]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
Introduce a gdb_ref_ptr specialization for struct value
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0914bcdb 44
bc3b79fd
TJB
45/* Definition of a user function. */
46struct internal_function
47{
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58};
59
4e07d55f
PA
60/* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62struct range
63{
64 /* Lowest offset in the range. */
6b850546 65 LONGEST offset;
4e07d55f
PA
66
67 /* Length of the range. */
6b850546 68 LONGEST length;
4e07d55f
PA
69};
70
71typedef struct range range_s;
72
73DEF_VEC_O(range_s);
74
75/* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78static int
6b850546
DT
79ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
4e07d55f
PA
81{
82 ULONGEST h, l;
83
325fac50
PA
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
86 return (l < h);
87}
88
89/* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94static int
95range_lessthan (const range_s *r1, const range_s *r2)
96{
97 return r1->offset < r2->offset;
98}
99
100/* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103static int
6b850546 104ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
105{
106 range_s what;
6b850546 107 LONGEST i;
4e07d55f
PA
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162}
163
bc3b79fd
TJB
164static struct cmd_list_element *functionlist;
165
87784a47
TT
166/* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
91294c83
AC
169struct value
170{
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
87784a47
TT
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
91294c83 200
e848a8a5
TT
201 /* If the value has been released. */
202 unsigned int released : 1;
203
91294c83
AC
204 /* Location of value (if lval). */
205 union
206 {
7dc54575 207 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
208 CORE_ADDR address;
209
7dc54575
YQ
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
91294c83
AC
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4 223
e81e7f5e
SC
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
5f5233d4
PA
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
c8f2448a
JK
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
5f5233d4 237 } computed;
91294c83
AC
238 } location;
239
3723fda8 240 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
241 addressable memory units. Note also the member embedded_offset
242 below. */
6b850546 243 LONGEST offset;
91294c83
AC
244
245 /* Only used for bitfields; number of bits contained in them. */
6b850546 246 LONGEST bitsize;
91294c83
AC
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 251 LONGEST bitpos;
91294c83 252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
91294c83
AC
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
91294c83
AC
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
6b850546
DT
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
91294c83
AC
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
a08702d6
TJB
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
91294c83
AC
316 struct value *next;
317
3e3d7139
JG
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
828d3400 321
4e07d55f
PA
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
9a0dc9e3
PA
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
4e07d55f 328 VEC(range_s) *unavailable;
9a0dc9e3
PA
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
91294c83
AC
338};
339
e512cdbd
SM
340/* See value.h. */
341
342struct gdbarch *
343get_value_arch (const struct value *value)
344{
345 return get_type_arch (value_type (value));
346}
347
4e07d55f 348int
6b850546 349value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
350{
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354}
355
bdf22206 356int
6b850546
DT
357value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
bdf22206
AB
359{
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363}
364
9a0dc9e3
PA
365int
366value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367{
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371}
372
ec0a52e1
PA
373int
374value_entirely_available (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384}
385
9a0dc9e3
PA
386/* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390static int
391value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
6211c335 393{
9a0dc9e3
PA
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
6211c335
YQ
396 if (value->lazy)
397 value_fetch_lazy (value);
398
9a0dc9e3 399 if (VEC_length (range_s, *ranges) == 1)
6211c335 400 {
9a0dc9e3 401 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
402
403 if (t->offset == 0
64c46ce4
JB
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
406 return 1;
407 }
408
409 return 0;
410}
411
9a0dc9e3
PA
412int
413value_entirely_unavailable (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416}
417
418int
419value_entirely_optimized_out (struct value *value)
420{
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422}
423
424/* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427static void
6b850546
DT
428insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
4e07d55f
PA
430{
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
9a0dc9e3 520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
521 if (i > 0)
522 {
9a0dc9e3 523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
325fac50
PA
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
9a0dc9e3 544 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
545 }
546 }
547 else
548 {
549 /* #4 */
9a0dc9e3 550 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
9a0dc9e3 555 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
9a0dc9e3 563 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
564 removed = 0;
565
566 i = next;
9a0dc9e3 567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
325fac50
PA
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
9a0dc9e3 589 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
590 }
591}
592
9a0dc9e3 593void
6b850546
DT
594mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
9a0dc9e3
PA
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206 600void
6b850546
DT
601mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
bdf22206
AB
603{
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607}
608
c8c1c22f
PA
609/* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614static int
615find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 616 LONGEST offset, LONGEST length)
c8c1c22f
PA
617{
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626}
627
bdf22206
AB
628/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640static int
641memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644{
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727}
728
9a0dc9e3
PA
729/* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
bdf22206 732
9a0dc9e3
PA
733struct ranges_and_idx
734{
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741};
742
743/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
748
749static int
9a0dc9e3
PA
750find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
6b850546
DT
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 754{
9a0dc9e3
PA
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
c8c1c22f 759
9a0dc9e3
PA
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
c8c1c22f
PA
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
9a0dc9e3
PA
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
325fac50
PA
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 782
325fac50
PA
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
9a0dc9e3 794 /* Different ranges, no match. */
c8c1c22f
PA
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
9a0dc9e3
PA
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802}
803
804/* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
98ead37e 811static bool
9a0dc9e3
PA
812value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815{
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
000339af 838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
98ead37e 850 return false;
9a0dc9e3
PA
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
bdf22206 861 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 862 val2->contents, offset2, l) != 0)
98ead37e 863 return false;
c8c1c22f 864
9a0dc9e3
PA
865 length -= h;
866 offset1 += h;
867 offset2 += h;
c8c1c22f
PA
868 }
869
98ead37e 870 return true;
c8c1c22f
PA
871}
872
98ead37e 873bool
6b850546
DT
874value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
bdf22206 877{
9a0dc9e3
PA
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
bdf22206
AB
881}
882
c906108c
SS
883
884/* The value-history records all the values printed
885 by print commands during this session. Each chunk
886 records 60 consecutive values. The first chunk on
887 the chain records the most recent values.
888 The total number of values is in value_history_count. */
889
890#define VALUE_HISTORY_CHUNK 60
891
892struct value_history_chunk
c5aa993b
JM
893 {
894 struct value_history_chunk *next;
f23631e4 895 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 896 };
c906108c
SS
897
898/* Chain of chunks now in use. */
899
900static struct value_history_chunk *value_history_chain;
901
581e13c1 902static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 903
c906108c
SS
904\f
905/* List of all value objects currently allocated
906 (except for those released by calls to release_value)
907 This is so they can be freed after each command. */
908
f23631e4 909static struct value *all_values;
c906108c 910
3e3d7139
JG
911/* Allocate a lazy value for type TYPE. Its actual content is
912 "lazily" allocated too: the content field of the return value is
913 NULL; it will be allocated when it is fetched from the target. */
c906108c 914
f23631e4 915struct value *
3e3d7139 916allocate_value_lazy (struct type *type)
c906108c 917{
f23631e4 918 struct value *val;
c54eabfa
JK
919
920 /* Call check_typedef on our type to make sure that, if TYPE
921 is a TYPE_CODE_TYPEDEF, its length is set to the length
922 of the target type instead of zero. However, we do not
923 replace the typedef type by the target type, because we want
924 to keep the typedef in order to be able to set the VAL's type
925 description correctly. */
926 check_typedef (type);
c906108c 927
8d749320 928 val = XCNEW (struct value);
3e3d7139 929 val->contents = NULL;
df407dfe 930 val->next = all_values;
c906108c 931 all_values = val;
df407dfe 932 val->type = type;
4754a64e 933 val->enclosing_type = type;
c906108c 934 VALUE_LVAL (val) = not_lval;
42ae5230 935 val->location.address = 0;
df407dfe
AC
936 val->offset = 0;
937 val->bitpos = 0;
938 val->bitsize = 0;
3e3d7139 939 val->lazy = 1;
13c3b5f5 940 val->embedded_offset = 0;
b44d461b 941 val->pointed_to_offset = 0;
c906108c 942 val->modifiable = 1;
42be36b3 943 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
944
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
947
c906108c
SS
948 return val;
949}
950
5fdf6324
AB
951/* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
954
955static int max_value_size = 65536; /* 64k bytes */
956
957/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
961
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
965
966#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
968
969/* Implement the "set max-value-size" command. */
970
971static void
eb4c3f4a 972set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
973 struct cmd_list_element *c)
974{
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
976
