]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/valprint.c
2010-06-11 Tristan Gingold <gingold@adacore.com>
[thirdparty/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
0c3acc09 38#include "ada-lang.h"
c906108c
SS
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
777ea8f1 44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
45 int len, int *errnoptr);
46
a14ed312 47static void show_print (char *, int);
c906108c 48
a14ed312 49static void set_print (char *, int);
c906108c 50
a14ed312 51static void set_radix (char *, int);
c906108c 52
a14ed312 53static void show_radix (char *, int);
c906108c 54
a14ed312 55static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 56
a14ed312 57static void set_input_radix_1 (int, unsigned);
c906108c 58
a14ed312 59static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 60
a14ed312 61static void set_output_radix_1 (int, unsigned);
c906108c 62
a14ed312 63void _initialize_valprint (void);
c906108c 64
c906108c 65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
a6bac58e
TT
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
79a45b7d
TT
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
920d2a44
AC
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("\
121Limit on string chars or array elements to print is %s.\n"),
122 value);
123}
124
c906108c
SS
125
126/* Default input and output radixes, and output format letter. */
127
128unsigned input_radix = 10;
920d2a44
AC
129static void
130show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
133 fprintf_filtered (file, _("\
134Default input radix for entering numbers is %s.\n"),
135 value);
136}
137
c906108c 138unsigned output_radix = 10;
920d2a44
AC
139static void
140show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("\
144Default output radix for printing of values is %s.\n"),
145 value);
146}
c906108c 147
e79af960
JB
148/* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
e79af960
JB
151static void
152show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156}
157
c906108c
SS
158/* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
920d2a44
AC
162static void
163show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165{
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168}
c906108c
SS
169
170/* If nonzero, stops printing of char arrays at first null. */
171
920d2a44
AC
172static void
173show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("\
177Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179}
c906108c
SS
180
181/* Controls pretty printing of structures. */
182
920d2a44
AC
183static void
184show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188}
c906108c
SS
189
190/* Controls pretty printing of arrays. */
191
920d2a44
AC
192static void
193show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197}
c906108c
SS
198
199/* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
920d2a44
AC
202static void
203show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205{
206 fprintf_filtered (file, _("\
207Printing of unions interior to structures is %s.\n"),
208 value);
209}
c906108c
SS
210
211/* If nonzero, causes machine addresses to be printed in certain contexts. */
212
920d2a44
AC
213static void
214show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216{
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218}
c906108c 219\f
c5aa993b 220
a6bac58e
TT
221/* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225static int
226scalar_type_p (struct type *type)
227{
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246}
247
d8ca156b
JB
248/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
249 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 250 stdio stream STREAM according to OPTIONS.
c906108c
SS
251
252 If the data are a string pointer, returns the number of string characters
253 printed.
254
255 FIXME: The data at VALADDR is in target byte order. If gdb is ever
256 enhanced to be able to debug more than the single target it was compiled
257 for (specific CPU type and thus specific target byte ordering), then
258 either the print routines are going to have to take this into account,
259 or the data is going to have to be passed into here already converted
260 to the host byte ordering, whichever is more convenient. */
261
262
263int
fc1a4b47 264val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d
TT
265 CORE_ADDR address, struct ui_file *stream, int recurse,
266 const struct value_print_options *options,
d8ca156b 267 const struct language_defn *language)
c906108c 268{
19ca80ba
DJ
269 volatile struct gdb_exception except;
270 int ret = 0;
79a45b7d 271 struct value_print_options local_opts = *options;
c906108c 272 struct type *real_type = check_typedef (type);
79a45b7d
TT
273
274 if (local_opts.pretty == Val_pretty_default)
275 local_opts.pretty = (local_opts.prettyprint_structs
276 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 277
c906108c
SS
278 QUIT;
279
280 /* Ensure that the type is complete and not just a stub. If the type is
281 only a stub and we can't find and substitute its complete type, then
282 print appropriate string and return. */
283
74a9bb82 284 if (TYPE_STUB (real_type))
c906108c
SS
285 {
286 fprintf_filtered (stream, "<incomplete type>");
287 gdb_flush (stream);
288 return (0);
289 }
c5aa993b 290
a6bac58e
TT
291 if (!options->raw)
292 {
293 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
294 address, stream, recurse, options,
295 language);
296 if (ret)
297 return ret;
298 }
299
300 /* Handle summary mode. If the value is a scalar, print it;
301 otherwise, print an ellipsis. */
302 if (options->summary && !scalar_type_p (type))
303 {
304 fprintf_filtered (stream, "...");
305 return 0;
306 }
307
19ca80ba
DJ
308 TRY_CATCH (except, RETURN_MASK_ERROR)
309 {
d8ca156b 310 ret = language->la_val_print (type, valaddr, embedded_offset, address,
79a45b7d 311 stream, recurse, &local_opts);
19ca80ba
DJ
312 }
313 if (except.reason < 0)
314 fprintf_filtered (stream, _("<error reading variable>"));
315
316 return ret;
c906108c
SS
317}
318
806048c6
DJ
319/* Check whether the value VAL is printable. Return 1 if it is;
320 return 0 and print an appropriate error message to STREAM if it
321 is not. */
c906108c 322
806048c6
DJ
323static int
324value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
325{
326 if (val == 0)
327 {
806048c6 328 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
329 return 0;
330 }
806048c6 331
feb13ab0 332 if (value_optimized_out (val))
c906108c 333 {
806048c6 334 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
335 return 0;
336 }
806048c6 337
bc3b79fd
TJB
338 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
339 {
340 fprintf_filtered (stream, _("<internal function %s>"),
341 value_internal_function_name (val));
342 return 0;
343 }
344
806048c6
DJ
345 return 1;
346}
347
d8ca156b 348/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 349 to OPTIONS.
806048c6
DJ
350
351 If the data are a string pointer, returns the number of string characters
352 printed.
