474 case 'o':
475 sprintf (buf,
c5aa993b 476 (use_local ? local_octal_format_custom ("ll") : "%llo"),
c906108c
SS
477 val_long);
478 break;
479 case 'b':
c5aa993b 480 sprintf (buf, local_hex_format_custom ("02ll"), val_long);
c906108c
SS
481 break;
482 case 'h':
c5aa993b 483 sprintf (buf, local_hex_format_custom ("04ll"), val_long);
c906108c
SS
484 break;
485 case 'w':
c5aa993b 486 sprintf (buf, local_hex_format_custom ("08ll"), val_long);
c906108c
SS
487 break;
488 case 'g':
c5aa993b 489 sprintf (buf, local_hex_format_custom ("016ll"), val_long);
c906108c
SS
490 break;
491 default:
492 abort ();
493 }
494#else /* !PRINTF_HAS_LONG_LONG */
495 /* In the following it is important to coerce (val_long) to a long. It does
496 nothing if !LONG_LONG, but it will chop off the top half (which we know
497 we can ignore) if the host supports long longs. */
498
499 switch (format)
500 {
501 case 'd':
c5aa993b
JM
502 sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
503 ((long) val_long));
c906108c
SS
504 break;
505 case 'u':
c5aa993b 506 sprintf (buf, "%lu", ((unsigned long) val_long));
c906108c
SS
507 break;
508 case 'x':
c5aa993b 509 sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
c906108c
SS
510 ((long) val_long));
511 break;
512 case 'o':
c5aa993b 513 sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
c906108c
SS
514 ((long) val_long));
515 break;
516 case 'b':
c5aa993b 517 sprintf (buf, local_hex_format_custom ("02l"),
c906108c
SS
518 ((long) val_long));
519 break;
520 case 'h':
c5aa993b 521 sprintf (buf, local_hex_format_custom ("04l"),
c906108c
SS
522 ((long) val_long));
523 break;
524 case 'w':
c5aa993b 525 sprintf (buf, local_hex_format_custom ("08l"),
c906108c
SS
526 ((long) val_long));
527 break;
528 case 'g':
529 sprintf (buf, local_hex_format_custom ("016l"),
530 ((long) val_long));
531 break;
532 default:
533 abort ();
534 }
c5aa993b 535
c906108c
SS
536#endif /* !PRINTF_HAS_LONG_LONG */
537}
7a292a7a 538#endif
c906108c
SS
539
540/* This used to be a macro, but I don't think it is called often enough
541 to merit such treatment. */
542/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
543 arguments to a function, number in a value history, register number, etc.)
544 where the value must not be larger than can fit in an int. */
545
546int
547longest_to_int (arg)
548 LONGEST arg;
549{
550 /* Let the compiler do the work */
551 int rtnval = (int) arg;
552
553 /* Check for overflows or underflows */
554 if (sizeof (LONGEST) > sizeof (int))
555 {
556 if (rtnval != arg)
557 {
558 error ("Value out of range.");
559 }
560 }
561 return (rtnval);
562}
563
564/* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
565 on STREAM. */
566
567void
568print_floating (valaddr, type, stream)
569 char *valaddr;
570 struct type *type;
d9fcf2fb 571 struct ui_file *stream;
c906108c
SS
572{
573 DOUBLEST doub;
574 int inv;
575 unsigned len = TYPE_LENGTH (type);
c5aa993b 576
c906108c
SS
577#if defined (IEEE_FLOAT)
578
579 /* Check for NaN's. Note that this code does not depend on us being
580 on an IEEE conforming system. It only depends on the target
581 machine using IEEE representation. This means (a)
582 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
583 be defined for systems like the 68881, which uses IEEE
584 representation, but is not IEEE conforming. */
585
586 {
587 unsigned long low, high;
588 /* Is the sign bit 0? */
589 int nonnegative;
590 /* Is it is a NaN (i.e. the exponent is all ones and
591 the fraction is nonzero)? */
592 int is_nan;
593
594 /* For lint, initialize these two variables to suppress warning: */
595 low = high = nonnegative = 0;
596 if (len == 4)
597 {
598 /* It's single precision. */
599 /* Assume that floating point byte order is the same as
600 integer byte order. */
601 low = extract_unsigned_integer (valaddr, 4);
602 nonnegative = ((low & 0x80000000) == 0);
c5aa993b 603 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
c906108c
SS
604 && 0 != (low & 0x7FFFFF));
605 low &= 0x7fffff;
606 high = 0;
607 }
608 else if (len == 8)
609 {
610 /* It's double precision. Get the high and low words. */
611
612 /* Assume that floating point byte order is the same as
613 integer byte order. */
614 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
615 {
616 low = extract_unsigned_integer (valaddr + 4, 4);
617 high = extract_unsigned_integer (valaddr, 4);
618 }
619 else
620 {
621 low = extract_unsigned_integer (valaddr, 4);
622 high = extract_unsigned_integer (valaddr + 4, 4);
623 }
624 nonnegative = ((high & 0x80000000) == 0);
625 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
c5aa993b 626 && !((((high & 0xfffff) == 0)) && (low == 0)));
c906108c
SS
627 high &= 0xfffff;
628 }
629 else
d4f3574e
SS
630 {
631#ifdef TARGET_ANALYZE_FLOATING
632 TARGET_ANALYZE_FLOATING;
633#else
634 /* Extended. We can't detect extended NaNs for this target.