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
978 {
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
981 max_value_size);
982 }
983}
984
985/* Implement the "show max-value-size" command. */
986
987static void
988show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
990{
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
993 else
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
995 max_value_size);
996}
997
998/* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1003
1004static void
1005check_type_length_before_alloc (const struct type *type)
1006{
1007 unsigned int length = TYPE_LENGTH (type);
1008
1009 if (max_value_size > -1 && length > max_value_size)
1010 {
1011 if (TYPE_NAME (type) != NULL)
1012 error (_("value of type `%s' requires %u bytes, which is more "
1013 "than max-value-size"), TYPE_NAME (type), length);
1014 else
1015 error (_("value requires %u bytes, which is more than "
1016 "max-value-size"), length);
1017 }
1018}
1019
3e3d7139
JG
1020/* Allocate the contents of VAL if it has not been allocated yet. */
1021
548b762d 1022static void
3e3d7139
JG
1023allocate_value_contents (struct value *val)
1024{
1025 if (!val->contents)
5fdf6324
AB
1026 {
1027 check_type_length_before_alloc (val->enclosing_type);
1028 val->contents
1029 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1030 }
3e3d7139
JG
1031}
1032
1033/* Allocate a value and its contents for type TYPE. */
1034
1035struct value *
1036allocate_value (struct type *type)
1037{
1038 struct value *val = allocate_value_lazy (type);
a109c7c1 1039
3e3d7139
JG
1040 allocate_value_contents (val);
1041 val->lazy = 0;
1042 return val;
1043}
1044
c906108c 1045/* Allocate a value that has the correct length
938f5214 1046 for COUNT repetitions of type TYPE. */
c906108c 1047
f23631e4 1048struct value *
fba45db2 1049allocate_repeat_value (struct type *type, int count)
c906108c 1050{
c5aa993b 1051 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1052 /* FIXME-type-allocation: need a way to free this type when we are
1053 done with it. */
e3506a9f
UW
1054 struct type *array_type
1055 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1056
e3506a9f 1057 return allocate_value (array_type);
c906108c
SS
1058}
1059
5f5233d4
PA
1060struct value *
1061allocate_computed_value (struct type *type,
c8f2448a 1062 const struct lval_funcs *funcs,
5f5233d4
PA
1063 void *closure)
1064{
41e8491f 1065 struct value *v = allocate_value_lazy (type);
a109c7c1 1066
5f5233d4
PA
1067 VALUE_LVAL (v) = lval_computed;
1068 v->location.computed.funcs = funcs;
1069 v->location.computed.closure = closure;
5f5233d4
PA
1070
1071 return v;
1072}
1073
a7035dbb
JK
1074/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1075
1076struct value *
1077allocate_optimized_out_value (struct type *type)
1078{
1079 struct value *retval = allocate_value_lazy (type);
1080
9a0dc9e3
PA
1081 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1082 set_value_lazy (retval, 0);
a7035dbb
JK
1083 return retval;
1084}
1085
df407dfe
AC
1086/* Accessor methods. */
1087
17cf0ecd 1088struct value *
4bf7b526 1089value_next (const struct value *value)
17cf0ecd
AC
1090{
1091 return value->next;
1092}
1093
df407dfe 1094struct type *
0e03807e 1095value_type (const struct value *value)
df407dfe
AC
1096{
1097 return value->type;
1098}
04624583
AC
1099void
1100deprecated_set_value_type (struct value *value, struct type *type)
1101{
1102 value->type = type;
1103}
df407dfe 1104
6b850546 1105LONGEST
0e03807e 1106value_offset (const struct value *value)
df407dfe
AC
1107{
1108 return value->offset;
1109}
f5cf64a7 1110void
6b850546 1111set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1112{
1113 value->offset = offset;
1114}
df407dfe 1115
6b850546 1116LONGEST
0e03807e 1117value_bitpos (const struct value *value)
df407dfe
AC
1118{
1119 return value->bitpos;
1120}
9bbda503 1121void
6b850546 1122set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1123{
1124 value->bitpos = bit;
1125}
df407dfe 1126
6b850546 1127LONGEST
0e03807e 1128value_bitsize (const struct value *value)
df407dfe
AC
1129{
1130 return value->bitsize;
1131}
9bbda503 1132void
6b850546 1133set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1134{
1135 value->bitsize = bit;
1136}
df407dfe 1137
4ea48cc1 1138struct value *
4bf7b526 1139value_parent (const struct value *value)
4ea48cc1
DJ
1140{
1141 return value->parent;
1142}
1143
53ba8333
JB
1144/* See value.h. */
1145
1146void
1147set_value_parent (struct value *value, struct value *parent)
1148{
40501e00
TT
1149 struct value *old = value->parent;
1150
53ba8333 1151 value->parent = parent;
40501e00
TT
1152 if (parent != NULL)
1153 value_incref (parent);
22bc8444 1154 value_decref (old);
53ba8333
JB
1155}
1156
fc1a4b47 1157gdb_byte *
990a07ab
AC
1158value_contents_raw (struct value *value)
1159{
3ae385af
SM
1160 struct gdbarch *arch = get_value_arch (value);
1161 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1162
3e3d7139 1163 allocate_value_contents (value);
3ae385af 1164 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1165}
1166
fc1a4b47 1167gdb_byte *
990a07ab
AC
1168value_contents_all_raw (struct value *value)
1169{
3e3d7139
JG
1170 allocate_value_contents (value);
1171 return value->contents;
990a07ab
AC
1172}
1173
4754a64e 1174struct type *
4bf7b526 1175value_enclosing_type (const struct value *value)
4754a64e
AC
1176{
1177 return value->enclosing_type;
1178}
1179
8264ba82
AG
1180/* Look at value.h for description. */
1181
1182struct type *
1183value_actual_type (struct value *value, int resolve_simple_types,
1184 int *real_type_found)
1185{
1186 struct value_print_options opts;
8264ba82
AG
1187 struct type *result;
1188
1189 get_user_print_options (&opts);
1190
1191 if (real_type_found)
1192 *real_type_found = 0;
1193 result = value_type (value);
1194 if (opts.objectprint)
1195 {
5e34c6c3
LM
1196 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1197 fetch its rtti type. */
aa006118 1198 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1199 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1200 == TYPE_CODE_STRUCT
1201 && !value_optimized_out (value))
8264ba82
AG
1202 {
1203 struct type *real_type;
1204
1205 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1206 if (real_type)
1207 {
1208 if (real_type_found)
1209 *real_type_found = 1;
1210 result = real_type;
1211 }
1212 }
1213 else if (resolve_simple_types)
1214 {
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = value_enclosing_type (value);
1218 }
1219 }
1220
1221 return result;
1222}
1223
901461f8
PA
1224void
1225error_value_optimized_out (void)
1226{
1227 error (_("value has been optimized out"));
1228}
1229
0e03807e 1230static void
4e07d55f 1231require_not_optimized_out (const struct value *value)
0e03807e 1232{
9a0dc9e3 1233 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1234 {
1235 if (value->lval == lval_register)
1236 error (_("register has not been saved in frame"));
1237 else
1238 error_value_optimized_out ();
1239 }
0e03807e
TT
1240}
1241
4e07d55f
PA
1242static void
1243require_available (const struct value *value)
1244{
1245 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1246 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1247}
1248
fc1a4b47 1249const gdb_byte *
0e03807e 1250value_contents_for_printing (struct value *value)
46615f07
AC
1251{
1252 if (value->lazy)
1253 value_fetch_lazy (value);
3e3d7139 1254 return value->contents;
46615f07
AC
1255}
1256
de4127a3
PA
1257const gdb_byte *
1258value_contents_for_printing_const (const struct value *value)
1259{
1260 gdb_assert (!value->lazy);
1261 return value->contents;
1262}
1263
0e03807e
TT
1264const gdb_byte *
1265value_contents_all (struct value *value)
1266{
1267 const gdb_byte *result = value_contents_for_printing (value);
1268 require_not_optimized_out (value);
4e07d55f 1269 require_available (value);
0e03807e
TT
1270 return result;
1271}
1272
9a0dc9e3
PA
1273/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1274 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1275
1276static void
1277ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1278 VEC (range_s) *src_range, int src_bit_offset,
1279 int bit_length)
1280{
1281 range_s *r;
1282 int i;
1283
1284 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1285 {
1286 ULONGEST h, l;
1287
325fac50
PA
1288 l = std::max (r->offset, (LONGEST) src_bit_offset);
1289 h = std::min (r->offset + r->length,
1290 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1291
1292 if (l < h)
1293 insert_into_bit_range_vector (dst_range,
1294 dst_bit_offset + (l - src_bit_offset),
1295 h - l);
1296 }
1297}
1298
4875ffdb
PA
1299/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1300 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1301
1302static void
1303value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1304 const struct value *src, int src_bit_offset,
1305 int bit_length)
1306{
1307 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1308 src->unavailable, src_bit_offset,
1309 bit_length);
1310 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1311 src->optimized_out, src_bit_offset,
1312 bit_length);
1313}
1314
3ae385af 1315/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1316 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1317 contents, starting at DST_OFFSET. If unavailable contents are
1318 being copied from SRC, the corresponding DST contents are marked
1319 unavailable accordingly. Neither DST nor SRC may be lazy
1320 values.
1321
1322 It is assumed the contents of DST in the [DST_OFFSET,
1323 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1324
1325void
6b850546
DT
1326value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1327 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1328{
6b850546 1329 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1330 struct gdbarch *arch = get_value_arch (src);
1331 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1332
1333 /* A lazy DST would make that this copy operation useless, since as
1334 soon as DST's contents were un-lazied (by a later value_contents
1335 call, say), the contents would be overwritten. A lazy SRC would
1336 mean we'd be copying garbage. */
1337 gdb_assert (!dst->lazy && !src->lazy);
1338
29976f3f
PA
1339 /* The overwritten DST range gets unavailability ORed in, not
1340 replaced. Make sure to remember to implement replacing if it
1341 turns out actually necessary. */
1342 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1343 gdb_assert (!value_bits_any_optimized_out (dst,
1344 TARGET_CHAR_BIT * dst_offset,
1345 TARGET_CHAR_BIT * length));
29976f3f 1346
39d37385 1347 /* Copy the data. */
3ae385af
SM
1348 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1349 value_contents_all_raw (src) + src_offset * unit_size,
1350 length * unit_size);
39d37385
PA
1351
1352 /* Copy the meta-data, adjusted. */
3ae385af
SM
1353 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1354 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1355 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1356
4875ffdb
PA
1357 value_ranges_copy_adjusted (dst, dst_bit_offset,
1358 src, src_bit_offset,
1359 bit_length);
39d37385
PA
1360}
1361
29976f3f
PA
1362/* Copy LENGTH bytes of SRC value's (all) contents
1363 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1364 (all) contents, starting at DST_OFFSET. If unavailable contents
1365 are being copied from SRC, the corresponding DST contents are
1366 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1367 lazy, it will be fetched now.