353
354 This is a preferable interface to val_print, above, because it uses
355 GDB's value mechanism. */
356
357int
79a45b7d
TT
358common_val_print (struct value *val, struct ui_file *stream, int recurse,
359 const struct value_print_options *options,
d8ca156b 360 const struct language_defn *language)
806048c6
DJ
361{
362 if (!value_check_printable (val, stream))
363 return 0;
364
0c3acc09
JB
365 if (language->la_language == language_ada)
366 /* The value might have a dynamic type, which would cause trouble
367 below when trying to extract the value contents (since the value
368 size is determined from the type size which is unknown). So
369 get a fixed representation of our value. */
370 val = ada_to_fixed_value (val);
371
806048c6 372 return val_print (value_type (val), value_contents_all (val),
42ae5230 373 value_embedded_offset (val), value_address (val),
79a45b7d 374 stream, recurse, options, language);
806048c6
DJ
375}
376
7348c5e1
JB
377/* Print on stream STREAM the value VAL according to OPTIONS. The value
378 is printed using the current_language syntax.
379
380 If the object printed is a string pointer, return the number of string
381 bytes printed. */
806048c6
DJ
382
383int
79a45b7d
TT
384value_print (struct value *val, struct ui_file *stream,
385 const struct value_print_options *options)
806048c6
DJ
386{
387 if (!value_check_printable (val, stream))
388 return 0;
389
a6bac58e
TT
390 if (!options->raw)
391 {
392 int r = apply_val_pretty_printer (value_type (val),
393 value_contents_all (val),
394 value_embedded_offset (val),
395 value_address (val),
396 stream, 0, options,
397 current_language);
a109c7c1 398
a6bac58e
TT
399 if (r)
400 return r;
401 }
402
79a45b7d 403 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
404}
405
406/* Called by various <lang>_val_print routines to print
407 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
408 value. STREAM is where to print the value. */
409
410void
fc1a4b47 411val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 412 struct ui_file *stream)
c906108c 413{
50810684 414 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 415
c906108c
SS
416 if (TYPE_LENGTH (type) > sizeof (LONGEST))
417 {
418 LONGEST val;
419
420 if (TYPE_UNSIGNED (type)
421 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 422 byte_order, &val))
c906108c
SS
423 {
424 print_longest (stream, 'u', 0, val);
425 }
426 else
427 {
428 /* Signed, or we couldn't turn an unsigned value into a
429 LONGEST. For signed values, one could assume two's
430 complement (a reasonable assumption, I think) and do
431 better than this. */
432 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 433 TYPE_LENGTH (type), byte_order);
c906108c
SS
434 }
435 }
436 else
437 {
c906108c
SS
438 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
439 unpack_long (type, valaddr));
c906108c
SS
440 }
441}
442
4f2aea11
MK
443void
444val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
445 struct ui_file *stream)
446{
befae759 447 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
448 int bitpos, nfields = TYPE_NFIELDS (type);
449
450 fputs_filtered ("[ ", stream);
451 for (bitpos = 0; bitpos < nfields; bitpos++)
452 {
316703b9
MK
453 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
454 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
455 {
456 if (TYPE_FIELD_NAME (type, bitpos))
457 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
458 else
459 fprintf_filtered (stream, "#%d ", bitpos);
460 }
461 }
462 fputs_filtered ("]", stream);
463}
464
c906108c
SS
465/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
466 The raison d'etre of this function is to consolidate printing of
bb599908
PH
467 LONG_LONG's into this one function. The format chars b,h,w,g are
468 from print_scalar_formatted(). Numbers are printed using C
469 format.
470
471 USE_C_FORMAT means to use C format in all cases. Without it,
472 'o' and 'x' format do not include the standard C radix prefix
473 (leading 0 or 0x).
474
475 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
476 and was intended to request formating according to the current
477 language and would be used for most integers that GDB prints. The
478 exceptional cases were things like protocols where the format of
479 the integer is a protocol thing, not a user-visible thing). The
480 parameter remains to preserve the information of what things might
481 be printed with language-specific format, should we ever resurrect
482 that capability. */
c906108c
SS
483
484void
bb599908 485print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 486 LONGEST val_long)
c906108c 487{
2bfb72ee
AC
488 const char *val;
489
c906108c
SS
490 switch (format)
491 {
492 case 'd':
bb599908 493 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 494 case 'u':
bb599908 495 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 496 case 'x':
bb599908 497 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 498 case 'b':
bb599908 499 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 500 case 'h':
bb599908 501 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 502 case 'w':
bb599908 503 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 504 case 'g':
bb599908 505 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
506 break;
507 case 'o':
bb599908 508 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 509 default:
e2e0b3e5 510 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 511 }
2bfb72ee 512 fputs_filtered (val, stream);
c906108c
SS
513}
514
c906108c
SS
515/* This used to be a macro, but I don't think it is called often enough
516 to merit such treatment. */
517/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
518 arguments to a function, number in a value history, register number, etc.)
519 where the value must not be larger than can fit in an int. */
520
521int
fba45db2 522longest_to_int (LONGEST arg)
c906108c
SS
523{
524 /* Let the compiler do the work */
525 int rtnval = (int) arg;
526
527 /* Check for overflows or underflows */
528 if (sizeof (LONGEST) > sizeof (int))
529 {
530 if (rtnval != arg)
531 {
8a3fe4f8 532 error (_("Value out of range."));
c906108c
SS
533 }
534 }
535 return (rtnval);
536}
537
a73c86fb
AC
538/* Print a floating point value of type TYPE (not always a
539 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
540
541void
fc1a4b47 542print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 543 struct ui_file *stream)
c906108c
SS
544{
545 DOUBLEST doub;
546 int inv;
a73c86fb 547 const struct floatformat *fmt = NULL;
c906108c 548 unsigned len = TYPE_LENGTH (type);
20389057 549 enum float_kind kind;
c5aa993b 550
a73c86fb
AC
551 /* If it is a floating-point, check for obvious problems. */
552 if (TYPE_CODE (type) == TYPE_CODE_FLT)
553 fmt = floatformat_from_type (type);
20389057 554 if (fmt != NULL)
39424bef 555 {
20389057
DJ
556 kind = floatformat_classify (fmt, valaddr);
557 if (kind == float_nan)
558 {
559 if (floatformat_is_negative (fmt, valaddr))
560 fprintf_filtered (stream, "-");
561 fprintf_filtered (stream, "nan(");
562 fputs_filtered ("0x", stream);
563 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
564 fprintf_filtered (stream, ")");
565 return;
566 }
567 else if (kind == float_infinite)
568 {
569 if (floatformat_is_negative (fmt, valaddr))
570 fputs_filtered ("-", stream);
571 fputs_filtered ("inf", stream);
572 return;
573 }
7355ddba 574 }
c906108c 575
a73c86fb
AC
576 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
577 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
578 needs to be used as that takes care of any necessary type
579 conversions. Such conversions are of course direct to DOUBLEST
580 and disregard any possible target floating point limitations.