635 Also note that currently extendeds get nuked to double in
636 REGISTER_CONVERTIBLE. */
637 is_nan = 0;
638#endif
639 }
c906108c
SS
640
641 if (is_nan)
642 {
643 /* The meaning of the sign and fraction is not defined by IEEE.
644 But the user might know what they mean. For example, they
645 (in an implementation-defined manner) distinguish between
646 signaling and quiet NaN's. */
647 if (high)
d4f3574e 648 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
c906108c
SS
649 high, low);
650 else
651 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
652 return;
653 }
654 }
655#endif /* IEEE_FLOAT. */
656
657 doub = unpack_double (type, valaddr, &inv);
658 if (inv)
659 {
660 fprintf_filtered (stream, "<invalid float value>");
661 return;
662 }
663
664 if (len < sizeof (double))
c5aa993b 665 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 666 else if (len == sizeof (double))
c5aa993b 667 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
668 else
669#ifdef PRINTF_HAS_LONG_DOUBLE
670 fprintf_filtered (stream, "%.35Lg", doub);
671#else
672 /* This at least wins with values that are representable as doubles */
673 fprintf_filtered (stream, "%.17g", (double) doub);
674#endif
675}
676
c5aa993b 677void
c906108c 678print_binary_chars (stream, valaddr, len)
d9fcf2fb 679 struct ui_file *stream;
c906108c
SS
680 unsigned char *valaddr;
681 unsigned len;
682{
683
684#define BITS_IN_BYTES 8
685
686 unsigned char *p;
745b8ca0 687 unsigned int i;
c5aa993b 688 int b;
c906108c
SS
689
690 /* Declared "int" so it will be signed.
691 * This ensures that right shift will shift in zeros.
692 */
c5aa993b 693 const int mask = 0x080;
c906108c
SS
694
695 /* FIXME: We should be not printing leading zeroes in most cases. */
696
697 fprintf_filtered (stream, local_binary_format_prefix ());
698 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
699 {
700 for (p = valaddr;
701 p < valaddr + len;
702 p++)
703 {
c5aa993b
JM
704 /* Every byte has 8 binary characters; peel off
705 * and print from the MSB end.
706 */
707 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
708 {
709 if (*p & (mask >> i))
710 b = 1;
711 else
712 b = 0;
713
714 fprintf_filtered (stream, "%1d", b);
715 }
c906108c
SS
716 }
717 }
718 else
719 {
720 for (p = valaddr + len - 1;
721 p >= valaddr;
722 p--)
723 {
c5aa993b
JM
724 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
725 {
726 if (*p & (mask >> i))
727 b = 1;
728 else
729 b = 0;
730
731 fprintf_filtered (stream, "%1d", b);
732 }
c906108c
SS
733 }
734 }
735 fprintf_filtered (stream, local_binary_format_suffix ());
736}
737
738/* VALADDR points to an integer of LEN bytes.
739 * Print it in octal on stream or format it in buf.
740 */
741void
742print_octal_chars (stream, valaddr, len)
d9fcf2fb 743 struct ui_file *stream;
c906108c
SS
744 unsigned char *valaddr;
745 unsigned len;
746{
747 unsigned char *p;
748 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
749 int cycle;
750
c906108c
SS
751 /* FIXME: We should be not printing leading zeroes in most cases. */
752
753
754 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
755 * the extra bits, which cycle every three bytes:
756 *
757 * Byte side: 0 1 2 3
758 * | | | |
759 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
760 *
761 * Octal side: 0 1 carry 3 4 carry ...
762 *
763 * Cycle number: 0 1 2
764 *
765 * But of course we are printing from the high side, so we have to
766 * figure out where in the cycle we are so that we end up with no
767 * left over bits at the end.