29976f3f
PA
1368
1369 It is assumed the contents of DST in the [DST_OFFSET,
1370 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1371
1372void
6b850546
DT
1373value_contents_copy (struct value *dst, LONGEST dst_offset,
1374 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1375{
39d37385
PA
1376 if (src->lazy)
1377 value_fetch_lazy (src);
1378
1379 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1380}
1381
d69fe07e 1382int
4bf7b526 1383value_lazy (const struct value *value)
d69fe07e
AC
1384{
1385 return value->lazy;
1386}
1387
dfa52d88
AC
1388void
1389set_value_lazy (struct value *value, int val)
1390{
1391 value->lazy = val;
1392}
1393
4e5d721f 1394int
4bf7b526 1395value_stack (const struct value *value)
4e5d721f
DE
1396{
1397 return value->stack;
1398}
1399
1400void
1401set_value_stack (struct value *value, int val)
1402{
1403 value->stack = val;
1404}
1405
fc1a4b47 1406const gdb_byte *
0fd88904
AC
1407value_contents (struct value *value)
1408{
0e03807e
TT
1409 const gdb_byte *result = value_contents_writeable (value);
1410 require_not_optimized_out (value);
4e07d55f 1411 require_available (value);
0e03807e 1412 return result;
0fd88904
AC
1413}
1414
fc1a4b47 1415gdb_byte *
0fd88904
AC
1416value_contents_writeable (struct value *value)
1417{
1418 if (value->lazy)
1419 value_fetch_lazy (value);
fc0c53a0 1420 return value_contents_raw (value);
0fd88904
AC
1421}
1422
feb13ab0
AC
1423int
1424value_optimized_out (struct value *value)
1425{
691a26f5
AB
1426 /* We can only know if a value is optimized out once we have tried to
1427 fetch it. */
9a0dc9e3 1428 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1429 {
1430 TRY
1431 {
1432 value_fetch_lazy (value);
1433 }
1434 CATCH (ex, RETURN_MASK_ERROR)
1435 {
1436 /* Fall back to checking value->optimized_out. */
1437 }
1438 END_CATCH
1439 }
691a26f5 1440
9a0dc9e3 1441 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1442}
1443
9a0dc9e3
PA
1444/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1445 the following LENGTH bytes. */
eca07816 1446
feb13ab0 1447void
9a0dc9e3 1448mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1449{
9a0dc9e3
PA
1450 mark_value_bits_optimized_out (value,
1451 offset * TARGET_CHAR_BIT,
1452 length * TARGET_CHAR_BIT);
feb13ab0 1453}
13c3b5f5 1454
9a0dc9e3 1455/* See value.h. */
0e03807e 1456
9a0dc9e3 1457void
6b850546
DT
1458mark_value_bits_optimized_out (struct value *value,
1459 LONGEST offset, LONGEST length)
0e03807e 1460{
9a0dc9e3 1461 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1462}
1463
8cf6f0b1
TT
1464int
1465value_bits_synthetic_pointer (const struct value *value,
6b850546 1466 LONGEST offset, LONGEST length)
8cf6f0b1 1467{
e7303042 1468 if (value->lval != lval_computed
8cf6f0b1
TT
1469 || !value->location.computed.funcs->check_synthetic_pointer)
1470 return 0;
1471 return value->location.computed.funcs->check_synthetic_pointer (value,
1472 offset,
1473 length);
1474}
1475
6b850546 1476LONGEST
4bf7b526 1477value_embedded_offset (const struct value *value)
13c3b5f5
AC
1478{
1479 return value->embedded_offset;
1480}
1481
1482void
6b850546 1483set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1484{
1485 value->embedded_offset = val;
1486}
b44d461b 1487
6b850546 1488LONGEST
4bf7b526 1489value_pointed_to_offset (const struct value *value)
b44d461b
AC
1490{
1491 return value->pointed_to_offset;
1492}
1493
1494void
6b850546 1495set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1496{
1497 value->pointed_to_offset = val;
1498}
13bb5560 1499
c8f2448a 1500const struct lval_funcs *
a471c594 1501value_computed_funcs (const struct value *v)
5f5233d4 1502{
a471c594 1503 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1504
1505 return v->location.computed.funcs;
1506}
1507
1508void *
0e03807e 1509value_computed_closure (const struct value *v)
5f5233d4 1510{
0e03807e 1511 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1512
1513 return v->location.computed.closure;
1514}
1515
13bb5560
AC
1516enum lval_type *
1517deprecated_value_lval_hack (struct value *value)
1518{
1519 return &value->lval;
1520}
1521
a471c594
JK
1522enum lval_type
1523value_lval_const (const struct value *value)
1524{
1525 return value->lval;
1526}
1527
42ae5230 1528CORE_ADDR
de4127a3 1529value_address (const struct value *value)
42ae5230 1530{
1a088441 1531 if (value->lval != lval_memory)
42ae5230 1532 return 0;
53ba8333
JB
1533 if (value->parent != NULL)
1534 return value_address (value->parent) + value->offset;
9920b434
BH
1535 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1536 {
1537 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1538 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1539 }
1540
1541 return value->location.address + value->offset;
42ae5230
TT
1542}
1543
1544CORE_ADDR
4bf7b526 1545value_raw_address (const struct value *value)
42ae5230 1546{
1a088441 1547 if (value->lval != lval_memory)
42ae5230
TT
1548 return 0;
1549 return value->location.address;
1550}
1551
1552void
1553set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1554{
1a088441 1555 gdb_assert (value->lval == lval_memory);
42ae5230 1556 value->location.address = addr;
13bb5560
AC
1557}
1558
1559struct internalvar **
1560deprecated_value_internalvar_hack (struct value *value)
1561{
1562 return &value->location.internalvar;
1563}
1564
1565struct frame_id *
41b56feb 1566deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1567{
7c2ba67e 1568 gdb_assert (value->lval == lval_register);
7dc54575 1569 return &value->location.reg.next_frame_id;
13bb5560
AC
1570}
1571
7dc54575 1572int *
13bb5560
AC
1573deprecated_value_regnum_hack (struct value *value)
1574{
7c2ba67e 1575 gdb_assert (value->lval == lval_register);
7dc54575 1576 return &value->location.reg.regnum;
13bb5560 1577}
88e3b34b
AC
1578
1579int
4bf7b526 1580deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1581{
1582 return value->modifiable;
1583}
990a07ab 1584\f
c906108c
SS
1585/* Return a mark in the value chain. All values allocated after the
1586 mark is obtained (except for those released) are subject to being freed
1587 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1588struct value *
fba45db2 1589value_mark (void)
c906108c
SS
1590{
1591 return all_values;
1592}
1593
828d3400
DJ
1594/* Take a reference to VAL. VAL will not be deallocated until all
1595 references are released. */
1596
22bc8444 1597struct value *
828d3400
DJ
1598value_incref (struct value *val)
1599{
1600 val->reference_count++;
22bc8444 1601 return val;
828d3400
DJ
1602}
1603
1604/* Release a reference to VAL, which was acquired with value_incref.
1605 This function is also called to deallocate values from the value
1606 chain. */
1607
3e3d7139 1608void
22bc8444 1609value_decref (struct value *val)
3e3d7139
JG
1610{
1611 if (val)
5f5233d4 1612 {
828d3400
DJ
1613 gdb_assert (val->reference_count > 0);
1614 val->reference_count--;
1615 if (val->reference_count > 0)
1616 return;
1617
4ea48cc1
DJ
1618 /* If there's an associated parent value, drop our reference to
1619 it. */
1620 if (val->parent != NULL)
22bc8444 1621 value_decref (val->parent);
4ea48cc1 1622
5f5233d4
PA
1623 if (VALUE_LVAL (val) == lval_computed)
1624 {
c8f2448a 1625 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1626
1627 if (funcs->free_closure)
1628 funcs->free_closure (val);
1629 }
e81e7f5e 1630 else if (VALUE_LVAL (val) == lval_xcallable)
ba18742c 1631 delete val->location.xm_worker;
5f5233d4
PA
1632
1633 xfree (val->contents);
4e07d55f 1634 VEC_free (range_s, val->unavailable);
5f5233d4 1635 }
3e3d7139
JG
1636 xfree (val);
1637}
1638
c906108c
SS
1639/* Free all values allocated since MARK was obtained by value_mark
1640 (except for those released). */
1641void
4bf7b526 1642value_free_to_mark (const struct value *mark)
c906108c 1643{
f23631e4
AC
1644 struct value *val;
1645 struct value *next;
c906108c
SS
1646
1647 for (val = all_values; val && val != mark; val = next)
1648 {
df407dfe 1649 next = val->next;
e848a8a5 1650 val->released = 1;
22bc8444 1651 value_decref (val);
c906108c
SS
1652 }
1653 all_values = val;
1654}
1655
1656/* Free all the values that have been allocated (except for those released).
725e88af
DE
1657 Call after each command, successful or not.
1658 In practice this is called before each command, which is sufficient. */
c906108c
SS
1659
1660void
fba45db2 1661free_all_values (void)
c906108c 1662{
f23631e4
AC
1663 struct value *val;
1664 struct value *next;
c906108c
SS
1665
1666 for (val = all_values; val; val = next)
1667 {
df407dfe 1668 next = val->next;
e848a8a5 1669 val->released = 1;
22bc8444 1670 value_decref (val);
c906108c
SS
1671 }
1672
1673 all_values = 0;
1674}
1675
0cf6dd15
TJB
1676/* Frees all the elements in a chain of values. */
1677
1678void
1679free_value_chain (struct value *v)
1680{
1681 struct value *next;
1682
1683 for (; v; v = next)
1684 {
1685 next = value_next (v);
22bc8444 1686 value_decref (v);
0cf6dd15
TJB
1687 }
1688}
1689
c906108c
SS
1690/* Remove VAL from the chain all_values
1691 so it will not be freed automatically. */
1692
22bc8444 1693value_ref_ptr
f23631e4 1694release_value (struct value *val)
c906108c 1695{
f23631e4 1696 struct value *v;
22bc8444 1697 bool released = false;
c906108c
SS
1698
1699 if (all_values == val)
1700 {
1701 all_values = val->next;
06a64a0b 1702 val->next = NULL;
22bc8444 1703 released = true;
c906108c 1704 }
22bc8444 1705 else
c906108c 1706 {
22bc8444 1707 for (v = all_values; v; v = v->next)
c906108c 1708 {
22bc8444
TT
1709 if (v->next == val)
1710 {
1711 v->next = val->next;
1712 val->next = NULL;
1713 released = true;
1714 break;
1715 }
c906108c
SS
1716 }
1717 }
c906108c 1718
22bc8444
TT
1719 if (!released)
1720 {
1721 /* We must always return an owned reference. Normally this
1722 happens because we transfer the reference from the value
1723 chain, but in this case the value was not on the chain. */
1724 value_incref (val);
1725 }
e848a8a5 1726
22bc8444 1727 return value_ref_ptr (val);
e848a8a5
TT
1728}
1729
c906108c 1730/* Release all values up to mark */
f23631e4 1731struct value *
4bf7b526 1732value_release_to_mark (const struct value *mark)
c906108c 1733{
f23631e4
AC
1734 struct value *val;
1735 struct value *next;
c906108c 1736
df407dfe 1737 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1738 {
1739 if (next->next == mark)
1740 {
1741 all_values = next->next;
1742 next->next = NULL;
1743 return val;
1744 }
1745 next->released = 1;
1746 }
c906108c
SS
1747 all_values = 0;
1748 return val;
1749}
1750
1751/* Return a copy of the value ARG.
1752 It contains the same contents, for same memory address,
1753 but it's a different block of storage. */
1754
f23631e4
AC
1755struct value *
1756value_copy (struct value *arg)
c906108c 1757{
4754a64e 1758 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1759 struct value *val;
1760
1761 if (value_lazy (arg))
1762 val = allocate_value_lazy (encl_type);
1763 else
1764 val = allocate_value (encl_type);
df407dfe 1765 val->type = arg->type;
c906108c 1766 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1767 val->location = arg->location;
df407dfe
AC
1768 val->offset = arg->offset;
1769 val->bitpos = arg->bitpos;
1770 val->bitsize = arg->bitsize;
d69fe07e 1771 val->lazy = arg->lazy;
13c3b5f5 1772 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1773 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1774 val->modifiable = arg->modifiable;
d69fe07e 1775 if (!value_lazy (val))
c906108c 1776 {
990a07ab 1777 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1778 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1779
1780 }
4e07d55f 1781 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1782 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1783 set_value_parent (val, arg->parent);
5f5233d4
PA
1784 if (VALUE_LVAL (val) == lval_computed)
1785 {
c8f2448a 1786 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1787
1788 if (funcs->copy_closure)
1789 val->location.computed.closure = funcs->copy_closure (val);
1790 }
c906108c
SS
1791 return val;
1792}
74bcbdf3 1793
4c082a81
SC
1794/* Return a "const" and/or "volatile" qualified version of the value V.
1795 If CNST is true, then the returned value will be qualified with
1796 "const".