581 For instance, a u64 would be converted and displayed exactly on a
582 host with 80 bit DOUBLEST but with loss of information on a host
583 with 64 bit DOUBLEST. */
c2f05ac9 584
c906108c
SS
585 doub = unpack_double (type, valaddr, &inv);
586 if (inv)
587 {
588 fprintf_filtered (stream, "<invalid float value>");
589 return;
590 }
591
39424bef
MK
592 /* FIXME: kettenis/2001-01-20: The following code makes too much
593 assumptions about the host and target floating point format. */
594
a73c86fb 595 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 596 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
597 instead uses the type's length to determine the precision of the
598 floating-point value being printed. */
c2f05ac9 599
c906108c 600 if (len < sizeof (double))
c5aa993b 601 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 602 else if (len == sizeof (double))
c5aa993b 603 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
604 else
605#ifdef PRINTF_HAS_LONG_DOUBLE
606 fprintf_filtered (stream, "%.35Lg", doub);
607#else
39424bef
MK
608 /* This at least wins with values that are representable as
609 doubles. */
c906108c
SS
610 fprintf_filtered (stream, "%.17g", (double) doub);
611#endif
612}
613
7678ef8f
TJB
614void
615print_decimal_floating (const gdb_byte *valaddr, struct type *type,
616 struct ui_file *stream)
617{
e17a4113 618 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
619 char decstr[MAX_DECIMAL_STRING];
620 unsigned len = TYPE_LENGTH (type);
621
e17a4113 622 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
623 fputs_filtered (decstr, stream);
624 return;
625}
626
c5aa993b 627void
fc1a4b47 628print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 629 unsigned len, enum bfd_endian byte_order)
c906108c
SS
630{
631
632#define BITS_IN_BYTES 8
633
fc1a4b47 634 const gdb_byte *p;
745b8ca0 635 unsigned int i;
c5aa993b 636 int b;
c906108c
SS
637
638 /* Declared "int" so it will be signed.
639 * This ensures that right shift will shift in zeros.
640 */
c5aa993b 641 const int mask = 0x080;
c906108c
SS
642
643 /* FIXME: We should be not printing leading zeroes in most cases. */
644
d44e8473 645 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
646 {
647 for (p = valaddr;
648 p < valaddr + len;
649 p++)
650 {
c5aa993b
JM
651 /* Every byte has 8 binary characters; peel off
652 * and print from the MSB end.
653 */
654 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
655 {
656 if (*p & (mask >> i))
657 b = 1;
658 else
659 b = 0;
660
661 fprintf_filtered (stream, "%1d", b);
662 }
c906108c
SS
663 }
664 }
665 else
666 {
667 for (p = valaddr + len - 1;
668 p >= valaddr;
669 p--)
670 {
c5aa993b
JM
671 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
672 {
673 if (*p & (mask >> i))
674 b = 1;
675 else
676 b = 0;
677
678 fprintf_filtered (stream, "%1d", b);
679 }
c906108c
SS
680 }
681 }
c906108c
SS
682}
683
684/* VALADDR points to an integer of LEN bytes.
685 * Print it in octal on stream or format it in buf.
686 */
687void
fc1a4b47 688print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 689 unsigned len, enum bfd_endian byte_order)
c906108c 690{
fc1a4b47 691 const gdb_byte *p;
c906108c 692 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
693 int cycle;
694
c906108c
SS
695 /* FIXME: We should be not printing leading zeroes in most cases. */
696
697
698 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
699 * the extra bits, which cycle every three bytes:
700 *
701 * Byte side: 0 1 2 3
702 * | | | |
703 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
704 *
705 * Octal side: 0 1 carry 3 4 carry ...
706 *
707 * Cycle number: 0 1 2
708 *
709 * But of course we are printing from the high side, so we have to
710 * figure out where in the cycle we are so that we end up with no
711 * left over bits at the end.
712 */
713#define BITS_IN_OCTAL 3
714#define HIGH_ZERO 0340
715#define LOW_ZERO 0016
716#define CARRY_ZERO 0003
717#define HIGH_ONE 0200
718#define MID_ONE 0160
719#define LOW_ONE 0016
720#define CARRY_ONE 0001
721#define HIGH_TWO 0300
722#define MID_TWO 0070
723#define LOW_TWO 0007
724
725 /* For 32 we start in cycle 2, with two bits and one bit carry;
726 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
727 */
728 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
729 carry = 0;
c5aa993b 730
bb599908 731 fputs_filtered ("0", stream);
d44e8473 732 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
733 {
734 for (p = valaddr;
735 p < valaddr + len;
736 p++)
737 {
c5aa993b
JM
738 switch (cycle)
739 {
740 case 0:
741 /* No carry in, carry out two bits.
742 */
743 octa1 = (HIGH_ZERO & *p) >> 5;
744 octa2 = (LOW_ZERO & *p) >> 2;
745 carry = (CARRY_ZERO & *p);
746 fprintf_filtered (stream, "%o", octa1);
747 fprintf_filtered (stream, "%o", octa2);
748 break;
749
750 case 1:
751 /* Carry in two bits, carry out one bit.
752 */
753 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
754 octa2 = (MID_ONE & *p) >> 4;
755 octa3 = (LOW_ONE & *p) >> 1;
756 carry = (CARRY_ONE & *p);
757 fprintf_filtered (stream, "%o", octa1);
758 fprintf_filtered (stream, "%o", octa2);
759 fprintf_filtered (stream, "%o", octa3);
760 break;
761
762 case 2:
763 /* Carry in one bit, no carry out.
