]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/valprint.c
Fix memory leak in add_symbol_file_command
[thirdparty/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
3f2f83dd 37#include "typeprint.h"
3b2b8fea 38#include <ctype.h>
325fac50 39#include <algorithm>
d5722aa2 40#include "common/byte-vector.h"
c906108c 41
0d63ecda
KS
42/* Maximum number of wchars returned from wchar_iterate. */
43#define MAX_WCHARS 4
44
45/* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49/* Character buffer size saved while iterating over wchars. */
50#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52/* A structure to encapsulate state information from iterated
53 character conversions. */
54struct converted_character
55{
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73};
74
75typedef struct converted_character converted_character_d;
76DEF_VEC_O (converted_character_d);
77
e7045703
DE
78/* Command lists for set/show print raw. */
79struct cmd_list_element *setprintrawlist;
80struct cmd_list_element *showprintrawlist;
0d63ecda 81
c906108c
SS
82/* Prototypes for local functions */
83
777ea8f1 84static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 85 int len, int *errptr);
917317f4 86
a14ed312 87static void show_print (char *, int);
c906108c 88
a14ed312 89static void set_print (char *, int);
c906108c 90
a14ed312 91static void set_radix (char *, int);
c906108c 92
a14ed312 93static void show_radix (char *, int);
c906108c 94
a14ed312 95static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 96
a14ed312 97static void set_input_radix_1 (int, unsigned);
c906108c 98
a14ed312 99static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 100
a14ed312 101static void set_output_radix_1 (int, unsigned);
c906108c 102
81516450
DE
103static void val_print_type_code_flags (struct type *type,
104 const gdb_byte *valaddr,
105 struct ui_file *stream);
106
a14ed312 107void _initialize_valprint (void);
c906108c 108
581e13c1 109#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
110
111struct value_print_options user_print_options =
112{
2a998fc0
DE
113 Val_prettyformat_default, /* prettyformat */
114 0, /* prettyformat_arrays */
115 0, /* prettyformat_structs */
79a45b7d
TT
116 0, /* vtblprint */
117 1, /* unionprint */
118 1, /* addressprint */
119 0, /* objectprint */
120 PRINT_MAX_DEFAULT, /* print_max */
121 10, /* repeat_count_threshold */
122 0, /* output_format */
123 0, /* format */
124 0, /* stop_print_at_null */
79a45b7d
TT
125 0, /* print_array_indexes */
126 0, /* deref_ref */
127 1, /* static_field_print */
a6bac58e
TT
128 1, /* pascal_static_field_print */
129 0, /* raw */
9cb709b6
TT
130 0, /* summary */
131 1 /* symbol_print */
79a45b7d
TT
132};
133
134/* Initialize *OPTS to be a copy of the user print options. */
135void
136get_user_print_options (struct value_print_options *opts)
137{
138 *opts = user_print_options;
139}
140
141/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 142 pretty-formatting disabled. */
79a45b7d 143void
2a998fc0 144get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
145{
146 *opts = user_print_options;
2a998fc0 147 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
148}
149
150/* Initialize *OPTS to be a copy of the user print options, but using
151 FORMAT as the formatting option. */
152void
153get_formatted_print_options (struct value_print_options *opts,
154 char format)
155{
156 *opts = user_print_options;
157 opts->format = format;
158}
159
920d2a44
AC
160static void
161show_print_max (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
3e43a32a
MS
164 fprintf_filtered (file,
165 _("Limit on string chars or array "
166 "elements to print is %s.\n"),
920d2a44
AC
167 value);
168}
169
c906108c
SS
170
171/* Default input and output radixes, and output format letter. */
172
173unsigned input_radix = 10;
920d2a44
AC
174static void
175show_input_radix (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
3e43a32a
MS
178 fprintf_filtered (file,
179 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
180 value);
181}
182
c906108c 183unsigned output_radix = 10;
920d2a44
AC
184static void
185show_output_radix (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187{
3e43a32a
MS
188 fprintf_filtered (file,
189 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
190 value);
191}
c906108c 192
e79af960
JB
193/* By default we print arrays without printing the index of each element in
194 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
195
e79af960
JB
196static void
197show_print_array_indexes (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199{
200 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
201}
202
c906108c
SS
203/* Print repeat counts if there are more than this many repetitions of an
204 element in an array. Referenced by the low level language dependent
581e13c1 205 print routines. */
c906108c 206
920d2a44
AC
207static void
208show_repeat_count_threshold (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210{
211 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
212 value);
213}
c906108c 214
581e13c1 215/* If nonzero, stops printing of char arrays at first null. */
c906108c 216
920d2a44
AC
217static void
218show_stop_print_at_null (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220{
3e43a32a
MS
221 fprintf_filtered (file,
222 _("Printing of char arrays to stop "
223 "at first null char is %s.\n"),
920d2a44
AC
224 value);
225}
c906108c 226
581e13c1 227/* Controls pretty printing of structures. */
c906108c 228
920d2a44 229static void
2a998fc0 230show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
231 struct cmd_list_element *c, const char *value)
232{
2a998fc0 233 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 234}
c906108c
SS
235
236/* Controls pretty printing of arrays. */
237
920d2a44 238static void
2a998fc0 239show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
240 struct cmd_list_element *c, const char *value)
241{
2a998fc0 242 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 243}
c906108c
SS
244
245/* If nonzero, causes unions inside structures or other unions to be
581e13c1 246 printed. */
c906108c 247
920d2a44
AC
248static void
249show_unionprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
3e43a32a
MS
252 fprintf_filtered (file,
253 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
254 value);
255}
c906108c 256
581e13c1 257/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 258
920d2a44
AC
259static void
260show_addressprint (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
264}
9cb709b6
TT
265
266static void
267show_symbol_print (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269{
270 fprintf_filtered (file,
271 _("Printing of symbols when printing pointers is %s.\n"),
272 value);
273}
274
c906108c 275\f
c5aa993b 276
a6bac58e
TT
277/* A helper function for val_print. When printing in "summary" mode,
278 we want to print scalar arguments, but not aggregate arguments.
279 This function distinguishes between the two. */
280
6211c335
YQ
281int
282val_print_scalar_type_p (struct type *type)
a6bac58e 283{
f168693b 284 type = check_typedef (type);
aa006118 285 while (TYPE_IS_REFERENCE (type))
a6bac58e
TT
286 {
287 type = TYPE_TARGET_TYPE (type);
f168693b 288 type = check_typedef (type);
a6bac58e
TT
289 }
290 switch (TYPE_CODE (type))
291 {
292 case TYPE_CODE_ARRAY:
293 case TYPE_CODE_STRUCT:
294 case TYPE_CODE_UNION:
295 case TYPE_CODE_SET:
296 case TYPE_CODE_STRING:
a6bac58e
TT
297 return 0;
298 default:
299 return 1;
300 }
301}
302
a72c8f6a 303/* See its definition in value.h. */
0e03807e 304
a72c8f6a 305int
0e03807e
TT
306valprint_check_validity (struct ui_file *stream,
307 struct type *type,
6b850546 308 LONGEST embedded_offset,
0e03807e
TT
309 const struct value *val)
310{
f168693b 311 type = check_typedef (type);
0e03807e 312
3f2f83dd
KB
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
0e03807e
TT
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
9a0dc9e3
PA
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 332 {
901461f8 333 val_print_optimized_out (val, stream);
0e03807e
TT
334 return 0;
335 }
8cf6f0b1 336
4e07d55f 337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
3326303b
MG
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_filtered (_("<synthetic pointer>"), stream);
353
354 /* C++ references should be valid even if they're synthetic. */
355 return is_ref;
8cf6f0b1 356 }
4e07d55f
PA
357
358 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
359 {
360 val_print_unavailable (stream);
361 return 0;
362 }
0e03807e
TT
363 }
364
365 return 1;
366}
367
585fdaa1 368void
901461f8 369val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 370{
901461f8 371 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 372 val_print_not_saved (stream);
901461f8
PA
373 else
374 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
375}
376
782d47df
PA
377void
378val_print_not_saved (struct ui_file *stream)
379{
380 fprintf_filtered (stream, _("<not saved>"));
381}
382
4e07d55f
PA
383void
384val_print_unavailable (struct ui_file *stream)
385{
386 fprintf_filtered (stream, _("<unavailable>"));
387}
388
8af8e3bc
PA
389void
390val_print_invalid_address (struct ui_file *stream)
391{
392 fprintf_filtered (stream, _("<invalid address>"));
393}
394
9f436164
SM
395/* Print a pointer based on the type of its target.
396
397 Arguments to this functions are roughly the same as those in
398 generic_val_print. A difference is that ADDRESS is the address to print,
399 with embedded_offset already added. ELTTYPE represents
400 the pointed type after check_typedef. */
401
402static void
403print_unpacked_pointer (struct type *type, struct type *elttype,
404 CORE_ADDR address, struct ui_file *stream,
405 const struct value_print_options *options)
406{
407 struct gdbarch *gdbarch = get_type_arch (type);
408
409 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
410 {
411 /* Try to print what function it points to. */
412 print_function_pointer_address (options, gdbarch, address, stream);
413 return;
414 }
415
416 if (options->symbol_print)
417 print_address_demangle (options, gdbarch, address, stream, demangle);
418 else if (options->addressprint)
419 fputs_filtered (paddress (gdbarch, address), stream);
420}
421
557dbe8a
SM
422/* generic_val_print helper for TYPE_CODE_ARRAY. */
423
424static void
e8b24d9f 425generic_val_print_array (struct type *type,
00272ec4
TT
426 int embedded_offset, CORE_ADDR address,
427 struct ui_file *stream, int recurse,
e8b24d9f 428 struct value *original_value,
00272ec4
TT
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
557dbe8a
SM
432{
433 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
434 struct type *elttype = check_typedef (unresolved_elttype);
435
436 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
437 {
438 LONGEST low_bound, high_bound;
439
440 if (!get_array_bounds (type, &low_bound, &high_bound))
441 error (_("Could not determine the array high bound"));
442
443 if (options->prettyformat_arrays)
444 {
445 print_spaces_filtered (2 + 2 * recurse, stream);
446 }
447
00272ec4 448 fputs_filtered (decorations->array_start, stream);
e8b24d9f 449 val_print_array_elements (type, embedded_offset,
557dbe8a
SM
450 address, stream,
451 recurse, original_value, options, 0);
00272ec4 452 fputs_filtered (decorations->array_end, stream);
557dbe8a
SM
453 }
454 else
455 {
456 /* Array of unspecified length: treat like pointer to first elt. */
457 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
458 options);
459 }
460
461}
462
81eb921a
SM
463/* generic_val_print helper for TYPE_CODE_PTR. */
464
465static void
e8b24d9f 466generic_val_print_ptr (struct type *type,
81eb921a 467 int embedded_offset, struct ui_file *stream,
e8b24d9f 468 struct value *original_value,
81eb921a
SM
469 const struct value_print_options *options)
470{
3ae385af
SM
471 struct gdbarch *gdbarch = get_type_arch (type);
472 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
473
81eb921a
SM
474 if (options->format && options->format != 's')
475 {
e8b24d9f 476 val_print_scalar_formatted (type, embedded_offset,
81eb921a
SM
477 original_value, options, 0, stream);
478 }
479 else
480 {
481 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
482 struct type *elttype = check_typedef (unresolved_elttype);
e8b24d9f 483 const gdb_byte *valaddr = value_contents_for_printing (original_value);
3ae385af
SM
484 CORE_ADDR addr = unpack_pointer (type,
485 valaddr + embedded_offset * unit_size);
81eb921a
SM
486
487 print_unpacked_pointer (type, elttype, addr, stream, options);
488 }
489}
490
45000ea2
SM
491
492/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
493
494static void
e8b24d9f 495generic_val_print_memberptr (struct type *type,
45000ea2 496 int embedded_offset, struct ui_file *stream,
e8b24d9f 497 struct value *original_value,
45000ea2
SM
498 const struct value_print_options *options)
499{
e8b24d9f 500 val_print_scalar_formatted (type, embedded_offset,
45000ea2
SM
501 original_value, options, 0, stream);
502}
503
3326303b
MG
504/* Print '@' followed by the address contained in ADDRESS_BUFFER. */
505
506static void
507print_ref_address (struct type *type, const gdb_byte *address_buffer,
508 int embedded_offset, struct ui_file *stream)
509{
510 struct gdbarch *gdbarch = get_type_arch (type);
511
512 if (address_buffer != NULL)
513 {
514 CORE_ADDR address
515 = extract_typed_address (address_buffer + embedded_offset, type);
516
517 fprintf_filtered (stream, "@");
518 fputs_filtered (paddress (gdbarch, address), stream);
519 }
520 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
521}
522
523/* If VAL is addressable, return the value contents buffer of a value that
524 represents a pointer to VAL. Otherwise return NULL. */
525
526static const gdb_byte *
527get_value_addr_contents (struct value *deref_val)
528{
529 gdb_assert (deref_val != NULL);
530
531 if (value_lval_const (deref_val) == lval_memory)
532 return value_contents_for_printing_const (value_addr (deref_val));
533 else
534 {
535 /* We have a non-addressable value, such as a DW_AT_const_value. */
536 return NULL;
537 }
538}
539
aa006118 540/* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
fe43fede
SM
541
542static void
e8b24d9f 543generic_val_print_ref (struct type *type,
fe43fede 544 int embedded_offset, struct ui_file *stream, int recurse,
e8b24d9f 545 struct value *original_value,
fe43fede
SM
546 const struct value_print_options *options)
547{
fe43fede 548 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
3326303b
MG
549 struct value *deref_val = NULL;
550 const int value_is_synthetic
551 = value_bits_synthetic_pointer (original_value,
552 TARGET_CHAR_BIT * embedded_offset,
553 TARGET_CHAR_BIT * TYPE_LENGTH (type));
554 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
555 || options->deref_ref);
556 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
e8b24d9f 557 const gdb_byte *valaddr = value_contents_for_printing (original_value);
3326303b
MG
558
559 if (must_coerce_ref && type_is_defined)
560 {
561 deref_val = coerce_ref_if_computed (original_value);
562
563 if (deref_val != NULL)
564 {
565 /* More complicated computed references are not supported. */
566 gdb_assert (embedded_offset == 0);
567 }
568 else
569 deref_val = value_at (TYPE_TARGET_TYPE (type),
570 unpack_pointer (type, valaddr + embedded_offset));
571 }
572 /* Else, original_value isn't a synthetic reference or we don't have to print
573 the reference's contents.
