]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
remove gdb_string.h
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
8acc9f48 3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
a08702d6 41#include "python/python.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
a58e2656 45#include "user-regs.h"
0914bcdb 46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
87784a47
TT
172/* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
91294c83
AC
175struct value
176{
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
901461f8
PA
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
87784a47
TT
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
91294c83 215
e848a8a5
TT
216 /* If the value has been released. */
217 unsigned int released : 1;
218
91294c83
AC
219 /* Location of value (if lval). */
220 union
221 {
222 /* If lval == lval_memory, this is the address in the inferior.
223 If lval == lval_register, this is the byte offset into the
224 registers structure. */
225 CORE_ADDR address;
226
227 /* Pointer to internal variable. */
228 struct internalvar *internalvar;
5f5233d4
PA
229
230 /* If lval == lval_computed, this is a set of function pointers
231 to use to access and describe the value, and a closure pointer
232 for them to use. */
233 struct
234 {
c8f2448a
JK
235 /* Functions to call. */
236 const struct lval_funcs *funcs;
237
238 /* Closure for those functions to use. */
239 void *closure;
5f5233d4 240 } computed;
91294c83
AC
241 } location;
242
243 /* Describes offset of a value within lval of a structure in bytes.
244 If lval == lval_memory, this is an offset to the address. If
245 lval == lval_register, this is a further offset from
246 location.address within the registers structure. Note also the
247 member embedded_offset below. */
248 int offset;
249
250 /* Only used for bitfields; number of bits contained in them. */
251 int bitsize;
252
253 /* Only used for bitfields; position of start of field. For
32c9a795 254 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 255 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
256 int bitpos;
257
87784a47
TT
258 /* The number of references to this value. When a value is created,
259 the value chain holds a reference, so REFERENCE_COUNT is 1. If
260 release_value is called, this value is removed from the chain but
261 the caller of release_value now has a reference to this value.
262 The caller must arrange for a call to value_free later. */
263 int reference_count;
264
4ea48cc1
DJ
265 /* Only used for bitfields; the containing value. This allows a
266 single read from the target when displaying multiple
267 bitfields. */
268 struct value *parent;
269
91294c83
AC
270 /* Frame register value is relative to. This will be described in
271 the lval enum above as "lval_register". */
272 struct frame_id frame_id;
273
274 /* Type of the value. */
275 struct type *type;
276
277 /* If a value represents a C++ object, then the `type' field gives
278 the object's compile-time type. If the object actually belongs
279 to some class derived from `type', perhaps with other base
280 classes and additional members, then `type' is just a subobject
281 of the real thing, and the full object is probably larger than
282 `type' would suggest.
283
284 If `type' is a dynamic class (i.e. one with a vtable), then GDB
285 can actually determine the object's run-time type by looking at
286 the run-time type information in the vtable. When this
287 information is available, we may elect to read in the entire
288 object, for several reasons:
289
290 - When printing the value, the user would probably rather see the
291 full object, not just the limited portion apparent from the
292 compile-time type.
293
294 - If `type' has virtual base classes, then even printing `type'
295 alone may require reaching outside the `type' portion of the
296 object to wherever the virtual base class has been stored.
297
298 When we store the entire object, `enclosing_type' is the run-time
299 type -- the complete object -- and `embedded_offset' is the
300 offset of `type' within that larger type, in bytes. The
301 value_contents() macro takes `embedded_offset' into account, so
302 most GDB code continues to see the `type' portion of the value,
303 just as the inferior would.
304
305 If `type' is a pointer to an object, then `enclosing_type' is a
306 pointer to the object's run-time type, and `pointed_to_offset' is
307 the offset in bytes from the full object to the pointed-to object
308 -- that is, the value `embedded_offset' would have if we followed
309 the pointer and fetched the complete object. (I don't really see
310 the point. Why not just determine the run-time type when you
311 indirect, and avoid the special case? The contents don't matter
312 until you indirect anyway.)
313
314 If we're not doing anything fancy, `enclosing_type' is equal to
315 `type', and `embedded_offset' is zero, so everything works
316 normally. */
317 struct type *enclosing_type;
318 int embedded_offset;
319 int pointed_to_offset;
320
321 /* Values are stored in a chain, so that they can be deleted easily
322 over calls to the inferior. Values assigned to internal
a08702d6
TJB
323 variables, put into the value history or exposed to Python are
324 taken off this list. */
91294c83
AC
325 struct value *next;
326
327 /* Register number if the value is from a register. */
328 short regnum;
329
3e3d7139
JG
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
332 gdb_byte *contents;
828d3400 333
4e07d55f
PA
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
336 value to be available. This is filled in at value read time. */
337 VEC(range_s) *unavailable;
91294c83
AC
338};
339
4e07d55f
PA
340int
341value_bytes_available (const struct value *value, int offset, int length)
342{
343 gdb_assert (!value->lazy);
344
345 return !ranges_contain (value->unavailable, offset, length);
346}
347
ec0a52e1
PA
348int
349value_entirely_available (struct value *value)
350{
351 /* We can only tell whether the whole value is available when we try
352 to read it. */
353 if (value->lazy)
354 value_fetch_lazy (value);
355
356 if (VEC_empty (range_s, value->unavailable))
357 return 1;
358 return 0;
359}
360
6211c335
YQ
361int
362value_entirely_unavailable (struct value *value)
363{
364 /* We can only tell whether the whole value is available when we try
365 to read it. */
366 if (value->lazy)
367 value_fetch_lazy (value);
368
369 if (VEC_length (range_s, value->unavailable) == 1)
370 {
371 struct range *t = VEC_index (range_s, value->unavailable, 0);
372
373 if (t->offset == 0
374 && t->length == TYPE_LENGTH (value_enclosing_type (value)))
375 return 1;
376 }
377
378 return 0;
379}
380
4e07d55f
PA
381void
382mark_value_bytes_unavailable (struct value *value, int offset, int length)
383{
384 range_s newr;
385 int i;
386
387 /* Insert the range sorted. If there's overlap or the new range
388 would be contiguous with an existing range, merge. */
389
390 newr.offset = offset;
391 newr.length = length;
392
393 /* Do a binary search for the position the given range would be
394 inserted if we only considered the starting OFFSET of ranges.
395 Call that position I. Since we also have LENGTH to care for
396 (this is a range afterall), we need to check if the _previous_
397 range overlaps the I range. E.g., calling R the new range:
398
399 #1 - overlaps with previous
400
401 R
402 |-...-|
403 |---| |---| |------| ... |--|
404 0 1 2 N
405
406 I=1
407
408 In the case #1 above, the binary search would return `I=1',
409 meaning, this OFFSET should be inserted at position 1, and the
410 current position 1 should be pushed further (and become 2). But,
411 note that `0' overlaps with R, so we want to merge them.
412
413 A similar consideration needs to be taken if the new range would
414 be contiguous with the previous range:
415
416 #2 - contiguous with previous
417
418 R
419 |-...-|
420 |--| |---| |------| ... |--|
421 0 1 2 N
422
423 I=1
424
425 If there's no overlap with the previous range, as in:
426
427 #3 - not overlapping and not contiguous
428
429 R
430 |-...-|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=1
435
436 or if I is 0:
437
438 #4 - R is the range with lowest offset
439
440 R
441 |-...-|
442 |--| |---| |------| ... |--|
443 0 1 2 N
444
445 I=0
446
447 ... we just push the new range to I.
448
449 All the 4 cases above need to consider that the new range may
450 also overlap several of the ranges that follow, or that R may be
451 contiguous with the following range, and merge. E.g.,
452
453 #5 - overlapping following ranges
454
455 R
456 |------------------------|
457 |--| |---| |------| ... |--|
458 0 1 2 N
459
460 I=0
461
462 or:
463
464 R
465 |-------|
466 |--| |---| |------| ... |--|
467 0 1 2 N
468
469 I=1
470
471 */
472
473 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
474 if (i > 0)
475 {
6bfc80c7 476 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
477
478 if (ranges_overlap (bef->offset, bef->length, offset, length))
479 {
480 /* #1 */
481 ULONGEST l = min (bef->offset, offset);
482 ULONGEST h = max (bef->offset + bef->length, offset + length);
483
484 bef->offset = l;
485 bef->length = h - l;
486 i--;
487 }
488 else if (offset == bef->offset + bef->length)
489 {
490 /* #2 */
491 bef->length += length;
492 i--;
493 }
494 else
495 {
496 /* #3 */
497 VEC_safe_insert (range_s, value->unavailable, i, &newr);
498 }
499 }
500 else
501 {
502 /* #4 */
503 VEC_safe_insert (range_s, value->unavailable, i, &newr);
504 }
505
506 /* Check whether the ranges following the one we've just added or
507 touched can be folded in (#5 above). */
508 if (i + 1 < VEC_length (range_s, value->unavailable))
509 {
510 struct range *t;
511 struct range *r;
512 int removed = 0;
513 int next = i + 1;
514
515 /* Get the range we just touched. */
516 t = VEC_index (range_s, value->unavailable, i);
517 removed = 0;
518
519 i = next;
520 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
521 if (r->offset <= t->offset + t->length)
522 {
523 ULONGEST l, h;
524
525 l = min (t->offset, r->offset);
526 h = max (t->offset + t->length, r->offset + r->length);
527
528 t->offset = l;
529 t->length = h - l;
530
531 removed++;
532 }
533 else
534 {
535 /* If we couldn't merge this one, we won't be able to
536 merge following ones either, since the ranges are
537 always sorted by OFFSET. */
538 break;
539 }
540
541 if (removed != 0)
542 VEC_block_remove (range_s, value->unavailable, next, removed);
543 }
544}
545
c8c1c22f
PA
546/* Find the first range in RANGES that overlaps the range defined by
547 OFFSET and LENGTH, starting at element POS in the RANGES vector,
548 Returns the index into RANGES where such overlapping range was
549 found, or -1 if none was found. */
550
551static int
552find_first_range_overlap (VEC(range_s) *ranges, int pos,
553 int offset, int length)
554{
555 range_s *r;
556 int i;
557
558 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
559 if (ranges_overlap (r->offset, r->length, offset, length))
560 return i;
561
562 return -1;
563}
564
565int
566value_available_contents_eq (const struct value *val1, int offset1,
567 const struct value *val2, int offset2,
568 int length)
569{
c8c1c22f 570 int idx1 = 0, idx2 = 0;
c8c1c22f 571
4eb59108 572 /* See function description in value.h. */
c8c1c22f
PA
573 gdb_assert (!val1->lazy && !val2->lazy);
574
c8c1c22f
PA
575 while (length > 0)
576 {
577 range_s *r1, *r2;
578 ULONGEST l1, h1;
579 ULONGEST l2, h2;
580
581 idx1 = find_first_range_overlap (val1->unavailable, idx1,
582 offset1, length);
583 idx2 = find_first_range_overlap (val2->unavailable, idx2,
584 offset2, length);
585
586 /* The usual case is for both values to be completely available. */
587 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
588 return (memcmp (val1->contents + offset1,
589 val2->contents + offset2,
590 length) == 0);
c8c1c22f
PA
591 /* The contents only match equal if the available set matches as
592 well. */
593 else if (idx1 == -1 || idx2 == -1)
594 return 0;
595
596 gdb_assert (idx1 != -1 && idx2 != -1);
597
598 r1 = VEC_index (range_s, val1->unavailable, idx1);
599 r2 = VEC_index (range_s, val2->unavailable, idx2);
600
601 /* Get the unavailable windows intersected by the incoming
602 ranges. The first and last ranges that overlap the argument
603 range may be wider than said incoming arguments ranges. */
604 l1 = max (offset1, r1->offset);
605 h1 = min (offset1 + length, r1->offset + r1->length);
606
607 l2 = max (offset2, r2->offset);
608 h2 = min (offset2 + length, r2->offset + r2->length);
609
610 /* Make them relative to the respective start offsets, so we can
611 compare them for equality. */
612 l1 -= offset1;
613 h1 -= offset1;
614
615 l2 -= offset2;
616 h2 -= offset2;
617
618 /* Different availability, no match. */
619 if (l1 != l2 || h1 != h2)
620 return 0;
621
622 /* Compare the _available_ contents. */
cd24cfaa
PA
623 if (memcmp (val1->contents + offset1,
624 val2->contents + offset2,
625 l1) != 0)
c8c1c22f
PA
626 return 0;
627
c8c1c22f
PA
628 length -= h1;
629 offset1 += h1;
630 offset2 += h1;
631 }
632
633 return 1;
634}
635
581e13c1 636/* Prototypes for local functions. */
c906108c 637
a14ed312 638static void show_values (char *, int);
c906108c 639
a14ed312 640static void show_convenience (char *, int);
c906108c 641
c906108c
SS
642
643/* The value-history records all the values printed
644 by print commands during this session. Each chunk
645 records 60 consecutive values. The first chunk on
646 the chain records the most recent values.