768 */
769#define BITS_IN_OCTAL 3
770#define HIGH_ZERO 0340
771#define LOW_ZERO 0016
772#define CARRY_ZERO 0003
773#define HIGH_ONE 0200
774#define MID_ONE 0160
775#define LOW_ONE 0016
776#define CARRY_ONE 0001
777#define HIGH_TWO 0300
778#define MID_TWO 0070
779#define LOW_TWO 0007
780
781 /* For 32 we start in cycle 2, with two bits and one bit carry;
782 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
783 */
784 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
785 carry = 0;
c5aa993b 786
c906108c
SS
787 fprintf_filtered (stream, local_octal_format_prefix ());
788 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
789 {
790 for (p = valaddr;
791 p < valaddr + len;
792 p++)
793 {
c5aa993b
JM
794 switch (cycle)
795 {
796 case 0:
797 /* No carry in, carry out two bits.
798 */
799 octa1 = (HIGH_ZERO & *p) >> 5;
800 octa2 = (LOW_ZERO & *p) >> 2;
801 carry = (CARRY_ZERO & *p);
802 fprintf_filtered (stream, "%o", octa1);
803 fprintf_filtered (stream, "%o", octa2);
804 break;
805
806 case 1:
807 /* Carry in two bits, carry out one bit.
808 */
809 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
810 octa2 = (MID_ONE & *p) >> 4;
811 octa3 = (LOW_ONE & *p) >> 1;
812 carry = (CARRY_ONE & *p);
813 fprintf_filtered (stream, "%o", octa1);
814 fprintf_filtered (stream, "%o", octa2);
815 fprintf_filtered (stream, "%o", octa3);
816 break;
817
818 case 2:
819 /* Carry in one bit, no carry out.
820 */
821 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
822 octa2 = (MID_TWO & *p) >> 3;
823 octa3 = (LOW_TWO & *p);
824 carry = 0;
825 fprintf_filtered (stream, "%o", octa1);
826 fprintf_filtered (stream, "%o", octa2);
827 fprintf_filtered (stream, "%o", octa3);
828 break;
829
830 default:
831 error ("Internal error in octal conversion;");
832 }
833
834 cycle++;
835 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
836 }
837 }
838 else
839 {
840 for (p = valaddr + len - 1;
841 p >= valaddr;
842 p--)
843 {
c5aa993b
JM
844 switch (cycle)
845 {
846 case 0:
847 /* Carry out, no carry in */
848 octa1 = (HIGH_ZERO & *p) >> 5;
849 octa2 = (LOW_ZERO & *p) >> 2;
850 carry = (CARRY_ZERO & *p);
851 fprintf_filtered (stream, "%o", octa1);
852 fprintf_filtered (stream, "%o", octa2);
853 break;
854
855 case 1:
856 /* Carry in, carry out */
857 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
858 octa2 = (MID_ONE & *p) >> 4;
859 octa3 = (LOW_ONE & *p) >> 1;
860 carry = (CARRY_ONE & *p);
861 fprintf_filtered (stream, "%o", octa1);
862 fprintf_filtered (stream, "%o", octa2);
863 fprintf_filtered (stream, "%o", octa3);
864 break;
865
866 case 2:
867 /* Carry in, no carry out */
868 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
869 octa2 = (MID_TWO & *p) >> 3;
870 octa3 = (LOW_TWO & *p);
871 carry = 0;
872 fprintf_filtered (stream, "%o", octa1);
873 fprintf_filtered (stream, "%o", octa2);
874 fprintf_filtered (stream, "%o", octa3);
875 break;
876
877 default:
878 error ("Internal error in octal conversion;");
879 }
880
881 cycle++;
882 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
883 }
884 }
885
886 fprintf_filtered (stream, local_octal_format_suffix ());
887}
888
889/* VALADDR points to an integer of LEN bytes.
890 * Print it in decimal on stream or format it in buf.
891 */
892void
893print_decimal_chars (stream, valaddr, len)
d9fcf2fb 894 struct ui_file *stream;
c906108c
SS
895 unsigned char *valaddr;
896 unsigned len;
897{
898#define TEN 10
899#define TWO_TO_FOURTH 16
c5aa993b 900#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
901#define CARRY_LEFT( x ) ((x) % TEN)
902#define SHIFT( x ) ((x) << 4)
903#define START_P \
904 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
905#define NOT_END_P \
906 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
907#define NEXT_P \
908 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
909#define LOW_NIBBLE( x ) ( (x) & 0x00F)
910#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
911
912 unsigned char *p;
913 unsigned char *digits;
c5aa993b
JM
914 int carry;
915 int decimal_len;
916 int i, j, decimal_digits;
917 int dummy;
918 int flip;
919
c906108c
SS
920 /* Base-ten number is less than twice as many digits
921 * as the base 16 number, which is 2 digits per byte.