574
575 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
576 cause original_value to be a not_lval instead of an lval_computed,
577 which will make value_bits_synthetic_pointer return false.
578 This happens because if options->objectprint is true, c_value_print will
579 overwrite original_value's contents with the result of coercing
580 the reference through value_addr, and then set its type back to
581 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
582 we can simply treat it as non-synthetic and move on. */
fe43fede
SM
583
584 if (options->addressprint)
585 {
3326303b
MG
586 const gdb_byte *address = (value_is_synthetic && type_is_defined
587 ? get_value_addr_contents (deref_val)
588 : valaddr);
589
590 print_ref_address (type, address, embedded_offset, stream);
fe43fede 591
fe43fede
SM
592 if (options->deref_ref)
593 fputs_filtered (": ", stream);
594 }
3326303b 595
fe43fede
SM
596 if (options->deref_ref)
597 {
3326303b
MG
598 if (type_is_defined)
599 common_val_print (deref_val, stream, recurse, options,
600 current_language);
fe43fede
SM
601 else
602 fputs_filtered ("???", stream);
603 }
604}
605
81516450
DE
606/* Helper function for generic_val_print_enum.
607 This is also used to print enums in TYPE_CODE_FLAGS values. */
ef0bc0dd
SM
608
609static void
81516450
DE
610generic_val_print_enum_1 (struct type *type, LONGEST val,
611 struct ui_file *stream)
ef0bc0dd
SM
612{
613 unsigned int i;
614 unsigned int len;
ef0bc0dd 615
ef0bc0dd 616 len = TYPE_NFIELDS (type);
ef0bc0dd
SM
617 for (i = 0; i < len; i++)
618 {
619 QUIT;
620 if (val == TYPE_FIELD_ENUMVAL (type, i))
621 {
622 break;
623 }
624 }
625 if (i < len)
626 {
627 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
628 }
629 else if (TYPE_FLAG_ENUM (type))
630 {
631 int first = 1;
632
633 /* We have a "flag" enum, so we try to decompose it into
634 pieces as appropriate. A flag enum has disjoint
635 constants by definition. */
636 fputs_filtered ("(", stream);
637 for (i = 0; i < len; ++i)
638 {
639 QUIT;
640
641 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
642 {
643 if (!first)
644 fputs_filtered (" | ", stream);
645 first = 0;
646
647 val &= ~TYPE_FIELD_ENUMVAL (type, i);
648 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
649 }
650 }
651
652 if (first || val != 0)
653 {
654 if (!first)
655 fputs_filtered (" | ", stream);
656 fputs_filtered ("unknown: ", stream);
657 print_longest (stream, 'd', 0, val);
658 }
659
660 fputs_filtered (")", stream);
661 }
662 else
663 print_longest (stream, 'd', 0, val);
664}
665
81516450
DE
666/* generic_val_print helper for TYPE_CODE_ENUM. */
667
668static void
e8b24d9f 669generic_val_print_enum (struct type *type,
81516450 670 int embedded_offset, struct ui_file *stream,
e8b24d9f 671 struct value *original_value,
81516450
DE
672 const struct value_print_options *options)
673{
674 LONGEST val;
675 struct gdbarch *gdbarch = get_type_arch (type);
676 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
677
678 if (options->format)
679 {
e8b24d9f 680 val_print_scalar_formatted (type, embedded_offset,
81516450 681 original_value, options, 0, stream);
81516450 682 }
e8b24d9f
YQ
683 else
684 {
685 const gdb_byte *valaddr = value_contents_for_printing (original_value);
686
687 val = unpack_long (type, valaddr + embedded_offset * unit_size);
81516450 688
e8b24d9f
YQ
689 generic_val_print_enum_1 (type, val, stream);
690 }
81516450
DE
691}
692
d93880bd
SM
693/* generic_val_print helper for TYPE_CODE_FLAGS. */
694
695static void
e8b24d9f 696generic_val_print_flags (struct type *type,
d93880bd 697 int embedded_offset, struct ui_file *stream,
e8b24d9f 698 struct value *original_value,
d93880bd
SM
699 const struct value_print_options *options)
700
701{
702 if (options->format)
e8b24d9f 703 val_print_scalar_formatted (type, embedded_offset, original_value,
d93880bd
SM
704 options, 0, stream);
705 else
e8b24d9f
YQ
706 {
707 const gdb_byte *valaddr = value_contents_for_printing (original_value);
708
709 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
710 }
d93880bd
SM
711}
712
4a8c372f
SM
713/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
714
715static void
e8b24d9f 716generic_val_print_func (struct type *type,
4a8c372f
SM
717 int embedded_offset, CORE_ADDR address,
718 struct ui_file *stream,
e8b24d9f 719 struct value *original_value,
4a8c372f
SM
720 const struct value_print_options *options)
721{
722 struct gdbarch *gdbarch = get_type_arch (type);
723
724 if (options->format)
725 {
e8b24d9f 726 val_print_scalar_formatted (type, embedded_offset,
4a8c372f
SM
727 original_value, options, 0, stream);
728 }
729 else
730 {
731 /* FIXME, we should consider, at least for ANSI C language,
732 eliminating the distinction made between FUNCs and POINTERs
733 to FUNCs. */
734 fprintf_filtered (stream, "{");
735 type_print (type, "", stream, -1);
736 fprintf_filtered (stream, "} ");
737 /* Try to print what function it points to, and its address. */
738 print_address_demangle (options, gdbarch, address, stream, demangle);
739 }
740}
741
e5bead4b
SM
742/* generic_val_print helper for TYPE_CODE_BOOL. */
743
744static void
e8b24d9f 745generic_val_print_bool (struct type *type,
e5bead4b 746 int embedded_offset, struct ui_file *stream,
e8b24d9f 747 struct value *original_value,
e5bead4b
SM
748 const struct value_print_options *options,
749 const struct generic_val_print_decorations *decorations)
750{
751 LONGEST val;
3ae385af
SM
752 struct gdbarch *gdbarch = get_type_arch (type);
753 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
e5bead4b
SM
754
755 if (options->format || options->output_format)
756 {
757 struct value_print_options opts = *options;
758 opts.format = (options->format ? options->format
759 : options->output_format);
e8b24d9f 760 val_print_scalar_formatted (type, embedded_offset,
e5bead4b
SM
761 original_value, &opts, 0, stream);
762 }
763 else
764 {
e8b24d9f
YQ
765 const gdb_byte *valaddr = value_contents_for_printing (original_value);
766
3ae385af 767 val = unpack_long (type, valaddr + embedded_offset * unit_size);
e5bead4b
SM
768 if (val == 0)
769 fputs_filtered (decorations->false_name, stream);
770 else if (val == 1)
771 fputs_filtered (decorations->true_name, stream);
772 else
773 print_longest (stream, 'd', 0, val);
774 }
775}
776
b21b6342
SM
777/* generic_val_print helper for TYPE_CODE_INT. */
778
779static void
e8b24d9f 780generic_val_print_int (struct type *type,
b21b6342 781 int embedded_offset, struct ui_file *stream,
e8b24d9f 782 struct value *original_value,
b21b6342
SM
783 const struct value_print_options *options)
784{
f12f6bad 785 struct value_print_options opts = *options;
3ae385af 786
f12f6bad
TT
787 opts.format = (options->format ? options->format
788 : options->output_format);
789 val_print_scalar_formatted (type, embedded_offset,
790 original_value, &opts, 0, stream);
b21b6342
SM
791}
792
385f5aff
SM
793/* generic_val_print helper for TYPE_CODE_CHAR. */
794
795static void
796generic_val_print_char (struct type *type, struct type *unresolved_type,
e8b24d9f 797 int embedded_offset,
385f5aff 798 struct ui_file *stream,
e8b24d9f 799 struct value *original_value,
385f5aff
SM
800 const struct value_print_options *options)
801{
802 LONGEST val;
3ae385af
SM
803 struct gdbarch *gdbarch = get_type_arch (type);
804 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
385f5aff
SM
805
806 if (options->format || options->output_format)
807 {
808 struct value_print_options opts = *options;
809
810 opts.format = (options->format ? options->format
811 : options->output_format);
e8b24d9f 812 val_print_scalar_formatted (type, embedded_offset,
385f5aff
SM
813 original_value, &opts, 0, stream);
814 }
815 else
816 {
e8b24d9f
YQ
817 const gdb_byte *valaddr = value_contents_for_printing (original_value);
818
3ae385af 819 val = unpack_long (type, valaddr + embedded_offset * unit_size);
385f5aff
SM
820 if (TYPE_UNSIGNED (type))
821 fprintf_filtered (stream, "%u", (unsigned int) val);
822 else
823 fprintf_filtered (stream, "%d", (int) val);
824 fputs_filtered (" ", stream);
825 LA_PRINT_CHAR (val, unresolved_type, stream);
826 }
827}
828
7784724b
SM
829/* generic_val_print helper for TYPE_CODE_FLT. */
830
831static void
e8b24d9f 832generic_val_print_float (struct type *type,
7784724b 833 int embedded_offset, struct ui_file *stream,
e8b24d9f 834 struct value *original_value,
7784724b
SM
835 const struct value_print_options *options)
836{
3ae385af
SM
837 struct gdbarch *gdbarch = get_type_arch (type);
838 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
839
7784724b
SM
840 if (options->format)
841 {
e8b24d9f 842 val_print_scalar_formatted (type, embedded_offset,
7784724b
SM
843 original_value, options, 0, stream);
844 }
845 else
846 {
e8b24d9f
YQ
847 const gdb_byte *valaddr = value_contents_for_printing (original_value);
848
3ae385af 849 print_floating (valaddr + embedded_offset * unit_size, type, stream);
7784724b
SM
850 }
851}
852
9550ae5e
SM
853/* generic_val_print helper for TYPE_CODE_DECFLOAT. */
854
855static void
e8b24d9f 856generic_val_print_decfloat (struct type *type,
9550ae5e 857 int embedded_offset, struct ui_file *stream,
e8b24d9f 858 struct value *original_value,
9550ae5e
SM
859 const struct value_print_options *options)
860{
3ae385af
SM
861 struct gdbarch *gdbarch = get_type_arch (type);
862 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
863
9550ae5e 864 if (options->format)
e8b24d9f 865 val_print_scalar_formatted (type, embedded_offset, original_value,
9550ae5e
SM
866 options, 0, stream);
867 else
e8b24d9f
YQ
868 {
869 const gdb_byte *valaddr = value_contents_for_printing (original_value);
870
871 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
872 stream);
873 }
9550ae5e
SM
874}
875
0c87c0bf
SM
876/* generic_val_print helper for TYPE_CODE_COMPLEX. */
877
878static void
e8b24d9f 879generic_val_print_complex (struct type *type,
0c87c0bf 880 int embedded_offset, struct ui_file *stream,
e8b24d9f 881 struct value *original_value,
0c87c0bf
SM
882 const struct value_print_options *options,
883 const struct generic_val_print_decorations
884 *decorations)
885{
3ae385af
SM
886 struct gdbarch *gdbarch = get_type_arch (type);
887 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
e8b24d9f 888 const gdb_byte *valaddr = value_contents_for_printing (original_value);
3ae385af 889
0c87c0bf
SM
890 fprintf_filtered (stream, "%s", decorations->complex_prefix);
891 if (options->format)
e8b24d9f 892 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
0c87c0bf
SM
893 embedded_offset, original_value, options, 0,
894 stream);
895 else
3ae385af
SM
896 print_floating (valaddr + embedded_offset * unit_size,
897 TYPE_TARGET_TYPE (type), stream);
0c87c0bf
SM
898 fprintf_filtered (stream, "%s", decorations->complex_infix);
899 if (options->format)
e8b24d9f 900 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
0c87c0bf 901 embedded_offset
3ae385af 902 + type_length_units (TYPE_TARGET_TYPE (type)),
0c87c0bf
SM
903 original_value, options, 0, stream);
904 else
3ae385af 905 print_floating (valaddr + embedded_offset * unit_size
0c87c0bf
SM
906 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
907 TYPE_TARGET_TYPE (type), stream);
908 fprintf_filtered (stream, "%s", decorations->complex_suffix);
909}
910
e88acd96
TT
911/* A generic val_print that is suitable for use by language
912 implementations of the la_val_print method. This function can
913 handle most type codes, though not all, notably exception
914 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
915 the caller.