1797 if VOLTL is true, then the returned value will be qualified with
1798 "volatile". */
1799
1800struct value *
1801make_cv_value (int cnst, int voltl, struct value *v)
1802{
1803 struct type *val_type = value_type (v);
1804 struct type *enclosing_type = value_enclosing_type (v);
1805 struct value *cv_val = value_copy (v);
1806
1807 deprecated_set_value_type (cv_val,
1808 make_cv_type (cnst, voltl, val_type, NULL));
1809 set_value_enclosing_type (cv_val,
1810 make_cv_type (cnst, voltl, enclosing_type, NULL));
1811
1812 return cv_val;
1813}
1814
c37f7098
KW
1815/* Return a version of ARG that is non-lvalue. */
1816
1817struct value *
1818value_non_lval (struct value *arg)
1819{
1820 if (VALUE_LVAL (arg) != not_lval)
1821 {
1822 struct type *enc_type = value_enclosing_type (arg);
1823 struct value *val = allocate_value (enc_type);
1824
1825 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1826 TYPE_LENGTH (enc_type));
1827 val->type = arg->type;
1828 set_value_embedded_offset (val, value_embedded_offset (arg));
1829 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1830 return val;
1831 }
1832 return arg;
1833}
1834
6c659fc2
SC
1835/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1836
1837void
1838value_force_lval (struct value *v, CORE_ADDR addr)
1839{
1840 gdb_assert (VALUE_LVAL (v) == not_lval);
1841
1842 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1843 v->lval = lval_memory;
1844 v->location.address = addr;
1845}
1846
74bcbdf3 1847void
0e03807e
TT
1848set_value_component_location (struct value *component,
1849 const struct value *whole)
74bcbdf3 1850{
9920b434
BH
1851 struct type *type;
1852
e81e7f5e
SC
1853 gdb_assert (whole->lval != lval_xcallable);
1854
0e03807e 1855 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1856 VALUE_LVAL (component) = lval_internalvar_component;
1857 else
0e03807e 1858 VALUE_LVAL (component) = whole->lval;
5f5233d4 1859
74bcbdf3 1860 component->location = whole->location;
0e03807e 1861 if (whole->lval == lval_computed)
5f5233d4 1862 {
c8f2448a 1863 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1864
1865 if (funcs->copy_closure)
1866 component->location.computed.closure = funcs->copy_closure (whole);
1867 }
9920b434
BH
1868
1869 /* If type has a dynamic resolved location property
1870 update it's value address. */
1871 type = value_type (whole);
1872 if (NULL != TYPE_DATA_LOCATION (type)
1873 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1874 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1875}
1876
c906108c
SS
1877/* Access to the value history. */
1878
1879/* Record a new value in the value history.
eddf0bae 1880 Returns the absolute history index of the entry. */
c906108c
SS
1881
1882int
f23631e4 1883record_latest_value (struct value *val)
c906108c
SS
1884{
1885 int i;
1886
1887 /* We don't want this value to have anything to do with the inferior anymore.
1888 In particular, "set $1 = 50" should not affect the variable from which
1889 the value was taken, and fast watchpoints should be able to assume that
1890 a value on the value history never changes. */
d69fe07e 1891 if (value_lazy (val))
c906108c
SS
1892 value_fetch_lazy (val);
1893 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1894 from. This is a bit dubious, because then *&$1 does not just return $1
1895 but the current contents of that location. c'est la vie... */
1896 val->modifiable = 0;
350e1a76 1897
c906108c
SS
1898 /* Here we treat value_history_count as origin-zero
1899 and applying to the value being stored now. */
1900
1901 i = value_history_count % VALUE_HISTORY_CHUNK;
1902 if (i == 0)
1903 {
8d749320 1904 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1905
fe978cb0
PA
1906 newobj->next = value_history_chain;
1907 value_history_chain = newobj;
c906108c
SS
1908 }
1909
22bc8444 1910 value_history_chain->values[i] = release_value (val).release ();
c906108c
SS
1911
1912 /* Now we regard value_history_count as origin-one
1913 and applying to the value just stored. */
1914
1915 return ++value_history_count;
1916}
1917
1918/* Return a copy of the value in the history with sequence number NUM. */
1919
f23631e4 1920struct value *
fba45db2 1921access_value_history (int num)
c906108c 1922{
f23631e4 1923 struct value_history_chunk *chunk;
52f0bd74
AC
1924 int i;
1925 int absnum = num;
c906108c
SS
1926
1927 if (absnum <= 0)
1928 absnum += value_history_count;
1929
1930 if (absnum <= 0)
1931 {
1932 if (num == 0)
8a3fe4f8 1933 error (_("The history is empty."));
c906108c 1934 else if (num == 1)
8a3fe4f8 1935 error (_("There is only one value in the history."));
c906108c 1936 else
8a3fe4f8 1937 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1938 }
1939 if (absnum > value_history_count)
8a3fe4f8 1940 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1941
1942 absnum--;
1943
1944 /* Now absnum is always absolute and origin zero. */
1945
1946 chunk = value_history_chain;
3e43a32a
MS
1947 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1948 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1949 i > 0; i--)
1950 chunk = chunk->next;
1951
1952 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1953}
1954
c906108c 1955static void
5fed81ff 1956show_values (const char *num_exp, int from_tty)
c906108c 1957{
52f0bd74 1958 int i;
f23631e4 1959 struct value *val;
c906108c
SS
1960 static int num = 1;
1961
1962 if (num_exp)
1963 {
f132ba9d
TJB
1964 /* "show values +" should print from the stored position.
1965 "show values <exp>" should print around value number <exp>. */
c906108c 1966 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1967 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1968 }
1969 else
1970 {
f132ba9d 1971 /* "show values" means print the last 10 values. */
c906108c
SS
1972 num = value_history_count - 9;
1973 }
1974
1975 if (num <= 0)
1976 num = 1;
1977
1978 for (i = num; i < num + 10 && i <= value_history_count; i++)
1979 {
79a45b7d 1980 struct value_print_options opts;
a109c7c1 1981
c906108c 1982 val = access_value_history (i);
a3f17187 1983 printf_filtered (("$%d = "), i);
79a45b7d
TT
1984 get_user_print_options (&opts);
1985 value_print (val, gdb_stdout, &opts);
a3f17187 1986 printf_filtered (("\n"));
c906108c
SS
1987 }
1988
f132ba9d 1989 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1990 num += 10;
1991
1992 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1993 "show values +". If num_exp is null, this is unnecessary, since
1994 "show values +" is not useful after "show values". */
c906108c 1995 if (from_tty && num_exp)
85c4be7c 1996 set_repeat_arguments ("+");
c906108c
SS
1997}
1998\f
52059ffd
TT
1999enum internalvar_kind
2000{
2001 /* The internal variable is empty. */
2002 INTERNALVAR_VOID,
2003
2004 /* The value of the internal variable is provided directly as
2005 a GDB value object. */
2006 INTERNALVAR_VALUE,
2007
2008 /* A fresh value is computed via a call-back routine on every
2009 access to the internal variable. */
2010 INTERNALVAR_MAKE_VALUE,
2011
2012 /* The internal variable holds a GDB internal convenience function. */
2013 INTERNALVAR_FUNCTION,
2014
2015 /* The variable holds an integer value. */
2016 INTERNALVAR_INTEGER,
2017
2018 /* The variable holds a GDB-provided string. */
2019 INTERNALVAR_STRING,
2020};
2021
2022union internalvar_data
2023{
2024 /* A value object used with INTERNALVAR_VALUE. */
2025 struct value *value;
2026
2027 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2028 struct
2029 {
2030 /* The functions to call. */
2031 const struct internalvar_funcs *functions;
2032
2033 /* The function's user-data. */
2034 void *data;
2035 } make_value;
2036
2037 /* The internal function used with INTERNALVAR_FUNCTION. */
2038 struct
2039 {
2040 struct internal_function *function;
2041 /* True if this is the canonical name for the function. */
2042 int canonical;
2043 } fn;
2044
2045 /* An integer value used with INTERNALVAR_INTEGER. */
2046 struct
2047 {
2048 /* If type is non-NULL, it will be used as the type to generate
2049 a value for this internal variable. If type is NULL, a default
2050 integer type for the architecture is used. */
2051 struct type *type;
2052 LONGEST val;
2053 } integer;
2054
2055 /* A string value used with INTERNALVAR_STRING. */
2056 char *string;
2057};
2058
c906108c
SS
2059/* Internal variables. These are variables within the debugger
2060 that hold values assigned by debugger commands.
2061 The user refers to them with a '$' prefix
2062 that does not appear in the variable names stored internally. */
2063
4fa62494
UW
2064struct internalvar
2065{
2066 struct internalvar *next;
2067 char *name;
4fa62494 2068
78267919
UW
2069 /* We support various different kinds of content of an internal variable.
2070 enum internalvar_kind specifies the kind, and union internalvar_data
2071 provides the data associated with this particular kind. */
2072
52059ffd 2073 enum internalvar_kind kind;
4fa62494 2074
52059ffd 2075 union internalvar_data u;
4fa62494
UW
2076};
2077
c906108c
SS
2078static struct internalvar *internalvars;
2079
3e43a32a
MS
2080/* If the variable does not already exist create it and give it the
2081 value given. If no value is given then the default is zero. */
53e5f3cf 2082static void
0b39b52e 2083init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
2084{
2085 struct internalvar* intvar;
2086
2087 /* Parse the expression - this is taken from set_command(). */
4d01a485 2088 expression_up expr = parse_expression (args);
53e5f3cf
AS
2089
2090 /* Validate the expression.
2091 Was the expression an assignment?
2092 Or even an expression at all? */
2093 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2094 error (_("Init-if-undefined requires an assignment expression."));
2095
2096 /* Extract the variable from the parsed expression.
2097 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2098 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2099 error (_("The first parameter to init-if-undefined "
2100 "should be a GDB variable."));
53e5f3cf
AS
2101 intvar = expr->elts[2].internalvar;
2102
2103 /* Only evaluate the expression if the lvalue is void.
2104 This may still fail if the expresssion is invalid. */
78267919 2105 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2106 evaluate_expression (expr.get ());
53e5f3cf
AS
2107}
2108
2109
c906108c
SS
2110/* Look up an internal variable with name NAME. NAME should not
2111 normally include a dollar sign.
2112
2113 If the specified internal variable does not exist,
c4a3d09a 2114 the return value is NULL. */
c906108c
SS
2115
2116struct internalvar *
bc3b79fd 2117lookup_only_internalvar (const char *name)
c906108c 2118{
52f0bd74 2119 struct internalvar *var;
c906108c
SS
2120
2121 for (var = internalvars; var; var = var->next)
5cb316ef 2122 if (strcmp (var->name, name) == 0)
c906108c
SS
2123 return var;
2124
c4a3d09a
MF
2125 return NULL;
2126}
2127
eb3ff9a5
PA
2128/* Complete NAME by comparing it to the names of internal
2129 variables. */
d55637df 2130
eb3ff9a5
PA
2131void
2132complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2133{
d55637df
TT
2134 struct internalvar *var;
2135 int len;
2136
2137 len = strlen (name);
2138
2139 for (var = internalvars; var; var = var->next)
2140 if (strncmp (var->name, name, len) == 0)
2141 {
eb3ff9a5 2142 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2143
eb3ff9a5 2144 tracker.add_completion (std::move (copy));
d55637df 2145 }
d55637df 2146}
c4a3d09a
MF
2147
2148/* Create an internal variable with name NAME and with a void value.