922 */
923 decimal_len = len * 2 * 2;
c5aa993b
JM
924 digits = (unsigned char *) malloc (decimal_len);
925 if (digits == NULL)
926 error ("Can't allocate memory for conversion to decimal.");
c906108c 927
c5aa993b
JM
928 for (i = 0; i < decimal_len; i++)
929 {
c906108c 930 digits[i] = 0;
c5aa993b 931 }
c906108c
SS
932
933 fprintf_filtered (stream, local_decimal_format_prefix ());
934
935 /* Ok, we have an unknown number of bytes of data to be printed in
936 * decimal.
937 *
938 * Given a hex number (in nibbles) as XYZ, we start by taking X and
939 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
940 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
941 *
942 * The trick is that "digits" holds a base-10 number, but sometimes
943 * the individual digits are > 10.
944 *
945 * Outer loop is per nibble (hex digit) of input, from MSD end to
946 * LSD end.
947 */
c5aa993b 948 decimal_digits = 0; /* Number of decimal digits so far */
c906108c
SS
949 p = START_P;
950 flip = 0;
c5aa993b
JM
951 while (NOT_END_P)
952 {
c906108c
SS
953 /*
954 * Multiply current base-ten number by 16 in place.
955 * Each digit was between 0 and 9, now is between
956 * 0 and 144.
957 */
c5aa993b
JM
958 for (j = 0; j < decimal_digits; j++)
959 {
960 digits[j] = SHIFT (digits[j]);
961 }
962
c906108c
SS
963 /* Take the next nibble off the input and add it to what
964 * we've got in the LSB position. Bottom 'digit' is now
965 * between 0 and 159.
966 *
967 * "flip" is used to run this loop twice for each byte.
968 */
c5aa993b
JM
969 if (flip == 0)
970 {
971 /* Take top nibble.
972 */
973 digits[0] += HIGH_NIBBLE (*p);
974 flip = 1;
975 }
976 else
977 {
978 /* Take low nibble and bump our pointer "p".
979 */
980 digits[0] += LOW_NIBBLE (*p);
981 NEXT_P;
982 flip = 0;
983 }
c906108c
SS
984
985 /* Re-decimalize. We have to do this often enough
986 * that we don't overflow, but once per nibble is
987 * overkill. Easier this way, though. Note that the
988 * carry is often larger than 10 (e.g. max initial
989 * carry out of lowest nibble is 15, could bubble all
990 * the way up greater than 10). So we have to do
991 * the carrying beyond the last current digit.
992 */
993 carry = 0;
c5aa993b
JM
994 for (j = 0; j < decimal_len - 1; j++)
995 {
996 digits[j] += carry;
997
998 /* "/" won't handle an unsigned char with
999 * a value that if signed would be negative.
1000 * So extend to longword int via "dummy".
1001 */
1002 dummy = digits[j];
1003 carry = CARRY_OUT (dummy);
1004 digits[j] = CARRY_LEFT (dummy);
1005
1006 if (j >= decimal_digits && carry == 0)
1007 {
1008 /*
1009 * All higher digits are 0 and we
1010 * no longer have a carry.
1011 *
1012 * Note: "j" is 0-based, "decimal_digits" is
1013 * 1-based.
1014 */
1015 decimal_digits = j + 1;
1016 break;
1017 }
1018 }
1019 }
c906108c
SS
1020
1021 /* Ok, now "digits" is the decimal representation, with
1022 * the "decimal_digits" actual digits. Print!
1023 */
c5aa993b
JM
1024 for (i = decimal_digits - 1; i >= 0; i--)
1025 {
1026 fprintf_filtered (stream, "%1d", digits[i]);
1027 }
1028 free (digits);
1029
c906108c
SS
1030 fprintf_filtered (stream, local_decimal_format_suffix ());
1031}
1032
1033/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1034
1035static void
1036print_hex_chars (stream, valaddr, len)
d9fcf2fb 1037 struct ui_file *stream;
c906108c
SS
1038 unsigned char *valaddr;
1039 unsigned len;
1040{
1041 unsigned char *p;
1042
1043 /* FIXME: We should be not printing leading zeroes in most cases. */
1044
1045 fprintf_filtered (stream, local_hex_format_prefix ());
1046 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1047 {
1048 for (p = valaddr;
1049 p < valaddr + len;
1050 p++)
1051 {
1052 fprintf_filtered (stream, "%02x", *p);
1053 }
1054 }
1055 else
1056 {
1057 for (p = valaddr + len - 1;
1058 p >= valaddr;
1059 p--)
1060 {
1061 fprintf_filtered (stream, "%02x", *p);
1062 }
1063 }
1064 fprintf_filtered (stream, local_hex_format_suffix ());
1065}
1066
1067/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1068 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1069
c5aa993b
JM
1070 (FIXME?) Assumes array element separator is a comma, which is correct
1071 for all languages currently handled.