764 */
765 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
766 octa2 = (MID_TWO & *p) >> 3;
767 octa3 = (LOW_TWO & *p);
768 carry = 0;
769 fprintf_filtered (stream, "%o", octa1);
770 fprintf_filtered (stream, "%o", octa2);
771 fprintf_filtered (stream, "%o", octa3);
772 break;
773
774 default:
8a3fe4f8 775 error (_("Internal error in octal conversion;"));
c5aa993b
JM
776 }
777
778 cycle++;
779 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
780 }
781 }
782 else
783 {
784 for (p = valaddr + len - 1;
785 p >= valaddr;
786 p--)
787 {
c5aa993b
JM
788 switch (cycle)
789 {
790 case 0:
791 /* Carry out, no carry in */
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in, carry out */
801 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
802 octa2 = (MID_ONE & *p) >> 4;
803 octa3 = (LOW_ONE & *p) >> 1;
804 carry = (CARRY_ONE & *p);
805 fprintf_filtered (stream, "%o", octa1);
806 fprintf_filtered (stream, "%o", octa2);
807 fprintf_filtered (stream, "%o", octa3);
808 break;
809
810 case 2:
811 /* Carry in, no carry out */
812 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
813 octa2 = (MID_TWO & *p) >> 3;
814 octa3 = (LOW_TWO & *p);
815 carry = 0;
816 fprintf_filtered (stream, "%o", octa1);
817 fprintf_filtered (stream, "%o", octa2);
818 fprintf_filtered (stream, "%o", octa3);
819 break;
820
821 default:
8a3fe4f8 822 error (_("Internal error in octal conversion;"));
c5aa993b
JM
823 }
824
825 cycle++;
826 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
827 }
828 }
829
c906108c
SS
830}
831
832/* VALADDR points to an integer of LEN bytes.
833 * Print it in decimal on stream or format it in buf.
834 */
835void
fc1a4b47 836print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 837 unsigned len, enum bfd_endian byte_order)
c906108c
SS
838{
839#define TEN 10
c5aa993b 840#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
841#define CARRY_LEFT( x ) ((x) % TEN)
842#define SHIFT( x ) ((x) << 4)
c906108c
SS
843#define LOW_NIBBLE( x ) ( (x) & 0x00F)
844#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
845
fc1a4b47 846 const gdb_byte *p;
c906108c 847 unsigned char *digits;
c5aa993b
JM
848 int carry;
849 int decimal_len;
850 int i, j, decimal_digits;
851 int dummy;
852 int flip;
853
c906108c
SS
854 /* Base-ten number is less than twice as many digits
855 * as the base 16 number, which is 2 digits per byte.
856 */
857 decimal_len = len * 2 * 2;
3c37485b 858 digits = xmalloc (decimal_len);
c906108c 859
c5aa993b
JM
860 for (i = 0; i < decimal_len; i++)
861 {
c906108c 862 digits[i] = 0;
c5aa993b 863 }
c906108c 864
c906108c
SS
865 /* Ok, we have an unknown number of bytes of data to be printed in
866 * decimal.
867 *
868 * Given a hex number (in nibbles) as XYZ, we start by taking X and
869 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
870 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
871 *
872 * The trick is that "digits" holds a base-10 number, but sometimes
873 * the individual digits are > 10.
874 *
875 * Outer loop is per nibble (hex digit) of input, from MSD end to
876 * LSD end.
877 */
c5aa993b 878 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 879 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 880 flip = 0;
d44e8473 881 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 882 {
c906108c
SS
883 /*
884 * Multiply current base-ten number by 16 in place.
885 * Each digit was between 0 and 9, now is between
886 * 0 and 144.
887 */
c5aa993b
JM
888 for (j = 0; j < decimal_digits; j++)
889 {
890 digits[j] = SHIFT (digits[j]);
891 }
892
c906108c
SS
893 /* Take the next nibble off the input and add it to what
894 * we've got in the LSB position. Bottom 'digit' is now
895 * between 0 and 159.
896 *
897 * "flip" is used to run this loop twice for each byte.
898 */
c5aa993b
JM
899 if (flip == 0)
900 {
901 /* Take top nibble.
902 */
903 digits[0] += HIGH_NIBBLE (*p);
904 flip = 1;
905 }
906 else
907 {
908 /* Take low nibble and bump our pointer "p".
909 */
910 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
911 if (byte_order == BFD_ENDIAN_BIG)
912 p++;
913 else
914 p--;
c5aa993b
JM
915 flip = 0;
916 }
c906108c
SS
917
918 /* Re-decimalize. We have to do this often enough
919 * that we don't overflow, but once per nibble is
920 * overkill. Easier this way, though. Note that the
921 * carry is often larger than 10 (e.g. max initial
922 * carry out of lowest nibble is 15, could bubble all
923 * the way up greater than 10). So we have to do
924 * the carrying beyond the last current digit.
925 */
926 carry = 0;
c5aa993b
JM
927 for (j = 0; j < decimal_len - 1; j++)
928 {
929 digits[j] += carry;
930
931 /* "/" won't handle an unsigned char with
932 * a value that if signed would be negative.
933 * So extend to longword int via "dummy".
934 */
935 dummy = digits[j];
936 carry = CARRY_OUT (dummy);
937 digits[j] = CARRY_LEFT (dummy);
938
939 if (j >= decimal_digits && carry == 0)
940 {
941 /*
942 * All higher digits are 0 and we
943 * no longer have a carry.
944 *
945 * Note: "j" is 0-based, "decimal_digits" is
946 * 1-based.
947 */
948 decimal_digits = j + 1;
949 break;
950 }
951 }
952 }
c906108c
SS
953
954 /* Ok, now "digits" is the decimal representation, with
955 * the "decimal_digits" actual digits. Print!