647 The total number of values is in value_history_count. */
648
649#define VALUE_HISTORY_CHUNK 60
650
651struct value_history_chunk
c5aa993b
JM
652 {
653 struct value_history_chunk *next;
f23631e4 654 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 655 };
c906108c
SS
656
657/* Chain of chunks now in use. */
658
659static struct value_history_chunk *value_history_chain;
660
581e13c1 661static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 662
c906108c
SS
663\f
664/* List of all value objects currently allocated
665 (except for those released by calls to release_value)
666 This is so they can be freed after each command. */
667
f23631e4 668static struct value *all_values;
c906108c 669
3e3d7139
JG
670/* Allocate a lazy value for type TYPE. Its actual content is
671 "lazily" allocated too: the content field of the return value is
672 NULL; it will be allocated when it is fetched from the target. */
c906108c 673
f23631e4 674struct value *
3e3d7139 675allocate_value_lazy (struct type *type)
c906108c 676{
f23631e4 677 struct value *val;
c54eabfa
JK
678
679 /* Call check_typedef on our type to make sure that, if TYPE
680 is a TYPE_CODE_TYPEDEF, its length is set to the length
681 of the target type instead of zero. However, we do not
682 replace the typedef type by the target type, because we want
683 to keep the typedef in order to be able to set the VAL's type
684 description correctly. */
685 check_typedef (type);
c906108c 686
3e3d7139
JG
687 val = (struct value *) xzalloc (sizeof (struct value));
688 val->contents = NULL;
df407dfe 689 val->next = all_values;
c906108c 690 all_values = val;
df407dfe 691 val->type = type;
4754a64e 692 val->enclosing_type = type;
c906108c 693 VALUE_LVAL (val) = not_lval;
42ae5230 694 val->location.address = 0;
1df6926e 695 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
696 val->offset = 0;
697 val->bitpos = 0;
698 val->bitsize = 0;
9ee8fc9d 699 VALUE_REGNUM (val) = -1;
3e3d7139 700 val->lazy = 1;
feb13ab0 701 val->optimized_out = 0;
13c3b5f5 702 val->embedded_offset = 0;
b44d461b 703 val->pointed_to_offset = 0;
c906108c 704 val->modifiable = 1;
42be36b3 705 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
706
707 /* Values start out on the all_values chain. */
708 val->reference_count = 1;
709
c906108c
SS
710 return val;
711}
712
3e3d7139
JG
713/* Allocate the contents of VAL if it has not been allocated yet. */
714
548b762d 715static void
3e3d7139
JG
716allocate_value_contents (struct value *val)
717{
718 if (!val->contents)
719 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
720}
721
722/* Allocate a value and its contents for type TYPE. */
723
724struct value *
725allocate_value (struct type *type)
726{
727 struct value *val = allocate_value_lazy (type);
a109c7c1 728
3e3d7139
JG
729 allocate_value_contents (val);
730 val->lazy = 0;
731 return val;
732}
733
c906108c 734/* Allocate a value that has the correct length
938f5214 735 for COUNT repetitions of type TYPE. */
c906108c 736
f23631e4 737struct value *
fba45db2 738allocate_repeat_value (struct type *type, int count)
c906108c 739{
c5aa993b 740 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
741 /* FIXME-type-allocation: need a way to free this type when we are
742 done with it. */
e3506a9f
UW
743 struct type *array_type
744 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 745
e3506a9f 746 return allocate_value (array_type);
c906108c
SS
747}
748
5f5233d4
PA
749struct value *
750allocate_computed_value (struct type *type,
c8f2448a 751 const struct lval_funcs *funcs,
5f5233d4
PA
752 void *closure)
753{
41e8491f 754 struct value *v = allocate_value_lazy (type);
a109c7c1 755
5f5233d4
PA
756 VALUE_LVAL (v) = lval_computed;
757 v->location.computed.funcs = funcs;
758 v->location.computed.closure = closure;
5f5233d4
PA
759
760 return v;
761}
762
a7035dbb
JK
763/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
764
765struct value *
766allocate_optimized_out_value (struct type *type)
767{
768 struct value *retval = allocate_value_lazy (type);
769
770 set_value_optimized_out (retval, 1);
771
772 return retval;
773}
774
df407dfe
AC
775/* Accessor methods. */
776
17cf0ecd
AC
777struct value *
778value_next (struct value *value)
779{
780 return value->next;
781}
782
df407dfe 783struct type *
0e03807e 784value_type (const struct value *value)
df407dfe
AC
785{
786 return value->type;
787}
04624583
AC
788void
789deprecated_set_value_type (struct value *value, struct type *type)
790{
791 value->type = type;
792}
df407dfe
AC
793
794int
0e03807e 795value_offset (const struct value *value)
df407dfe
AC
796{
797 return value->offset;
798}
f5cf64a7
AC
799void
800set_value_offset (struct value *value, int offset)
801{
802 value->offset = offset;
803}
df407dfe
AC
804
805int
0e03807e 806value_bitpos (const struct value *value)
df407dfe
AC
807{
808 return value->bitpos;
809}
9bbda503
AC
810void
811set_value_bitpos (struct value *value, int bit)
812{
813 value->bitpos = bit;
814}
df407dfe
AC
815
816int
0e03807e 817value_bitsize (const struct value *value)
df407dfe
AC
818{
819 return value->bitsize;
820}
9bbda503
AC
821void
822set_value_bitsize (struct value *value, int bit)
823{
824 value->bitsize = bit;
825}
df407dfe 826
4ea48cc1
DJ
827struct value *
828value_parent (struct value *value)
829{
830 return value->parent;
831}
832
53ba8333
JB
833/* See value.h. */
834
835void
836set_value_parent (struct value *value, struct value *parent)
837{
40501e00
TT
838 struct value *old = value->parent;
839
53ba8333 840 value->parent = parent;
40501e00
TT
841 if (parent != NULL)
842 value_incref (parent);
843 value_free (old);
53ba8333
JB
844}
845
fc1a4b47 846gdb_byte *
990a07ab
AC
847value_contents_raw (struct value *value)
848{
3e3d7139
JG
849 allocate_value_contents (value);
850 return value->contents + value->embedded_offset;
990a07ab
AC
851}
852
fc1a4b47 853gdb_byte *
990a07ab
AC
854value_contents_all_raw (struct value *value)
855{
3e3d7139
JG
856 allocate_value_contents (value);
857 return value->contents;
990a07ab
AC
858}
859
4754a64e
AC
860struct type *
861value_enclosing_type (struct value *value)
862{
863 return value->enclosing_type;
864}
865
8264ba82
AG
866/* Look at value.h for description. */
867
868struct type *
869value_actual_type (struct value *value, int resolve_simple_types,
870 int *real_type_found)
871{
872 struct value_print_options opts;
8264ba82
AG
873 struct type *result;
874
875 get_user_print_options (&opts);
876
877 if (real_type_found)
878 *real_type_found = 0;
879 result = value_type (value);
880 if (opts.objectprint)
881 {
5e34c6c3
LM
882 /* If result's target type is TYPE_CODE_STRUCT, proceed to
883 fetch its rtti type. */
884 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 885 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
886 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
887 == TYPE_CODE_STRUCT)
8264ba82
AG
888 {
889 struct type *real_type;
890
891 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
892 if (real_type)
893 {
894 if (real_type_found)
895 *real_type_found = 1;
896 result = real_type;
897 }
898 }
899 else if (resolve_simple_types)
900 {
901 if (real_type_found)
902 *real_type_found = 1;
903 result = value_enclosing_type (value);
904 }
905 }
906
907 return result;
908}
909
901461f8
PA
910void
911error_value_optimized_out (void)
912{
913 error (_("value has been optimized out"));
914}
915
0e03807e 916static void
4e07d55f 917require_not_optimized_out (const struct value *value)
0e03807e
TT
918{
919 if (value->optimized_out)
901461f8
PA
920 {
921 if (value->lval == lval_register)
922 error (_("register has not been saved in frame"));
923 else
924 error_value_optimized_out ();
925 }
0e03807e
TT
926}
927
4e07d55f
PA
928static void
929require_available (const struct value *value)
930{
931 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 932 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
933}
934
fc1a4b47 935const gdb_byte *
0e03807e 936value_contents_for_printing (struct value *value)
46615f07
AC
937{
938 if (value->lazy)
939 value_fetch_lazy (value);
3e3d7139 940 return value->contents;
46615f07
AC
941}
942
de4127a3
PA
943const gdb_byte *
944value_contents_for_printing_const (const struct value *value)
945{
946 gdb_assert (!value->lazy);
947 return value->contents;
948}
949
0e03807e
TT
950const gdb_byte *
951value_contents_all (struct value *value)
952{
953 const gdb_byte *result = value_contents_for_printing (value);
954 require_not_optimized_out (value);
4e07d55f 955 require_available (value);
0e03807e
TT
956 return result;
957}
958
29976f3f
PA
959/* Copy LENGTH bytes of SRC value's (all) contents
960 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
961 contents, starting at DST_OFFSET. If unavailable contents are
962 being copied from SRC, the corresponding DST contents are marked
963 unavailable accordingly. Neither DST nor SRC may be lazy
964 values.
965
966 It is assumed the contents of DST in the [DST_OFFSET,
967 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
968
969void
970value_contents_copy_raw (struct value *dst, int dst_offset,
971 struct value *src, int src_offset, int length)
972{
973 range_s *r;
974 int i;
975
976 /* A lazy DST would make that this copy operation useless, since as
977 soon as DST's contents were un-lazied (by a later value_contents
978 call, say), the contents would be overwritten. A lazy SRC would
979 mean we'd be copying garbage. */
980 gdb_assert (!dst->lazy && !src->lazy);
981
29976f3f
PA
982 /* The overwritten DST range gets unavailability ORed in, not
983 replaced. Make sure to remember to implement replacing if it
984 turns out actually necessary. */
985 gdb_assert (value_bytes_available (dst, dst_offset, length));
986
39d37385
PA
987 /* Copy the data. */
988 memcpy (value_contents_all_raw (dst) + dst_offset,
989 value_contents_all_raw (src) + src_offset,
990 length);
991
992 /* Copy the meta-data, adjusted. */
993 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
994 {
995 ULONGEST h, l;
996
997 l = max (r->offset, src_offset);
998 h = min (r->offset + r->length, src_offset + length);
999
1000 if (l < h)
1001 mark_value_bytes_unavailable (dst,
1002 dst_offset + (l - src_offset),
1003 h - l);
1004 }
1005}
1006
29976f3f
PA
1007/* Copy LENGTH bytes of SRC value's (all) contents
1008 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1009 (all) contents, starting at DST_OFFSET. If unavailable contents
1010 are being copied from SRC, the corresponding DST contents are
1011 marked unavailable accordingly. DST must not be lazy. If SRC is
1012 lazy, it will be fetched now. If SRC is not valid (is optimized
1013 out), an error is thrown.