1072 (FIXME?) Some languages have a notation for repeated array elements,
1073 perhaps we should try to use that notation when appropriate.
1074 */
c906108c
SS
1075
1076void
1077val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
1078 recurse, pretty, i)
1079 struct type *type;
1080 char *valaddr;
1081 CORE_ADDR address;
d9fcf2fb 1082 struct ui_file *stream;
c906108c
SS
1083 int format;
1084 int deref_ref;
1085 int recurse;
1086 enum val_prettyprint pretty;
1087 unsigned int i;
1088{
1089 unsigned int things_printed = 0;
1090 unsigned len;
1091 struct type *elttype;
1092 unsigned eltlen;
1093 /* Position of the array element we are examining to see
1094 whether it is repeated. */
1095 unsigned int rep1;
1096 /* Number of repetitions we have detected so far. */
1097 unsigned int reps;
c5aa993b 1098
c906108c
SS
1099 elttype = TYPE_TARGET_TYPE (type);
1100 eltlen = TYPE_LENGTH (check_typedef (elttype));
1101 len = TYPE_LENGTH (type) / eltlen;
1102
1103 annotate_array_section_begin (i, elttype);
1104
1105 for (; i < len && things_printed < print_max; i++)
1106 {
1107 if (i != 0)
1108 {
1109 if (prettyprint_arrays)
1110 {
1111 fprintf_filtered (stream, ",\n");
1112 print_spaces_filtered (2 + 2 * recurse, stream);
1113 }
1114 else
1115 {
1116 fprintf_filtered (stream, ", ");
1117 }
1118 }
1119 wrap_here (n_spaces (2 + 2 * recurse));
1120
1121 rep1 = i + 1;
1122 reps = 1;
c5aa993b 1123 while ((rep1 < len) &&
c906108c
SS
1124 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1125 {
1126 ++reps;
1127 ++rep1;
1128 }
1129
1130 if (reps > repeat_count_threshold)
1131 {
1132 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1133 deref_ref, recurse + 1, pretty);
1134 annotate_elt_rep (reps);
1135 fprintf_filtered (stream, " <repeats %u times>", reps);
1136 annotate_elt_rep_end ();
1137
1138 i = rep1 - 1;
1139 things_printed += repeat_count_threshold;
1140 }
1141 else
1142 {
1143 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1144 deref_ref, recurse + 1, pretty);
1145 annotate_elt ();
1146 things_printed++;
1147 }
1148 }
1149 annotate_array_section_end ();
1150 if (i < len)
1151 {
1152 fprintf_filtered (stream, "...");
1153 }
1154}
1155
917317f4
JM
1156/* Read LEN bytes of target memory at address MEMADDR, placing the
1157 results in GDB's memory at MYADDR. Returns a count of the bytes
1158 actually read, and optionally an errno value in the location
1159 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1160
1161/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1162 function be eliminated. */
1163
1164static int
1165partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1166{
1167 int nread; /* Number of bytes actually read. */
1168 int errcode; /* Error from last read. */
1169
1170 /* First try a complete read. */
1171 errcode = target_read_memory (memaddr, myaddr, len);
1172 if (errcode == 0)
1173 {
1174 /* Got it all. */
1175 nread = len;
1176 }
1177 else
1178 {
1179 /* Loop, reading one byte at a time until we get as much as we can. */
1180 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1181 {
1182 errcode = target_read_memory (memaddr++, myaddr++, 1);
1183 }
1184 /* If an error, the last read was unsuccessful, so adjust count. */
1185 if (errcode != 0)
1186 {
1187 nread--;
1188 }
1189 }
1190 if (errnoptr != NULL)
1191 {
1192 *errnoptr = errcode;
1193 }
1194 return (nread);
1195}
1196
c906108c 1197/* Print a string from the inferior, starting at ADDR and printing up to LEN
c5aa993b
JM
1198 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1199 stops at the first null byte, otherwise printing proceeds (including null
1200 bytes) until either print_max or LEN characters have been printed,
1201 whichever is smaller. */
c906108c
SS
1202
1203/* FIXME: Use target_read_string. */
1204
1205int
1206val_print_string (addr, len, width, stream)
c5aa993b
JM
1207 CORE_ADDR addr;
1208 int len;
1209 int width;
d9fcf2fb 1210 struct ui_file *stream;
c906108c
SS
1211{
1212 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1213 int errcode; /* Errno returned from bad reads. */
1214 unsigned int fetchlimit; /* Maximum number of chars to print. */
1215 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1216 unsigned int chunksize; /* Size of each fetch, in chars. */
1217 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1218 char *bufptr; /* Pointer to next available byte in buffer. */
1219 char *limit; /* First location past end of fetch buffer. */
c5aa993b 1220 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