956 */
c5aa993b
JM
957 for (i = decimal_digits - 1; i >= 0; i--)
958 {
959 fprintf_filtered (stream, "%1d", digits[i]);
960 }
b8c9b27d 961 xfree (digits);
c906108c
SS
962}
963
964/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
965
6b9acc27 966void
fc1a4b47 967print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 968 unsigned len, enum bfd_endian byte_order)
c906108c 969{
fc1a4b47 970 const gdb_byte *p;
c906108c
SS
971
972 /* FIXME: We should be not printing leading zeroes in most cases. */
973
bb599908 974 fputs_filtered ("0x", stream);
d44e8473 975 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
976 {
977 for (p = valaddr;
978 p < valaddr + len;
979 p++)
980 {
981 fprintf_filtered (stream, "%02x", *p);
982 }
983 }
984 else
985 {
986 for (p = valaddr + len - 1;
987 p >= valaddr;
988 p--)
989 {
990 fprintf_filtered (stream, "%02x", *p);
991 }
992 }
c906108c
SS
993}
994
6b9acc27
JJ
995/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
996 Omit any leading zero chars. */
997
998void
6c7a06a3
TT
999print_char_chars (struct ui_file *stream, struct type *type,
1000 const gdb_byte *valaddr,
d44e8473 1001 unsigned len, enum bfd_endian byte_order)
6b9acc27 1002{
fc1a4b47 1003 const gdb_byte *p;
6b9acc27 1004
d44e8473 1005 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1006 {
1007 p = valaddr;
1008 while (p < valaddr + len - 1 && *p == 0)
1009 ++p;
1010
1011 while (p < valaddr + len)
1012 {
6c7a06a3 1013 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1014 ++p;
1015 }
1016 }
1017 else
1018 {
1019 p = valaddr + len - 1;
1020 while (p > valaddr && *p == 0)
1021 --p;
1022
1023 while (p >= valaddr)
1024 {
6c7a06a3 1025 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1026 --p;
1027 }
1028 }
1029}
1030
e936309c
JB
1031/* Assuming TYPE is a simple, non-empty array type, compute its upper
1032 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1033 Save the high bound into HIGH_BOUND if not NULL.
e79af960
JB
1034
1035 Return 1 if the operation was successful. Return zero otherwise,
e936309c 1036 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
df178451
PM
1037
1038 We now simply use get_discrete_bounds call to get the values
1039 of the low and high bounds.
1040 get_discrete_bounds can return three values:
1041 1, meaning that index is a range,
1042 0, meaning that index is a discrete type,
1043 or -1 for failure. */
e79af960
JB
1044
1045int
df178451 1046get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
e79af960
JB
1047{
1048 struct type *index = TYPE_INDEX_TYPE (type);
df178451
PM
1049 LONGEST low = 0;
1050 LONGEST high = 0;
1051 int res;
1052
e79af960
JB
1053 if (index == NULL)
1054 return 0;
1055
df178451
PM
1056 res = get_discrete_bounds (index, &low, &high);
1057 if (res == -1)
e79af960
JB
1058 return 0;
1059
1060 if (low_bound)
1061 *low_bound = low;
1062
e936309c
JB
1063 if (high_bound)
1064 *high_bound = high;
1065
e79af960
JB
1066 return 1;
1067}
e936309c 1068
79a45b7d 1069/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1070 at INDEX of an array whose index type is INDEX_TYPE. */
1071
1072void
1073maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1074 struct ui_file *stream,
1075 const struct value_print_options *options)
e79af960
JB
1076{
1077 struct value *index_value;
1078
79a45b7d 1079 if (!options->print_array_indexes)
e79af960
JB
1080 return;
1081
1082 index_value = value_from_longest (index_type, index);
1083
79a45b7d
TT
1084 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1085}
e79af960 1086
c906108c 1087/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1088 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1089
c5aa993b
JM
1090 (FIXME?) Assumes array element separator is a comma, which is correct
1091 for all languages currently handled.
1092 (FIXME?) Some languages have a notation for repeated array elements,
1093 perhaps we should try to use that notation when appropriate.
1094 */
c906108c
SS
1095
1096void
fc1a4b47 1097val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1098 CORE_ADDR address, struct ui_file *stream,
79a45b7d
TT
1099 int recurse,
1100 const struct value_print_options *options,
fba45db2 1101 unsigned int i)
c906108c
SS
1102{
1103 unsigned int things_printed = 0;
1104 unsigned len;
e79af960 1105 struct type *elttype, *index_type;
c906108c
SS
1106 unsigned eltlen;
1107 /* Position of the array element we are examining to see
1108 whether it is repeated. */
1109 unsigned int rep1;
1110 /* Number of repetitions we have detected so far. */
1111 unsigned int reps;
df178451 1112 LONGEST low_bound_index = 0;
c5aa993b 1113
c906108c
SS
1114 elttype = TYPE_TARGET_TYPE (type);
1115 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1116 index_type = TYPE_INDEX_TYPE (type);
c906108c 1117
e936309c
JB
1118 /* Compute the number of elements in the array. On most arrays,
1119 the size of its elements is not zero, and so the number of elements
1120 is simply the size of the array divided by the size of the elements.