1014
1015 It is assumed the contents of DST in the [DST_OFFSET,
1016 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1017
1018void
1019value_contents_copy (struct value *dst, int dst_offset,
1020 struct value *src, int src_offset, int length)
1021{
1022 require_not_optimized_out (src);
1023
1024 if (src->lazy)
1025 value_fetch_lazy (src);
1026
1027 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1028}
1029
d69fe07e
AC
1030int
1031value_lazy (struct value *value)
1032{
1033 return value->lazy;
1034}
1035
dfa52d88
AC
1036void
1037set_value_lazy (struct value *value, int val)
1038{
1039 value->lazy = val;
1040}
1041
4e5d721f
DE
1042int
1043value_stack (struct value *value)
1044{
1045 return value->stack;
1046}
1047
1048void
1049set_value_stack (struct value *value, int val)
1050{
1051 value->stack = val;
1052}
1053
fc1a4b47 1054const gdb_byte *
0fd88904
AC
1055value_contents (struct value *value)
1056{
0e03807e
TT
1057 const gdb_byte *result = value_contents_writeable (value);
1058 require_not_optimized_out (value);
4e07d55f 1059 require_available (value);
0e03807e 1060 return result;
0fd88904
AC
1061}
1062
fc1a4b47 1063gdb_byte *
0fd88904
AC
1064value_contents_writeable (struct value *value)
1065{
1066 if (value->lazy)
1067 value_fetch_lazy (value);
fc0c53a0 1068 return value_contents_raw (value);
0fd88904
AC
1069}
1070
a6c442d8
MK
1071/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1072 this function is different from value_equal; in C the operator ==
1073 can return 0 even if the two values being compared are equal. */
1074
1075int
1076value_contents_equal (struct value *val1, struct value *val2)
1077{
1078 struct type *type1;
1079 struct type *type2;
a6c442d8
MK
1080
1081 type1 = check_typedef (value_type (val1));
1082 type2 = check_typedef (value_type (val2));
744a8059 1083 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
a6c442d8
MK
1084 return 0;
1085
744a8059
SP
1086 return (memcmp (value_contents (val1), value_contents (val2),
1087 TYPE_LENGTH (type1)) == 0);
a6c442d8
MK
1088}
1089
feb13ab0
AC
1090int
1091value_optimized_out (struct value *value)
1092{
691a26f5
AB
1093 /* We can only know if a value is optimized out once we have tried to
1094 fetch it. */
1095 if (!value->optimized_out && value->lazy)
1096 value_fetch_lazy (value);
1097
feb13ab0
AC
1098 return value->optimized_out;
1099}
1100
eca07816
JB
1101int
1102value_optimized_out_const (const struct value *value)
1103{
1104 return value->optimized_out;
1105}
1106
feb13ab0
AC
1107void
1108set_value_optimized_out (struct value *value, int val)
1109{
1110 value->optimized_out = val;
1111}
13c3b5f5 1112
0e03807e
TT
1113int
1114value_entirely_optimized_out (const struct value *value)
1115{
1116 if (!value->optimized_out)
1117 return 0;
1118 if (value->lval != lval_computed
ba19bb4d 1119 || !value->location.computed.funcs->check_any_valid)
0e03807e 1120 return 1;
b65c7efe 1121 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1122}
1123
1124int
1125value_bits_valid (const struct value *value, int offset, int length)
1126{
466c1fca
AB
1127 if (!value->optimized_out)
1128 return 1;
0e03807e
TT
1129 if (value->lval != lval_computed
1130 || !value->location.computed.funcs->check_validity)
466c1fca
AB
1131 return 0;
1132 return value->location.computed.funcs->check_validity (value, offset,
1133 length);
0e03807e
TT
1134}
1135
8cf6f0b1
TT
1136int
1137value_bits_synthetic_pointer (const struct value *value,
1138 int offset, int length)
1139{
e7303042 1140 if (value->lval != lval_computed
8cf6f0b1
TT
1141 || !value->location.computed.funcs->check_synthetic_pointer)
1142 return 0;
1143 return value->location.computed.funcs->check_synthetic_pointer (value,
1144 offset,
1145 length);
1146}
1147
13c3b5f5
AC
1148int
1149value_embedded_offset (struct value *value)
1150{
1151 return value->embedded_offset;
1152}
1153
1154void
1155set_value_embedded_offset (struct value *value, int val)
1156{
1157 value->embedded_offset = val;
1158}
b44d461b
AC
1159
1160int
1161value_pointed_to_offset (struct value *value)
1162{
1163 return value->pointed_to_offset;
1164}
1165
1166void
1167set_value_pointed_to_offset (struct value *value, int val)
1168{
1169 value->pointed_to_offset = val;
1170}
13bb5560 1171
c8f2448a 1172const struct lval_funcs *
a471c594 1173value_computed_funcs (const struct value *v)
5f5233d4 1174{
a471c594 1175 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1176
1177 return v->location.computed.funcs;
1178}
1179
1180void *
0e03807e 1181value_computed_closure (const struct value *v)
5f5233d4 1182{
0e03807e 1183 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1184
1185 return v->location.computed.closure;
1186}
1187
13bb5560
AC
1188enum lval_type *
1189deprecated_value_lval_hack (struct value *value)
1190{
1191 return &value->lval;
1192}
1193
a471c594
JK
1194enum lval_type
1195value_lval_const (const struct value *value)
1196{
1197 return value->lval;
1198}
1199
42ae5230 1200CORE_ADDR
de4127a3 1201value_address (const struct value *value)
42ae5230
TT
1202{
1203 if (value->lval == lval_internalvar
1204 || value->lval == lval_internalvar_component)
1205 return 0;
53ba8333
JB
1206 if (value->parent != NULL)
1207 return value_address (value->parent) + value->offset;
1208 else
1209 return value->location.address + value->offset;
42ae5230
TT
1210}
1211
1212CORE_ADDR
1213value_raw_address (struct value *value)
1214{
1215 if (value->lval == lval_internalvar
1216 || value->lval == lval_internalvar_component)
1217 return 0;
1218 return value->location.address;
1219}
1220
1221void
1222set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1223{
42ae5230
TT
1224 gdb_assert (value->lval != lval_internalvar
1225 && value->lval != lval_internalvar_component);
1226 value->location.address = addr;
13bb5560
AC
1227}
1228
1229struct internalvar **
1230deprecated_value_internalvar_hack (struct value *value)
1231{
1232 return &value->location.internalvar;
1233}
1234
1235struct frame_id *
1236deprecated_value_frame_id_hack (struct value *value)
1237{
1238 return &value->frame_id;
1239}
1240
1241short *
1242deprecated_value_regnum_hack (struct value *value)
1243{
1244 return &value->regnum;
1245}
88e3b34b
AC
1246
1247int
1248deprecated_value_modifiable (struct value *value)
1249{
1250 return value->modifiable;
1251}
990a07ab 1252\f
c906108c
SS
1253/* Return a mark in the value chain. All values allocated after the
1254 mark is obtained (except for those released) are subject to being freed
1255 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1256struct value *
fba45db2 1257value_mark (void)
c906108c
SS
1258{
1259 return all_values;
1260}
1261
828d3400
DJ
1262/* Take a reference to VAL. VAL will not be deallocated until all
1263 references are released. */
1264
1265void
1266value_incref (struct value *val)
1267{
1268 val->reference_count++;
1269}
1270
1271/* Release a reference to VAL, which was acquired with value_incref.
1272 This function is also called to deallocate values from the value
1273 chain. */
1274
3e3d7139
JG
1275void
1276value_free (struct value *val)
1277{
1278 if (val)
5f5233d4 1279 {
828d3400
DJ
1280 gdb_assert (val->reference_count > 0);
1281 val->reference_count--;
1282 if (val->reference_count > 0)
1283 return;
1284
4ea48cc1
DJ
1285 /* If there's an associated parent value, drop our reference to
1286 it. */
1287 if (val->parent != NULL)
1288 value_free (val->parent);
1289
5f5233d4
PA
1290 if (VALUE_LVAL (val) == lval_computed)
1291 {
c8f2448a 1292 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1293
1294 if (funcs->free_closure)
1295 funcs->free_closure (val);
1296 }
1297
1298 xfree (val->contents);
4e07d55f 1299 VEC_free (range_s, val->unavailable);
5f5233d4 1300 }
3e3d7139
JG
1301 xfree (val);
1302}
1303
c906108c
SS
1304/* Free all values allocated since MARK was obtained by value_mark
1305 (except for those released). */
1306void
f23631e4 1307value_free_to_mark (struct value *mark)
c906108c 1308{
f23631e4
AC
1309 struct value *val;
1310 struct value *next;
c906108c
SS
1311
1312 for (val = all_values; val && val != mark; val = next)
1313 {
df407dfe 1314 next = val->next;
e848a8a5 1315 val->released = 1;
c906108c
SS
1316 value_free (val);
1317 }
1318 all_values = val;
1319}
1320
1321/* Free all the values that have been allocated (except for those released).
725e88af
DE
1322 Call after each command, successful or not.
1323 In practice this is called before each command, which is sufficient. */
c906108c
SS
1324
1325void
fba45db2 1326free_all_values (void)
c906108c 1327{
f23631e4
AC
1328 struct value *val;
1329 struct value *next;
c906108c
SS
1330
1331 for (val = all_values; val; val = next)
1332 {
df407dfe 1333 next = val->next;
e848a8a5 1334 val->released = 1;
c906108c
SS
1335 value_free (val);
1336 }
1337
1338 all_values = 0;
1339}
1340
0cf6dd15
TJB
1341/* Frees all the elements in a chain of values. */
1342
1343void
1344free_value_chain (struct value *v)
1345{
1346 struct value *next;
1347
1348 for (; v; v = next)
1349 {
1350 next = value_next (v);
1351 value_free (v);
1352 }
1353}
1354
c906108c
SS
1355/* Remove VAL from the chain all_values
1356 so it will not be freed automatically. */
1357
1358void
f23631e4 1359release_value (struct value *val)
c906108c 1360{
f23631e4 1361 struct value *v;
c906108c
SS
1362
1363 if (all_values == val)
1364 {
1365 all_values = val->next;
06a64a0b 1366 val->next = NULL;
e848a8a5 1367 val->released = 1;
c906108c
SS
1368 return;
1369 }
1370
1371 for (v = all_values; v; v = v->next)
1372 {
1373 if (v->next == val)
1374 {
1375 v->next = val->next;
06a64a0b 1376 val->next = NULL;
e848a8a5 1377 val->released = 1;
c906108c
SS
1378 break;
1379 }
1380 }
1381}
1382
e848a8a5
TT
1383/* If the value is not already released, release it.
1384 If the value is already released, increment its reference count.
1385 That is, this function ensures that the value is released from the
1386 value chain and that the caller owns a reference to it. */
1387
1388void
1389release_value_or_incref (struct value *val)
1390{
1391 if (val->released)
1392 value_incref (val);
1393 else
1394 release_value (val);
1395}
1396
c906108c 1397/* Release all values up to mark */
f23631e4
AC
1398struct value *
1399value_release_to_mark (struct value *mark)
c906108c 1400{
f23631e4
AC
1401 struct value *val;
1402 struct value *next;
c906108c 1403
df407dfe 1404 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1405 {
1406 if (next->next == mark)
1407 {
1408 all_values = next->next;
1409 next->next = NULL;
1410 return val;
1411 }
1412 next->released = 1;
1413 }
c906108c
SS
1414 all_values = 0;
1415 return val;
1416}
1417
1418/* Return a copy of the value ARG.
1419 It contains the same contents, for same memory address,
1420 but it's a different block of storage. */
1421
f23631e4
AC
1422struct value *
1423value_copy (struct value *arg)
c906108c 1424{
4754a64e 1425 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1426 struct value *val;
1427
1428 if (value_lazy (arg))
1429 val = allocate_value_lazy (encl_type);
1430 else
1431 val = allocate_value (encl_type);
df407dfe 1432 val->type = arg->type;
c906108c 1433 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1434 val->location = arg->location;
df407dfe
AC
1435 val->offset = arg->offset;
1436 val->bitpos = arg->bitpos;
1437 val->bitsize = arg->bitsize;
1df6926e 1438 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1439 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1440 val->lazy = arg->lazy;
feb13ab0 1441 val->optimized_out = arg->optimized_out;
13c3b5f5 1442 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1443 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1444 val->modifiable = arg->modifiable;
d69fe07e 1445 if (!value_lazy (val))
c906108c 1446 {
990a07ab 1447 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1448 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1449
1450 }
4e07d55f 1451 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1452 set_value_parent (val, arg->parent);
5f5233d4
PA
1453 if (VALUE_LVAL (val) == lval_computed)
1454 {
c8f2448a 1455 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1456
1457 if (funcs->copy_closure)
1458 val->location.computed.closure = funcs->copy_closure (val);
1459 }
c906108c
SS
1460 return val;
1461}
74bcbdf3 1462
c37f7098
KW
1463/* Return a version of ARG that is non-lvalue. */
1464
1465struct value *
1466value_non_lval (struct value *arg)
1467{
1468 if (VALUE_LVAL (arg) != not_lval)
1469 {
1470 struct type *enc_type = value_enclosing_type (arg);
1471 struct value *val = allocate_value (enc_type);
1472
1473 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1474 TYPE_LENGTH (enc_type));
1475 val->type = arg->type;
1476 set_value_embedded_offset (val, value_embedded_offset (arg));
1477 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1478 return val;
1479 }
1480 return arg;
1481}
1482
74bcbdf3 1483void
0e03807e
TT
1484set_value_component_location (struct value *component,
1485 const struct value *whole)
74bcbdf3 1486{
0e03807e 1487 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1488 VALUE_LVAL (component) = lval_internalvar_component;
1489 else
0e03807e 1490 VALUE_LVAL (component) = whole->lval;
5f5233d4 1491
74bcbdf3 1492 component->location = whole->location;
0e03807e 1493 if (whole->lval == lval_computed)
5f5233d4 1494 {
c8f2448a 1495 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1496
1497 if (funcs->copy_closure)
1498 component->location.computed.closure = funcs->copy_closure (whole);
1499 }
74bcbdf3
PA
1500}
1501
c906108c
SS
1502\f
1503/* Access to the value history. */
1504
1505/* Record a new value in the value history.
1506 Returns the absolute history index of the entry.
1507 Result of -1 indicates the value was not saved; otherwise it is the
1508 value history index of this new item. */
1509
1510int
f23631e4 1511record_latest_value (struct value *val)
c906108c
SS
1512{
1513 int i;
1514
1515 /* We don't want this value to have anything to do with the inferior anymore.
1516 In particular, "set $1 = 50" should not affect the variable from which
1517 the value was taken, and fast watchpoints should be able to assume that
1518 a value on the value history never changes. */
d69fe07e 1519 if (value_lazy (val))
c906108c
SS
1520 value_fetch_lazy (val);
1521 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1522 from. This is a bit dubious, because then *&$1 does not just return $1
1523 but the current contents of that location. c'est la vie... */
1524 val->modifiable = 0;
1525 release_value (val);
1526
1527 /* Here we treat value_history_count as origin-zero
1528 and applying to the value being stored now. */
1529
1530 i = value_history_count % VALUE_HISTORY_CHUNK;
1531 if (i == 0)
1532 {
f23631e4 1533 struct value_history_chunk *new
a109c7c1
MS
1534 = (struct value_history_chunk *)
1535
c5aa993b 1536 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1537 memset (new->values, 0, sizeof new->values);
1538 new->next = value_history_chain;
1539 value_history_chain = new;
1540 }
1541
1542 value_history_chain->values[i] = val;
1543
1544 /* Now we regard value_history_count as origin-one
1545 and applying to the value just stored. */
1546
1547 return ++value_history_count;
1548}
1549
1550/* Return a copy of the value in the history with sequence number NUM. */
1551
f23631e4 1552struct value *
fba45db2 1553access_value_history (int num)
c906108c 1554{
f23631e4 1555 struct value_history_chunk *chunk;
52f0bd74
AC
1556 int i;
1557 int absnum = num;
c906108c
SS
1558
1559 if (absnum <= 0)
1560 absnum += value_history_count;
1561
1562 if (absnum <= 0)
1563 {
1564 if (num == 0)
8a3fe4f8 1565 error (_("The history is empty."));
c906108c 1566 else if (num == 1)
8a3fe4f8 1567 error (_("There is only one value in the history."));
c906108c 1568 else
8a3fe4f8 1569 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1570 }
1571 if (absnum > value_history_count)
8a3fe4f8 1572 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1573
1574 absnum--;
1575
1576 /* Now absnum is always absolute and origin zero. */
1577
1578 chunk = value_history_chain;
3e43a32a
MS
1579 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1580 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1581 i > 0; i--)
1582 chunk = chunk->next;
1583
1584 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1585}
1586
c906108c 1587static void
fba45db2 1588show_values (char *num_exp, int from_tty)
c906108c 1589{
52f0bd74 1590 int i;
f23631e4 1591 struct value *val;
c906108c
SS
1592 static int num = 1;
1593
1594 if (num_exp)
1595 {
f132ba9d
TJB
1596 /* "show values +" should print from the stored position.