916
917 Most arguments are as to val_print.
918
919 The additional DECORATIONS argument can be used to customize the
920 output in some small, language-specific ways. */
921
922void
e8b24d9f 923generic_val_print (struct type *type,
e88acd96
TT
924 int embedded_offset, CORE_ADDR address,
925 struct ui_file *stream, int recurse,
e8b24d9f 926 struct value *original_value,
e88acd96
TT
927 const struct value_print_options *options,
928 const struct generic_val_print_decorations *decorations)
929{
e88acd96 930 struct type *unresolved_type = type;
e88acd96 931
f168693b 932 type = check_typedef (type);
e88acd96
TT
933 switch (TYPE_CODE (type))
934 {
935 case TYPE_CODE_ARRAY:
e8b24d9f 936 generic_val_print_array (type, embedded_offset, address, stream,
00272ec4 937 recurse, original_value, options, decorations);
9f436164 938 break;
e88acd96
TT
939
940 case TYPE_CODE_MEMBERPTR:
e8b24d9f 941 generic_val_print_memberptr (type, embedded_offset, stream,
45000ea2 942 original_value, options);
e88acd96
TT
943 break;
944
945 case TYPE_CODE_PTR:
e8b24d9f 946 generic_val_print_ptr (type, embedded_offset, stream,
81eb921a 947 original_value, options);
e88acd96
TT
948 break;
949
950 case TYPE_CODE_REF:
aa006118 951 case TYPE_CODE_RVALUE_REF:
e8b24d9f 952 generic_val_print_ref (type, embedded_offset, stream, recurse,
fe43fede 953 original_value, options);
e88acd96
TT
954 break;
955
956 case TYPE_CODE_ENUM:
e8b24d9f 957 generic_val_print_enum (type, embedded_offset, stream,
ef0bc0dd 958 original_value, options);
e88acd96
TT
959 break;
960
961 case TYPE_CODE_FLAGS:
e8b24d9f 962 generic_val_print_flags (type, embedded_offset, stream,
d93880bd 963 original_value, options);
e88acd96
TT
964 break;
965
966 case TYPE_CODE_FUNC:
967 case TYPE_CODE_METHOD:
e8b24d9f 968 generic_val_print_func (type, embedded_offset, address, stream,
4a8c372f 969 original_value, options);
e88acd96
TT
970 break;
971
972 case TYPE_CODE_BOOL:
e8b24d9f 973 generic_val_print_bool (type, embedded_offset, stream,
e5bead4b 974 original_value, options, decorations);
e88acd96
TT
975 break;
976
977 case TYPE_CODE_RANGE:
0c9c3474 978 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
979 range type (I think it probably should copy it from the
980 target type), so we won't print values which are too large to
981 fit in a signed integer correctly. */
982 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
983 print with the target type, though, because the size of our
984 type and the target type might differ). */
985
986 /* FALLTHROUGH */
987
988 case TYPE_CODE_INT:
e8b24d9f 989 generic_val_print_int (type, embedded_offset, stream,
b21b6342 990 original_value, options);
e88acd96
TT
991 break;
992
993 case TYPE_CODE_CHAR:
e8b24d9f 994 generic_val_print_char (type, unresolved_type, embedded_offset,
385f5aff 995 stream, original_value, options);
e88acd96
TT
996 break;
997
998 case TYPE_CODE_FLT:
e8b24d9f 999 generic_val_print_float (type, embedded_offset, stream,
7784724b 1000 original_value, options);
e88acd96
TT
1001 break;
1002
1003 case TYPE_CODE_DECFLOAT:
e8b24d9f 1004 generic_val_print_decfloat (type, embedded_offset, stream,
9550ae5e 1005 original_value, options);
e88acd96
TT
1006 break;
1007
1008 case TYPE_CODE_VOID:
1009 fputs_filtered (decorations->void_name, stream);
1010 break;
1011
1012 case TYPE_CODE_ERROR:
1013 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1014 break;
1015
1016 case TYPE_CODE_UNDEF:
a9ff5f12
UW
1017 /* This happens (without TYPE_STUB set) on systems which don't use
1018 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1019 and no complete type for struct foo in that file. */
e88acd96
TT
1020 fprintf_filtered (stream, _("<incomplete type>"));
1021 break;
1022
1023 case TYPE_CODE_COMPLEX:
e8b24d9f 1024 generic_val_print_complex (type, embedded_offset, stream,
0c87c0bf 1025 original_value, options, decorations);
e88acd96
TT
1026 break;
1027
1028 case TYPE_CODE_UNION:
1029 case TYPE_CODE_STRUCT:
1030 case TYPE_CODE_METHODPTR:
1031 default:
1032 error (_("Unhandled type code %d in symbol table."),
1033 TYPE_CODE (type));
1034 }
1035 gdb_flush (stream);
1036}
1037
32b72a42 1038/* Print using the given LANGUAGE the data of type TYPE located at
e8b24d9f
YQ
1039 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1040 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1041 stdio stream STREAM according to OPTIONS. VAL is the whole object
1042 that came from ADDRESS.
32b72a42
PA
1043
1044 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1045 further helper subroutines as subfields of TYPE are printed. In
e8b24d9f 1046 such cases, VAL is passed down unadjusted, so
32b72a42
PA
1047 that VAL can be queried for metadata about the contents data being
1048 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1049 buffer. For example: "has this field been optimized out", or "I'm
1050 printing an object while inspecting a traceframe; has this
1051 particular piece of data been collected?".
1052
1053 RECURSE indicates the amount of indentation to supply before
1054 continuation lines; this amount is roughly twice the value of
35c0084b 1055 RECURSE. */
32b72a42 1056
35c0084b 1057void
e8b24d9f 1058val_print (struct type *type, LONGEST embedded_offset,
79a45b7d 1059 CORE_ADDR address, struct ui_file *stream, int recurse,
e8b24d9f 1060 struct value *val,
79a45b7d 1061 const struct value_print_options *options,
d8ca156b 1062 const struct language_defn *language)
c906108c 1063{
19ca80ba 1064 int ret = 0;
79a45b7d 1065 struct value_print_options local_opts = *options;
c906108c 1066 struct type *real_type = check_typedef (type);
79a45b7d 1067
2a998fc0
DE
1068 if (local_opts.prettyformat == Val_prettyformat_default)
1069 local_opts.prettyformat = (local_opts.prettyformat_structs
1070 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 1071
c906108c
SS
1072 QUIT;
1073
1074 /* Ensure that the type is complete and not just a stub. If the type is
1075 only a stub and we can't find and substitute its complete type, then
1076 print appropriate string and return. */
1077
74a9bb82 1078 if (TYPE_STUB (real_type))
c906108c 1079 {
0e03807e 1080 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 1081 gdb_flush (stream);
35c0084b 1082 return;
c906108c 1083 }
c5aa993b 1084
0e03807e 1085 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 1086 return;
0e03807e 1087
a6bac58e
TT
1088 if (!options->raw)
1089 {
668e1674 1090 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
6dddc817
DE
1091 address, stream, recurse,
1092 val, options, language);
a6bac58e 1093 if (ret)
35c0084b 1094 return;
a6bac58e
TT
1095 }
1096
1097 /* Handle summary mode. If the value is a scalar, print it;
1098 otherwise, print an ellipsis. */
6211c335 1099 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
1100 {
1101 fprintf_filtered (stream, "...");
35c0084b 1102 return;
a6bac58e
TT
1103 }
1104
492d29ea 1105 TRY
19ca80ba 1106 {
e8b24d9f 1107 language->la_val_print (type, embedded_offset, address,
d3eab38a
TT
1108 stream, recurse, val,
1109 &local_opts);
19ca80ba 1110 }
492d29ea
PA
1111 CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 fprintf_filtered (stream, _("<error reading variable>"));
1114 }
1115 END_CATCH
c906108c
SS
1116}
1117
806048c6 1118/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
1119 return 0 and print an appropriate error message to STREAM according to
1120 OPTIONS if it is not. */
c906108c 1121
806048c6 1122static int
6501578c
YQ
1123value_check_printable (struct value *val, struct ui_file *stream,
1124 const struct value_print_options *options)
c906108c
SS
1125{
1126 if (val == 0)
1127 {
806048c6 1128 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
1129 return 0;
1130 }
806048c6 1131
0e03807e 1132 if (value_entirely_optimized_out (val))
c906108c 1133 {
6211c335 1134 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
1135 fprintf_filtered (stream, "...");
1136 else
901461f8 1137 val_print_optimized_out (val, stream);
c906108c
SS
1138 return 0;
1139 }
806048c6 1140
eebc056c
AB
1141 if (value_entirely_unavailable (val))
1142 {
1143 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1144 fprintf_filtered (stream, "...");
1145 else
1146 val_print_unavailable (stream);
1147 return 0;
1148 }
1149
bc3b79fd
TJB
1150 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1151 {
1152 fprintf_filtered (stream, _("<internal function %s>"),
1153 value_internal_function_name (val));
1154 return 0;
1155 }
1156
3f2f83dd
KB
1157 if (type_not_associated (value_type (val)))
1158 {
1159 val_print_not_associated (stream);
1160 return 0;
1161 }
1162
1163 if (type_not_allocated (value_type (val)))
1164 {
1165 val_print_not_allocated (stream);
1166 return 0;
1167 }
1168
806048c6
DJ
1169 return 1;
1170}
1171
d8ca156b 1172/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 1173 to OPTIONS.
806048c6 1174
806048c6
DJ
1175 This is a preferable interface to val_print, above, because it uses
1176 GDB's value mechanism. */
1177
a1f5dd1b 1178void
79a45b7d
TT
1179common_val_print (struct value *val, struct ui_file *stream, int recurse,
1180 const struct value_print_options *options,
d8ca156b 1181 const struct language_defn *language)
806048c6 1182{
6501578c 1183 if (!value_check_printable (val, stream, options))
a1f5dd1b 1184 return;
806048c6 1185
0c3acc09
JB
1186 if (language->la_language == language_ada)
1187 /* The value might have a dynamic type, which would cause trouble
1188 below when trying to extract the value contents (since the value
1189 size is determined from the type size which is unknown). So
1190 get a fixed representation of our value. */
1191 val = ada_to_fixed_value (val);
1192
7d45f3df
YQ
1193 if (value_lazy (val))
1194 value_fetch_lazy (val);
1195
e8b24d9f 1196 val_print (value_type (val),
a1f5dd1b
TT
1197 value_embedded_offset (val), value_address (val),
1198 stream, recurse,
1199 val, options, language);
806048c6
DJ
1200}
1201
7348c5e1 1202/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 1203 is printed using the current_language syntax. */
7348c5e1 1204
8e069a98 1205void
79a45b7d
TT
1206value_print (struct value *val, struct ui_file *stream,
1207 const struct value_print_options *options)
806048c6 1208{
6501578c 1209 if (!value_check_printable (val, stream, options))
8e069a98 1210 return;
806048c6 1211
a6bac58e
TT
1212 if (!options->raw)
1213 {
6dddc817
DE
1214 int r
1215 = apply_ext_lang_val_pretty_printer (value_type (val),
6dddc817
DE
1216 value_embedded_offset (val),
1217 value_address (val),
1218 stream, 0,
1219 val, options, current_language);
a109c7c1 1220
a6bac58e 1221 if (r)
8e069a98 1222 return;
a6bac58e
TT
1223 }
1224
8e069a98 1225 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
1226}
1227
81516450 1228static void
4f2aea11
MK
1229val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1230 struct ui_file *stream)
1231{
befae759 1232 ULONGEST val = unpack_long (type, valaddr);
81516450
DE
1233 int field, nfields = TYPE_NFIELDS (type);
1234 struct gdbarch *gdbarch = get_type_arch (type);
1235 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
4f2aea11 1236
81516450
DE
1237 fputs_filtered ("[", stream);
1238 for (field = 0; field < nfields; field++)
4f2aea11 1239 {
81516450 1240 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
4f2aea11 1241 {
81516450
DE
1242 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1243
1244 if (field_type == bool_type
1245 /* We require boolean types here to be one bit wide. This is a
1246 problematic place to notify the user of an internal error
1247 though. Instead just fall through and print the field as an
1248 int. */
1249 && TYPE_FIELD_BITSIZE (type, field) == 1)
1250 {
1251 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1252 fprintf_filtered (stream, " %s",
1253 TYPE_FIELD_NAME (type, field));
1254 }
4f2aea11 1255 else
81516450
DE
1256 {
1257 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1258 ULONGEST field_val
1259 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1260
1261 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1262 field_val &= ((ULONGEST) 1 << field_len) - 1;
1263 fprintf_filtered (stream, " %s=",
1264 TYPE_FIELD_NAME (type, field));
1265 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1266 generic_val_print_enum_1 (field_type, field_val, stream);
1267 else
1268 print_longest (stream, 'd', 0, field_val);
1269 }
4f2aea11
MK
1270 }
1271 }
81516450 1272 fputs_filtered (" ]", stream);
19c37f24 1273}
ab2188aa
PA
1274
1275/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1276 according to OPTIONS and SIZE on STREAM. Format i is not supported
1277 at this level.