2149 NAME should not normally include a dollar sign. */
2150
2151struct internalvar *
bc3b79fd 2152create_internalvar (const char *name)
c4a3d09a 2153{
8d749320 2154 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2155
1754f103 2156 var->name = concat (name, (char *)NULL);
78267919 2157 var->kind = INTERNALVAR_VOID;
c906108c
SS
2158 var->next = internalvars;
2159 internalvars = var;
2160 return var;
2161}
2162
4aa995e1
PA
2163/* Create an internal variable with name NAME and register FUN as the
2164 function that value_of_internalvar uses to create a value whenever
2165 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2166 dollar sign. DATA is passed uninterpreted to FUN when it is
2167 called. CLEANUP, if not NULL, is called when the internal variable
2168 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2169
2170struct internalvar *
22d2b532
SDJ
2171create_internalvar_type_lazy (const char *name,
2172 const struct internalvar_funcs *funcs,
2173 void *data)
4aa995e1 2174{
4fa62494 2175 struct internalvar *var = create_internalvar (name);
a109c7c1 2176
78267919 2177 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2178 var->u.make_value.functions = funcs;
2179 var->u.make_value.data = data;
4aa995e1
PA
2180 return var;
2181}
c4a3d09a 2182
22d2b532
SDJ
2183/* See documentation in value.h. */
2184
2185int
2186compile_internalvar_to_ax (struct internalvar *var,
2187 struct agent_expr *expr,
2188 struct axs_value *value)
2189{
2190 if (var->kind != INTERNALVAR_MAKE_VALUE
2191 || var->u.make_value.functions->compile_to_ax == NULL)
2192 return 0;
2193
2194 var->u.make_value.functions->compile_to_ax (var, expr, value,
2195 var->u.make_value.data);
2196 return 1;
2197}
2198
c4a3d09a
MF
2199/* Look up an internal variable with name NAME. NAME should not
2200 normally include a dollar sign.
2201
2202 If the specified internal variable does not exist,
2203 one is created, with a void value. */
2204
2205struct internalvar *
bc3b79fd 2206lookup_internalvar (const char *name)
c4a3d09a
MF
2207{
2208 struct internalvar *var;
2209
2210 var = lookup_only_internalvar (name);
2211 if (var)
2212 return var;
2213
2214 return create_internalvar (name);
2215}
2216
78267919
UW
2217/* Return current value of internal variable VAR. For variables that
2218 are not inherently typed, use a value type appropriate for GDBARCH. */
2219
f23631e4 2220struct value *
78267919 2221value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2222{
f23631e4 2223 struct value *val;
0914bcdb
SS
2224 struct trace_state_variable *tsv;
2225
2226 /* If there is a trace state variable of the same name, assume that
2227 is what we really want to see. */
2228 tsv = find_trace_state_variable (var->name);
2229 if (tsv)
2230 {
2231 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2232 &(tsv->value));
2233 if (tsv->value_known)
2234 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2235 tsv->value);
2236 else
2237 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2238 return val;
2239 }
c906108c 2240
78267919 2241 switch (var->kind)
5f5233d4 2242 {
78267919
UW
2243 case INTERNALVAR_VOID:
2244 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2245 break;
4fa62494 2246
78267919
UW
2247 case INTERNALVAR_FUNCTION:
2248 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2249 break;
4fa62494 2250
cab0c772
UW
2251 case INTERNALVAR_INTEGER:
2252 if (!var->u.integer.type)
78267919 2253 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2254 var->u.integer.val);
78267919 2255 else
cab0c772
UW
2256 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2257 break;
2258
78267919
UW
2259 case INTERNALVAR_STRING:
2260 val = value_cstring (var->u.string, strlen (var->u.string),
2261 builtin_type (gdbarch)->builtin_char);
2262 break;
4fa62494 2263
78267919
UW
2264 case INTERNALVAR_VALUE:
2265 val = value_copy (var->u.value);
4aa995e1
PA
2266 if (value_lazy (val))
2267 value_fetch_lazy (val);
78267919 2268 break;
4aa995e1 2269
78267919 2270 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2271 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2272 var->u.make_value.data);
78267919
UW
2273 break;
2274
2275 default:
9b20d036 2276 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2277 }
2278
2279 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2280 on this value go back to affect the original internal variable.
2281
2282 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2283 no underlying modifyable state in the internal variable.
2284
2285 Likewise, if the variable's value is a computed lvalue, we want
2286 references to it to produce another computed lvalue, where
2287 references and assignments actually operate through the
2288 computed value's functions.
2289
2290 This means that internal variables with computed values
2291 behave a little differently from other internal variables:
2292 assignments to them don't just replace the previous value
2293 altogether. At the moment, this seems like the behavior we
2294 want. */
2295
2296 if (var->kind != INTERNALVAR_MAKE_VALUE
2297 && val->lval != lval_computed)
2298 {
2299 VALUE_LVAL (val) = lval_internalvar;
2300 VALUE_INTERNALVAR (val) = var;
5f5233d4 2301 }
d3c139e9 2302
4fa62494
UW
2303 return val;
2304}
d3c139e9 2305
4fa62494
UW
2306int
2307get_internalvar_integer (struct internalvar *var, LONGEST *result)
2308{
3158c6ed 2309 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2310 {
cab0c772
UW
2311 *result = var->u.integer.val;
2312 return 1;
3158c6ed 2313 }
d3c139e9 2314
3158c6ed
PA
2315 if (var->kind == INTERNALVAR_VALUE)
2316 {
2317 struct type *type = check_typedef (value_type (var->u.value));
2318
2319 if (TYPE_CODE (type) == TYPE_CODE_INT)
2320 {
2321 *result = value_as_long (var->u.value);
2322 return 1;
2323 }
4fa62494 2324 }
3158c6ed
PA
2325
2326 return 0;
4fa62494 2327}
d3c139e9 2328
4fa62494
UW
2329static int
2330get_internalvar_function (struct internalvar *var,
2331 struct internal_function **result)
2332{
78267919 2333 switch (var->kind)
d3c139e9 2334 {
78267919
UW
2335 case INTERNALVAR_FUNCTION:
2336 *result = var->u.fn.function;
4fa62494 2337 return 1;
d3c139e9 2338
4fa62494
UW
2339 default:
2340 return 0;
2341 }
c906108c
SS
2342}
2343
2344void
6b850546
DT
2345set_internalvar_component (struct internalvar *var,
2346 LONGEST offset, LONGEST bitpos,
2347 LONGEST bitsize, struct value *newval)
c906108c 2348{
4fa62494 2349 gdb_byte *addr;
3ae385af
SM
2350 struct gdbarch *arch;
2351 int unit_size;
c906108c 2352
78267919 2353 switch (var->kind)
4fa62494 2354 {
78267919
UW
2355 case INTERNALVAR_VALUE:
2356 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2357 arch = get_value_arch (var->u.value);
2358 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2359
2360 if (bitsize)
50810684 2361 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2362 value_as_long (newval), bitpos, bitsize);
2363 else
3ae385af 2364 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2365 TYPE_LENGTH (value_type (newval)));
2366 break;
78267919
UW
2367
2368 default:
2369 /* We can never get a component of any other kind. */
9b20d036 2370 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2371 }
c906108c
SS
2372}
2373
2374void
f23631e4 2375set_internalvar (struct internalvar *var, struct value *val)
c906108c 2376{
78267919 2377 enum internalvar_kind new_kind;
4fa62494 2378 union internalvar_data new_data = { 0 };
c906108c 2379
78267919 2380 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2381 error (_("Cannot overwrite convenience function %s"), var->name);
2382
4fa62494 2383 /* Prepare new contents. */
78267919 2384 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2385 {
2386 case TYPE_CODE_VOID:
78267919 2387 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2388 break;
2389
2390 case TYPE_CODE_INTERNAL_FUNCTION:
2391 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2392 new_kind = INTERNALVAR_FUNCTION;
2393 get_internalvar_function (VALUE_INTERNALVAR (val),
2394 &new_data.fn.function);
2395 /* Copies created here are never canonical. */
4fa62494
UW
2396 break;
2397
4fa62494 2398 default:
78267919
UW
2399 new_kind = INTERNALVAR_VALUE;
2400 new_data.value = value_copy (val);
2401 new_data.value->modifiable = 1;
4fa62494
UW
2402
2403 /* Force the value to be fetched from the target now, to avoid problems
2404 later when this internalvar is referenced and the target is gone or
2405 has changed. */
78267919
UW
2406 if (value_lazy (new_data.value))
2407 value_fetch_lazy (new_data.value);
4fa62494
UW
2408
2409 /* Release the value from the value chain to prevent it from being
2410 deleted by free_all_values. From here on this function should not
2411 call error () until new_data is installed into the var->u to avoid
2412 leaking memory. */
22bc8444 2413 release_value (new_data.value).release ();
9920b434
BH
2414
2415 /* Internal variables which are created from values with a dynamic
2416 location don't need the location property of the origin anymore.
2417 The resolved dynamic location is used prior then any other address
2418 when accessing the value.