1597 "show values <exp>" should print around value number <exp>. */
c906108c 1598 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1599 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1600 }
1601 else
1602 {
f132ba9d 1603 /* "show values" means print the last 10 values. */
c906108c
SS
1604 num = value_history_count - 9;
1605 }
1606
1607 if (num <= 0)
1608 num = 1;
1609
1610 for (i = num; i < num + 10 && i <= value_history_count; i++)
1611 {
79a45b7d 1612 struct value_print_options opts;
a109c7c1 1613
c906108c 1614 val = access_value_history (i);
a3f17187 1615 printf_filtered (("$%d = "), i);
79a45b7d
TT
1616 get_user_print_options (&opts);
1617 value_print (val, gdb_stdout, &opts);
a3f17187 1618 printf_filtered (("\n"));
c906108c
SS
1619 }
1620
f132ba9d 1621 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1622 num += 10;
1623
1624 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1625 "show values +". If num_exp is null, this is unnecessary, since
1626 "show values +" is not useful after "show values". */
c906108c
SS
1627 if (from_tty && num_exp)
1628 {
1629 num_exp[0] = '+';
1630 num_exp[1] = '\0';
1631 }
1632}
1633\f
1634/* Internal variables. These are variables within the debugger
1635 that hold values assigned by debugger commands.
1636 The user refers to them with a '$' prefix
1637 that does not appear in the variable names stored internally. */
1638
4fa62494
UW
1639struct internalvar
1640{
1641 struct internalvar *next;
1642 char *name;
4fa62494 1643
78267919
UW
1644 /* We support various different kinds of content of an internal variable.
1645 enum internalvar_kind specifies the kind, and union internalvar_data
1646 provides the data associated with this particular kind. */
1647
1648 enum internalvar_kind
1649 {
1650 /* The internal variable is empty. */
1651 INTERNALVAR_VOID,
1652
1653 /* The value of the internal variable is provided directly as
1654 a GDB value object. */
1655 INTERNALVAR_VALUE,
1656
1657 /* A fresh value is computed via a call-back routine on every
1658 access to the internal variable. */
1659 INTERNALVAR_MAKE_VALUE,
4fa62494 1660
78267919
UW
1661 /* The internal variable holds a GDB internal convenience function. */
1662 INTERNALVAR_FUNCTION,
1663
cab0c772
UW
1664 /* The variable holds an integer value. */
1665 INTERNALVAR_INTEGER,
1666
78267919
UW
1667 /* The variable holds a GDB-provided string. */
1668 INTERNALVAR_STRING,
1669
1670 } kind;
4fa62494 1671
4fa62494
UW
1672 union internalvar_data
1673 {
78267919
UW
1674 /* A value object used with INTERNALVAR_VALUE. */
1675 struct value *value;
1676
1677 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1678 struct
1679 {
1680 /* The functions to call. */
1681 const struct internalvar_funcs *functions;
1682
1683 /* The function's user-data. */
1684 void *data;
1685 } make_value;
78267919
UW
1686
1687 /* The internal function used with INTERNALVAR_FUNCTION. */
1688 struct
1689 {
1690 struct internal_function *function;
1691 /* True if this is the canonical name for the function. */
1692 int canonical;
1693 } fn;
1694
cab0c772 1695 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1696 struct
1697 {
1698 /* If type is non-NULL, it will be used as the type to generate
1699 a value for this internal variable. If type is NULL, a default
1700 integer type for the architecture is used. */
1701 struct type *type;
cab0c772
UW
1702 LONGEST val;
1703 } integer;
1704
78267919
UW
1705 /* A string value used with INTERNALVAR_STRING. */
1706 char *string;
4fa62494
UW
1707 } u;
1708};
1709
c906108c
SS
1710static struct internalvar *internalvars;
1711
3e43a32a
MS
1712/* If the variable does not already exist create it and give it the
1713 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1714static void
1715init_if_undefined_command (char* args, int from_tty)
1716{
1717 struct internalvar* intvar;
1718
1719 /* Parse the expression - this is taken from set_command(). */
1720 struct expression *expr = parse_expression (args);
1721 register struct cleanup *old_chain =
1722 make_cleanup (free_current_contents, &expr);
1723
1724 /* Validate the expression.
1725 Was the expression an assignment?
1726 Or even an expression at all? */
1727 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1728 error (_("Init-if-undefined requires an assignment expression."));
1729
1730 /* Extract the variable from the parsed expression.
1731 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1732 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1733 error (_("The first parameter to init-if-undefined "
1734 "should be a GDB variable."));
53e5f3cf
AS
1735 intvar = expr->elts[2].internalvar;
1736
1737 /* Only evaluate the expression if the lvalue is void.
1738 This may still fail if the expresssion is invalid. */
78267919 1739 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1740 evaluate_expression (expr);
1741
1742 do_cleanups (old_chain);
1743}
1744
1745
c906108c
SS
1746/* Look up an internal variable with name NAME. NAME should not
1747 normally include a dollar sign.
1748
1749 If the specified internal variable does not exist,
c4a3d09a 1750 the return value is NULL. */
c906108c
SS
1751
1752struct internalvar *
bc3b79fd 1753lookup_only_internalvar (const char *name)
c906108c 1754{
52f0bd74 1755 struct internalvar *var;
c906108c
SS
1756
1757 for (var = internalvars; var; var = var->next)
5cb316ef 1758 if (strcmp (var->name, name) == 0)
c906108c
SS
1759 return var;
1760
c4a3d09a
MF
1761 return NULL;
1762}
1763
d55637df
TT
1764/* Complete NAME by comparing it to the names of internal variables.
1765 Returns a vector of newly allocated strings, or NULL if no matches
1766 were found. */
1767
1768VEC (char_ptr) *
1769complete_internalvar (const char *name)
1770{
1771 VEC (char_ptr) *result = NULL;
1772 struct internalvar *var;
1773 int len;
1774
1775 len = strlen (name);
1776
1777 for (var = internalvars; var; var = var->next)
1778 if (strncmp (var->name, name, len) == 0)
1779 {
1780 char *r = xstrdup (var->name);
1781
1782 VEC_safe_push (char_ptr, result, r);
1783 }
1784
1785 return result;
1786}
c4a3d09a
MF
1787
1788/* Create an internal variable with name NAME and with a void value.
1789 NAME should not normally include a dollar sign. */
1790
1791struct internalvar *
bc3b79fd 1792create_internalvar (const char *name)
c4a3d09a
MF
1793{
1794 struct internalvar *var;
a109c7c1 1795
c906108c 1796 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1797 var->name = concat (name, (char *)NULL);
78267919 1798 var->kind = INTERNALVAR_VOID;
c906108c
SS
1799 var->next = internalvars;
1800 internalvars = var;
1801 return var;
1802}
1803
4aa995e1
PA
1804/* Create an internal variable with name NAME and register FUN as the
1805 function that value_of_internalvar uses to create a value whenever
1806 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1807 dollar sign. DATA is passed uninterpreted to FUN when it is
1808 called. CLEANUP, if not NULL, is called when the internal variable
1809 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1810
1811struct internalvar *
22d2b532
SDJ
1812create_internalvar_type_lazy (const char *name,
1813 const struct internalvar_funcs *funcs,
1814 void *data)
4aa995e1 1815{
4fa62494 1816 struct internalvar *var = create_internalvar (name);
a109c7c1 1817
78267919 1818 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1819 var->u.make_value.functions = funcs;
1820 var->u.make_value.data = data;
4aa995e1
PA
1821 return var;
1822}
c4a3d09a 1823
22d2b532
SDJ
1824/* See documentation in value.h. */
1825
1826int
1827compile_internalvar_to_ax (struct internalvar *var,
1828 struct agent_expr *expr,
1829 struct axs_value *value)
1830{
1831 if (var->kind != INTERNALVAR_MAKE_VALUE
1832 || var->u.make_value.functions->compile_to_ax == NULL)
1833 return 0;
1834
1835 var->u.make_value.functions->compile_to_ax (var, expr, value,
1836 var->u.make_value.data);
1837 return 1;
1838}
1839
c4a3d09a
MF
1840/* Look up an internal variable with name NAME. NAME should not
1841 normally include a dollar sign.
1842
1843 If the specified internal variable does not exist,
1844 one is created, with a void value. */
1845
1846struct internalvar *
bc3b79fd 1847lookup_internalvar (const char *name)
c4a3d09a
MF
1848{
1849 struct internalvar *var;
1850
1851 var = lookup_only_internalvar (name);
1852 if (var)
1853 return var;
1854
1855 return create_internalvar (name);
1856}
1857
78267919
UW
1858/* Return current value of internal variable VAR. For variables that
1859 are not inherently typed, use a value type appropriate for GDBARCH. */
1860
f23631e4 1861struct value *
78267919 1862value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1863{
f23631e4 1864 struct value *val;
0914bcdb
SS
1865 struct trace_state_variable *tsv;
1866
1867 /* If there is a trace state variable of the same name, assume that
1868 is what we really want to see. */
1869 tsv = find_trace_state_variable (var->name);
1870 if (tsv)
1871 {
1872 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1873 &(tsv->value));
1874 if (tsv->value_known)
1875 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1876 tsv->value);
1877 else
1878 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1879 return val;
1880 }
c906108c 1881
78267919 1882 switch (var->kind)
5f5233d4 1883 {
78267919
UW
1884 case INTERNALVAR_VOID:
1885 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1886 break;
4fa62494 1887
78267919
UW
1888 case INTERNALVAR_FUNCTION:
1889 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1890 break;
4fa62494 1891
cab0c772
UW
1892 case INTERNALVAR_INTEGER:
1893 if (!var->u.integer.type)
78267919 1894 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1895 var->u.integer.val);
78267919 1896 else
cab0c772
UW
1897 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1898 break;
1899
78267919
UW
1900 case INTERNALVAR_STRING:
1901 val = value_cstring (var->u.string, strlen (var->u.string),
1902 builtin_type (gdbarch)->builtin_char);
1903 break;
4fa62494 1904
78267919
UW
1905 case INTERNALVAR_VALUE:
1906 val = value_copy (var->u.value);
4aa995e1
PA
1907 if (value_lazy (val))
1908 value_fetch_lazy (val);
78267919 1909 break;
4aa995e1 1910
78267919 1911 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
1912 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1913 var->u.make_value.data);
78267919
UW
1914 break;
1915
1916 default:
9b20d036 1917 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1918 }
1919
1920 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1921 on this value go back to affect the original internal variable.
1922
1923 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1924 no underlying modifyable state in the internal variable.
1925
1926 Likewise, if the variable's value is a computed lvalue, we want
1927 references to it to produce another computed lvalue, where
1928 references and assignments actually operate through the
1929 computed value's functions.