c906108c
SS
1221 int found_nul; /* Non-zero if we found the nul char */
1222
1223 /* First we need to figure out the limit on the number of characters we are
1224 going to attempt to fetch and print. This is actually pretty simple. If
1225 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1226 LEN is -1, then the limit is print_max. This is true regardless of
1227 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1228 because finding the null byte (or available memory) is what actually
1229 limits the fetch. */
1230
1231 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1232
1233 /* Now decide how large of chunks to try to read in one operation. This
1234 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1235 so we might as well read them all in one operation. If LEN is -1, we
1236 are looking for a null terminator to end the fetching, so we might as
1237 well read in blocks that are large enough to be efficient, but not so
1238 large as to be slow if fetchlimit happens to be large. So we choose the
1239 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1240 200 is way too big for remote debugging over a serial line. */
1241
1242 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1243
1244 /* Loop until we either have all the characters to print, or we encounter
1245 some error, such as bumping into the end of the address space. */
1246
1247 found_nul = 0;
1248 old_chain = make_cleanup (null_cleanup, 0);
1249
1250 if (len > 0)
1251 {
1252 buffer = (char *) xmalloc (len * width);
1253 bufptr = buffer;
1254 old_chain = make_cleanup (free, buffer);
1255
917317f4 1256 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1257 / width;
1258 addr += nfetch * width;
1259 bufptr += nfetch * width;
1260 }
1261 else if (len == -1)
1262 {
1263 unsigned long bufsize = 0;
1264 do
1265 {
1266 QUIT;
1267 nfetch = min (chunksize, fetchlimit - bufsize);
1268
1269 if (buffer == NULL)
1270 buffer = (char *) xmalloc (nfetch * width);
1271 else
1272 {
1273 discard_cleanups (old_chain);
1274 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1275 }
1276
1277 old_chain = make_cleanup (free, buffer);
1278 bufptr = buffer + bufsize * width;
1279 bufsize += nfetch;
1280
1281 /* Read as much as we can. */
917317f4 1282 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
c5aa993b 1283 / width;
c906108c
SS
1284
1285 /* Scan this chunk for the null byte that terminates the string
1286 to print. If found, we don't need to fetch any more. Note
1287 that bufptr is explicitly left pointing at the next character
1288 after the null byte, or at the next character after the end of
1289 the buffer. */
1290
1291 limit = bufptr + nfetch * width;
1292 while (bufptr < limit)
1293 {
1294 unsigned long c;
1295
1296 c = extract_unsigned_integer (bufptr, width);
1297 addr += width;
1298 bufptr += width;
1299 if (c == 0)
1300 {
1301 /* We don't care about any error which happened after
1302 the NULL terminator. */
1303 errcode = 0;
1304 found_nul = 1;
1305 break;
1306 }
1307 }
1308 }
c5aa993b
JM
1309 while (errcode == 0 /* no error */
1310 && bufptr - buffer < fetchlimit * width /* no overrun */
1311 && !found_nul); /* haven't found nul yet */
c906108c
SS
1312 }
1313 else
1314 { /* length of string is really 0! */
1315 buffer = bufptr = NULL;
1316 errcode = 0;
1317 }
1318
1319 /* bufptr and addr now point immediately beyond the last byte which we
1320 consider part of the string (including a '\0' which ends the string). */
1321
1322 /* We now have either successfully filled the buffer to fetchlimit, or
1323 terminated early due to an error or finding a null char when LEN is -1. */
1324
1325 if (len == -1 && !found_nul)
1326 {
1327 char *peekbuf;
1328
1329 /* We didn't find a null terminator we were looking for. Attempt
c5aa993b
JM
1330 to peek at the next character. If not successful, or it is not
1331 a null byte, then force ellipsis to be printed. */
c906108c
SS
1332
1333 peekbuf = (char *) alloca (width);
1334
1335 if (target_read_memory (addr, peekbuf, width) == 0
1336 && extract_unsigned_integer (peekbuf, width) != 0)
1337 force_ellipsis = 1;
1338 }
c5aa993b 1339 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
c906108c
SS
1340 {
1341 /* Getting an error when we have a requested length, or fetching less
c5aa993b
JM
1342 than the number of characters actually requested, always make us
1343 print ellipsis. */
c906108c
SS
1344 force_ellipsis = 1;
1345 }
1346
1347 QUIT;
1348
1349 /* If we get an error before fetching anything, don't print a string.