2419 If we keep it, we would still refer to the origin value.
2420 Remove the location property in case it exist. */
2421 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2422
4fa62494
UW
2423 break;
2424 }
2425
2426 /* Clean up old contents. */
2427 clear_internalvar (var);
2428
2429 /* Switch over. */
78267919 2430 var->kind = new_kind;
4fa62494 2431 var->u = new_data;
c906108c
SS
2432 /* End code which must not call error(). */
2433}
2434
4fa62494
UW
2435void
2436set_internalvar_integer (struct internalvar *var, LONGEST l)
2437{
2438 /* Clean up old contents. */
2439 clear_internalvar (var);
2440
cab0c772
UW
2441 var->kind = INTERNALVAR_INTEGER;
2442 var->u.integer.type = NULL;
2443 var->u.integer.val = l;
78267919
UW
2444}
2445
2446void
2447set_internalvar_string (struct internalvar *var, const char *string)
2448{
2449 /* Clean up old contents. */
2450 clear_internalvar (var);
2451
2452 var->kind = INTERNALVAR_STRING;
2453 var->u.string = xstrdup (string);
4fa62494
UW
2454}
2455
2456static void
2457set_internalvar_function (struct internalvar *var, struct internal_function *f)
2458{
2459 /* Clean up old contents. */
2460 clear_internalvar (var);
2461
78267919
UW
2462 var->kind = INTERNALVAR_FUNCTION;
2463 var->u.fn.function = f;
2464 var->u.fn.canonical = 1;
2465 /* Variables installed here are always the canonical version. */
4fa62494
UW
2466}
2467
2468void
2469clear_internalvar (struct internalvar *var)
2470{
2471 /* Clean up old contents. */
78267919 2472 switch (var->kind)
4fa62494 2473 {
78267919 2474 case INTERNALVAR_VALUE:
22bc8444 2475 value_decref (var->u.value);
78267919
UW
2476 break;
2477
2478 case INTERNALVAR_STRING:
2479 xfree (var->u.string);
4fa62494
UW
2480 break;
2481
22d2b532
SDJ
2482 case INTERNALVAR_MAKE_VALUE:
2483 if (var->u.make_value.functions->destroy != NULL)
2484 var->u.make_value.functions->destroy (var->u.make_value.data);
2485 break;
2486
4fa62494 2487 default:
4fa62494
UW
2488 break;
2489 }
2490
78267919
UW
2491 /* Reset to void kind. */
2492 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2493}
2494
c906108c 2495char *
4bf7b526 2496internalvar_name (const struct internalvar *var)
c906108c
SS
2497{
2498 return var->name;
2499}
2500
4fa62494
UW
2501static struct internal_function *
2502create_internal_function (const char *name,
2503 internal_function_fn handler, void *cookie)
bc3b79fd 2504{
bc3b79fd 2505 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2506
bc3b79fd
TJB
2507 ifn->name = xstrdup (name);
2508 ifn->handler = handler;
2509 ifn->cookie = cookie;
4fa62494 2510 return ifn;
bc3b79fd
TJB
2511}
2512
2513char *
2514value_internal_function_name (struct value *val)
2515{
4fa62494
UW
2516 struct internal_function *ifn;
2517 int result;
2518
2519 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2520 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2521 gdb_assert (result);
2522
bc3b79fd
TJB
2523 return ifn->name;
2524}
2525
2526struct value *
d452c4bc
UW
2527call_internal_function (struct gdbarch *gdbarch,
2528 const struct language_defn *language,
2529 struct value *func, int argc, struct value **argv)
bc3b79fd 2530{
4fa62494
UW
2531 struct internal_function *ifn;
2532 int result;
2533
2534 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2535 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2536 gdb_assert (result);
2537
d452c4bc 2538 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2539}
2540
2541/* The 'function' command. This does nothing -- it is just a
2542 placeholder to let "help function NAME" work. This is also used as
2543 the implementation of the sub-command that is created when
2544 registering an internal function. */
2545static void
981a3fb3 2546function_command (const char *command, int from_tty)
bc3b79fd
TJB
2547{
2548 /* Do nothing. */
2549}
2550
2551/* Clean up if an internal function's command is destroyed. */
2552static void
2553function_destroyer (struct cmd_list_element *self, void *ignore)
2554{
6f937416 2555 xfree ((char *) self->name);
1947513d 2556 xfree ((char *) self->doc);
bc3b79fd
TJB
2557}
2558
2559/* Add a new internal function. NAME is the name of the function; DOC
2560 is a documentation string describing the function. HANDLER is
2561 called when the function is invoked. COOKIE is an arbitrary
2562 pointer which is passed to HANDLER and is intended for "user
2563 data". */
2564void
2565add_internal_function (const char *name, const char *doc,
2566 internal_function_fn handler, void *cookie)
2567{
2568 struct cmd_list_element *cmd;
4fa62494 2569 struct internal_function *ifn;
bc3b79fd 2570 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2571
2572 ifn = create_internal_function (name, handler, cookie);
2573 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2574
2575 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2576 &functionlist);
2577 cmd->destroyer = function_destroyer;
2578}
2579
ae5a43e0
DJ
2580/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2581 prevent cycles / duplicates. */
2582
4e7a5ef5 2583void
ae5a43e0
DJ
2584preserve_one_value (struct value *value, struct objfile *objfile,
2585 htab_t copied_types)
2586{
2587 if (TYPE_OBJFILE (value->type) == objfile)
2588 value->type = copy_type_recursive (objfile, value->type, copied_types);
2589
2590 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2591 value->enclosing_type = copy_type_recursive (objfile,
2592 value->enclosing_type,
2593 copied_types);
2594}
2595
78267919
UW
2596/* Likewise for internal variable VAR. */
2597
2598static void
2599preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2600 htab_t copied_types)
2601{
2602 switch (var->kind)
2603 {
cab0c772
UW
2604 case INTERNALVAR_INTEGER:
2605 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2606 var->u.integer.type
2607 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2608 break;
2609
78267919
UW
2610 case INTERNALVAR_VALUE:
2611 preserve_one_value (var->u.value, objfile, copied_types);
2612 break;
2613 }
2614}
2615
ae5a43e0
DJ
2616/* Update the internal variables and value history when OBJFILE is
2617 discarded; we must copy the types out of the objfile. New global types
2618 will be created for every convenience variable which currently points to
2619 this objfile's types, and the convenience variables will be adjusted to
2620 use the new global types. */
c906108c
SS
2621
2622void
ae5a43e0 2623preserve_values (struct objfile *objfile)
c906108c 2624{
ae5a43e0
DJ
2625 htab_t copied_types;
2626 struct value_history_chunk *cur;
52f0bd74 2627 struct internalvar *var;
ae5a43e0 2628 int i;
c906108c 2629
ae5a43e0
DJ
2630 /* Create the hash table. We allocate on the objfile's obstack, since
2631 it is soon to be deleted. */
2632 copied_types = create_copied_types_hash (objfile);
2633
2634 for (cur = value_history_chain; cur; cur = cur->next)
2635 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2636 if (cur->values[i])
2637 preserve_one_value (cur->values[i], objfile, copied_types);
2638
2639 for (var = internalvars; var; var = var->next)
78267919 2640 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2641
6dddc817 2642 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2643
ae5a43e0 2644 htab_delete (copied_types);
c906108c
SS
2645}
2646
2647static void
ad25e423 2648show_convenience (const char *ignore, int from_tty)
c906108c 2649{
e17c207e 2650 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2651 struct internalvar *var;
c906108c 2652 int varseen = 0;
79a45b7d 2653 struct value_print_options opts;
c906108c 2654
79a45b7d 2655 get_user_print_options (&opts);
c906108c
SS
2656 for (var = internalvars; var; var = var->next)
2657 {
c709acd1 2658
c906108c
SS
2659 if (!varseen)
2660 {
2661 varseen = 1;
2662 }
a3f17187 2663 printf_filtered (("$%s = "), var->name);
c709acd1 2664
492d29ea 2665 TRY
c709acd1
PA
2666 {
2667 struct value *val;
2668
2669 val = value_of_internalvar (gdbarch, var);
2670 value_print (val, gdb_stdout, &opts);
2671 }
492d29ea
PA
2672 CATCH (ex, RETURN_MASK_ERROR)
2673 {
2674 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2675 }
2676 END_CATCH
2677
a3f17187 2678 printf_filtered (("\n"));
c906108c
SS
2679 }
2680 if (!varseen)
f47f77df
DE
2681 {
2682 /* This text does not mention convenience functions on purpose.
2683 The user can't create them except via Python, and if Python support
2684 is installed this message will never be printed ($_streq will
2685 exist). */
2686 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2687 "Convenience variables have "
2688 "names starting with \"$\";\n"
2689 "use \"set\" as in \"set "
2690 "$foo = 5\" to define them.\n"));
2691 }
c906108c
SS
2692}
2693\f
ba18742c
SM
2694
2695/* See value.h. */
e81e7f5e
SC
2696
2697struct value *
ba18742c 2698value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2699{
ba18742c 2700 struct value *v;
e81e7f5e 2701
ba18742c
SM
2702 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2703 v->lval = lval_xcallable;
2704 v->location.xm_worker = worker.release ();
2705 v->modifiable = 0;
e81e7f5e 2706
ba18742c 2707 return v;
e81e7f5e
SC
2708}
2709
2ce1cdbf
DE
2710/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2711
2712struct type *
2713result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2714{
2715 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2716 && method->lval == lval_xcallable && argc > 0);
2717
ba18742c
SM
2718 return method->location.xm_worker->get_result_type
2719 (argv[0], argv + 1, argc - 1);
2ce1cdbf
DE
2720}
2721
e81e7f5e
SC
2722/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2723
2724struct value *
2725call_xmethod (struct value *method, int argc, struct value **argv)
2726{
2727 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2728 && method->lval == lval_xcallable && argc > 0);
2729
ba18742c 2730 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
e81e7f5e
SC
2731}
2732\f
c906108c
SS
2733/* Extract a value as a C number (either long or double).
2734 Knows how to convert fixed values to double, or
2735 floating values to long.
2736 Does not deallocate the value. */
2737
2738LONGEST
f23631e4 2739value_as_long (struct value *val)
c906108c
SS
2740{
2741 /* This coerces arrays and functions, which is necessary (e.g.
2742 in disassemble_command). It also dereferences references, which
2743 I suspect is the most logical thing to do. */
994b9211 2744 val = coerce_array (val);
0fd88904 2745 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2746}
2747
581e13c1 2748/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2749 Note that val's type may not actually be a pointer; value_as_long
2750 handles all the cases. */
c906108c 2751CORE_ADDR
f23631e4 2752value_as_address (struct value *val)
c906108c 2753{
50810684
UW
2754 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2755
c906108c
SS
2756 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2757 whether we want this to be true eventually. */
2758#if 0
bf6ae464 2759 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2760 non-address (e.g. argument to "signal", "info break", etc.), or
2761 for pointers to char, in which the low bits *are* significant. */
50810684 2762 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2763#else
f312f057
JB
2764
2765 /* There are several targets (IA-64, PowerPC, and others) which
2766 don't represent pointers to functions as simply the address of
2767 the function's entry point. For example, on the IA-64, a
2768 function pointer points to a two-word descriptor, generated by
2769 the linker, which contains the function's entry point, and the
2770 value the IA-64 "global pointer" register should have --- to
2771 support position-independent code. The linker generates
2772 descriptors only for those functions whose addresses are taken.
2773
2774 On such targets, it's difficult for GDB to convert an arbitrary
2775 function address into a function pointer; it has to either find
2776 an existing descriptor for that function, or call malloc and
2777 build its own. On some targets, it is impossible for GDB to
2778 build a descriptor at all: the descriptor must contain a jump
2779 instruction; data memory cannot be executed; and code memory
2780 cannot be modified.
2781
2782 Upon entry to this function, if VAL is a value of type `function'
2783 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2784 value_address (val) is the address of the function. This is what
f312f057
JB
2785 you'll get if you evaluate an expression like `main'. The call
2786 to COERCE_ARRAY below actually does all the usual unary
2787 conversions, which includes converting values of type `function'
2788 to `pointer to function'. This is the challenging conversion
2789 discussed above. Then, `unpack_long' will convert that pointer
2790 back into an address.
2791
2792 So, suppose the user types `disassemble foo' on an architecture
2793 with a strange function pointer representation, on which GDB
2794 cannot build its own descriptors, and suppose further that `foo'
2795 has no linker-built descriptor. The address->pointer conversion
2796 will signal an error and prevent the command from running, even
2797 though the next step would have been to convert the pointer
2798 directly back into the same address.