1278
1279 This is how the elements of an array or structure are printed
1280 with a format. */
ab2188aa
PA
1281
1282void
1283val_print_scalar_formatted (struct type *type,
e8b24d9f
YQ
1284 LONGEST embedded_offset,
1285 struct value *val,
ab2188aa
PA
1286 const struct value_print_options *options,
1287 int size,
1288 struct ui_file *stream)
1289{
3ae385af
SM
1290 struct gdbarch *arch = get_type_arch (type);
1291 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1292
ab2188aa 1293 gdb_assert (val != NULL);
ab2188aa
PA
1294
1295 /* If we get here with a string format, try again without it. Go
1296 all the way back to the language printers, which may call us
1297 again. */
1298 if (options->format == 's')
1299 {
1300 struct value_print_options opts = *options;
1301 opts.format = 0;
1302 opts.deref_ref = 0;
e8b24d9f 1303 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
ab2188aa
PA
1304 current_language);
1305 return;
1306 }
1307
e8b24d9f
YQ
1308 /* value_contents_for_printing fetches all VAL's contents. They are
1309 needed to check whether VAL is optimized-out or unavailable
1310 below. */
1311 const gdb_byte *valaddr = value_contents_for_printing (val);
1312
ab2188aa
PA
1313 /* A scalar object that does not have all bits available can't be
1314 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1315 if (value_bits_any_optimized_out (val,
1316 TARGET_CHAR_BIT * embedded_offset,
1317 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1318 val_print_optimized_out (val, stream);
4e07d55f
PA
1319 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1320 val_print_unavailable (stream);
ab2188aa 1321 else
3ae385af 1322 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
ab2188aa 1323 options, size, stream);
4f2aea11
MK
1324}
1325
c906108c
SS
1326/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1327 The raison d'etre of this function is to consolidate printing of
581e13c1 1328 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1329 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1330 format.
bb599908
PH
1331
1332 USE_C_FORMAT means to use C format in all cases. Without it,
1333 'o' and 'x' format do not include the standard C radix prefix
1334 (leading 0 or 0x).
1335
1336 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1337 and was intended to request formating according to the current
1338 language and would be used for most integers that GDB prints. The
1339 exceptional cases were things like protocols where the format of
1340 the integer is a protocol thing, not a user-visible thing). The
1341 parameter remains to preserve the information of what things might
1342 be printed with language-specific format, should we ever resurrect
581e13c1 1343 that capability. */
c906108c
SS
1344
1345void
bb599908 1346print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1347 LONGEST val_long)
c906108c 1348{
2bfb72ee
AC
1349 const char *val;
1350
c906108c
SS
1351 switch (format)
1352 {
1353 case 'd':
bb599908 1354 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1355 case 'u':
bb599908 1356 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1357 case 'x':
bb599908 1358 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1359 case 'b':
bb599908 1360 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1361 case 'h':
bb599908 1362 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1363 case 'w':
bb599908 1364 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1365 case 'g':
bb599908 1366 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1367 break;
1368 case 'o':
bb599908 1369 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1370 default:
3e43a32a
MS
1371 internal_error (__FILE__, __LINE__,
1372 _("failed internal consistency check"));
bb599908 1373 }
2bfb72ee 1374 fputs_filtered (val, stream);
c906108c
SS
1375}
1376
c906108c
SS
1377/* This used to be a macro, but I don't think it is called often enough
1378 to merit such treatment. */
1379/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1380 arguments to a function, number in a value history, register number, etc.)
1381 where the value must not be larger than can fit in an int. */
1382
1383int
fba45db2 1384longest_to_int (LONGEST arg)
c906108c 1385{
581e13c1 1386 /* Let the compiler do the work. */
c906108c
SS
1387 int rtnval = (int) arg;
1388
581e13c1 1389 /* Check for overflows or underflows. */
c906108c
SS
1390 if (sizeof (LONGEST) > sizeof (int))
1391 {
1392 if (rtnval != arg)
1393 {
8a3fe4f8 1394 error (_("Value out of range."));
c906108c
SS
1395 }
1396 }
1397 return (rtnval);
1398}
1399
a73c86fb
AC
1400/* Print a floating point value of type TYPE (not always a
1401 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1402
1403void
fc1a4b47 1404print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1405 struct ui_file *stream)
c906108c
SS
1406{
1407 DOUBLEST doub;
1408 int inv;
a73c86fb 1409 const struct floatformat *fmt = NULL;
c906108c 1410 unsigned len = TYPE_LENGTH (type);
20389057 1411 enum float_kind kind;
c5aa993b 1412
a73c86fb
AC
1413 /* If it is a floating-point, check for obvious problems. */
1414 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1415 fmt = floatformat_from_type (type);
20389057 1416 if (fmt != NULL)
39424bef 1417 {
20389057
DJ
1418 kind = floatformat_classify (fmt, valaddr);
1419 if (kind == float_nan)
1420 {
1421 if (floatformat_is_negative (fmt, valaddr))
1422 fprintf_filtered (stream, "-");
1423 fprintf_filtered (stream, "nan(");
1424 fputs_filtered ("0x", stream);
1425 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1426 fprintf_filtered (stream, ")");
1427 return;
1428 }
1429 else if (kind == float_infinite)
1430 {
1431 if (floatformat_is_negative (fmt, valaddr))
1432 fputs_filtered ("-", stream);
1433 fputs_filtered ("inf", stream);
1434 return;
1435 }
7355ddba 1436 }
c906108c 1437
a73c86fb
AC
1438 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1439 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1440 needs to be used as that takes care of any necessary type
1441 conversions. Such conversions are of course direct to DOUBLEST
1442 and disregard any possible target floating point limitations.
1443 For instance, a u64 would be converted and displayed exactly on a
1444 host with 80 bit DOUBLEST but with loss of information on a host
1445 with 64 bit DOUBLEST. */
c2f05ac9 1446
c906108c
SS
1447 doub = unpack_double (type, valaddr, &inv);
1448 if (inv)
1449 {
1450 fprintf_filtered (stream, "<invalid float value>");
1451 return;
1452 }
1453
39424bef
MK
1454 /* FIXME: kettenis/2001-01-20: The following code makes too much
1455 assumptions about the host and target floating point format. */
1456
a73c86fb 1457 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1458 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1459 instead uses the type's length to determine the precision of the
1460 floating-point value being printed. */
c2f05ac9 1461
c906108c 1462 if (len < sizeof (double))
c5aa993b 1463 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1464 else if (len == sizeof (double))
c5aa993b 1465 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1466 else
1467#ifdef PRINTF_HAS_LONG_DOUBLE
1468 fprintf_filtered (stream, "%.35Lg", doub);
1469#else
39424bef
MK
1470 /* This at least wins with values that are representable as
1471 doubles. */
c906108c
SS
1472 fprintf_filtered (stream, "%.17g", (double) doub);
1473#endif
1474}
1475
7678ef8f
TJB
1476void
1477print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1478 struct ui_file *stream)
1479{
e17a4113 1480 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1481 char decstr[MAX_DECIMAL_STRING];
1482 unsigned len = TYPE_LENGTH (type);
1483
e17a4113 1484 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1485 fputs_filtered (decstr, stream);
1486 return;
1487}
1488
c5aa993b 1489void
fc1a4b47 1490print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
30a25466 1491 unsigned len, enum bfd_endian byte_order, bool zero_pad)
c906108c
SS
1492{
1493
1494#define BITS_IN_BYTES 8
1495
fc1a4b47 1496 const gdb_byte *p;
745b8ca0 1497 unsigned int i;
c5aa993b 1498 int b;
30a25466 1499 bool seen_a_one = false;
c906108c
SS
1500
1501 /* Declared "int" so it will be signed.
581e13c1
MS
1502 This ensures that right shift will shift in zeros. */
1503
c5aa993b 1504 const int mask = 0x080;
c906108c 1505
d44e8473 1506 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1507 {
1508 for (p = valaddr;
1509 p < valaddr + len;
1510 p++)
1511 {
c5aa993b 1512 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1513 and print from the MSB end. */
1514
c5aa993b
JM
1515 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1516 {
1517 if (*p & (mask >> i))
30a25466 1518 b = '1';
c5aa993b 1519 else
30a25466 1520 b = '0';
c5aa993b 1521
30a25466
TT
1522 if (zero_pad || seen_a_one || b == '1')
1523 fputc_filtered (b, stream);
1524 if (b == '1')
1525 seen_a_one = true;
c5aa993b 1526 }
c906108c
SS
1527 }
1528 }
1529 else
1530 {
1531 for (p = valaddr + len - 1;
1532 p >= valaddr;
1533 p--)
1534 {
c5aa993b
JM
1535 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1536 {
1537 if (*p & (mask >> i))
30a25466 1538 b = '1';
c5aa993b 1539 else
30a25466 1540 b = '0';
c5aa993b 1541
30a25466
TT
1542 if (zero_pad || seen_a_one || b == '1')
1543 fputc_filtered (b, stream);
1544 if (b == '1')
1545 seen_a_one = true;
c5aa993b 1546 }
c906108c
SS
1547 }
1548 }
30a25466
TT
1549
1550 /* When not zero-padding, ensure that something is printed when the
1551 input is 0. */
1552 if (!zero_pad && !seen_a_one)
1553 fputc_filtered ('0', stream);
1554}
1555
1556/* A helper for print_octal_chars that emits a single octal digit,
1557 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1558
1559static void
1560emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1561{
1562 if (*seen_a_one || digit != 0)
1563 fprintf_filtered (stream, "%o", digit);
1564 if (digit != 0)
1565 *seen_a_one = true;
c906108c
SS
1566}
1567
1568/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1569 Print it in octal on stream or format it in buf. */
1570
c906108c 1571void
fc1a4b47 1572print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1573 unsigned len, enum bfd_endian byte_order)
c906108c 1574{
fc1a4b47 1575 const gdb_byte *p;
c906108c 1576 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1577 int cycle;
1578
c906108c
SS
1579 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1580 * the extra bits, which cycle every three bytes:
1581 *
1582 * Byte side: 0 1 2 3
1583 * | | | |
1584 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1585 *
1586 * Octal side: 0 1 carry 3 4 carry ...
1587 *
1588 * Cycle number: 0 1 2
1589 *
1590 * But of course we are printing from the high side, so we have to
1591 * figure out where in the cycle we are so that we end up with no
1592 * left over bits at the end.