1350 But if we fetch something and then get an error, print the string
1351 and then the error message. */
1352 if (errcode == 0 || bufptr > buffer)
1353 {
1354 if (addressprint)
1355 {
1356 fputs_filtered (" ", stream);
1357 }
c5aa993b 1358 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
c906108c
SS
1359 }
1360
1361 if (errcode != 0)
1362 {
1363 if (errcode == EIO)
1364 {
1365 fprintf_filtered (stream, " <Address ");
1366 print_address_numeric (addr, 1, stream);
1367 fprintf_filtered (stream, " out of bounds>");
1368 }
1369 else
1370 {
1371 fprintf_filtered (stream, " <Error reading address ");
1372 print_address_numeric (addr, 1, stream);
1373 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1374 }
1375 }
1376 gdb_flush (stream);
1377 do_cleanups (old_chain);
c5aa993b 1378 return ((bufptr - buffer) / width);
c906108c 1379}
c906108c 1380\f
c5aa993b 1381
c906108c
SS
1382/* Validate an input or output radix setting, and make sure the user
1383 knows what they really did here. Radix setting is confusing, e.g.
1384 setting the input radix to "10" never changes it! */
1385
1386/* ARGSUSED */
1387static void
1388set_input_radix (args, from_tty, c)
1389 char *args;
1390 int from_tty;
1391 struct cmd_list_element *c;
1392{
c5aa993b 1393 set_input_radix_1 (from_tty, *(unsigned *) c->var);
c906108c
SS
1394}
1395
1396/* ARGSUSED */
1397static void
1398set_input_radix_1 (from_tty, radix)
1399 int from_tty;
1400 unsigned radix;
1401{
1402 /* We don't currently disallow any input radix except 0 or 1, which don't
1403 make any mathematical sense. In theory, we can deal with any input
1404 radix greater than 1, even if we don't have unique digits for every
1405 value from 0 to radix-1, but in practice we lose on large radix values.
1406 We should either fix the lossage or restrict the radix range more.
1407 (FIXME). */
1408
1409 if (radix < 2)
1410 {
1411 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1412 radix);
1413 }
1414 input_radix = radix;
1415 if (from_tty)
1416 {
1417 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1418 radix, radix, radix);
1419 }
1420}
1421
1422/* ARGSUSED */
1423static void
1424set_output_radix (args, from_tty, c)
1425 char *args;
1426 int from_tty;
1427 struct cmd_list_element *c;
1428{
c5aa993b 1429 set_output_radix_1 (from_tty, *(unsigned *) c->var);
c906108c
SS
1430}
1431
1432static void
1433set_output_radix_1 (from_tty, radix)
1434 int from_tty;
1435 unsigned radix;
1436{
1437 /* Validate the radix and disallow ones that we aren't prepared to
1438 handle correctly, leaving the radix unchanged. */
1439 switch (radix)
1440 {
1441 case 16:
c5aa993b 1442 output_format = 'x'; /* hex */
c906108c
SS
1443 break;
1444 case 10:
c5aa993b 1445 output_format = 0; /* decimal */
c906108c
SS
1446 break;
1447 case 8:
c5aa993b 1448 output_format = 'o'; /* octal */
c906108c
SS
1449 break;
1450 default:
1451 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1452 radix);
1453 }
1454 output_radix = radix;
1455 if (from_tty)
1456 {
1457 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1458 radix, radix, radix);
1459 }
1460}
1461
1462/* Set both the input and output radix at once. Try to set the output radix
1463 first, since it has the most restrictive range. An radix that is valid as
1464 an output radix is also valid as an input radix.