1121 But for arrays of elements whose size is zero, we need to look at
1122 the bounds. */
1123 if (eltlen != 0)
1124 len = TYPE_LENGTH (type) / eltlen;
1125 else
1126 {
df178451 1127 LONGEST low, hi;
a109c7c1 1128
e936309c
JB
1129 if (get_array_bounds (type, &low, &hi))
1130 len = hi - low + 1;
1131 else
1132 {
1133 warning (_("unable to get bounds of array, assuming null array"));
1134 len = 0;
1135 }
1136 }
1137
168de233
JB
1138 /* Get the array low bound. This only makes sense if the array
1139 has one or more element in it. */
e936309c 1140 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
168de233 1141 {
e936309c 1142 warning (_("unable to get low bound of array, using zero as default"));
168de233
JB
1143 low_bound_index = 0;
1144 }
1145
c906108c
SS
1146 annotate_array_section_begin (i, elttype);
1147
79a45b7d 1148 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1149 {
1150 if (i != 0)
1151 {
79a45b7d 1152 if (options->prettyprint_arrays)
c906108c
SS
1153 {
1154 fprintf_filtered (stream, ",\n");
1155 print_spaces_filtered (2 + 2 * recurse, stream);
1156 }
1157 else
1158 {
1159 fprintf_filtered (stream, ", ");
1160 }
1161 }
1162 wrap_here (n_spaces (2 + 2 * recurse));
e79af960 1163 maybe_print_array_index (index_type, i + low_bound_index,
79a45b7d 1164 stream, options);
c906108c
SS
1165
1166 rep1 = i + 1;
1167 reps = 1;
c5aa993b 1168 while ((rep1 < len) &&
c906108c
SS
1169 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1170 {
1171 ++reps;
1172 ++rep1;
1173 }
1174
79a45b7d 1175 if (reps > options->repeat_count_threshold)
c906108c 1176 {
f9e31323
TT
1177 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1178 stream, recurse + 1, options, current_language);
c906108c
SS
1179 annotate_elt_rep (reps);
1180 fprintf_filtered (stream, " <repeats %u times>", reps);
1181 annotate_elt_rep_end ();
1182
1183 i = rep1 - 1;
79a45b7d 1184 things_printed += options->repeat_count_threshold;
c906108c
SS
1185 }
1186 else
1187 {
f9e31323
TT
1188 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1189 stream, recurse + 1, options, current_language);
c906108c
SS
1190 annotate_elt ();
1191 things_printed++;
1192 }
1193 }
1194 annotate_array_section_end ();
1195 if (i < len)
1196 {
1197 fprintf_filtered (stream, "...");
1198 }
1199}
1200
917317f4
JM
1201/* Read LEN bytes of target memory at address MEMADDR, placing the
1202 results in GDB's memory at MYADDR. Returns a count of the bytes
1203 actually read, and optionally an errno value in the location
1204 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1205
1206/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1207 function be eliminated. */
1208
1209static int
777ea8f1 1210partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1211{
1212 int nread; /* Number of bytes actually read. */
1213 int errcode; /* Error from last read. */
1214
1215 /* First try a complete read. */
1216 errcode = target_read_memory (memaddr, myaddr, len);
1217 if (errcode == 0)
1218 {
1219 /* Got it all. */
1220 nread = len;
1221 }
1222 else
1223 {
1224 /* Loop, reading one byte at a time until we get as much as we can. */
1225 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1226 {
1227 errcode = target_read_memory (memaddr++, myaddr++, 1);
1228 }
1229 /* If an error, the last read was unsuccessful, so adjust count. */
1230 if (errcode != 0)
1231 {
1232 nread--;
1233 }
1234 }
1235 if (errnoptr != NULL)
1236 {
1237 *errnoptr = errcode;
1238 }
1239 return (nread);
1240}
1241
ae6a3a4c
TJB
1242/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1243 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1244 allocated buffer containing the string, which the caller is responsible to
1245 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1246 success, or errno on failure.
1247
1248 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1249 the middle or end of the string). If LEN is -1, stops at the first
1250 null character (not necessarily the first null byte) up to a maximum
1251 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1252 characters as possible from the string.
1253
1254 Unless an exception is thrown, BUFFER will always be allocated, even on
1255 failure. In this case, some characters might have been read before the
1256 failure happened. Check BYTES_READ to recognize this situation.
1257
1258 Note: There was a FIXME asking to make this code use target_read_string,
1259 but this function is more general (can read past null characters, up to
1260 given LEN). Besides, it is used much more often than target_read_string
1261 so it is more tested. Perhaps callers of target_read_string should use
1262 this function instead? */
c906108c
SS
1263
1264int
ae6a3a4c 1265read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1266 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1267{
ae6a3a4c
TJB
1268 int found_nul; /* Non-zero if we found the nul char. */
1269 int errcode; /* Errno returned from bad reads. */
1270 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1271 unsigned int chunksize; /* Size of each fetch, in chars. */
1272 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1273 gdb_byte *limit; /* First location past end of fetch buffer. */
1274 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1275
1276 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1277 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1278 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1279 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1280 well read in blocks that are large enough to be efficient, but not so
1281 large as to be slow if fetchlimit happens to be large. So we choose the
1282 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1283 200 is way too big for remote debugging over a serial line. */
1284
1285 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1286
ae6a3a4c
TJB
1287 /* Loop until we either have all the characters, or we encounter
1288 some error, such as bumping into the end of the address space. */
c906108c
SS
1289
1290 found_nul = 0;
b5096abe
PM
1291 *buffer = NULL;
1292
1293 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1294
1295 if (len > 0)
1296 {
ae6a3a4c
TJB
1297 *buffer = (gdb_byte *) xmalloc (len * width);
1298 bufptr = *buffer;
c906108c 1299
917317f4 1300 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1301 / width;
1302 addr += nfetch * width;
1303 bufptr += nfetch * width;
1304 }
1305 else if (len == -1)
1306 {
1307 unsigned long bufsize = 0;
ae6a3a4c 1308
c906108c
SS
1309 do
1310 {
1311 QUIT;
1312 nfetch = min (chunksize, fetchlimit - bufsize);
1313
ae6a3a4c
TJB
1314 if (*buffer == NULL)
1315 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1316 else
b5096abe
PM
1317 *buffer = (gdb_byte *) xrealloc (*buffer,
1318 (nfetch + bufsize) * width);
c906108c 1319
ae6a3a4c 1320 bufptr = *buffer + bufsize * width;
c906108c
SS
1321 bufsize += nfetch;
1322
ae6a3a4c 1323 /* Read as much as we can. */
917317f4 1324 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1325 / width;
c906108c 1326
ae6a3a4c 1327 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1328 to print. If found, we don't need to fetch any more. Note
1329 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1330 after the null character, or at the next character after the end
1331 of the buffer. */
c906108c
SS
1332
1333 limit = bufptr + nfetch * width;
1334 while (bufptr < limit)
1335 {
1336 unsigned long c;
1337
e17a4113 1338 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1339 addr += width;
1340 bufptr += width;
1341 if (c == 0)
1342 {
1343 /* We don't care about any error which happened after
ae6a3a4c 1344 the NUL terminator. */
c906108c
SS
1345 errcode = 0;