2799
2800 The following shortcut avoids this whole mess. If VAL is a
2801 function, just return its address directly. */
df407dfe
AC
2802 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2803 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2804 return value_address (val);
f312f057 2805
994b9211 2806 val = coerce_array (val);
fc0c74b1
AC
2807
2808 /* Some architectures (e.g. Harvard), map instruction and data
2809 addresses onto a single large unified address space. For
2810 instance: An architecture may consider a large integer in the
2811 range 0x10000000 .. 0x1000ffff to already represent a data
2812 addresses (hence not need a pointer to address conversion) while
2813 a small integer would still need to be converted integer to
2814 pointer to address. Just assume such architectures handle all
2815 integer conversions in a single function. */
2816
2817 /* JimB writes:
2818
2819 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2820 must admonish GDB hackers to make sure its behavior matches the
2821 compiler's, whenever possible.
2822
2823 In general, I think GDB should evaluate expressions the same way
2824 the compiler does. When the user copies an expression out of
2825 their source code and hands it to a `print' command, they should
2826 get the same value the compiler would have computed. Any
2827 deviation from this rule can cause major confusion and annoyance,
2828 and needs to be justified carefully. In other words, GDB doesn't
2829 really have the freedom to do these conversions in clever and
2830 useful ways.
2831
2832 AndrewC pointed out that users aren't complaining about how GDB
2833 casts integers to pointers; they are complaining that they can't
2834 take an address from a disassembly listing and give it to `x/i'.
2835 This is certainly important.
2836
79dd2d24 2837 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2838 makes it possible for GDB to "get it right" in all circumstances
2839 --- the target has complete control over how things get done, so
2840 people can Do The Right Thing for their target without breaking
2841 anyone else. The standard doesn't specify how integers get
2842 converted to pointers; usually, the ABI doesn't either, but
2843 ABI-specific code is a more reasonable place to handle it. */
2844
df407dfe 2845 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2846 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2847 && gdbarch_integer_to_address_p (gdbarch))
2848 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2849 value_contents (val));
fc0c74b1 2850
0fd88904 2851 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2852#endif
2853}
2854\f
2855/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2856 as a long, or as a double, assuming the raw data is described
2857 by type TYPE. Knows how to convert different sizes of values
2858 and can convert between fixed and floating point. We don't assume
2859 any alignment for the raw data. Return value is in host byte order.
2860
2861 If you want functions and arrays to be coerced to pointers, and
2862 references to be dereferenced, call value_as_long() instead.
2863
2864 C++: It is assumed that the front-end has taken care of
2865 all matters concerning pointers to members. A pointer
2866 to member which reaches here is considered to be equivalent
2867 to an INT (or some size). After all, it is only an offset. */
2868
2869LONGEST
fc1a4b47 2870unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2871{
e17a4113 2872 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2873 enum type_code code = TYPE_CODE (type);
2874 int len = TYPE_LENGTH (type);
2875 int nosign = TYPE_UNSIGNED (type);
c906108c 2876
c906108c
SS
2877 switch (code)
2878 {
2879 case TYPE_CODE_TYPEDEF:
2880 return unpack_long (check_typedef (type), valaddr);
2881 case TYPE_CODE_ENUM:
4f2aea11 2882 case TYPE_CODE_FLAGS:
c906108c
SS
2883 case TYPE_CODE_BOOL:
2884 case TYPE_CODE_INT:
2885 case TYPE_CODE_CHAR:
2886 case TYPE_CODE_RANGE:
0d5de010 2887 case TYPE_CODE_MEMBERPTR:
c906108c 2888 if (nosign)
e17a4113 2889 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2890 else
e17a4113 2891 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2892
2893 case TYPE_CODE_FLT:
4ef30785 2894 case TYPE_CODE_DECFLOAT:
50637b26 2895 return target_float_to_longest (valaddr, type);
4ef30785 2896
c906108c
SS
2897 case TYPE_CODE_PTR:
2898 case TYPE_CODE_REF:
aa006118 2899 case TYPE_CODE_RVALUE_REF:
c906108c 2900 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2901 whether we want this to be true eventually. */
4478b372 2902 return extract_typed_address (valaddr, type);
c906108c 2903
c906108c 2904 default:
8a3fe4f8 2905 error (_("Value can't be converted to integer."));
c906108c 2906 }
c5aa993b 2907 return 0; /* Placate lint. */
c906108c
SS
2908}
2909
c906108c
SS
2910/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2911 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2912 We don't assume any alignment for the raw data. Return value is in
2913 host byte order.
2914
2915 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2916 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2917
2918 C++: It is assumed that the front-end has taken care of
2919 all matters concerning pointers to members. A pointer
2920 to member which reaches here is considered to be equivalent
2921 to an INT (or some size). After all, it is only an offset. */
2922
2923CORE_ADDR
fc1a4b47 2924unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2925{
2926 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2927 whether we want this to be true eventually. */
2928 return unpack_long (type, valaddr);
2929}
4478b372 2930
70100014
UW
2931bool
2932is_floating_value (struct value *val)
2933{
2934 struct type *type = check_typedef (value_type (val));
2935
2936 if (is_floating_type (type))
2937 {
2938 if (!target_float_is_valid (value_contents (val), type))
2939 error (_("Invalid floating value found in program."));
2940 return true;
2941 }
2942
2943 return false;
2944}
2945
c906108c 2946\f
1596cb5d 2947/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2948 TYPE. */
c906108c 2949
f23631e4 2950struct value *
fba45db2 2951value_static_field (struct type *type, int fieldno)
c906108c 2952{
948e66d9
DJ
2953 struct value *retval;
2954
1596cb5d 2955 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2956 {
1596cb5d 2957 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2958 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2959 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2960 break;
2961 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2962 {
ff355380 2963 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2964 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2965 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2966
d12307c1 2967 if (sym.symbol == NULL)
c906108c 2968 {
a109c7c1 2969 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2970 reported as non-debuggable symbols. */
3b7344d5
TT
2971 struct bound_minimal_symbol msym
2972 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2973 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2974
3b7344d5 2975 if (!msym.minsym)
c2e0e465 2976 retval = allocate_optimized_out_value (field_type);
c906108c 2977 else
c2e0e465 2978 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2979 }
2980 else
d12307c1 2981 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2982 break;
c906108c 2983 }
1596cb5d 2984 default:
f3574227 2985 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2986 }
2987
948e66d9 2988 return retval;
c906108c
SS
2989}
2990
4dfea560
DE
2991/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2992 You have to be careful here, since the size of the data area for the value
2993 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2994 than the old enclosing type, you have to allocate more space for the
2995 data. */
2b127877 2996
4dfea560
DE
2997void
2998set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2999{
5fdf6324
AB
3000 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3001 {
3002 check_type_length_before_alloc (new_encl_type);
3003 val->contents
3004 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3005 }
3e3d7139
JG
3006
3007 val->enclosing_type = new_encl_type;
2b127877
DB
3008}
3009
c906108c
SS
3010/* Given a value ARG1 (offset by OFFSET bytes)
3011 of a struct or union type ARG_TYPE,
3012 extract and return the value of one of its (non-static) fields.
581e13c1 3013 FIELDNO says which field. */
c906108c 3014
f23631e4 3015struct value *
6b850546 3016value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3017 int fieldno, struct type *arg_type)
c906108c 3018{
f23631e4 3019 struct value *v;
52f0bd74 3020 struct type *type;
3ae385af
SM
3021 struct gdbarch *arch = get_value_arch (arg1);
3022 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3023
f168693b 3024 arg_type = check_typedef (arg_type);
c906108c 3025 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3026
3027 /* Call check_typedef on our type to make sure that, if TYPE
3028 is a TYPE_CODE_TYPEDEF, its length is set to the length
3029 of the target type instead of zero. However, we do not
3030 replace the typedef type by the target type, because we want
3031 to keep the typedef in order to be able to print the type
3032 description correctly. */
3033 check_typedef (type);
c906108c 3034
691a26f5 3035 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3036 {
22c05d8a
JK
3037 /* Handle packed fields.
3038
3039 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3040 set. If possible, arrange offset and bitpos so that we can
3041 do a single aligned read of the size of the containing type.
3042 Otherwise, adjust offset to the byte containing the first
3043 bit. Assume that the address, offset, and embedded offset
3044 are sufficiently aligned. */
22c05d8a 3045
6b850546
DT
3046 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3047 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3048
9a0dc9e3
PA
3049 v = allocate_value_lazy (type);
3050 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3051 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3052 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3053 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3054 else
9a0dc9e3
PA
3055 v->bitpos = bitpos % 8;
3056 v->offset = (value_embedded_offset (arg1)
3057 + offset
3058 + (bitpos - v->bitpos) / 8);
3059 set_value_parent (v, arg1);
3060 if (!value_lazy (arg1))
3061 value_fetch_lazy (v);
c906108c
SS
3062 }
3063 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3064 {
3065 /* This field is actually a base subobject, so preserve the
39d37385
PA
3066 entire object's contents for later references to virtual
3067 bases, etc. */
6b850546 3068 LONGEST boffset;
a4e2ee12
DJ
3069
3070 /* Lazy register values with offsets are not supported. */
3071 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3072 value_fetch_lazy (arg1);
3073
9a0dc9e3
PA
3074 /* We special case virtual inheritance here because this
3075 requires access to the contents, which we would rather avoid
3076 for references to ordinary fields of unavailable values. */
3077 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3078 boffset = baseclass_offset (arg_type, fieldno,
3079 value_contents (arg1),
3080 value_embedded_offset (arg1),
3081 value_address (arg1),
3082 arg1);
c906108c 3083 else
9a0dc9e3 3084 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3085
9a0dc9e3
PA
3086 if (value_lazy (arg1))
3087 v = allocate_value_lazy (value_enclosing_type (arg1));
3088 else
3089 {
3090 v = allocate_value (value_enclosing_type (arg1));
3091 value_contents_copy_raw (v, 0, arg1, 0,
3092 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3093 }
9a0dc9e3
PA
3094 v->type = type;
3095 v->offset = value_offset (arg1);
3096 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3097 }
9920b434
BH
3098 else if (NULL != TYPE_DATA_LOCATION (type))
3099 {
3100 /* Field is a dynamic data member. */
3101
3102 gdb_assert (0 == offset);
3103 /* We expect an already resolved data location. */
3104 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3105 /* For dynamic data types defer memory allocation
3106 until we actual access the value. */
3107 v = allocate_value_lazy (type);
3108 }
c906108c
SS
3109 else
3110 {
3111 /* Plain old data member */
3ae385af
SM
3112 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3113 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3114
3115 /* Lazy register values with offsets are not supported. */
3116 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3117 value_fetch_lazy (arg1);
3118
9a0dc9e3 3119 if (value_lazy (arg1))
3e3d7139 3120 v = allocate_value_lazy (type);
c906108c 3121 else
3e3d7139
JG
3122 {
3123 v = allocate_value (type);
39d37385
PA
3124 value_contents_copy_raw (v, value_embedded_offset (v),
3125 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3126 type_length_units (type));
3e3d7139 3127 }
df407dfe 3128 v->offset = (value_offset (arg1) + offset
13c3b5f5 3129 + value_embedded_offset (arg1));
c906108c 3130 }
74bcbdf3 3131 set_value_component_location (v, arg1);
c906108c
SS
3132 return v;
3133}
3134
3135/* Given a value ARG1 of a struct or union type,
3136 extract and return the value of one of its (non-static) fields.