1465
1466 It may be useful to have an unusual input radix. If the user wishes to
1467 set an input radix that is not valid as an output radix, he needs to use
1468 the 'set input-radix' command. */
1469
1470static void
1471set_radix (arg, from_tty)
1472 char *arg;
1473 int from_tty;
1474{
1475 unsigned radix;
1476
1477 radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
1478 set_output_radix_1 (0, radix);
1479 set_input_radix_1 (0, radix);
1480 if (from_tty)
1481 {
1482 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1483 radix, radix, radix);
1484 }
1485}
1486
1487/* Show both the input and output radices. */
1488
c5aa993b 1489/*ARGSUSED */
c906108c
SS
1490static void
1491show_radix (arg, from_tty)
1492 char *arg;
1493 int from_tty;
1494{
1495 if (from_tty)
1496 {
1497 if (input_radix == output_radix)
1498 {
1499 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1500 input_radix, input_radix, input_radix);
1501 }
1502 else
1503 {
1504 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1505 input_radix, input_radix, input_radix);
1506 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1507 output_radix, output_radix, output_radix);
1508 }
1509 }
1510}
c906108c 1511\f
c5aa993b
JM
1512
1513/*ARGSUSED */
c906108c
SS
1514static void
1515set_print (arg, from_tty)
1516 char *arg;
1517 int from_tty;
1518{
1519 printf_unfiltered (
c5aa993b 1520 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1521 help_list (setprintlist, "set print ", -1, gdb_stdout);
1522}
1523
c5aa993b 1524/*ARGSUSED */
c906108c
SS
1525static void
1526show_print (args, from_tty)
1527 char *args;
1528 int from_tty;
1529{
1530 cmd_show_list (showprintlist, from_tty, "");
1531}
1532\f
1533void
1534_initialize_valprint ()
1535{
1536 struct cmd_list_element *c;
1537
1538 add_prefix_cmd ("print", no_class, set_print,
1539 "Generic command for setting how things print.",
1540 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1541 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1542 /* prefer set print to set prompt */
c906108c
SS
1543 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1544
1545 add_prefix_cmd ("print", no_class, show_print,
1546 "Generic command for showing print settings.",
1547 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1548 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1549 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c
SS
1550
1551 add_show_from_set
c5aa993b 1552 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
c906108c
SS
1553 "Set limit on string chars or array elements to print.\n\
1554\"set print elements 0\" causes there to be no limit.",
1555 &setprintlist),
1556 &showprintlist);
1557
1558 add_show_from_set
1559 (add_set_cmd ("null-stop", no_class, var_boolean,
c5aa993b 1560 (char *) &stop_print_at_null,
c906108c
SS
1561 "Set printing of char arrays to stop at first null char.",
1562 &setprintlist),
1563 &showprintlist);
1564
1565 add_show_from_set
1566 (add_set_cmd ("repeats", no_class, var_uinteger,
c5aa993b 1567 (char *) &repeat_count_threshold,
c906108c
SS
1568 "Set threshold for repeated print elements.\n\
1569\"set print repeats 0\" causes all elements to be individually printed.",
1570 &setprintlist),
1571 &showprintlist);
1572
1573 add_show_from_set
1574 (add_set_cmd ("pretty", class_support, var_boolean,
c5aa993b 1575 (char *) &prettyprint_structs,
c906108c
SS
1576 "Set prettyprinting of structures.",
1577 &setprintlist),
1578 &showprintlist);
1579
1580 add_show_from_set
c5aa993b 1581 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
c906108c
SS
1582 "Set printing of unions interior to structures.",
1583 &setprintlist),
1584 &showprintlist);
c5aa993b 1585
c906108c
SS
1586 add_show_from_set
1587 (add_set_cmd ("array", class_support, var_boolean,
c5aa993b 1588 (char *) &prettyprint_arrays,
c906108c
SS
1589 "Set prettyprinting of arrays.",
1590 &setprintlist),
1591 &showprintlist);
1592
1593 add_show_from_set
c5aa993b 1594 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
c906108c
SS
1595 "Set printing of addresses.",
1596 &setprintlist),
1597 &showprintlist);
1598
1599 c = add_set_cmd ("input-radix", class_support, var_uinteger,
c5aa993b
JM
1600 (char *) &input_radix,
1601 "Set default input radix for entering numbers.",
1602 &setlist);
c906108c
SS
1603 add_show_from_set (c, &showlist);
1604 c->function.sfunc = set_input_radix;
1605
1606 c = add_set_cmd ("output-radix", class_support, var_uinteger,
c5aa993b
JM
1607 (char *) &output_radix,
1608 "Set default output radix for printing of values.",
1609 &setlist);
c906108c
SS
1610 add_show_from_set (c, &showlist);
1611 c->function.sfunc = set_output_radix;
1612
1613 /* The "set radix" and "show radix" commands are special in that they are
1614 like normal set and show commands but allow two normally independent
1615 variables to be either set or shown with a single command. So the
1616 usual add_set_cmd() and add_show_from_set() commands aren't really
1617 appropriate. */
1618 add_cmd ("radix", class_support, set_radix,
1619 "Set default input and output number radices.\n\
1620Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1621Without an argument, sets both radices back to the default value of 10.",
1622 &setlist);
1623 add_cmd ("radix", class_support, show_radix,
1624 "Show the default input and output number radices.\n\
1625Use 'show input-radix' or 'show output-radix' to independently show each.",
1626 &showlist);
1627
1628 /* Give people the defaults which they are used to. */
1629 prettyprint_structs = 0;
1630 prettyprint_arrays = 0;
1631 unionprint = 1;
1632 addressprint = 1;
1633 print_max = PRINT_MAX_DEFAULT;
1634}