1346 found_nul = 1;
1347 break;
1348 }
1349 }
1350 }
c5aa993b 1351 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1352 && bufptr - *buffer < fetchlimit * width /* no overrun */
1353 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1354 }
1355 else
ae6a3a4c
TJB
1356 { /* Length of string is really 0! */
1357 /* We always allocate *buffer. */
1358 *buffer = bufptr = xmalloc (1);
c906108c
SS
1359 errcode = 0;
1360 }
1361
1362 /* bufptr and addr now point immediately beyond the last byte which we
1363 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1364 *bytes_read = bufptr - *buffer;
1365
1366 QUIT;
1367
1368 discard_cleanups (old_chain);
1369
1370 return errcode;
1371}
1372
1373/* Print a string from the inferior, starting at ADDR and printing up to LEN
1374 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1375 stops at the first null byte, otherwise printing proceeds (including null
1376 bytes) until either print_max or LEN characters have been printed,
1377 whichever is smaller. */
1378
1379int
6c7a06a3
TT
1380val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1381 struct ui_file *stream,
ae6a3a4c
TJB
1382 const struct value_print_options *options)
1383{
1384 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1385 int errcode; /* Errno returned from bad reads. */
1386 int found_nul; /* Non-zero if we found the nul char */
1387 unsigned int fetchlimit; /* Maximum number of chars to print. */
1388 int bytes_read;
1389 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1390 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1391 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1392 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1393 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1394
1395 /* First we need to figure out the limit on the number of characters we are
1396 going to attempt to fetch and print. This is actually pretty simple. If
1397 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1398 LEN is -1, then the limit is print_max. This is true regardless of
1399 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1400 because finding the null byte (or available memory) is what actually
1401 limits the fetch. */
1402
1403 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1404
e17a4113
UW
1405 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1406 &buffer, &bytes_read);
ae6a3a4c
TJB
1407 old_chain = make_cleanup (xfree, buffer);
1408
1409 addr += bytes_read;
c906108c
SS
1410
1411 /* We now have either successfully filled the buffer to fetchlimit, or
ae6a3a4c
TJB
1412 terminated early due to an error or finding a null char when LEN is -1. */
1413
1414 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1415 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1416 byte_order) == 0;
c906108c
SS
1417 if (len == -1 && !found_nul)
1418 {
777ea8f1 1419 gdb_byte *peekbuf;
c906108c 1420
ae6a3a4c 1421 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1422 to peek at the next character. If not successful, or it is not
1423 a null byte, then force ellipsis to be printed. */
c906108c 1424
777ea8f1 1425 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1426
1427 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1428 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1429 force_ellipsis = 1;
1430 }
ae6a3a4c 1431 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1432 {
1433 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1434 than the number of characters actually requested, always make us
ae6a3a4c 1435 print ellipsis. */
c906108c
SS
1436 force_ellipsis = 1;
1437 }
1438
c906108c
SS
1439 /* If we get an error before fetching anything, don't print a string.
1440 But if we fetch something and then get an error, print the string
1441 and then the error message. */
ae6a3a4c 1442 if (errcode == 0 || bytes_read > 0)
c906108c 1443 {
79a45b7d 1444 if (options->addressprint)
c906108c
SS
1445 {
1446 fputs_filtered (" ", stream);
1447 }
be759fcf
PM
1448 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1449 NULL, force_ellipsis, options);
c906108c
SS
1450 }
1451
1452 if (errcode != 0)
1453 {
1454 if (errcode == EIO)
1455 {
1456 fprintf_filtered (stream, " <Address ");
5af949e3 1457 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1458 fprintf_filtered (stream, " out of bounds>");
1459 }
1460 else
1461 {
1462 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1463 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1464 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1465 }
1466 }
ae6a3a4c 1467
c906108c
SS
1468 gdb_flush (stream);
1469 do_cleanups (old_chain);
ae6a3a4c
TJB
1470
1471 return (bytes_read / width);
c906108c 1472}
c906108c 1473\f
c5aa993b 1474
09e6485f
PA
1475/* The 'set input-radix' command writes to this auxiliary variable.
1476 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1477 it is left unchanged. */
1478
1479static unsigned input_radix_1 = 10;
1480
c906108c
SS
1481/* Validate an input or output radix setting, and make sure the user
1482 knows what they really did here. Radix setting is confusing, e.g.
1483 setting the input radix to "10" never changes it! */
1484
c906108c 1485static void
fba45db2 1486set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1487{
09e6485f 1488 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1489}
1490
c906108c 1491static void
fba45db2 1492set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1493{
1494 /* We don't currently disallow any input radix except 0 or 1, which don't
1495 make any mathematical sense. In theory, we can deal with any input
1496 radix greater than 1, even if we don't have unique digits for every
1497 value from 0 to radix-1, but in practice we lose on large radix values.
1498 We should either fix the lossage or restrict the radix range more.
1499 (FIXME). */
1500
1501 if (radix < 2)
1502 {
09e6485f 1503 input_radix_1 = input_radix;
8a3fe4f8 1504 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1505 radix);
1506 }
09e6485f 1507 input_radix_1 = input_radix = radix;
c906108c
SS
1508 if (from_tty)
1509 {
a3f17187 1510 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1511 radix, radix, radix);
1512 }
1513}
1514
09e6485f
PA
1515/* The 'set output-radix' command writes to this auxiliary variable.
1516 If the requested radix is valid, OUTPUT_RADIX is updated,
1517 otherwise, it is left unchanged. */
1518
1519static unsigned output_radix_1 = 10;
1520
c906108c 1521static void
fba45db2 1522set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1523{
09e6485f 1524 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1525}
1526
1527static void
fba45db2 1528set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1529{
1530 /* Validate the radix and disallow ones that we aren't prepared to
1531 handle correctly, leaving the radix unchanged. */
1532 switch (radix)
1533 {
1534 case 16:
79a45b7d 1535 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1536 break;
1537 case 10:
79a45b7d 1538 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1539 break;
1540 case 8:
79a45b7d 1541 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1542 break;
1543 default:
09e6485f 1544 output_radix_1 = output_radix;
8a3fe4f8 1545 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1546 radix);
1547 }
09e6485f 1548 output_radix_1 = output_radix = radix;
c906108c
SS
1549 if (from_tty)
1550 {
a3f17187 1551 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1552 radix, radix, radix);
1553 }
1554}
1555
1556/* Set both the input and output radix at once. Try to set the output radix
1557 first, since it has the most restrictive range. An radix that is valid as
1558 an output radix is also valid as an input radix.