1930
1931 This means that internal variables with computed values
1932 behave a little differently from other internal variables:
1933 assignments to them don't just replace the previous value
1934 altogether. At the moment, this seems like the behavior we
1935 want. */
1936
1937 if (var->kind != INTERNALVAR_MAKE_VALUE
1938 && val->lval != lval_computed)
1939 {
1940 VALUE_LVAL (val) = lval_internalvar;
1941 VALUE_INTERNALVAR (val) = var;
5f5233d4 1942 }
d3c139e9 1943
4fa62494
UW
1944 return val;
1945}
d3c139e9 1946
4fa62494
UW
1947int
1948get_internalvar_integer (struct internalvar *var, LONGEST *result)
1949{
3158c6ed 1950 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1951 {
cab0c772
UW
1952 *result = var->u.integer.val;
1953 return 1;
3158c6ed 1954 }
d3c139e9 1955
3158c6ed
PA
1956 if (var->kind == INTERNALVAR_VALUE)
1957 {
1958 struct type *type = check_typedef (value_type (var->u.value));
1959
1960 if (TYPE_CODE (type) == TYPE_CODE_INT)
1961 {
1962 *result = value_as_long (var->u.value);
1963 return 1;
1964 }
4fa62494 1965 }
3158c6ed
PA
1966
1967 return 0;
4fa62494 1968}
d3c139e9 1969
4fa62494
UW
1970static int
1971get_internalvar_function (struct internalvar *var,
1972 struct internal_function **result)
1973{
78267919 1974 switch (var->kind)
d3c139e9 1975 {
78267919
UW
1976 case INTERNALVAR_FUNCTION:
1977 *result = var->u.fn.function;
4fa62494 1978 return 1;
d3c139e9 1979
4fa62494
UW
1980 default:
1981 return 0;
1982 }
c906108c
SS
1983}
1984
1985void
fba45db2 1986set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1987 int bitsize, struct value *newval)
c906108c 1988{
4fa62494 1989 gdb_byte *addr;
c906108c 1990
78267919 1991 switch (var->kind)
4fa62494 1992 {
78267919
UW
1993 case INTERNALVAR_VALUE:
1994 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1995
1996 if (bitsize)
50810684 1997 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1998 value_as_long (newval), bitpos, bitsize);
1999 else
2000 memcpy (addr + offset, value_contents (newval),
2001 TYPE_LENGTH (value_type (newval)));
2002 break;
78267919
UW
2003
2004 default:
2005 /* We can never get a component of any other kind. */
9b20d036 2006 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2007 }
c906108c
SS
2008}
2009
2010void
f23631e4 2011set_internalvar (struct internalvar *var, struct value *val)
c906108c 2012{
78267919 2013 enum internalvar_kind new_kind;
4fa62494 2014 union internalvar_data new_data = { 0 };
c906108c 2015
78267919 2016 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2017 error (_("Cannot overwrite convenience function %s"), var->name);
2018
4fa62494 2019 /* Prepare new contents. */
78267919 2020 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2021 {
2022 case TYPE_CODE_VOID:
78267919 2023 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2024 break;
2025
2026 case TYPE_CODE_INTERNAL_FUNCTION:
2027 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2028 new_kind = INTERNALVAR_FUNCTION;
2029 get_internalvar_function (VALUE_INTERNALVAR (val),
2030 &new_data.fn.function);
2031 /* Copies created here are never canonical. */
4fa62494
UW
2032 break;
2033
4fa62494 2034 default:
78267919
UW
2035 new_kind = INTERNALVAR_VALUE;
2036 new_data.value = value_copy (val);
2037 new_data.value->modifiable = 1;
4fa62494
UW
2038
2039 /* Force the value to be fetched from the target now, to avoid problems
2040 later when this internalvar is referenced and the target is gone or
2041 has changed. */
78267919
UW
2042 if (value_lazy (new_data.value))
2043 value_fetch_lazy (new_data.value);
4fa62494
UW
2044
2045 /* Release the value from the value chain to prevent it from being
2046 deleted by free_all_values. From here on this function should not
2047 call error () until new_data is installed into the var->u to avoid
2048 leaking memory. */
78267919 2049 release_value (new_data.value);
4fa62494
UW
2050 break;
2051 }
2052
2053 /* Clean up old contents. */
2054 clear_internalvar (var);
2055
2056 /* Switch over. */
78267919 2057 var->kind = new_kind;
4fa62494 2058 var->u = new_data;
c906108c
SS
2059 /* End code which must not call error(). */
2060}
2061
4fa62494
UW
2062void
2063set_internalvar_integer (struct internalvar *var, LONGEST l)
2064{
2065 /* Clean up old contents. */
2066 clear_internalvar (var);
2067
cab0c772
UW
2068 var->kind = INTERNALVAR_INTEGER;
2069 var->u.integer.type = NULL;
2070 var->u.integer.val = l;
78267919
UW
2071}
2072
2073void
2074set_internalvar_string (struct internalvar *var, const char *string)
2075{
2076 /* Clean up old contents. */
2077 clear_internalvar (var);
2078
2079 var->kind = INTERNALVAR_STRING;
2080 var->u.string = xstrdup (string);
4fa62494
UW
2081}
2082
2083static void
2084set_internalvar_function (struct internalvar *var, struct internal_function *f)
2085{
2086 /* Clean up old contents. */
2087 clear_internalvar (var);
2088
78267919
UW
2089 var->kind = INTERNALVAR_FUNCTION;
2090 var->u.fn.function = f;
2091 var->u.fn.canonical = 1;
2092 /* Variables installed here are always the canonical version. */
4fa62494
UW
2093}
2094
2095void
2096clear_internalvar (struct internalvar *var)
2097{
2098 /* Clean up old contents. */
78267919 2099 switch (var->kind)
4fa62494 2100 {
78267919
UW
2101 case INTERNALVAR_VALUE:
2102 value_free (var->u.value);
2103 break;
2104
2105 case INTERNALVAR_STRING:
2106 xfree (var->u.string);
4fa62494
UW
2107 break;
2108
22d2b532
SDJ
2109 case INTERNALVAR_MAKE_VALUE:
2110 if (var->u.make_value.functions->destroy != NULL)
2111 var->u.make_value.functions->destroy (var->u.make_value.data);
2112 break;
2113
4fa62494 2114 default:
4fa62494
UW
2115 break;
2116 }
2117
78267919
UW
2118 /* Reset to void kind. */
2119 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2120}
2121
c906108c 2122char *
fba45db2 2123internalvar_name (struct internalvar *var)
c906108c
SS
2124{
2125 return var->name;
2126}
2127
4fa62494
UW
2128static struct internal_function *
2129create_internal_function (const char *name,
2130 internal_function_fn handler, void *cookie)
bc3b79fd 2131{
bc3b79fd 2132 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2133
bc3b79fd
TJB
2134 ifn->name = xstrdup (name);
2135 ifn->handler = handler;
2136 ifn->cookie = cookie;
4fa62494 2137 return ifn;
bc3b79fd
TJB
2138}
2139
2140char *
2141value_internal_function_name (struct value *val)
2142{
4fa62494
UW
2143 struct internal_function *ifn;
2144 int result;
2145
2146 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2147 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2148 gdb_assert (result);
2149
bc3b79fd
TJB
2150 return ifn->name;
2151}
2152
2153struct value *
d452c4bc
UW
2154call_internal_function (struct gdbarch *gdbarch,
2155 const struct language_defn *language,
2156 struct value *func, int argc, struct value **argv)
bc3b79fd 2157{
4fa62494
UW
2158 struct internal_function *ifn;
2159 int result;
2160
2161 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2162 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2163 gdb_assert (result);
2164
d452c4bc 2165 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2166}
2167
2168/* The 'function' command. This does nothing -- it is just a
2169 placeholder to let "help function NAME" work. This is also used as
2170 the implementation of the sub-command that is created when
2171 registering an internal function. */
2172static void
2173function_command (char *command, int from_tty)
2174{
2175 /* Do nothing. */
2176}
2177
2178/* Clean up if an internal function's command is destroyed. */
2179static void
2180function_destroyer (struct cmd_list_element *self, void *ignore)
2181{
6f937416 2182 xfree ((char *) self->name);
bc3b79fd
TJB
2183 xfree (self->doc);
2184}
2185
2186/* Add a new internal function. NAME is the name of the function; DOC
2187 is a documentation string describing the function. HANDLER is
2188 called when the function is invoked. COOKIE is an arbitrary
2189 pointer which is passed to HANDLER and is intended for "user
2190 data". */
2191void
2192add_internal_function (const char *name, const char *doc,
2193 internal_function_fn handler, void *cookie)
2194{
2195 struct cmd_list_element *cmd;
4fa62494 2196 struct internal_function *ifn;
bc3b79fd 2197 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2198
2199 ifn = create_internal_function (name, handler, cookie);
2200 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2201
2202 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2203 &functionlist);
2204 cmd->destroyer = function_destroyer;
2205}
2206
ae5a43e0
DJ
2207/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2208 prevent cycles / duplicates. */
2209
4e7a5ef5 2210void
ae5a43e0
DJ
2211preserve_one_value (struct value *value, struct objfile *objfile,
2212 htab_t copied_types)
2213{
2214 if (TYPE_OBJFILE (value->type) == objfile)
2215 value->type = copy_type_recursive (objfile, value->type, copied_types);
2216
2217 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2218 value->enclosing_type = copy_type_recursive (objfile,
2219 value->enclosing_type,
2220 copied_types);
2221}
2222
78267919
UW
2223/* Likewise for internal variable VAR. */
2224
2225static void
2226preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2227 htab_t copied_types)
2228{
2229 switch (var->kind)
2230 {
cab0c772
UW
2231 case INTERNALVAR_INTEGER:
2232 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2233 var->u.integer.type
2234 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2235 break;
2236
78267919
UW
2237 case INTERNALVAR_VALUE:
2238 preserve_one_value (var->u.value, objfile, copied_types);
2239 break;
2240 }
2241}
2242
ae5a43e0
DJ
2243/* Update the internal variables and value history when OBJFILE is
2244 discarded; we must copy the types out of the objfile. New global types
2245 will be created for every convenience variable which currently points to
2246 this objfile's types, and the convenience variables will be adjusted to
2247 use the new global types. */
c906108c
SS
2248
2249void
ae5a43e0 2250preserve_values (struct objfile *objfile)
c906108c 2251{
ae5a43e0
DJ
2252 htab_t copied_types;
2253 struct value_history_chunk *cur;
52f0bd74 2254 struct internalvar *var;
ae5a43e0 2255 int i;
c906108c 2256
ae5a43e0
DJ
2257 /* Create the hash table. We allocate on the objfile's obstack, since
2258 it is soon to be deleted. */
2259 copied_types = create_copied_types_hash (objfile);
2260
2261 for (cur = value_history_chain; cur; cur = cur->next)
2262 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2263 if (cur->values[i])
2264 preserve_one_value (cur->values[i], objfile, copied_types);
2265
2266 for (var = internalvars; var; var = var->next)
78267919 2267 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2268
4e7a5ef5 2269 preserve_python_values (objfile, copied_types);
a08702d6 2270
ae5a43e0 2271 htab_delete (copied_types);
c906108c
SS
2272}
2273
2274static void
fba45db2 2275show_convenience (char *ignore, int from_tty)
c906108c 2276{
e17c207e 2277 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2278 struct internalvar *var;
c906108c 2279 int varseen = 0;
79a45b7d 2280 struct value_print_options opts;
c906108c 2281
79a45b7d 2282 get_user_print_options (&opts);
c906108c
SS
2283 for (var = internalvars; var; var = var->next)
2284 {
c709acd1
PA
2285 volatile struct gdb_exception ex;
2286
c906108c
SS
2287 if (!varseen)
2288 {
2289 varseen = 1;
2290 }
a3f17187 2291 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2292
2293 TRY_CATCH (ex, RETURN_MASK_ERROR)
2294 {
2295 struct value *val;
2296
2297 val = value_of_internalvar (gdbarch, var);
2298 value_print (val, gdb_stdout, &opts);
2299 }
2300 if (ex.reason < 0)
2301 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2302 printf_filtered (("\n"));
c906108c
SS
2303 }
2304 if (!varseen)
f47f77df
DE
2305 {
2306 /* This text does not mention convenience functions on purpose.
2307 The user can't create them except via Python, and if Python support
2308 is installed this message will never be printed ($_streq will
2309 exist). */
2310 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2311 "Convenience variables have "
2312 "names starting with \"$\";\n"
2313 "use \"set\" as in \"set "
2314 "$foo = 5\" to define them.\n"));
2315 }
c906108c
SS
2316}
2317\f
2318/* Extract a value as a C number (either long or double).
2319 Knows how to convert fixed values to double, or
2320 floating values to long.
2321 Does not deallocate the value. */
2322
2323LONGEST
f23631e4 2324value_as_long (struct value *val)
c906108c
SS
2325{
2326 /* This coerces arrays and functions, which is necessary (e.g.
2327 in disassemble_command). It also dereferences references, which
2328 I suspect is the most logical thing to do. */
994b9211 2329 val = coerce_array (val);
0fd88904 2330 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2331}
2332
2333DOUBLEST
f23631e4 2334value_as_double (struct value *val)
c906108c
SS
2335{
2336 DOUBLEST foo;
2337 int inv;
c5aa993b 2338
0fd88904 2339 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2340 if (inv)
8a3fe4f8 2341 error (_("Invalid floating value found in program."));
c906108c
SS
2342 return foo;
2343}
4ef30785 2344
581e13c1 2345/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2346 Note that val's type may not actually be a pointer; value_as_long
2347 handles all the cases. */
c906108c 2348CORE_ADDR
f23631e4 2349value_as_address (struct value *val)
c906108c 2350{
50810684
UW
2351 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2352
c906108c
SS
2353 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2354 whether we want this to be true eventually. */
2355#if 0
bf6ae464 2356 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2357 non-address (e.g. argument to "signal", "info break", etc.), or
2358 for pointers to char, in which the low bits *are* significant. */
50810684 2359 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2360#else
f312f057
JB
2361
2362 /* There are several targets (IA-64, PowerPC, and others) which
2363 don't represent pointers to functions as simply the address of
2364 the function's entry point. For example, on the IA-64, a
2365 function pointer points to a two-word descriptor, generated by
2366 the linker, which contains the function's entry point, and the
2367 value the IA-64 "global pointer" register should have --- to
2368 support position-independent code. The linker generates
2369 descriptors only for those functions whose addresses are taken.
2370
2371 On such targets, it's difficult for GDB to convert an arbitrary
2372 function address into a function pointer; it has to either find
2373 an existing descriptor for that function, or call malloc and
2374 build its own. On some targets, it is impossible for GDB to
2375 build a descriptor at all: the descriptor must contain a jump
2376 instruction; data memory cannot be executed; and code memory
2377 cannot be modified.
2378
2379 Upon entry to this function, if VAL is a value of type `function'
2380 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2381 value_address (val) is the address of the function. This is what
f312f057
JB
2382 you'll get if you evaluate an expression like `main'. The call
2383 to COERCE_ARRAY below actually does all the usual unary
2384 conversions, which includes converting values of type `function'
2385 to `pointer to function'. This is the challenging conversion
2386 discussed above. Then, `unpack_long' will convert that pointer
2387 back into an address.
2388
2389 So, suppose the user types `disassemble foo' on an architecture
2390 with a strange function pointer representation, on which GDB
2391 cannot build its own descriptors, and suppose further that `foo'
2392 has no linker-built descriptor. The address->pointer conversion
2393 will signal an error and prevent the command from running, even
2394 though the next step would have been to convert the pointer
2395 directly back into the same address.