1593 */
1594#define BITS_IN_OCTAL 3
1595#define HIGH_ZERO 0340
1596#define LOW_ZERO 0016
1597#define CARRY_ZERO 0003
1598#define HIGH_ONE 0200
1599#define MID_ONE 0160
1600#define LOW_ONE 0016
1601#define CARRY_ONE 0001
1602#define HIGH_TWO 0300
1603#define MID_TWO 0070
1604#define LOW_TWO 0007
1605
1606 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1607 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1608
c906108c
SS
1609 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1610 carry = 0;
c5aa993b 1611
bb599908 1612 fputs_filtered ("0", stream);
30a25466 1613 bool seen_a_one = false;
d44e8473 1614 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1615 {
1616 for (p = valaddr;
1617 p < valaddr + len;
1618 p++)
1619 {
c5aa993b
JM
1620 switch (cycle)
1621 {
1622 case 0:
581e13c1
MS
1623 /* No carry in, carry out two bits. */
1624
c5aa993b
JM
1625 octa1 = (HIGH_ZERO & *p) >> 5;
1626 octa2 = (LOW_ZERO & *p) >> 2;
1627 carry = (CARRY_ZERO & *p);
30a25466
TT
1628 emit_octal_digit (stream, &seen_a_one, octa1);
1629 emit_octal_digit (stream, &seen_a_one, octa2);
c5aa993b
JM
1630 break;
1631
1632 case 1:
581e13c1
MS
1633 /* Carry in two bits, carry out one bit. */
1634
c5aa993b
JM
1635 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1636 octa2 = (MID_ONE & *p) >> 4;
1637 octa3 = (LOW_ONE & *p) >> 1;
1638 carry = (CARRY_ONE & *p);
30a25466
TT
1639 emit_octal_digit (stream, &seen_a_one, octa1);
1640 emit_octal_digit (stream, &seen_a_one, octa2);
1641 emit_octal_digit (stream, &seen_a_one, octa3);
c5aa993b
JM
1642 break;
1643
1644 case 2:
581e13c1
MS
1645 /* Carry in one bit, no carry out. */
1646
c5aa993b
JM
1647 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1648 octa2 = (MID_TWO & *p) >> 3;
1649 octa3 = (LOW_TWO & *p);
1650 carry = 0;
30a25466
TT
1651 emit_octal_digit (stream, &seen_a_one, octa1);
1652 emit_octal_digit (stream, &seen_a_one, octa2);
1653 emit_octal_digit (stream, &seen_a_one, octa3);
c5aa993b
JM
1654 break;
1655
1656 default:
8a3fe4f8 1657 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1658 }
1659
1660 cycle++;
1661 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1662 }
1663 }
1664 else
1665 {
1666 for (p = valaddr + len - 1;
1667 p >= valaddr;
1668 p--)
1669 {
c5aa993b
JM
1670 switch (cycle)
1671 {
1672 case 0:
1673 /* Carry out, no carry in */
581e13c1 1674
c5aa993b
JM
1675 octa1 = (HIGH_ZERO & *p) >> 5;
1676 octa2 = (LOW_ZERO & *p) >> 2;
1677 carry = (CARRY_ZERO & *p);
30a25466
TT
1678 emit_octal_digit (stream, &seen_a_one, octa1);
1679 emit_octal_digit (stream, &seen_a_one, octa2);
c5aa993b
JM
1680 break;
1681
1682 case 1:
1683 /* Carry in, carry out */
581e13c1 1684
c5aa993b
JM
1685 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1686 octa2 = (MID_ONE & *p) >> 4;
1687 octa3 = (LOW_ONE & *p) >> 1;
1688 carry = (CARRY_ONE & *p);
30a25466
TT
1689 emit_octal_digit (stream, &seen_a_one, octa1);
1690 emit_octal_digit (stream, &seen_a_one, octa2);
1691 emit_octal_digit (stream, &seen_a_one, octa3);
c5aa993b
JM
1692 break;
1693
1694 case 2:
1695 /* Carry in, no carry out */
581e13c1 1696
c5aa993b
JM
1697 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1698 octa2 = (MID_TWO & *p) >> 3;
1699 octa3 = (LOW_TWO & *p);
1700 carry = 0;
30a25466
TT
1701 emit_octal_digit (stream, &seen_a_one, octa1);
1702 emit_octal_digit (stream, &seen_a_one, octa2);
1703 emit_octal_digit (stream, &seen_a_one, octa3);
c5aa993b
JM
1704 break;
1705
1706 default:
8a3fe4f8 1707 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1708 }
1709
1710 cycle++;
1711 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1712 }
1713 }
1714
c906108c
SS
1715}
1716
4ac0cb1c
TT
1717/* Possibly negate the integer represented by BYTES. It contains LEN
1718 bytes in the specified byte order. If the integer is negative,
1719 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1720 nothing and return false. */
1721
1722static bool
1723maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1724 enum bfd_endian byte_order,
d5722aa2 1725 gdb::byte_vector *out_vec)
4ac0cb1c
TT
1726{
1727 gdb_byte sign_byte;
1728 if (byte_order == BFD_ENDIAN_BIG)
1729 sign_byte = bytes[0];
1730 else
1731 sign_byte = bytes[len - 1];
1732 if ((sign_byte & 0x80) == 0)
1733 return false;
1734
1735 out_vec->resize (len);
1736
1737 /* Compute -x == 1 + ~x. */
1738 if (byte_order == BFD_ENDIAN_LITTLE)
1739 {
1740 unsigned carry = 1;
1741 for (unsigned i = 0; i < len; ++i)
1742 {
1743 unsigned tem = (0xff & ~bytes[i]) + carry;
1744 (*out_vec)[i] = tem & 0xff;
1745 carry = tem / 256;
1746 }
1747 }
1748 else
1749 {
1750 unsigned carry = 1;
1751 for (unsigned i = len; i > 0; --i)
1752 {
1753 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1754 (*out_vec)[i - 1] = tem & 0xff;
1755 carry = tem / 256;
1756 }
1757 }
1758
1759 return true;
1760}
1761
c906108c 1762/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1763 Print it in decimal on stream or format it in buf. */
1764
c906108c 1765void
fc1a4b47 1766print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
4ac0cb1c
TT
1767 unsigned len, bool is_signed,
1768 enum bfd_endian byte_order)
c906108c
SS
1769{
1770#define TEN 10
c5aa993b 1771#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1772#define CARRY_LEFT( x ) ((x) % TEN)
1773#define SHIFT( x ) ((x) << 4)
c906108c
SS
1774#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1775#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1776
fc1a4b47 1777 const gdb_byte *p;
c5aa993b
JM
1778 int carry;
1779 int decimal_len;
1780 int i, j, decimal_digits;
1781 int dummy;
1782 int flip;
1783
d5722aa2 1784 gdb::byte_vector negated_bytes;
4ac0cb1c
TT
1785 if (is_signed
1786 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1787 {
1788 fputs_filtered ("-", stream);
1789 valaddr = negated_bytes.data ();
1790 }
1791
c906108c 1792 /* Base-ten number is less than twice as many digits
581e13c1
MS
1793 as the base 16 number, which is 2 digits per byte. */
1794
c906108c 1795 decimal_len = len * 2 * 2;
30a25466 1796 std::vector<unsigned char> digits (decimal_len, 0);
c906108c 1797
c906108c
SS
1798 /* Ok, we have an unknown number of bytes of data to be printed in
1799 * decimal.
1800 *
1801 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1802 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1803 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1804 *
1805 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1806 * the individual digits are > 10.
c906108c
SS
1807 *
1808 * Outer loop is per nibble (hex digit) of input, from MSD end to
1809 * LSD end.
1810 */
c5aa993b 1811 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1812 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1813 flip = 0;
d44e8473 1814 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1815 {
c906108c
SS
1816 /*
1817 * Multiply current base-ten number by 16 in place.
1818 * Each digit was between 0 and 9, now is between
1819 * 0 and 144.
1820 */
c5aa993b
JM
1821 for (j = 0; j < decimal_digits; j++)
1822 {
1823 digits[j] = SHIFT (digits[j]);
1824 }
1825
c906108c
SS
1826 /* Take the next nibble off the input and add it to what
1827 * we've got in the LSB position. Bottom 'digit' is now
1828 * between 0 and 159.
1829 *
1830 * "flip" is used to run this loop twice for each byte.
1831 */
c5aa993b
JM
1832 if (flip == 0)
1833 {
581e13c1
MS
1834 /* Take top nibble. */
1835
c5aa993b
JM
1836 digits[0] += HIGH_NIBBLE (*p);
1837 flip = 1;
1838 }
1839 else
1840 {
581e13c1
MS
1841 /* Take low nibble and bump our pointer "p". */
1842
c5aa993b 1843 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1844 if (byte_order == BFD_ENDIAN_BIG)
1845 p++;
1846 else
1847 p--;
c5aa993b
JM
1848 flip = 0;
1849 }
c906108c
SS
1850
1851 /* Re-decimalize. We have to do this often enough
1852 * that we don't overflow, but once per nibble is
1853 * overkill. Easier this way, though. Note that the
1854 * carry is often larger than 10 (e.g. max initial
1855 * carry out of lowest nibble is 15, could bubble all
1856 * the way up greater than 10). So we have to do
1857 * the carrying beyond the last current digit.
1858 */
1859 carry = 0;
c5aa993b
JM
1860 for (j = 0; j < decimal_len - 1; j++)
1861 {
1862 digits[j] += carry;
1863
1864 /* "/" won't handle an unsigned char with
1865 * a value that if signed would be negative.
1866 * So extend to longword int via "dummy".
1867 */
1868 dummy = digits[j];
1869 carry = CARRY_OUT (dummy);
1870 digits[j] = CARRY_LEFT (dummy);
1871
1872 if (j >= decimal_digits && carry == 0)
1873 {
1874 /*
1875 * All higher digits are 0 and we
1876 * no longer have a carry.
1877 *
1878 * Note: "j" is 0-based, "decimal_digits" is
1879 * 1-based.
1880 */
1881 decimal_digits = j + 1;
1882 break;
1883 }
1884 }
1885 }
c906108c
SS
1886
1887 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1888 the "decimal_digits" actual digits. Print! */
1889
30a25466
TT
1890 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1891 ;
1892
1893 for (; i >= 0; i--)
c5aa993b
JM
1894 {
1895 fprintf_filtered (stream, "%1d", digits[i]);
1896 }
c906108c
SS
1897}
1898
1899/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1900
6b9acc27 1901void
fc1a4b47 1902print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
30a25466
TT
1903 unsigned len, enum bfd_endian byte_order,
1904 bool zero_pad)
c906108c 1905{
fc1a4b47 1906 const gdb_byte *p;
c906108c 1907
bb599908 1908 fputs_filtered ("0x", stream);
d44e8473 1909 if (byte_order == BFD_ENDIAN_BIG)
c906108c 1910 {
30a25466
TT
1911 p = valaddr;
1912
1913 if (!zero_pad)
1914 {
1915 /* Strip leading 0 bytes, but be sure to leave at least a
1916 single byte at the end. */
1917 for (; p < valaddr + len - 1 && !*p; ++p)
1918 ;
1919 }
1920
1921 const gdb_byte *first = p;
1922 for (;
c906108c
SS
1923 p < valaddr + len;
1924 p++)
1925 {
30a25466
TT
1926 /* When not zero-padding, use a different format for the
1927 very first byte printed. */
1928 if (!zero_pad && p == first)
1929 fprintf_filtered (stream, "%x", *p);
1930 else
1931 fprintf_filtered (stream, "%02x", *p);
c906108c
SS
1932 }
1933 }
1934 else
1935 {
30a25466
TT
1936 p = valaddr + len - 1;
1937
1938 if (!zero_pad)
1939 {
1940 /* Strip leading 0 bytes, but be sure to leave at least a
1941 single byte at the end. */
1942 for (; p >= valaddr + 1 && !*p; --p)
1943 ;
1944 }
1945
1946 const gdb_byte *first = p;
1947 for (;
c906108c
SS
1948 p >= valaddr;
1949 p--)
1950 {
30a25466
TT
1951 /* When not zero-padding, use a different format for the
1952 very first byte printed. */
1953 if (!zero_pad && p == first)
1954 fprintf_filtered (stream, "%x", *p);
1955 else
1956 fprintf_filtered (stream, "%02x", *p);
c906108c
SS
1957 }
1958 }
c906108c
SS
1959}
1960
3e43a32a 1961/* VALADDR points to a char integer of LEN bytes.
581e13c1 1962 Print it out in appropriate language form on stream.
6b9acc27
JJ
1963 Omit any leading zero chars. */
1964
1965void
6c7a06a3
TT
1966print_char_chars (struct ui_file *stream, struct type *type,
1967 const gdb_byte *valaddr,
d44e8473 1968 unsigned len, enum bfd_endian byte_order)
6b9acc27 1969{
fc1a4b47 1970 const gdb_byte *p;
6b9acc27 1971
d44e8473 1972 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1973 {
1974 p = valaddr;
1975 while (p < valaddr + len - 1 && *p == 0)
1976 ++p;
1977
1978 while (p < valaddr + len)
1979 {
6c7a06a3 1980 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1981 ++p;
1982 }
1983 }
1984 else
1985 {
1986 p = valaddr + len - 1;
1987 while (p > valaddr && *p == 0)
1988 --p;
1989
1990 while (p >= valaddr)
1991 {
6c7a06a3 1992 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1993 --p;
1994 }
1995 }
1996}
1997
132c57b4
TT
1998/* Print function pointer with inferior address ADDRESS onto stdio
1999 stream STREAM. */
2000
2001void
edf0c1b7
TT
2002print_function_pointer_address (const struct value_print_options *options,
2003 struct gdbarch *gdbarch,
132c57b4 2004 CORE_ADDR address,
edf0c1b7 2005 struct ui_file *stream)
132c57b4
TT
2006{
2007 CORE_ADDR func_addr
2008 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2009 &current_target);
2010
2011 /* If the function pointer is represented by a description, print
2012 the address of the description. */
edf0c1b7 2013 if (options->addressprint && func_addr != address)
132c57b4
TT
2014 {
2015 fputs_filtered ("@", stream);
2016 fputs_filtered (paddress (gdbarch, address), stream);
2017 fputs_filtered (": ", stream);
2018 }
edf0c1b7 2019 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
2020}
2021
2022
79a45b7d 2023/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
2024 at INDEX of an array whose index type is INDEX_TYPE. */
2025
2026void
2027maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
2028 struct ui_file *stream,
2029 const struct value_print_options *options)
e79af960
JB
2030{
2031 struct value *index_value;
2032
79a45b7d 2033 if (!options->print_array_indexes)
e79af960
JB
2034 return;
2035
2036 index_value = value_from_longest (index_type, index);
2037
79a45b7d
TT
2038 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2039}
e79af960 2040
c906108c 2041/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 2042 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 2043
c5aa993b
JM
2044 (FIXME?) Assumes array element separator is a comma, which is correct
2045 for all languages currently handled.