1559
1560 It may be useful to have an unusual input radix. If the user wishes to
1561 set an input radix that is not valid as an output radix, he needs to use
1562 the 'set input-radix' command. */
1563
1564static void
fba45db2 1565set_radix (char *arg, int from_tty)
c906108c
SS
1566{
1567 unsigned radix;
1568
bb518678 1569 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1570 set_output_radix_1 (0, radix);
1571 set_input_radix_1 (0, radix);
1572 if (from_tty)
1573 {
a3f17187 1574 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1575 radix, radix, radix);
1576 }
1577}
1578
1579/* Show both the input and output radices. */
1580
c906108c 1581static void
fba45db2 1582show_radix (char *arg, int from_tty)
c906108c
SS
1583{
1584 if (from_tty)
1585 {
1586 if (input_radix == output_radix)
1587 {
a3f17187 1588 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1589 input_radix, input_radix, input_radix);
1590 }
1591 else
1592 {
a3f17187 1593 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1594 input_radix, input_radix, input_radix);
a3f17187 1595 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1596 output_radix, output_radix, output_radix);
1597 }
1598 }
1599}
c906108c 1600\f
c5aa993b 1601
c906108c 1602static void
fba45db2 1603set_print (char *arg, int from_tty)
c906108c
SS
1604{
1605 printf_unfiltered (
c5aa993b 1606 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1607 help_list (setprintlist, "set print ", -1, gdb_stdout);
1608}
1609
c906108c 1610static void
fba45db2 1611show_print (char *args, int from_tty)
c906108c
SS
1612{
1613 cmd_show_list (showprintlist, from_tty, "");
1614}
1615\f
1616void
fba45db2 1617_initialize_valprint (void)
c906108c 1618{
c906108c 1619 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1620 _("Generic command for setting how things print."),
c906108c 1621 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1622 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1623 /* prefer set print to set prompt */
c906108c
SS
1624 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1625
1626 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1627 _("Generic command for showing print settings."),
c906108c 1628 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1629 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1630 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1631
79a45b7d
TT
1632 add_setshow_uinteger_cmd ("elements", no_class,
1633 &user_print_options.print_max, _("\
35096d9d
AC
1634Set limit on string chars or array elements to print."), _("\
1635Show limit on string chars or array elements to print."), _("\
1636\"set print elements 0\" causes there to be no limit."),
1637 NULL,
920d2a44 1638 show_print_max,
35096d9d 1639 &setprintlist, &showprintlist);
c906108c 1640
79a45b7d
TT
1641 add_setshow_boolean_cmd ("null-stop", no_class,
1642 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1643Set printing of char arrays to stop at first null char."), _("\
1644Show printing of char arrays to stop at first null char."), NULL,
1645 NULL,
920d2a44 1646 show_stop_print_at_null,
5bf193a2 1647 &setprintlist, &showprintlist);
c906108c 1648
35096d9d 1649 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1650 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1651Set threshold for repeated print elements."), _("\
1652Show threshold for repeated print elements."), _("\
1653\"set print repeats 0\" causes all elements to be individually printed."),
1654 NULL,
920d2a44 1655 show_repeat_count_threshold,
35096d9d 1656 &setprintlist, &showprintlist);
c906108c 1657
79a45b7d
TT
1658 add_setshow_boolean_cmd ("pretty", class_support,
1659 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1660Set prettyprinting of structures."), _("\
1661Show prettyprinting of structures."), NULL,
1662 NULL,
920d2a44 1663 show_prettyprint_structs,
5bf193a2
AC
1664 &setprintlist, &showprintlist);
1665
79a45b7d
TT
1666 add_setshow_boolean_cmd ("union", class_support,
1667 &user_print_options.unionprint, _("\
5bf193a2
AC
1668Set printing of unions interior to structures."), _("\
1669Show printing of unions interior to structures."), NULL,
1670 NULL,
920d2a44 1671 show_unionprint,
5bf193a2
AC
1672 &setprintlist, &showprintlist);
1673
79a45b7d
TT
1674 add_setshow_boolean_cmd ("array", class_support,
1675 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1676Set prettyprinting of arrays."), _("\
1677Show prettyprinting of arrays."), NULL,
1678 NULL,
920d2a44 1679 show_prettyprint_arrays,
5bf193a2
AC
1680 &setprintlist, &showprintlist);
1681
79a45b7d
TT
1682 add_setshow_boolean_cmd ("address", class_support,
1683 &user_print_options.addressprint, _("\
5bf193a2
AC
1684Set printing of addresses."), _("\
1685Show printing of addresses."), NULL,
1686 NULL,
920d2a44 1687 show_addressprint,
5bf193a2 1688 &setprintlist, &showprintlist);
c906108c 1689
1e8fb976
PA
1690 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1691 _("\
35096d9d
AC
1692Set default input radix for entering numbers."), _("\
1693Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1694 set_input_radix,
1695 show_input_radix,
1696 &setlist, &showlist);
35096d9d 1697
1e8fb976
PA
1698 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1699 _("\
35096d9d
AC
1700Set default output radix for printing of values."), _("\
1701Show default output radix for printing of values."), NULL,
1e8fb976
PA
1702 set_output_radix,
1703 show_output_radix,
1704 &setlist, &showlist);
c906108c 1705
cb1a6d5f
AC
1706 /* The "set radix" and "show radix" commands are special in that
1707 they are like normal set and show commands but allow two normally
1708 independent variables to be either set or shown with a single
b66df561 1709 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1710 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1711 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1712 longer true - show can display anything. */
1a966eab
AC
1713 add_cmd ("radix", class_support, set_radix, _("\
1714Set default input and output number radices.\n\
c906108c 1715Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1716Without an argument, sets both radices back to the default value of 10."),
c906108c 1717 &setlist);
1a966eab
AC
1718 add_cmd ("radix", class_support, show_radix, _("\
1719Show the default input and output number radices.\n\
1720Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1721 &showlist);
1722
e79af960 1723 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1724 &user_print_options.print_array_indexes, _("\
e79af960
JB
1725Set printing of array indexes."), _("\
1726Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1727 &setprintlist, &showprintlist);
c906108c 1728}