2396
2397 The following shortcut avoids this whole mess. If VAL is a
2398 function, just return its address directly. */
df407dfe
AC
2399 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2400 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2401 return value_address (val);
f312f057 2402
994b9211 2403 val = coerce_array (val);
fc0c74b1
AC
2404
2405 /* Some architectures (e.g. Harvard), map instruction and data
2406 addresses onto a single large unified address space. For
2407 instance: An architecture may consider a large integer in the
2408 range 0x10000000 .. 0x1000ffff to already represent a data
2409 addresses (hence not need a pointer to address conversion) while
2410 a small integer would still need to be converted integer to
2411 pointer to address. Just assume such architectures handle all
2412 integer conversions in a single function. */
2413
2414 /* JimB writes:
2415
2416 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2417 must admonish GDB hackers to make sure its behavior matches the
2418 compiler's, whenever possible.
2419
2420 In general, I think GDB should evaluate expressions the same way
2421 the compiler does. When the user copies an expression out of
2422 their source code and hands it to a `print' command, they should
2423 get the same value the compiler would have computed. Any
2424 deviation from this rule can cause major confusion and annoyance,
2425 and needs to be justified carefully. In other words, GDB doesn't
2426 really have the freedom to do these conversions in clever and
2427 useful ways.
2428
2429 AndrewC pointed out that users aren't complaining about how GDB
2430 casts integers to pointers; they are complaining that they can't
2431 take an address from a disassembly listing and give it to `x/i'.
2432 This is certainly important.
2433
79dd2d24 2434 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2435 makes it possible for GDB to "get it right" in all circumstances
2436 --- the target has complete control over how things get done, so
2437 people can Do The Right Thing for their target without breaking
2438 anyone else. The standard doesn't specify how integers get
2439 converted to pointers; usually, the ABI doesn't either, but
2440 ABI-specific code is a more reasonable place to handle it. */
2441
df407dfe
AC
2442 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2443 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2444 && gdbarch_integer_to_address_p (gdbarch))
2445 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2446 value_contents (val));
fc0c74b1 2447
0fd88904 2448 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2449#endif
2450}
2451\f
2452/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2453 as a long, or as a double, assuming the raw data is described
2454 by type TYPE. Knows how to convert different sizes of values
2455 and can convert between fixed and floating point. We don't assume
2456 any alignment for the raw data. Return value is in host byte order.
2457
2458 If you want functions and arrays to be coerced to pointers, and
2459 references to be dereferenced, call value_as_long() instead.
2460
2461 C++: It is assumed that the front-end has taken care of
2462 all matters concerning pointers to members. A pointer
2463 to member which reaches here is considered to be equivalent
2464 to an INT (or some size). After all, it is only an offset. */
2465
2466LONGEST
fc1a4b47 2467unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2468{
e17a4113 2469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2470 enum type_code code = TYPE_CODE (type);
2471 int len = TYPE_LENGTH (type);
2472 int nosign = TYPE_UNSIGNED (type);
c906108c 2473
c906108c
SS
2474 switch (code)
2475 {
2476 case TYPE_CODE_TYPEDEF:
2477 return unpack_long (check_typedef (type), valaddr);
2478 case TYPE_CODE_ENUM:
4f2aea11 2479 case TYPE_CODE_FLAGS:
c906108c
SS
2480 case TYPE_CODE_BOOL:
2481 case TYPE_CODE_INT:
2482 case TYPE_CODE_CHAR:
2483 case TYPE_CODE_RANGE:
0d5de010 2484 case TYPE_CODE_MEMBERPTR:
c906108c 2485 if (nosign)
e17a4113 2486 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2487 else
e17a4113 2488 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2489
2490 case TYPE_CODE_FLT:
96d2f608 2491 return extract_typed_floating (valaddr, type);
c906108c 2492
4ef30785
TJB
2493 case TYPE_CODE_DECFLOAT:
2494 /* libdecnumber has a function to convert from decimal to integer, but
2495 it doesn't work when the decimal number has a fractional part. */
e17a4113 2496 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2497
c906108c
SS
2498 case TYPE_CODE_PTR:
2499 case TYPE_CODE_REF:
2500 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2501 whether we want this to be true eventually. */
4478b372 2502 return extract_typed_address (valaddr, type);
c906108c 2503
c906108c 2504 default:
8a3fe4f8 2505 error (_("Value can't be converted to integer."));
c906108c 2506 }
c5aa993b 2507 return 0; /* Placate lint. */
c906108c
SS
2508}
2509
2510/* Return a double value from the specified type and address.
2511 INVP points to an int which is set to 0 for valid value,
2512 1 for invalid value (bad float format). In either case,
2513 the returned double is OK to use. Argument is in target
2514 format, result is in host format. */
2515
2516DOUBLEST
fc1a4b47 2517unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2518{
e17a4113 2519 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2520 enum type_code code;
2521 int len;
2522 int nosign;
2523
581e13c1 2524 *invp = 0; /* Assume valid. */
c906108c
SS
2525 CHECK_TYPEDEF (type);
2526 code = TYPE_CODE (type);
2527 len = TYPE_LENGTH (type);
2528 nosign = TYPE_UNSIGNED (type);
2529 if (code == TYPE_CODE_FLT)
2530 {
75bc7ddf
AC
2531 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2532 floating-point value was valid (using the macro
2533 INVALID_FLOAT). That test/macro have been removed.
2534
2535 It turns out that only the VAX defined this macro and then
2536 only in a non-portable way. Fixing the portability problem
2537 wouldn't help since the VAX floating-point code is also badly
2538 bit-rotten. The target needs to add definitions for the
ea06eb3d 2539 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2540 exactly describe the target floating-point format. The
2541 problem here is that the corresponding floatformat_vax_f and
2542 floatformat_vax_d values these methods should be set to are
2543 also not defined either. Oops!
2544
2545 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2546 definitions and the new cases for floatformat_is_valid (). */
2547
2548 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2549 {
2550 *invp = 1;
2551 return 0.0;
2552 }
2553
96d2f608 2554 return extract_typed_floating (valaddr, type);
c906108c 2555 }
4ef30785 2556 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2557 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2558 else if (nosign)
2559 {
2560 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2561 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2562 }
2563 else
2564 {
2565 /* Signed -- we are OK with unpack_long. */
2566 return unpack_long (type, valaddr);
2567 }
2568}
2569
2570/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2571 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2572 We don't assume any alignment for the raw data. Return value is in
2573 host byte order.
2574
2575 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2576 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2577
2578 C++: It is assumed that the front-end has taken care of
2579 all matters concerning pointers to members. A pointer
2580 to member which reaches here is considered to be equivalent
2581 to an INT (or some size). After all, it is only an offset. */
2582
2583CORE_ADDR
fc1a4b47 2584unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2585{
2586 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2587 whether we want this to be true eventually. */
2588 return unpack_long (type, valaddr);
2589}
4478b372 2590
c906108c 2591\f
1596cb5d 2592/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2593 TYPE. */
c906108c 2594
f23631e4 2595struct value *
fba45db2 2596value_static_field (struct type *type, int fieldno)
c906108c 2597{
948e66d9
DJ
2598 struct value *retval;
2599
1596cb5d 2600 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2601 {
1596cb5d 2602 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2603 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2604 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2605 break;
2606 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2607 {
ff355380 2608 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2609 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2610 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2611
948e66d9 2612 if (sym == NULL)
c906108c 2613 {
a109c7c1 2614 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2615 reported as non-debuggable symbols. */
a109c7c1
MS
2616 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2617 NULL, NULL);
2618
c906108c 2619 if (!msym)
686d4def 2620 return allocate_optimized_out_value (type);
c906108c 2621 else
c5aa993b 2622 {
52e9fde8
SS
2623 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2624 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2625 }
2626 }
2627 else
515ed532 2628 retval = value_of_variable (sym, NULL);
1596cb5d 2629 break;
c906108c 2630 }
1596cb5d 2631 default:
f3574227 2632 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2633 }
2634
948e66d9 2635 return retval;
c906108c
SS
2636}
2637
4dfea560
DE
2638/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2639 You have to be careful here, since the size of the data area for the value
2640 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2641 than the old enclosing type, you have to allocate more space for the
2642 data. */
2b127877 2643
4dfea560
DE
2644void
2645set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2646{
3e3d7139
JG
2647 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2648 val->contents =
2649 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2650
2651 val->enclosing_type = new_encl_type;
2b127877
DB
2652}
2653
c906108c
SS
2654/* Given a value ARG1 (offset by OFFSET bytes)
2655 of a struct or union type ARG_TYPE,
2656 extract and return the value of one of its (non-static) fields.
581e13c1 2657 FIELDNO says which field. */
c906108c 2658
f23631e4
AC
2659struct value *
2660value_primitive_field (struct value *arg1, int offset,
aa1ee363 2661 int fieldno, struct type *arg_type)
c906108c 2662{
f23631e4 2663 struct value *v;
52f0bd74 2664 struct type *type;
c906108c
SS
2665
2666 CHECK_TYPEDEF (arg_type);
2667 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2668
2669 /* Call check_typedef on our type to make sure that, if TYPE
2670 is a TYPE_CODE_TYPEDEF, its length is set to the length
2671 of the target type instead of zero. However, we do not
2672 replace the typedef type by the target type, because we want
2673 to keep the typedef in order to be able to print the type
2674 description correctly. */
2675 check_typedef (type);
c906108c 2676
691a26f5 2677 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2678 {
22c05d8a
JK
2679 /* Handle packed fields.
2680
2681 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2682 set. If possible, arrange offset and bitpos so that we can
2683 do a single aligned read of the size of the containing type.
2684 Otherwise, adjust offset to the byte containing the first
2685 bit. Assume that the address, offset, and embedded offset
2686 are sufficiently aligned. */
22c05d8a 2687
4ea48cc1
DJ
2688 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2689 int container_bitsize = TYPE_LENGTH (type) * 8;
2690
691a26f5
AB
2691 if (arg1->optimized_out)
2692 v = allocate_optimized_out_value (type);
4ea48cc1 2693 else
691a26f5
AB
2694 {
2695 v = allocate_value_lazy (type);
2696 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2697 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2698 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2699 v->bitpos = bitpos % container_bitsize;
2700 else
2701 v->bitpos = bitpos % 8;
2702 v->offset = (value_embedded_offset (arg1)
2703 + offset
2704 + (bitpos - v->bitpos) / 8);
2705 set_value_parent (v, arg1);
2706 if (!value_lazy (arg1))
2707 value_fetch_lazy (v);
2708 }
c906108c
SS
2709 }
2710 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2711 {
2712 /* This field is actually a base subobject, so preserve the
39d37385
PA
2713 entire object's contents for later references to virtual
2714 bases, etc. */
be335936 2715 int boffset;
a4e2ee12
DJ
2716
2717 /* Lazy register values with offsets are not supported. */
2718 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2719 value_fetch_lazy (arg1);
2720
691a26f5
AB
2721 /* The optimized_out flag is only set correctly once a lazy value is
2722 loaded, having just loaded some lazy values we should check the
2723 optimized out case now. */
2724 if (arg1->optimized_out)
2725 v = allocate_optimized_out_value (type);
c906108c 2726 else
3e3d7139 2727 {
691a26f5
AB
2728 /* We special case virtual inheritance here because this
2729 requires access to the contents, which we would rather avoid
2730 for references to ordinary fields of unavailable values. */
2731 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2732 boffset = baseclass_offset (arg_type, fieldno,
2733 value_contents (arg1),
2734 value_embedded_offset (arg1),
2735 value_address (arg1),
2736 arg1);
2737 else
2738 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2739
2740 if (value_lazy (arg1))
2741 v = allocate_value_lazy (value_enclosing_type (arg1));
2742 else
2743 {
2744 v = allocate_value (value_enclosing_type (arg1));
2745 value_contents_copy_raw (v, 0, arg1, 0,
2746 TYPE_LENGTH (value_enclosing_type (arg1)));
2747 }
2748 v->type = type;
2749 v->offset = value_offset (arg1);
2750 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3e3d7139 2751 }
c906108c
SS
2752 }
2753 else
2754 {
2755 /* Plain old data member */
2756 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2757
2758 /* Lazy register values with offsets are not supported. */
2759 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2760 value_fetch_lazy (arg1);
2761
691a26f5
AB
2762 /* The optimized_out flag is only set correctly once a lazy value is
2763 loaded, having just loaded some lazy values we should check for
2764 the optimized out case now. */
2765 if (arg1->optimized_out)
2766 v = allocate_optimized_out_value (type);
2767 else if (value_lazy (arg1))
3e3d7139 2768 v = allocate_value_lazy (type);
c906108c 2769 else
3e3d7139
JG
2770 {
2771 v = allocate_value (type);
39d37385
PA
2772 value_contents_copy_raw (v, value_embedded_offset (v),
2773 arg1, value_embedded_offset (arg1) + offset,
2774 TYPE_LENGTH (type));
3e3d7139 2775 }
df407dfe 2776 v->offset = (value_offset (arg1) + offset
13c3b5f5 2777 + value_embedded_offset (arg1));
c906108c 2778 }
74bcbdf3 2779 set_value_component_location (v, arg1);
9ee8fc9d 2780 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2781 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2782 return v;
2783}
2784
2785/* Given a value ARG1 of a struct or union type,
2786 extract and return the value of one of its (non-static) fields.
581e13c1 2787 FIELDNO says which field. */
c906108c 2788
f23631e4 2789struct value *
aa1ee363 2790value_field (struct value *arg1, int fieldno)
c906108c 2791{
df407dfe 2792 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2793}
2794
2795/* Return a non-virtual function as a value.