2046 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 2047 perhaps we should try to use that notation when appropriate. */
c906108c
SS
2048
2049void
490f124f 2050val_print_array_elements (struct type *type,
e8b24d9f 2051 LONGEST embedded_offset,
a2bd3dcd 2052 CORE_ADDR address, struct ui_file *stream,
79a45b7d 2053 int recurse,
e8b24d9f 2054 struct value *val,
79a45b7d 2055 const struct value_print_options *options,
fba45db2 2056 unsigned int i)
c906108c
SS
2057{
2058 unsigned int things_printed = 0;
2059 unsigned len;
aa715135 2060 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
2061 unsigned eltlen;
2062 /* Position of the array element we are examining to see
2063 whether it is repeated. */
2064 unsigned int rep1;
2065 /* Number of repetitions we have detected so far. */
2066 unsigned int reps;
dbc98a8b 2067 LONGEST low_bound, high_bound;
aa715135 2068 LONGEST low_pos, high_pos;
c5aa993b 2069
c906108c 2070 elttype = TYPE_TARGET_TYPE (type);
3ae385af 2071 eltlen = type_length_units (check_typedef (elttype));
e79af960 2072 index_type = TYPE_INDEX_TYPE (type);
c906108c 2073
dbc98a8b 2074 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 2075 {
aa715135
JG
2076 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2077 base_index_type = TYPE_TARGET_TYPE (index_type);
2078 else
2079 base_index_type = index_type;
2080
2081 /* Non-contiguous enumerations types can by used as index types
2082 in some languages (e.g. Ada). In this case, the array length
2083 shall be computed from the positions of the first and last
2084 literal in the enumeration type, and not from the values
2085 of these literals. */
2086 if (!discrete_position (base_index_type, low_bound, &low_pos)
2087 || !discrete_position (base_index_type, high_bound, &high_pos))
2088 {
2089 warning (_("unable to get positions in array, use bounds instead"));
2090 low_pos = low_bound;
2091 high_pos = high_bound;
2092 }
2093
2094 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 2095 But we have to be a little extra careful, because some languages
aa715135 2096 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
2097 empty arrays. In that situation, the array length is just zero,
2098 not negative! */
aa715135 2099 if (low_pos > high_pos)
75be741b
JB
2100 len = 0;
2101 else
aa715135 2102 len = high_pos - low_pos + 1;
75be741b 2103 }
e936309c
JB
2104 else
2105 {
dbc98a8b
KW
2106 warning (_("unable to get bounds of array, assuming null array"));
2107 low_bound = 0;
2108 len = 0;
168de233
JB
2109 }
2110
c906108c
SS
2111 annotate_array_section_begin (i, elttype);
2112
79a45b7d 2113 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
2114 {
2115 if (i != 0)
2116 {
2a998fc0 2117 if (options->prettyformat_arrays)
c906108c
SS
2118 {
2119 fprintf_filtered (stream, ",\n");
2120 print_spaces_filtered (2 + 2 * recurse, stream);
2121 }
2122 else
2123 {
2124 fprintf_filtered (stream, ", ");
2125 }
2126 }
2127 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 2128 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 2129 stream, options);
c906108c
SS
2130
2131 rep1 = i + 1;
2132 reps = 1;
35bef4fd
TT
2133 /* Only check for reps if repeat_count_threshold is not set to
2134 UINT_MAX (unlimited). */
2135 if (options->repeat_count_threshold < UINT_MAX)
c906108c 2136 {
35bef4fd 2137 while (rep1 < len
9a0dc9e3
PA
2138 && value_contents_eq (val,
2139 embedded_offset + i * eltlen,
2140 val,
2141 (embedded_offset
2142 + rep1 * eltlen),
2143 eltlen))
35bef4fd
TT
2144 {
2145 ++reps;
2146 ++rep1;
2147 }
c906108c
SS
2148 }
2149
79a45b7d 2150 if (reps > options->repeat_count_threshold)
c906108c 2151 {
e8b24d9f 2152 val_print (elttype, embedded_offset + i * eltlen,
490f124f
PA
2153 address, stream, recurse + 1, val, options,
2154 current_language);
c906108c
SS
2155 annotate_elt_rep (reps);
2156 fprintf_filtered (stream, " <repeats %u times>", reps);
2157 annotate_elt_rep_end ();
2158
2159 i = rep1 - 1;
79a45b7d 2160 things_printed += options->repeat_count_threshold;
c906108c
SS
2161 }
2162 else
2163 {
e8b24d9f 2164 val_print (elttype, embedded_offset + i * eltlen,
490f124f 2165 address,
0e03807e 2166 stream, recurse + 1, val, options, current_language);
c906108c
SS
2167 annotate_elt ();
2168 things_printed++;
2169 }
2170 }
2171 annotate_array_section_end ();
2172 if (i < len)
2173 {
2174 fprintf_filtered (stream, "...");
2175 }
2176}
2177
917317f4
JM
2178/* Read LEN bytes of target memory at address MEMADDR, placing the
2179 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 2180 actually read, and optionally a target_xfer_status value in the
578d3588 2181 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
2182
2183/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2184 function be eliminated. */
2185
2186static int
3e43a32a 2187partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 2188 int len, int *errptr)
917317f4 2189{
581e13c1
MS
2190 int nread; /* Number of bytes actually read. */
2191 int errcode; /* Error from last read. */
917317f4 2192
581e13c1 2193 /* First try a complete read. */
917317f4
JM
2194 errcode = target_read_memory (memaddr, myaddr, len);
2195 if (errcode == 0)
2196 {
581e13c1 2197 /* Got it all. */
917317f4
JM
2198 nread = len;
2199 }
2200 else
2201 {
581e13c1 2202 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
2203 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2204 {
2205 errcode = target_read_memory (memaddr++, myaddr++, 1);
2206 }
581e13c1 2207 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
2208 if (errcode != 0)
2209 {
2210 nread--;
2211 }
2212 }
578d3588 2213 if (errptr != NULL)
917317f4 2214 {
578d3588 2215 *errptr = errcode;
917317f4
JM
2216 }
2217 return (nread);
2218}
2219
ae6a3a4c
TJB
2220/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2221 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2222 allocated buffer containing the string, which the caller is responsible to
2223 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 2224 success, or a target_xfer_status on failure.
ae6a3a4c 2225
f380848e
SA
2226 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2227 (including eventual NULs in the middle or end of the string).
2228
2229 If LEN is -1, stops at the first null character (not necessarily
2230 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2231 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2232 the string.
ae6a3a4c
TJB
2233
2234 Unless an exception is thrown, BUFFER will always be allocated, even on
2235 failure. In this case, some characters might have been read before the
2236 failure happened. Check BYTES_READ to recognize this situation.
2237
2238 Note: There was a FIXME asking to make this code use target_read_string,
2239 but this function is more general (can read past null characters, up to
581e13c1 2240 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
2241 so it is more tested. Perhaps callers of target_read_string should use
2242 this function instead? */
c906108c
SS
2243
2244int
ae6a3a4c 2245read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 2246 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 2247{
ae6a3a4c
TJB
2248 int errcode; /* Errno returned from bad reads. */
2249 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
2250 gdb_byte *bufptr; /* Pointer to next available byte in
2251 buffer. */
ae6a3a4c
TJB
2252 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2253
ae6a3a4c
TJB
2254 /* Loop until we either have all the characters, or we encounter
2255 some error, such as bumping into the end of the address space. */
c906108c 2256
b5096abe
PM
2257 *buffer = NULL;
2258
2259 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
2260
2261 if (len > 0)
2262 {
88db67ef
YQ
2263 /* We want fetchlimit chars, so we might as well read them all in
2264 one operation. */
325fac50 2265 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
f380848e
SA
2266
2267 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 2268 bufptr = *buffer;
c906108c 2269
f380848e 2270 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
2271 / width;
2272 addr += nfetch * width;
2273 bufptr += nfetch * width;
2274 }
2275 else if (len == -1)
2276 {
2277 unsigned long bufsize = 0;
88db67ef
YQ
2278 unsigned int chunksize; /* Size of each fetch, in chars. */
2279 int found_nul; /* Non-zero if we found the nul char. */
2280 gdb_byte *limit; /* First location past end of fetch buffer. */
2281
2282 found_nul = 0;
2283 /* We are looking for a NUL terminator to end the fetching, so we
2284 might as well read in blocks that are large enough to be efficient,
2285 but not so large as to be slow if fetchlimit happens to be large.
2286 So we choose the minimum of 8 and fetchlimit. We used to use 200
2287 instead of 8 but 200 is way too big for remote debugging over a
2288 serial line. */
325fac50 2289 chunksize = std::min (8u, fetchlimit);
ae6a3a4c 2290
c906108c
SS
2291 do
2292 {
2293 QUIT;
325fac50 2294 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
c906108c 2295
ae6a3a4c
TJB
2296 if (*buffer == NULL)
2297 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 2298 else
b5096abe
PM
2299 *buffer = (gdb_byte *) xrealloc (*buffer,
2300 (nfetch + bufsize) * width);
c906108c 2301
ae6a3a4c 2302 bufptr = *buffer + bufsize * width;
c906108c
SS
2303 bufsize += nfetch;
2304
ae6a3a4c 2305 /* Read as much as we can. */
917317f4 2306 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 2307 / width;
c906108c 2308
ae6a3a4c 2309 /* Scan this chunk for the null character that terminates the string
c906108c
SS
2310 to print. If found, we don't need to fetch any more. Note
2311 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
2312 after the null character, or at the next character after the end
2313 of the buffer. */
c906108c
SS
2314
2315 limit = bufptr + nfetch * width;
2316 while (bufptr < limit)
2317 {
2318 unsigned long c;
2319
e17a4113 2320 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
2321 addr += width;
2322 bufptr += width;
2323 if (c == 0)
2324 {
2325 /* We don't care about any error which happened after
ae6a3a4c 2326 the NUL terminator. */
c906108c
SS
2327 errcode = 0;
2328 found_nul = 1;
2329 break;
2330 }
2331 }
2332 }
c5aa993b 2333 while (errcode == 0 /* no error */
ae6a3a4c
TJB
2334 && bufptr - *buffer < fetchlimit * width /* no overrun */
2335 && !found_nul); /* haven't found NUL yet */
c906108c
SS
2336 }
2337 else
ae6a3a4c
TJB
2338 { /* Length of string is really 0! */
2339 /* We always allocate *buffer. */
224c3ddb 2340 *buffer = bufptr = (gdb_byte *) xmalloc (1);
c906108c
SS
2341 errcode = 0;
2342 }
2343
2344 /* bufptr and addr now point immediately beyond the last byte which we
2345 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
2346 *bytes_read = bufptr - *buffer;
2347
2348 QUIT;
2349
2350 discard_cleanups (old_chain);
2351
2352 return errcode;
2353}
2354
3b2b8fea
TT
2355/* Return true if print_wchar can display W without resorting to a
2356 numeric escape, false otherwise. */
2357
2358static int
2359wchar_printable (gdb_wchar_t w)
2360{
2361 return (gdb_iswprint (w)
2362 || w == LCST ('\a') || w == LCST ('\b')
2363 || w == LCST ('\f') || w == LCST ('\n')
2364 || w == LCST ('\r') || w == LCST ('\t')
2365 || w == LCST ('\v'));
2366}
2367
2368/* A helper function that converts the contents of STRING to wide
2369 characters and then appends them to OUTPUT. */
2370
2371static void
2372append_string_as_wide (const char *string,
2373 struct obstack *output)
2374{
2375 for (; *string; ++string)
2376 {
2377 gdb_wchar_t w = gdb_btowc (*string);
2378 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2379 }
2380}
2381
2382/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2383 original (target) bytes representing the character, ORIG_LEN is the
2384 number of valid bytes. WIDTH is the number of bytes in a base
2385 characters of the type. OUTPUT is an obstack to which wide
2386 characters are emitted. QUOTER is a (narrow) character indicating
2387 the style of quotes surrounding the character to be printed.
2388 NEED_ESCAPE is an in/out flag which is used to track numeric
2389 escapes across calls. */
2390
2391static void
2392print_wchar (gdb_wint_t w, const gdb_byte *orig,
2393 int orig_len, int width,
2394 enum bfd_endian byte_order,
2395 struct obstack *output,
2396 int quoter, int *need_escapep)
2397{
2398 int need_escape = *need_escapep;
2399
2400 *need_escapep = 0;
3b2b8fea 2401
95c64f92
YQ
2402 /* iswprint implementation on Windows returns 1 for tab character.