2796 F is the list of member functions which contains the desired method.
0478d61c
FF
2797 J is an index into F which provides the desired method.
2798
2799 We only use the symbol for its address, so be happy with either a
581e13c1 2800 full symbol or a minimal symbol. */
c906108c 2801
f23631e4 2802struct value *
3e43a32a
MS
2803value_fn_field (struct value **arg1p, struct fn_field *f,
2804 int j, struct type *type,
fba45db2 2805 int offset)
c906108c 2806{
f23631e4 2807 struct value *v;
52f0bd74 2808 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2809 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2810 struct symbol *sym;
7c7b6655 2811 struct bound_minimal_symbol msym;
c906108c 2812
2570f2b7 2813 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2814 if (sym != NULL)
0478d61c 2815 {
7c7b6655 2816 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
2817 }
2818 else
2819 {
2820 gdb_assert (sym == NULL);
7c7b6655
TT
2821 msym = lookup_bound_minimal_symbol (physname);
2822 if (msym.minsym == NULL)
5ae326fa 2823 return NULL;
0478d61c
FF
2824 }
2825
c906108c 2826 v = allocate_value (ftype);
0478d61c
FF
2827 if (sym)
2828 {
42ae5230 2829 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2830 }
2831 else
2832 {
bccdca4a
UW
2833 /* The minimal symbol might point to a function descriptor;
2834 resolve it to the actual code address instead. */
7c7b6655 2835 struct objfile *objfile = msym.objfile;
bccdca4a
UW
2836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2837
42ae5230
TT
2838 set_value_address (v,
2839 gdbarch_convert_from_func_ptr_addr
7c7b6655 2840 (gdbarch, SYMBOL_VALUE_ADDRESS (msym.minsym), &current_target));
0478d61c 2841 }
c906108c
SS
2842
2843 if (arg1p)
c5aa993b 2844 {
df407dfe 2845 if (type != value_type (*arg1p))
c5aa993b
JM
2846 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2847 value_addr (*arg1p)));
2848
070ad9f0 2849 /* Move the `this' pointer according to the offset.
581e13c1 2850 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2851 }
2852
2853 return v;
2854}
2855
c906108c 2856\f
c906108c 2857
5467c6c8
PA
2858/* Helper function for both unpack_value_bits_as_long and
2859 unpack_bits_as_long. See those functions for more details on the
2860 interface; the only difference is that this function accepts either
2861 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2862
5467c6c8
PA
2863static int
2864unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2865 int embedded_offset, int bitpos, int bitsize,
2866 const struct value *original_value,
2867 LONGEST *result)
c906108c 2868{
4ea48cc1 2869 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2870 ULONGEST val;
2871 ULONGEST valmask;
c906108c 2872 int lsbcount;
4a76eae5 2873 int bytes_read;
5467c6c8 2874 int read_offset;
c906108c 2875
4a76eae5
DJ
2876 /* Read the minimum number of bytes required; there may not be
2877 enough bytes to read an entire ULONGEST. */
c906108c 2878 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2879 if (bitsize)
2880 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2881 else
2882 bytes_read = TYPE_LENGTH (field_type);
2883
5467c6c8
PA
2884 read_offset = bitpos / 8;
2885
2886 if (original_value != NULL
2887 && !value_bytes_available (original_value, embedded_offset + read_offset,
2888 bytes_read))
2889 return 0;
2890
2891 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2892 bytes_read, byte_order);
c906108c 2893
581e13c1 2894 /* Extract bits. See comment above. */
c906108c 2895
4ea48cc1 2896 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2897 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2898 else
2899 lsbcount = (bitpos % 8);
2900 val >>= lsbcount;
2901
2902 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2903 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2904
2905 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2906 {
2907 valmask = (((ULONGEST) 1) << bitsize) - 1;
2908 val &= valmask;
2909 if (!TYPE_UNSIGNED (field_type))
2910 {
2911 if (val & (valmask ^ (valmask >> 1)))
2912 {
2913 val |= ~valmask;
2914 }
2915 }
2916 }
5467c6c8
PA
2917
2918 *result = val;
2919 return 1;
c906108c
SS
2920}
2921
5467c6c8
PA
2922/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2923 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2924 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2925 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2926 bits.
4ea48cc1 2927
5467c6c8
PA
2928 Returns false if the value contents are unavailable, otherwise
2929 returns true, indicating a valid value has been stored in *RESULT.
2930
2931 Extracting bits depends on endianness of the machine. Compute the
2932 number of least significant bits to discard. For big endian machines,
2933 we compute the total number of bits in the anonymous object, subtract
2934 off the bit count from the MSB of the object to the MSB of the
2935 bitfield, then the size of the bitfield, which leaves the LSB discard
2936 count. For little endian machines, the discard count is simply the
2937 number of bits from the LSB of the anonymous object to the LSB of the
2938 bitfield.
2939
2940 If the field is signed, we also do sign extension. */
2941
2942int
2943unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2944 int embedded_offset, int bitpos, int bitsize,
2945 const struct value *original_value,
2946 LONGEST *result)
2947{
2948 gdb_assert (original_value != NULL);
2949
2950 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2951 bitpos, bitsize, original_value, result);
2952
2953}
2954
2955/* Unpack a field FIELDNO of the specified TYPE, from the object at
2956 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2957 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2958 details. */
2959
2960static int
2961unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2962 int embedded_offset, int fieldno,
2963 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2964{
2965 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2966 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2967 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2968
5467c6c8
PA
2969 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2970 bitpos, bitsize, val,
2971 result);
2972}
2973
2974/* Unpack a field FIELDNO of the specified TYPE, from the object at
2975 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2976 ORIGINAL_VALUE, which must not be NULL. See
2977 unpack_value_bits_as_long for more details. */
2978
2979int
2980unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2981 int embedded_offset, int fieldno,
2982 const struct value *val, LONGEST *result)
2983{
2984 gdb_assert (val != NULL);
2985
2986 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2987 fieldno, val, result);
2988}
2989
2990/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2991 object at VALADDR. See unpack_value_bits_as_long for more details.
2992 This function differs from unpack_value_field_as_long in that it
2993 operates without a struct value object. */
2994
2995LONGEST
2996unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2997{
2998 LONGEST result;
2999
3000 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3001 return result;
3002}
3003
3004/* Return a new value with type TYPE, which is FIELDNO field of the
3005 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3006 of VAL. If the VAL's contents required to extract the bitfield
3007 from are unavailable, the new value is correspondingly marked as
3008 unavailable. */
3009
3010struct value *
3011value_field_bitfield (struct type *type, int fieldno,
3012 const gdb_byte *valaddr,
3013 int embedded_offset, const struct value *val)
3014{
3015 LONGEST l;
3016
3017 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3018 val, &l))
3019 {
3020 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3021 struct value *retval = allocate_value (field_type);
3022 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3023 return retval;
3024 }
3025 else
3026 {
3027 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3028 }
4ea48cc1
DJ
3029}
3030
c906108c
SS
3031/* Modify the value of a bitfield. ADDR points to a block of memory in
3032 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3033 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3034 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3035 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3036 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3037
3038void
50810684
UW
3039modify_field (struct type *type, gdb_byte *addr,
3040 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3041{
e17a4113 3042 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3043 ULONGEST oword;
3044 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3045 int bytesize;
3046
3047 /* Normalize BITPOS. */
3048 addr += bitpos / 8;
3049 bitpos %= 8;
c906108c
SS
3050
3051 /* If a negative fieldval fits in the field in question, chop
3052 off the sign extension bits. */
f4e88c8e
PH
3053 if ((~fieldval & ~(mask >> 1)) == 0)
3054 fieldval &= mask;
c906108c
SS
3055
3056 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3057 if (0 != (fieldval & ~mask))
c906108c
SS
3058 {
3059 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3060 we don't have a sprintf_longest. */
8a3fe4f8 3061 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3062
3063 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3064 fieldval &= mask;
c906108c
SS
3065 }
3066
19f220c3
JK
3067 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3068 false valgrind reports. */
3069
3070 bytesize = (bitpos + bitsize + 7) / 8;
3071 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3072
3073 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3074 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3075 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3076
f4e88c8e 3077 oword &= ~(mask << bitpos);
c906108c
SS
3078 oword |= fieldval << bitpos;
3079
19f220c3 3080 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3081}
3082\f
14d06750 3083/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3084
14d06750
DJ
3085void
3086pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3087{
e17a4113 3088 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3089 int len;
14d06750
DJ
3090
3091 type = check_typedef (type);
c906108c
SS
3092 len = TYPE_LENGTH (type);
3093
14d06750 3094 switch (TYPE_CODE (type))
c906108c 3095 {
c906108c
SS
3096 case TYPE_CODE_INT:
3097 case TYPE_CODE_CHAR:
3098 case TYPE_CODE_ENUM:
4f2aea11 3099 case TYPE_CODE_FLAGS:
c906108c
SS
3100 case TYPE_CODE_BOOL:
3101 case TYPE_CODE_RANGE:
0d5de010 3102 case TYPE_CODE_MEMBERPTR:
e17a4113 3103 store_signed_integer (buf, len, byte_order, num);
c906108c 3104 break;
c5aa993b 3105
c906108c
SS
3106 case TYPE_CODE_REF:
3107 case TYPE_CODE_PTR:
14d06750 3108 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3109 break;
c5aa993b 3110
c906108c 3111 default:
14d06750
DJ
3112 error (_("Unexpected type (%d) encountered for integer constant."),
3113 TYPE_CODE (type));
c906108c 3114 }
14d06750
DJ
3115}
3116
3117
595939de
PM
3118/* Pack NUM into BUF using a target format of TYPE. */
3119
70221824 3120static void
595939de
PM
3121pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3122{
3123 int len;
3124 enum bfd_endian byte_order;
3125
3126 type = check_typedef (type);
3127 len = TYPE_LENGTH (type);
3128 byte_order = gdbarch_byte_order (get_type_arch (type));
3129
3130 switch (TYPE_CODE (type))
3131 {
3132 case TYPE_CODE_INT:
3133 case TYPE_CODE_CHAR:
3134 case TYPE_CODE_ENUM:
3135 case TYPE_CODE_FLAGS:
3136 case TYPE_CODE_BOOL:
3137 case TYPE_CODE_RANGE:
3138 case TYPE_CODE_MEMBERPTR:
3139 store_unsigned_integer (buf, len, byte_order, num);
3140 break;
3141
3142 case TYPE_CODE_REF:
3143 case TYPE_CODE_PTR:
3144 store_typed_address (buf, type, (CORE_ADDR) num);
3145 break;
3146
3147 default:
3e43a32a
MS
3148 error (_("Unexpected type (%d) encountered "
3149 "for unsigned integer constant."),
595939de
PM
3150 TYPE_CODE (type));
3151 }
3152}
3153
3154
14d06750
DJ
3155/* Convert C numbers into newly allocated values. */
3156
3157struct value *
3158value_from_longest (struct type *type, LONGEST num)
3159{
3160 struct value *val = allocate_value (type);
3161
3162 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3163 return val;
3164}
3165
4478b372 3166
595939de
PM
3167/* Convert C unsigned numbers into newly allocated values. */
3168
3169struct value *
3170value_from_ulongest (struct type *type, ULONGEST num)
3171{
3172 struct value *val = allocate_value (type);
3173
3174 pack_unsigned_long (value_contents_raw (val), type, num);
3175
3176 return val;
3177}
3178
3179
4478b372
JB
3180/* Create a value representing a pointer of type TYPE to the address
3181 ADDR. */
f23631e4 3182struct value *
4478b372
JB
3183value_from_pointer (struct type *type, CORE_ADDR addr)
3184{
f23631e4 3185 struct value *val = allocate_value (type);
a109c7c1 3186
cab0c772 3187 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
3188 return val;
3189}
3190
3191
8acb6b92
TT
3192/* Create a value of type TYPE whose contents come from VALADDR, if it
3193 is non-null, and whose memory address (in the inferior) is
3194 ADDRESS. */
3195
3196struct value *
3197value_from_contents_and_address (struct type *type,
3198 const gdb_byte *valaddr,
3199 CORE_ADDR address)
3200{
41e8491f 3201 struct value *v;
a109c7c1 3202
8acb6b92 3203 if (valaddr == NULL)
41e8491f 3204 v = allocate_value_lazy (type);
8acb6b92 3205 else
314c7de9 3206 v = value_from_contents (type, valaddr);
42ae5230 3207 set_value_address (v, address);
33d502b4 3208 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3209 return v;
3210}
3211
8a9b8146
TT
3212/* Create a value of type TYPE holding the contents CONTENTS.