2403 In order to avoid different printout on this host, we explicitly
2404 use wchar_printable function. */
2405 switch (w)
3b2b8fea 2406 {
95c64f92
YQ
2407 case LCST ('\a'):
2408 obstack_grow_wstr (output, LCST ("\\a"));
2409 break;
2410 case LCST ('\b'):
2411 obstack_grow_wstr (output, LCST ("\\b"));
2412 break;
2413 case LCST ('\f'):
2414 obstack_grow_wstr (output, LCST ("\\f"));
2415 break;
2416 case LCST ('\n'):
2417 obstack_grow_wstr (output, LCST ("\\n"));
2418 break;
2419 case LCST ('\r'):
2420 obstack_grow_wstr (output, LCST ("\\r"));
2421 break;
2422 case LCST ('\t'):
2423 obstack_grow_wstr (output, LCST ("\\t"));
2424 break;
2425 case LCST ('\v'):
2426 obstack_grow_wstr (output, LCST ("\\v"));
2427 break;
2428 default:
3b2b8fea 2429 {
95c64f92
YQ
2430 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2431 && w != LCST ('8')
2432 && w != LCST ('9'))))
2433 {
2434 gdb_wchar_t wchar = w;
3b2b8fea 2435
95c64f92
YQ
2436 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2437 obstack_grow_wstr (output, LCST ("\\"));
2438 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2439 }
2440 else
2441 {
2442 int i;
3b2b8fea 2443
95c64f92
YQ
2444 for (i = 0; i + width <= orig_len; i += width)
2445 {
2446 char octal[30];
2447 ULONGEST value;
2448
2449 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2450 byte_order);
95c64f92
YQ
2451 /* If the value fits in 3 octal digits, print it that
2452 way. Otherwise, print it as a hex escape. */
2453 if (value <= 0777)
2454 xsnprintf (octal, sizeof (octal), "\\%.3o",
2455 (int) (value & 0777));
2456 else
2457 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2458 append_string_as_wide (octal, output);
2459 }
2460 /* If we somehow have extra bytes, print them now. */
2461 while (i < orig_len)
2462 {
2463 char octal[5];
2464
2465 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2466 append_string_as_wide (octal, output);
2467 ++i;
2468 }
2469
2470 *need_escapep = 1;
2471 }
3b2b8fea
TT
2472 break;
2473 }
2474 }
2475}
2476
2477/* Print the character C on STREAM as part of the contents of a
2478 literal string whose delimiter is QUOTER. ENCODING names the
2479 encoding of C. */
2480
2481void
2482generic_emit_char (int c, struct type *type, struct ui_file *stream,
2483 int quoter, const char *encoding)
2484{
2485 enum bfd_endian byte_order
2486 = gdbarch_byte_order (get_type_arch (type));
3b2b8fea 2487 gdb_byte *buf;
3b2b8fea
TT
2488 int need_escape = 0;
2489
224c3ddb 2490 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
3b2b8fea
TT
2491 pack_long (buf, type, c);
2492
cda6c55b 2493 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
3b2b8fea
TT
2494
2495 /* This holds the printable form of the wchar_t data. */
8268c778 2496 auto_obstack wchar_buf;
3b2b8fea
TT
2497
2498 while (1)
2499 {
2500 int num_chars;
2501 gdb_wchar_t *chars;
2502 const gdb_byte *buf;
2503 size_t buflen;
2504 int print_escape = 1;
2505 enum wchar_iterate_result result;
2506
cda6c55b 2507 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
3b2b8fea
TT
2508 if (num_chars < 0)
2509 break;
2510 if (num_chars > 0)
2511 {
2512 /* If all characters are printable, print them. Otherwise,
2513 we're going to have to print an escape sequence. We
2514 check all characters because we want to print the target
2515 bytes in the escape sequence, and we don't know character
2516 boundaries there. */
2517 int i;
2518
2519 print_escape = 0;
2520 for (i = 0; i < num_chars; ++i)
2521 if (!wchar_printable (chars[i]))
2522 {
2523 print_escape = 1;
2524 break;
2525 }
2526
2527 if (!print_escape)
2528 {
2529 for (i = 0; i < num_chars; ++i)
2530 print_wchar (chars[i], buf, buflen,
2531 TYPE_LENGTH (type), byte_order,
2532 &wchar_buf, quoter, &need_escape);
2533 }
2534 }
2535
2536 /* This handles the NUM_CHARS == 0 case as well. */
2537 if (print_escape)
2538 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2539 byte_order, &wchar_buf, quoter, &need_escape);
2540 }
2541
2542 /* The output in the host encoding. */
8268c778 2543 auto_obstack output;
3b2b8fea
TT
2544
2545 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2546 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2547 obstack_object_size (&wchar_buf),
fff10684 2548 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2549 obstack_1grow (&output, '\0');
2550
79f33898 2551 fputs_filtered ((const char *) obstack_base (&output), stream);
3b2b8fea
TT
2552}
2553
0d63ecda
KS
2554/* Return the repeat count of the next character/byte in ITER,
2555 storing the result in VEC. */
2556
2557static int
cda6c55b 2558count_next_character (wchar_iterator *iter,
0d63ecda
KS
2559 VEC (converted_character_d) **vec)
2560{
2561 struct converted_character *current;
2562
2563 if (VEC_empty (converted_character_d, *vec))
2564 {
2565 struct converted_character tmp;
2566 gdb_wchar_t *chars;
2567
2568 tmp.num_chars
cda6c55b 2569 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
0d63ecda
KS
2570 if (tmp.num_chars > 0)
2571 {
2572 gdb_assert (tmp.num_chars < MAX_WCHARS);
2573 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2574 }
2575 VEC_safe_push (converted_character_d, *vec, &tmp);
2576 }
2577
2578 current = VEC_last (converted_character_d, *vec);
2579
2580 /* Count repeated characters or bytes. */
2581 current->repeat_count = 1;
2582 if (current->num_chars == -1)
2583 {
2584 /* EOF */
2585 return -1;
2586 }
2587 else
2588 {
2589 gdb_wchar_t *chars;
2590 struct converted_character d;
2591 int repeat;
2592
2593 d.repeat_count = 0;
2594
2595 while (1)
2596 {
2597 /* Get the next character. */
cda6c55b 2598 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
0d63ecda
KS
2599
2600 /* If a character was successfully converted, save the character
2601 into the converted character. */
2602 if (d.num_chars > 0)
2603 {
2604 gdb_assert (d.num_chars < MAX_WCHARS);
2605 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2606 }
2607
2608 /* Determine if the current character is the same as this
2609 new character. */
2610 if (d.num_chars == current->num_chars && d.result == current->result)
2611 {
2612 /* There are two cases to consider:
2613
2614 1) Equality of converted character (num_chars > 0)
2615 2) Equality of non-converted character (num_chars == 0) */
2616 if ((current->num_chars > 0
2617 && memcmp (current->chars, d.chars,
2618 WCHAR_BUFLEN (current->num_chars)) == 0)
2619 || (current->num_chars == 0
2620 && current->buflen == d.buflen
2621 && memcmp (current->buf, d.buf, current->buflen) == 0))
2622 ++current->repeat_count;
2623 else
2624 break;
2625 }
2626 else
2627 break;
2628 }
2629
2630 /* Push this next converted character onto the result vector. */
2631 repeat = current->repeat_count;
2632 VEC_safe_push (converted_character_d, *vec, &d);
2633 return repeat;
2634 }
2635}
2636
2637/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2638 character to use with string output. WIDTH is the size of the output
2639 character type. BYTE_ORDER is the the target byte order. OPTIONS
2640 is the user's print options. */
2641
2642static void
2643print_converted_chars_to_obstack (struct obstack *obstack,
2644 VEC (converted_character_d) *chars,
2645 int quote_char, int width,
2646 enum bfd_endian byte_order,
2647 const struct value_print_options *options)
2648{
2649 unsigned int idx;
2650 struct converted_character *elem;
2651 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2652 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2653 int need_escape = 0;
2654
2655 /* Set the start state. */
2656 idx = 0;
2657 last = state = START;
2658 elem = NULL;
2659
2660 while (1)
2661 {
2662 switch (state)
2663 {
2664 case START:
2665 /* Nothing to do. */
2666 break;
2667
2668 case SINGLE:
2669 {
2670 int j;
2671
2672 /* We are outputting a single character
2673 (< options->repeat_count_threshold). */
2674
2675 if (last != SINGLE)
2676 {
2677 /* We were outputting some other type of content, so we
2678 must output and a comma and a quote. */
2679 if (last != START)
2680 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2681 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2682 }
2683 /* Output the character. */
2684 for (j = 0; j < elem->repeat_count; ++j)
2685 {
2686 if (elem->result == wchar_iterate_ok)
2687 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2688 byte_order, obstack, quote_char, &need_escape);
2689 else
2690 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2691 byte_order, obstack, quote_char, &need_escape);
2692 }
2693 }
2694 break;
2695
2696 case REPEAT:
2697 {
2698 int j;
2699 char *s;
2700
2701 /* We are outputting a character with a repeat count
2702 greater than options->repeat_count_threshold. */
2703
2704 if (last == SINGLE)
2705 {
2706 /* We were outputting a single string. Terminate the
2707 string. */
0d63ecda
KS
2708 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2709 }
2710 if (last != START)
2711 obstack_grow_wstr (obstack, LCST (", "));
2712
2713 /* Output the character and repeat string. */
2714 obstack_grow_wstr (obstack, LCST ("'"));
2715 if (elem->result == wchar_iterate_ok)
2716 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2717 byte_order, obstack, quote_char, &need_escape);
2718 else
2719 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2720 byte_order, obstack, quote_char, &need_escape);
2721 obstack_grow_wstr (obstack, LCST ("'"));
2722 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2723 for (j = 0; s[j]; ++j)
2724 {
2725 gdb_wchar_t w = gdb_btowc (s[j]);
2726 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2727 }
2728 xfree (s);
2729 }
2730 break;
2731
2732 case INCOMPLETE:
2733 /* We are outputting an incomplete sequence. */
2734 if (last == SINGLE)
2735 {
2736 /* If we were outputting a string of SINGLE characters,
2737 terminate the quote. */
0d63ecda
KS
2738 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2739 }
2740 if (last != START)
2741 obstack_grow_wstr (obstack, LCST (", "));
2742
2743 /* Output the incomplete sequence string. */
2744 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2745 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2746 obstack, 0, &need_escape);
2747 obstack_grow_wstr (obstack, LCST (">"));
2748
2749 /* We do not attempt to outupt anything after this. */
2750 state = FINISH;
2751 break;
2752
2753 case FINISH:
2754 /* All done. If we were outputting a string of SINGLE
2755 characters, the string must be terminated. Otherwise,
2756 REPEAT and INCOMPLETE are always left properly terminated. */
2757 if (last == SINGLE)
e93a8774 2758 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2759
2760 return;
2761 }
2762
2763 /* Get the next element and state. */
2764 last = state;
2765 if (state != FINISH)
2766 {
2767 elem = VEC_index (converted_character_d, chars, idx++);
2768 switch (elem->result)
2769 {
2770 case wchar_iterate_ok:
2771 case wchar_iterate_invalid:
2772 if (elem->repeat_count > options->repeat_count_threshold)
2773 state = REPEAT;
2774 else
2775 state = SINGLE;
2776 break;
2777
2778 case wchar_iterate_incomplete:
2779 state = INCOMPLETE;
2780 break;
2781
2782 case wchar_iterate_eof:
2783 state = FINISH;
2784 break;
2785 }
2786 }
2787 }
2788}
2789
3b2b8fea
TT
2790/* Print the character string STRING, printing at most LENGTH
2791 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2792 the type of each character. OPTIONS holds the printing options;
2793 printing stops early if the number hits print_max; repeat counts
2794 are printed as appropriate. Print ellipses at the end if we had to
2795 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2796 QUOTE_CHAR is the character to print at each end of the string. If
2797 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2798 omitted. */
2799
2800void
2801generic_printstr (struct ui_file *stream, struct type *type,
2802 const gdb_byte *string, unsigned int length,
2803 const char *encoding, int force_ellipses,
2804 int quote_char, int c_style_terminator,
2805 const struct value_print_options *options)
2806{
2807 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2808 unsigned int i;
3b2b8fea 2809 int width = TYPE_LENGTH (type);
3b2b8fea 2810 struct cleanup *cleanup;
3b2b8fea 2811 int finished = 0;
0d63ecda
KS
2812 struct converted_character *last;
2813 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2814
2815 if (length == -1)
2816 {
2817 unsigned long current_char = 1;
2818
2819 for (i = 0; current_char; ++i)
2820 {
2821 QUIT;
2822 current_char = extract_unsigned_integer (string + i * width,
2823 width, byte_order);
2824 }
2825 length = i;
2826 }
2827
2828 /* If the string was not truncated due to `set print elements', and
2829 the last byte of it is a null, we don't print that, in
2830 traditional C style. */
2831 if (c_style_terminator
2832 && !force_ellipses
2833 && length > 0
2834 && (extract_unsigned_integer (string + (length - 1) * width,
2835 width, byte_order) == 0))
2836 length--;
2837
2838 if (length == 0)
2839 {
2840 fputs_filtered ("\"\"", stream);
2841 return;
2842 }
2843
2844 /* Arrange to iterate over the characters, in wchar_t form. */
cda6c55b 2845 wchar_iterator iter (string, length * width, encoding, width);
0d63ecda 2846 converted_chars = NULL;
cda6c55b
TT
2847 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2848 &converted_chars);
3b2b8fea 2849
0d63ecda
KS
2850 /* Convert characters until the string is over or the maximum
2851 number of printed characters has been reached. */
2852 i = 0;
2853 while (i < options->print_max)
3b2b8fea 2854 {
0d63ecda 2855 int r;
3b2b8fea
TT
2856
2857 QUIT;
2858
0d63ecda 2859 /* Grab the next character and repeat count. */
cda6c55b 2860 r = count_next_character (&iter, &converted_chars);
3b2b8fea 2861
0d63ecda
KS
2862 /* If less than zero, the end of the input string was reached. */
2863 if (r < 0)
2864 break;
3b2b8fea 2865
0d63ecda
KS
2866 /* Otherwise, add the count to the total print count and get
2867 the next character. */
2868 i += r;
2869 }
3b2b8fea 2870
0d63ecda
KS
2871 /* Get the last element and determine if the entire string was
2872 processed. */
2873 last = VEC_last (converted_character_d, converted_chars);
2874 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2875
0d63ecda
KS
2876 /* Ensure that CONVERTED_CHARS is terminated. */
2877 last->result = wchar_iterate_eof;
3b2b8fea 2878
0d63ecda
KS
2879 /* WCHAR_BUF is the obstack we use to represent the string in
2880 wchar_t form. */
8268c778 2881 auto_obstack wchar_buf;
3b2b8fea 2882
0d63ecda
KS
2883 /* Print the output string to the obstack. */
2884 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2885 width, byte_order, options);
3b2b8fea
TT
2886
2887 if (force_ellipses || !finished)
2888 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2889
2890 /* OUTPUT is where we collect `char's for printing. */
8268c778 2891 auto_obstack output;
3b2b8fea
TT
2892
2893 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2894 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2895 obstack_object_size (&wchar_buf),
fff10684 2896 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2897 obstack_1grow (&output, '\0');
2898
79f33898 2899 fputs_filtered ((const char *) obstack_base (&output), stream);
3b2b8fea
TT
2900
2901 do_cleanups (cleanup);
2902}
2903
ae6a3a4c
TJB
2904/* Print a string from the inferior, starting at ADDR and printing up to LEN
2905 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2906 stops at the first null byte, otherwise printing proceeds (including null
2907 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2908 whichever is smaller. ENCODING is the name of the string's
2909 encoding. It can be NULL, in which case the target encoding is
2910 assumed. */
ae6a3a4c
TJB
2911
2912int
09ca9e2e
TT
2913val_print_string (struct type *elttype, const char *encoding,
2914 CORE_ADDR addr, int len,
6c7a06a3 2915 struct ui_file *stream,
ae6a3a4c
TJB
2916 const struct value_print_options *options)
2917{
2918 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
d09f2c3f 2919 int err; /* Non-zero if we got a bad read. */
581e13c1 2920 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2921 unsigned int fetchlimit; /* Maximum number of chars to print. */
2922 int bytes_read;
2923 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2924 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2925 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2927 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2928
2929 /* First we need to figure out the limit on the number of characters we are
2930 going to attempt to fetch and print. This is actually pretty simple. If
2931 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2932 LEN is -1, then the limit is print_max. This is true regardless of
2933 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2934 because finding the null byte (or available memory) is what actually
2935 limits the fetch. */
2936
325fac50
PA
2937 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2938 options->print_max));
ae6a3a4c 2939
d09f2c3f
PA
2940 err = read_string (addr, len, width, fetchlimit, byte_order,
2941 &buffer, &bytes_read);
ae6a3a4c
TJB
2942 old_chain = make_cleanup (xfree, buffer);
2943
2944 addr += bytes_read;
c906108c 2945
3e43a32a
MS
2946 /* We now have either successfully filled the buffer to fetchlimit,
2947 or terminated early due to an error or finding a null char when
2948 LEN is -1. */
ae6a3a4c
TJB
2949
2950 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2951 found_nul = 0;
2952 if (bytes_read >= width)
2953 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2954 byte_order) == 0;
c906108c
SS
2955 if (len == -1 && !found_nul)
2956 {
777ea8f1 2957 gdb_byte *peekbuf;
c906108c 2958
ae6a3a4c 2959 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2960 to peek at the next character. If not successful, or it is not
2961 a null byte, then force ellipsis to be printed. */
c906108c 2962
777ea8f1 2963 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2964
2965 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2966 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2967 force_ellipsis = 1;
2968 }
d09f2c3f 2969 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
c906108c
SS
2970 {
2971 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2972 than the number of characters actually requested, always make us
ae6a3a4c 2973 print ellipsis. */
c906108c
SS
2974 force_ellipsis = 1;
2975 }
2976
c906108c
SS
2977 /* If we get an error before fetching anything, don't print a string.
2978 But if we fetch something and then get an error, print the string
2979 and then the error message. */
d09f2c3f 2980 if (err == 0 || bytes_read > 0)
c906108c 2981 {
be759fcf 2982 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2983 encoding, force_ellipsis, options);
c906108c
SS
2984 }
2985
d09f2c3f 2986 if (err != 0)
c906108c 2987 {
578d3588
PA
2988 char *str;
2989
d09f2c3f 2990 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
578d3588
PA
2991 make_cleanup (xfree, str);
2992
2993 fprintf_filtered (stream, "<error: ");
2994 fputs_filtered (str, stream);
2995 fprintf_filtered (stream, ">");
c906108c 2996 }
ae6a3a4c 2997
c906108c
SS
2998 gdb_flush (stream);
2999 do_cleanups (old_chain);
ae6a3a4c
TJB
3000
3001 return (bytes_read / width);
c906108c 3002}
c906108c 3003\f
c5aa993b 3004
09e6485f
PA
3005/* The 'set input-radix' command writes to this auxiliary variable.
3006 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3007 it is left unchanged. */
3008
3009static unsigned input_radix_1 = 10;
3010
c906108c
SS
3011/* Validate an input or output radix setting, and make sure the user
3012 knows what they really did here. Radix setting is confusing, e.g.
3013 setting the input radix to "10" never changes it! */
3014
c906108c 3015static void
fba45db2 3016set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 3017{
09e6485f 3018 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
3019}
3020
c906108c 3021static void
fba45db2 3022set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
3023{
3024 /* We don't currently disallow any input radix except 0 or 1, which don't
3025 make any mathematical sense. In theory, we can deal with any input
3026 radix greater than 1, even if we don't have unique digits for every
3027 value from 0 to radix-1, but in practice we lose on large radix values.
3028 We should either fix the lossage or restrict the radix range more.
581e13c1 3029 (FIXME). */
c906108c
SS
3030
3031 if (radix < 2)
3032 {
09e6485f 3033 input_radix_1 = input_radix;
8a3fe4f8 3034 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
3035 radix);
3036 }
09e6485f 3037 input_radix_1 = input_radix = radix;
c906108c
SS
3038 if (from_tty)
3039 {
3e43a32a
MS
3040 printf_filtered (_("Input radix now set to "
3041 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3042 radix, radix, radix);
3043 }
3044}
3045
09e6485f
PA
3046/* The 'set output-radix' command writes to this auxiliary variable.
3047 If the requested radix is valid, OUTPUT_RADIX is updated,
3048 otherwise, it is left unchanged. */
3049
3050static unsigned output_radix_1 = 10;
3051
c906108c 3052static void
fba45db2 3053set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 3054{
09e6485f 3055 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
3056}
3057
3058static void
fba45db2 3059set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
3060{
3061 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 3062 handle correctly, leaving the radix unchanged. */
c906108c
SS
3063 switch (radix)
3064 {
3065 case 16:
79a45b7d 3066 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
3067 break;
3068 case 10:
79a45b7d 3069 user_print_options.output_format = 0; /* decimal */
c906108c
SS
3070 break;
3071 case 8:
79a45b7d 3072 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
3073 break;
3074 default:
09e6485f 3075 output_radix_1 = output_radix;
3e43a32a
MS
3076 error (_("Unsupported output radix ``decimal %u''; "
3077 "output radix unchanged."),
c906108c
SS
3078 radix);
3079 }
09e6485f 3080 output_radix_1 = output_radix = radix;
c906108c
SS
3081 if (from_tty)
3082 {
3e43a32a
MS
3083 printf_filtered (_("Output radix now set to "
3084 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3085 radix, radix, radix);
3086 }
3087}
3088
3089/* Set both the input and output radix at once. Try to set the output radix
3090 first, since it has the most restrictive range. An radix that is valid as
3091 an output radix is also valid as an input radix.
3092
3093 It may be useful to have an unusual input radix. If the user wishes to
3094 set an input radix that is not valid as an output radix, he needs to use
581e13c1 3095 the 'set input-radix' command. */
c906108c
SS
3096
3097static void
fba45db2 3098set_radix (char *arg, int from_tty)
c906108c
SS
3099{
3100 unsigned radix;
3101
bb518678 3102 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
3103 set_output_radix_1 (0, radix);
3104 set_input_radix_1 (0, radix);
3105 if (from_tty)
3106 {
3e43a32a
MS
3107 printf_filtered (_("Input and output radices now set to "
3108 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3109 radix, radix, radix);
3110 }
3111}
3112
581e13c1 3113/* Show both the input and output radices. */
c906108c 3114
c906108c 3115static void
fba45db2 3116show_radix (char *arg, int from_tty)
c906108c
SS
3117{
3118 if (from_tty)
3119 {
3120 if (input_radix == output_radix)
3121 {
3e43a32a
MS
3122 printf_filtered (_("Input and output radices set to "
3123 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
3124 input_radix, input_radix, input_radix);
3125 }
3126 else
3127 {
3e43a32a
MS
3128 printf_filtered (_("Input radix set to decimal "
3129 "%u, hex %x, octal %o.\n"),
c906108c 3130 input_radix, input_radix, input_radix);
3e43a32a
MS
3131 printf_filtered (_("Output radix set to decimal "
3132 "%u, hex %x, octal %o.\n"),
c906108c
SS
3133 output_radix, output_radix, output_radix);
3134 }
3135 }
3136}
c906108c 3137\f
c5aa993b 3138
c906108c 3139static void
fba45db2 3140set_print (char *arg, int from_tty)
c906108c
SS
3141{
3142 printf_unfiltered (
c5aa993b 3143 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 3144 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
3145}
3146
c906108c 3147static void
fba45db2 3148show_print (char *args, int from_tty)
c906108c
SS
3149{
3150 cmd_show_list (showprintlist, from_tty, "");
3151}
e7045703
DE
3152
3153static void
3154set_print_raw (char *arg, int from_tty)
3155{
3156 printf_unfiltered (
3157 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 3158 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
3159}
3160
3161static void
3162show_print_raw (char *args, int from_tty)
3163{
3164 cmd_show_list (showprintrawlist, from_tty, "");
3165}
3166
c906108c
SS
3167\f
3168void
fba45db2 3169_initialize_valprint (void)
c906108c 3170{
c906108c 3171 add_prefix_cmd ("print", no_class, set_print,
1bedd215 3172 _("Generic command for setting how things print."),
c906108c 3173 &setprintlist, "set print ", 0, &setlist);
c5aa993b 3174 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 3175 /* Prefer set print to set prompt. */
c906108c
SS
3176 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3177
3178 add_prefix_cmd ("print", no_class, show_print,
1bedd215 3179 _("Generic command for showing print settings."),
c906108c 3180 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
3181 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3182 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 3183
e7045703
DE
3184 add_prefix_cmd ("raw", no_class, set_print_raw,
3185 _("\
3186Generic command for setting what things to print in \"raw\" mode."),
3187 &setprintrawlist, "set print raw ", 0, &setprintlist);
3188 add_prefix_cmd ("raw", no_class, show_print_raw,
3189 _("Generic command for showing \"print raw\" settings."),
3190 &showprintrawlist, "show print raw ", 0, &showprintlist);
3191
79a45b7d
TT
3192 add_setshow_uinteger_cmd ("elements", no_class,
3193 &user_print_options.print_max, _("\
35096d9d
AC
3194Set limit on string chars or array elements to print."), _("\
3195Show limit on string chars or array elements to print."), _("\
f81d1120 3196\"set print elements unlimited\" causes there to be no limit."),
35096d9d 3197 NULL,
920d2a44 3198 show_print_max,
35096d9d 3199 &setprintlist, &showprintlist);
c906108c 3200
79a45b7d
TT
3201 add_setshow_boolean_cmd ("null-stop", no_class,
3202 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
3203Set printing of char arrays to stop at first null char."), _("\
3204Show printing of char arrays to stop at first null char."), NULL,
3205 NULL,
920d2a44 3206 show_stop_print_at_null,
5bf193a2 3207 &setprintlist, &showprintlist);
c906108c 3208
35096d9d 3209 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 3210 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
3211Set threshold for repeated print elements."), _("\
3212Show threshold for repeated print elements."), _("\
f81d1120 3213\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 3214 NULL,
920d2a44 3215 show_repeat_count_threshold,
35096d9d 3216 &setprintlist, &showprintlist);
c906108c 3217
79a45b7d 3218 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
3219 &user_print_options.prettyformat_structs, _("\
3220Set pretty formatting of structures."), _("\
3221Show pretty formatting of structures."), NULL,
5bf193a2 3222 NULL,
2a998fc0 3223 show_prettyformat_structs,
5bf193a2
AC
3224 &setprintlist, &showprintlist);
3225
79a45b7d
TT
3226 add_setshow_boolean_cmd ("union", class_support,
3227 &user_print_options.unionprint, _("\
5bf193a2
AC
3228Set printing of unions interior to structures."), _("\
3229Show printing of unions interior to structures."), NULL,
3230 NULL,
920d2a44 3231 show_unionprint,
5bf193a2
AC
3232 &setprintlist, &showprintlist);
3233
79a45b7d 3234 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
3235 &user_print_options.prettyformat_arrays, _("\
3236Set pretty formatting of arrays."), _("\
3237Show pretty formatting of arrays."), NULL,
5bf193a2 3238 NULL,
2a998fc0 3239 show_prettyformat_arrays,
5bf193a2
AC
3240 &setprintlist, &showprintlist);
3241
79a45b7d
TT
3242 add_setshow_boolean_cmd ("address", class_support,
3243 &user_print_options.addressprint, _("\
5bf193a2
AC
3244Set printing of addresses."), _("\
3245Show printing of addresses."), NULL,
3246 NULL,
920d2a44 3247 show_addressprint,
5bf193a2 3248 &setprintlist, &showprintlist);
c906108c 3249
9cb709b6
TT
3250 add_setshow_boolean_cmd ("symbol", class_support,
3251 &user_print_options.symbol_print, _("\
3252Set printing of symbol names when printing pointers."), _("\
3253Show printing of symbol names when printing pointers."),
3254 NULL, NULL,
3255 show_symbol_print,
3256 &setprintlist, &showprintlist);
3257
1e8fb976
PA
3258 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3259 _("\
35096d9d
AC
3260Set default input radix for entering numbers."), _("\
3261Show default input radix for entering numbers."), NULL,
1e8fb976
PA
3262 set_input_radix,
3263 show_input_radix,
3264 &setlist, &showlist);
35096d9d 3265
1e8fb976
PA
3266 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3267 _("\
35096d9d
AC
3268Set default output radix for printing of values."), _("\
3269Show default output radix for printing of values."), NULL,
1e8fb976
PA
3270 set_output_radix,
3271 show_output_radix,
3272 &setlist, &showlist);
c906108c 3273
cb1a6d5f
AC
3274 /* The "set radix" and "show radix" commands are special in that
3275 they are like normal set and show commands but allow two normally
3276 independent variables to be either set or shown with a single
b66df561 3277 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 3278 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
3279 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3280 longer true - show can display anything. */
1a966eab
AC
3281 add_cmd ("radix", class_support, set_radix, _("\
3282Set default input and output number radices.\n\
c906108c 3283Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 3284Without an argument, sets both radices back to the default value of 10."),
c906108c 3285 &setlist);
1a966eab
AC
3286 add_cmd ("radix", class_support, show_radix, _("\
3287Show the default input and output number radices.\n\
3288Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
3289 &showlist);
3290
e79af960 3291 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 3292 &user_print_options.print_array_indexes, _("\
e79af960
JB
3293Set printing of array indexes."), _("\
3294Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3295 &setprintlist, &showprintlist);
c906108c 3296}