3213 The new value is `not_lval'. */
3214
3215struct value *
3216value_from_contents (struct type *type, const gdb_byte *contents)
3217{
3218 struct value *result;
3219
3220 result = allocate_value (type);
3221 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3222 return result;
3223}
3224
f23631e4 3225struct value *
fba45db2 3226value_from_double (struct type *type, DOUBLEST num)
c906108c 3227{
f23631e4 3228 struct value *val = allocate_value (type);
c906108c 3229 struct type *base_type = check_typedef (type);
52f0bd74 3230 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3231
3232 if (code == TYPE_CODE_FLT)
3233 {
990a07ab 3234 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3235 }
3236 else
8a3fe4f8 3237 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3238
3239 return val;
3240}
994b9211 3241
27bc4d80 3242struct value *
4ef30785 3243value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3244{
3245 struct value *val = allocate_value (type);
27bc4d80 3246
4ef30785 3247 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3248 return val;
3249}
3250
3bd0f5ef
MS
3251/* Extract a value from the history file. Input will be of the form
3252 $digits or $$digits. See block comment above 'write_dollar_variable'
3253 for details. */
3254
3255struct value *
3256value_from_history_ref (char *h, char **endp)
3257{
3258 int index, len;
3259
3260 if (h[0] == '$')
3261 len = 1;
3262 else
3263 return NULL;
3264
3265 if (h[1] == '$')
3266 len = 2;
3267
3268 /* Find length of numeral string. */
3269 for (; isdigit (h[len]); len++)
3270 ;
3271
3272 /* Make sure numeral string is not part of an identifier. */
3273 if (h[len] == '_' || isalpha (h[len]))
3274 return NULL;
3275
3276 /* Now collect the index value. */
3277 if (h[1] == '$')
3278 {
3279 if (len == 2)
3280 {
3281 /* For some bizarre reason, "$$" is equivalent to "$$1",
3282 rather than to "$$0" as it ought to be! */
3283 index = -1;
3284 *endp += len;
3285 }
3286 else
3287 index = -strtol (&h[2], endp, 10);
3288 }
3289 else
3290 {
3291 if (len == 1)
3292 {
3293 /* "$" is equivalent to "$0". */
3294 index = 0;
3295 *endp += len;
3296 }
3297 else
3298 index = strtol (&h[1], endp, 10);
3299 }
3300
3301 return access_value_history (index);
3302}
3303
a471c594
JK
3304struct value *
3305coerce_ref_if_computed (const struct value *arg)
3306{
3307 const struct lval_funcs *funcs;
3308
3309 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3310 return NULL;
3311
3312 if (value_lval_const (arg) != lval_computed)
3313 return NULL;
3314
3315 funcs = value_computed_funcs (arg);
3316 if (funcs->coerce_ref == NULL)
3317 return NULL;
3318
3319 return funcs->coerce_ref (arg);
3320}
3321
dfcee124
AG
3322/* Look at value.h for description. */
3323
3324struct value *
3325readjust_indirect_value_type (struct value *value, struct type *enc_type,
3326 struct type *original_type,
3327 struct value *original_value)
3328{
3329 /* Re-adjust type. */
3330 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3331
3332 /* Add embedding info. */
3333 set_value_enclosing_type (value, enc_type);
3334 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3335
3336 /* We may be pointing to an object of some derived type. */
3337 return value_full_object (value, NULL, 0, 0, 0);
3338}
3339
994b9211
AC
3340struct value *
3341coerce_ref (struct value *arg)
3342{
df407dfe 3343 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3344 struct value *retval;
dfcee124 3345 struct type *enc_type;
a109c7c1 3346
a471c594
JK
3347 retval = coerce_ref_if_computed (arg);
3348 if (retval)
3349 return retval;
3350
3351 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3352 return arg;
3353
dfcee124
AG
3354 enc_type = check_typedef (value_enclosing_type (arg));
3355 enc_type = TYPE_TARGET_TYPE (enc_type);
3356
3357 retval = value_at_lazy (enc_type,
3358 unpack_pointer (value_type (arg),
3359 value_contents (arg)));
3360 return readjust_indirect_value_type (retval, enc_type,
3361 value_type_arg_tmp, arg);
994b9211
AC
3362}
3363
3364struct value *
3365coerce_array (struct value *arg)
3366{
f3134b88
TT
3367 struct type *type;
3368
994b9211 3369 arg = coerce_ref (arg);
f3134b88
TT
3370 type = check_typedef (value_type (arg));
3371
3372 switch (TYPE_CODE (type))
3373 {
3374 case TYPE_CODE_ARRAY:
7346b668 3375 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3376 arg = value_coerce_array (arg);
3377 break;
3378 case TYPE_CODE_FUNC:
3379 arg = value_coerce_function (arg);
3380 break;
3381 }
994b9211
AC
3382 return arg;
3383}
c906108c 3384\f
c906108c 3385
bbfdfe1c
DM
3386/* Return the return value convention that will be used for the
3387 specified type. */
3388
3389enum return_value_convention
3390struct_return_convention (struct gdbarch *gdbarch,
3391 struct value *function, struct type *value_type)
3392{
3393 enum type_code code = TYPE_CODE (value_type);
3394
3395 if (code == TYPE_CODE_ERROR)
3396 error (_("Function return type unknown."));
3397
3398 /* Probe the architecture for the return-value convention. */
3399 return gdbarch_return_value (gdbarch, function, value_type,
3400 NULL, NULL, NULL);
3401}
3402
48436ce6
AC
3403/* Return true if the function returning the specified type is using
3404 the convention of returning structures in memory (passing in the
82585c72 3405 address as a hidden first parameter). */
c906108c
SS
3406
3407int
d80b854b 3408using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3409 struct value *function, struct type *value_type)
c906108c 3410{
bbfdfe1c 3411 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3412 /* A void return value is never in memory. See also corresponding
44e5158b 3413 code in "print_return_value". */
667e784f
AC
3414 return 0;
3415
bbfdfe1c 3416 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3417 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3418}
3419
42be36b3
CT
3420/* Set the initialized field in a value struct. */
3421
3422void
3423set_value_initialized (struct value *val, int status)
3424{
3425 val->initialized = status;
3426}
3427
3428/* Return the initialized field in a value struct. */
3429
3430int
3431value_initialized (struct value *val)
3432{
3433 return val->initialized;
3434}
3435
a58e2656
AB
3436/* Called only from the value_contents and value_contents_all()
3437 macros, if the current data for a variable needs to be loaded into
3438 value_contents(VAL). Fetches the data from the user's process, and
3439 clears the lazy flag to indicate that the data in the buffer is
3440 valid.
3441
3442 If the value is zero-length, we avoid calling read_memory, which
3443 would abort. We mark the value as fetched anyway -- all 0 bytes of
3444 it.
3445
3446 This function returns a value because it is used in the
3447 value_contents macro as part of an expression, where a void would
3448 not work. The value is ignored. */
3449
3450int
3451value_fetch_lazy (struct value *val)
3452{
3453 gdb_assert (value_lazy (val));
3454 allocate_value_contents (val);
3455 if (value_bitsize (val))
3456 {
3457 /* To read a lazy bitfield, read the entire enclosing value. This
3458 prevents reading the same block of (possibly volatile) memory once
3459 per bitfield. It would be even better to read only the containing
3460 word, but we have no way to record that just specific bits of a
3461 value have been fetched. */
3462 struct type *type = check_typedef (value_type (val));
3463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3464 struct value *parent = value_parent (val);
3465 LONGEST offset = value_offset (val);
3466 LONGEST num;
3467
b0c54aa5
AB
3468 if (value_lazy (parent))
3469 value_fetch_lazy (parent);
3470
3471 if (!value_bits_valid (parent,
a58e2656
AB
3472 TARGET_CHAR_BIT * offset + value_bitpos (val),
3473 value_bitsize (val)))
11b4b7cc
AB
3474 set_value_optimized_out (val, 1);
3475 else if (!unpack_value_bits_as_long (value_type (val),
a58e2656
AB
3476 value_contents_for_printing (parent),
3477 offset,
3478 value_bitpos (val),
3479 value_bitsize (val), parent, &num))
3480 mark_value_bytes_unavailable (val,
3481 value_embedded_offset (val),
3482 TYPE_LENGTH (type));
3483 else
3484 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3485 byte_order, num);
3486 }
3487 else if (VALUE_LVAL (val) == lval_memory)
3488 {
3489 CORE_ADDR addr = value_address (val);
3490 struct type *type = check_typedef (value_enclosing_type (val));
3491
3492 if (TYPE_LENGTH (type))
3493 read_value_memory (val, 0, value_stack (val),
3494 addr, value_contents_all_raw (val),
3495 TYPE_LENGTH (type));
3496 }
3497 else if (VALUE_LVAL (val) == lval_register)
3498 {
3499 struct frame_info *frame;
3500 int regnum;
3501 struct type *type = check_typedef (value_type (val));
3502 struct value *new_val = val, *mark = value_mark ();
3503
3504 /* Offsets are not supported here; lazy register values must
3505 refer to the entire register. */
3506 gdb_assert (value_offset (val) == 0);
3507
3508 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3509 {
3510 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3511 regnum = VALUE_REGNUM (new_val);
3512
3513 gdb_assert (frame != NULL);
3514
3515 /* Convertible register routines are used for multi-register
3516 values and for interpretation in different types
3517 (e.g. float or int from a double register). Lazy
3518 register values should have the register's natural type,
3519 so they do not apply. */
3520 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3521 regnum, type));
3522
3523 new_val = get_frame_register_value (frame, regnum);
3524 }
3525
3526 /* If it's still lazy (for instance, a saved register on the
3527 stack), fetch it. */
3528 if (value_lazy (new_val))
3529 value_fetch_lazy (new_val);
3530
3531 /* If the register was not saved, mark it optimized out. */
3532 if (value_optimized_out (new_val))
3533 set_value_optimized_out (val, 1);
3534 else
3535 {
3536 set_value_lazy (val, 0);
3537 value_contents_copy (val, value_embedded_offset (val),
3538 new_val, value_embedded_offset (new_val),
3539 TYPE_LENGTH (type));
3540 }
3541
3542 if (frame_debug)
3543 {
3544 struct gdbarch *gdbarch;
3545 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3546 regnum = VALUE_REGNUM (val);
3547 gdbarch = get_frame_arch (frame);
3548
3549 fprintf_unfiltered (gdb_stdlog,
3550 "{ value_fetch_lazy "
3551 "(frame=%d,regnum=%d(%s),...) ",
3552 frame_relative_level (frame), regnum,
3553 user_reg_map_regnum_to_name (gdbarch, regnum));
3554
3555 fprintf_unfiltered (gdb_stdlog, "->");
3556 if (value_optimized_out (new_val))
3557 fprintf_unfiltered (gdb_stdlog, " optimized out");
3558 else
3559 {
3560 int i;
3561 const gdb_byte *buf = value_contents (new_val);
3562
3563 if (VALUE_LVAL (new_val) == lval_register)
3564 fprintf_unfiltered (gdb_stdlog, " register=%d",
3565 VALUE_REGNUM (new_val));
3566 else if (VALUE_LVAL (new_val) == lval_memory)
3567 fprintf_unfiltered (gdb_stdlog, " address=%s",
3568 paddress (gdbarch,
3569 value_address (new_val)));
3570 else
3571 fprintf_unfiltered (gdb_stdlog, " computed");
3572
3573 fprintf_unfiltered (gdb_stdlog, " bytes=");
3574 fprintf_unfiltered (gdb_stdlog, "[");
3575 for (i = 0; i < register_size (gdbarch, regnum); i++)
3576 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3577 fprintf_unfiltered (gdb_stdlog, "]");
3578 }
3579
3580 fprintf_unfiltered (gdb_stdlog, " }\n");
3581 }
3582
3583 /* Dispose of the intermediate values. This prevents
3584 watchpoints from trying to watch the saved frame pointer. */
3585 value_free_to_mark (mark);
3586 }
3587 else if (VALUE_LVAL (val) == lval_computed
3588 && value_computed_funcs (val)->read != NULL)
3589 value_computed_funcs (val)->read (val);
691a26f5
AB
3590 /* Don't call value_optimized_out on val, doing so would result in a
3591 recursive call back to value_fetch_lazy, instead check the
3592 optimized_out flag directly. */
3593 else if (val->optimized_out)
a58e2656
AB
3594 /* Keep it optimized out. */;
3595 else
3596 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3597
3598 set_value_lazy (val, 0);
3599 return 0;
3600}
3601
a280dbd1
SDJ
3602/* Implementation of the convenience function $_isvoid. */
3603
3604static struct value *
3605isvoid_internal_fn (struct gdbarch *gdbarch,
3606 const struct language_defn *language,
3607 void *cookie, int argc, struct value **argv)
3608{
3609 int ret;
3610
3611 if (argc != 1)
6bc305f5 3612 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3613
3614 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3615
3616 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3617}
3618
c906108c 3619void
fba45db2 3620_initialize_values (void)
c906108c 3621{
1a966eab 3622 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3623Debugger convenience (\"$foo\") variables and functions.\n\
3624Convenience variables are created when you assign them values;\n\
3625thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3626\n\
c906108c
SS
3627A few convenience variables are given values automatically:\n\
3628\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3629\"$__\" holds the contents of the last address examined with \"x\"."
3630#ifdef HAVE_PYTHON
3631"\n\n\
3632Convenience functions are defined via the Python API."
3633#endif
3634 ), &showlist);
7e20dfcd 3635 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3636
db5f229b 3637 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3638Elements of value history around item number IDX (or last ten)."),
c906108c 3639 &showlist);
53e5f3cf
AS
3640
3641 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3642Initialize a convenience variable if necessary.\n\
3643init-if-undefined VARIABLE = EXPRESSION\n\
3644Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3645exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3646VARIABLE is already initialized."));
bc3b79fd
TJB
3647
3648 add_prefix_cmd ("function", no_class, function_command, _("\
3649Placeholder command for showing help on convenience functions."),
3650 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3651
3652 add_internal_function ("_isvoid", _("\
3653Check whether an expression is void.\n\
3654Usage: $_isvoid (expression)\n\
3655Return 1 if the expression is void, zero otherwise."),
3656 isvoid_internal_fn, NULL);
c906108c 3657}