581e13c1 3137 FIELDNO says which field. */
c906108c 3138
f23631e4 3139struct value *
aa1ee363 3140value_field (struct value *arg1, int fieldno)
c906108c 3141{
df407dfe 3142 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3143}
3144
3145/* Return a non-virtual function as a value.
3146 F is the list of member functions which contains the desired method.
0478d61c
FF
3147 J is an index into F which provides the desired method.
3148
3149 We only use the symbol for its address, so be happy with either a
581e13c1 3150 full symbol or a minimal symbol. */
c906108c 3151
f23631e4 3152struct value *
3e43a32a
MS
3153value_fn_field (struct value **arg1p, struct fn_field *f,
3154 int j, struct type *type,
6b850546 3155 LONGEST offset)
c906108c 3156{
f23631e4 3157 struct value *v;
52f0bd74 3158 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3159 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3160 struct symbol *sym;
7c7b6655 3161 struct bound_minimal_symbol msym;
c906108c 3162
d12307c1 3163 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3164 if (sym != NULL)
0478d61c 3165 {
7c7b6655 3166 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3167 }
3168 else
3169 {
3170 gdb_assert (sym == NULL);
7c7b6655
TT
3171 msym = lookup_bound_minimal_symbol (physname);
3172 if (msym.minsym == NULL)
5ae326fa 3173 return NULL;
0478d61c
FF
3174 }
3175
c906108c 3176 v = allocate_value (ftype);
1a088441 3177 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3178 if (sym)
3179 {
42ae5230 3180 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3181 }
3182 else
3183 {
bccdca4a
UW
3184 /* The minimal symbol might point to a function descriptor;
3185 resolve it to the actual code address instead. */
7c7b6655 3186 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3188
42ae5230
TT
3189 set_value_address (v,
3190 gdbarch_convert_from_func_ptr_addr
77e371c0 3191 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3192 }
c906108c
SS
3193
3194 if (arg1p)
c5aa993b 3195 {
df407dfe 3196 if (type != value_type (*arg1p))
c5aa993b
JM
3197 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3198 value_addr (*arg1p)));
3199
070ad9f0 3200 /* Move the `this' pointer according to the offset.
581e13c1 3201 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3202 }
3203
3204 return v;
3205}
3206
c906108c 3207\f
c906108c 3208
4875ffdb
PA
3209/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3210 VALADDR, and store the result in *RESULT.
15ce8941
TT
3211 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3212 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3213
4875ffdb
PA
3214 Extracting bits depends on endianness of the machine. Compute the
3215 number of least significant bits to discard. For big endian machines,
3216 we compute the total number of bits in the anonymous object, subtract
3217 off the bit count from the MSB of the object to the MSB of the
3218 bitfield, then the size of the bitfield, which leaves the LSB discard
3219 count. For little endian machines, the discard count is simply the
3220 number of bits from the LSB of the anonymous object to the LSB of the
3221 bitfield.
3222
3223 If the field is signed, we also do sign extension. */
3224
3225static LONGEST
3226unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3227 LONGEST bitpos, LONGEST bitsize)
c906108c 3228{
4ea48cc1 3229 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3230 ULONGEST val;
3231 ULONGEST valmask;
c906108c 3232 int lsbcount;
6b850546
DT
3233 LONGEST bytes_read;
3234 LONGEST read_offset;
c906108c 3235
4a76eae5
DJ
3236 /* Read the minimum number of bytes required; there may not be
3237 enough bytes to read an entire ULONGEST. */
f168693b 3238 field_type = check_typedef (field_type);
4a76eae5
DJ
3239 if (bitsize)
3240 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3241 else
15ce8941
TT
3242 {
3243 bytes_read = TYPE_LENGTH (field_type);
3244 bitsize = 8 * bytes_read;
3245 }
4a76eae5 3246
5467c6c8
PA
3247 read_offset = bitpos / 8;
3248
4875ffdb 3249 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3250 bytes_read, byte_order);
c906108c 3251
581e13c1 3252 /* Extract bits. See comment above. */
c906108c 3253
4ea48cc1 3254 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3255 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3256 else
3257 lsbcount = (bitpos % 8);
3258 val >>= lsbcount;
3259
3260 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3261 If the field is signed, and is negative, then sign extend. */
c906108c 3262
15ce8941 3263 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3264 {
3265 valmask = (((ULONGEST) 1) << bitsize) - 1;
3266 val &= valmask;
3267 if (!TYPE_UNSIGNED (field_type))
3268 {
3269 if (val & (valmask ^ (valmask >> 1)))
3270 {
3271 val |= ~valmask;
3272 }
3273 }
3274 }
5467c6c8 3275
4875ffdb 3276 return val;
5467c6c8
PA
3277}
3278
3279/* Unpack a field FIELDNO of the specified TYPE, from the object at
3280 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3281 ORIGINAL_VALUE, which must not be NULL. See
3282 unpack_value_bits_as_long for more details. */
3283
3284int
3285unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3286 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3287 const struct value *val, LONGEST *result)
3288{
4875ffdb
PA
3289 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3290 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3291 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3292 int bit_offset;
3293
5467c6c8
PA
3294 gdb_assert (val != NULL);
3295
4875ffdb
PA
3296 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3297 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3298 || !value_bits_available (val, bit_offset, bitsize))
3299 return 0;
3300
3301 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3302 bitpos, bitsize);
3303 return 1;
5467c6c8
PA
3304}
3305
3306/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3307 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3308
3309LONGEST
3310unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3311{
4875ffdb
PA
3312 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3313 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3314 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3315
4875ffdb
PA
3316 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3317}
3318
3319/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3320 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3321 the contents in DEST_VAL, zero or sign extending if the type of
3322 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3323 VAL. If the VAL's contents required to extract the bitfield from
3324 are unavailable/optimized out, DEST_VAL is correspondingly
3325 marked unavailable/optimized out. */
3326
bb9d5f81 3327void
4875ffdb 3328unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3329 LONGEST bitpos, LONGEST bitsize,
3330 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3331 const struct value *val)
3332{
3333 enum bfd_endian byte_order;
3334 int src_bit_offset;
3335 int dst_bit_offset;
4875ffdb
PA
3336 struct type *field_type = value_type (dest_val);
3337
4875ffdb 3338 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3339
3340 /* First, unpack and sign extend the bitfield as if it was wholly
3341 valid. Optimized out/unavailable bits are read as zero, but
3342 that's OK, as they'll end up marked below. If the VAL is
3343 wholly-invalid we may have skipped allocating its contents,
3344 though. See allocate_optimized_out_value. */
3345 if (valaddr != NULL)
3346 {
3347 LONGEST num;
3348
3349 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3350 bitpos, bitsize);
3351 store_signed_integer (value_contents_raw (dest_val),
3352 TYPE_LENGTH (field_type), byte_order, num);
3353 }
4875ffdb
PA
3354
3355 /* Now copy the optimized out / unavailability ranges to the right
3356 bits. */
3357 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3358 if (byte_order == BFD_ENDIAN_BIG)
3359 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3360 else
3361 dst_bit_offset = 0;
3362 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3363 val, src_bit_offset, bitsize);
5467c6c8
PA
3364}
3365
3366/* Return a new value with type TYPE, which is FIELDNO field of the
3367 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3368 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3369 from are unavailable/optimized out, the new value is
3370 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3371
3372struct value *
3373value_field_bitfield (struct type *type, int fieldno,
3374 const gdb_byte *valaddr,
6b850546 3375 LONGEST embedded_offset, const struct value *val)
5467c6c8 3376{
4875ffdb
PA
3377 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3378 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3379 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3380
4875ffdb
PA
3381 unpack_value_bitfield (res_val, bitpos, bitsize,
3382 valaddr, embedded_offset, val);
3383
3384 return res_val;
4ea48cc1
DJ
3385}
3386
c906108c
SS
3387/* Modify the value of a bitfield. ADDR points to a block of memory in
3388 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3389 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3390 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3391 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3392 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3393
3394void
50810684 3395modify_field (struct type *type, gdb_byte *addr,
6b850546 3396 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3397{
e17a4113 3398 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3399 ULONGEST oword;
3400 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3401 LONGEST bytesize;
19f220c3
JK
3402
3403 /* Normalize BITPOS. */
3404 addr += bitpos / 8;
3405 bitpos %= 8;
c906108c
SS
3406
3407 /* If a negative fieldval fits in the field in question, chop
3408 off the sign extension bits. */
f4e88c8e
PH
3409 if ((~fieldval & ~(mask >> 1)) == 0)
3410 fieldval &= mask;
c906108c
SS
3411
3412 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3413 if (0 != (fieldval & ~mask))
c906108c
SS
3414 {
3415 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3416 we don't have a sprintf_longest. */
6b850546 3417 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3418
3419 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3420 fieldval &= mask;
c906108c
SS
3421 }
3422
19f220c3
JK
3423 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3424 false valgrind reports. */
3425
3426 bytesize = (bitpos + bitsize + 7) / 8;
3427 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3428
3429 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3430 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3431 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3432
f4e88c8e 3433 oword &= ~(mask << bitpos);
c906108c
SS
3434 oword |= fieldval << bitpos;
3435
19f220c3 3436 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3437}
3438\f
14d06750 3439/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3440
14d06750
DJ
3441void
3442pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3443{
e17a4113 3444 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3445 LONGEST len;
14d06750
DJ
3446
3447 type = check_typedef (type);
c906108c
SS
3448 len = TYPE_LENGTH (type);
3449
14d06750 3450 switch (TYPE_CODE (type))
c906108c 3451 {
c906108c
SS
3452 case TYPE_CODE_INT:
3453 case TYPE_CODE_CHAR:
3454 case TYPE_CODE_ENUM:
4f2aea11 3455 case TYPE_CODE_FLAGS:
c906108c
SS
3456 case TYPE_CODE_BOOL:
3457 case TYPE_CODE_RANGE:
0d5de010 3458 case TYPE_CODE_MEMBERPTR:
e17a4113 3459 store_signed_integer (buf, len, byte_order, num);
c906108c 3460 break;
c5aa993b 3461
c906108c 3462 case TYPE_CODE_REF:
aa006118 3463 case TYPE_CODE_RVALUE_REF:
c906108c 3464 case TYPE_CODE_PTR:
14d06750 3465 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3466 break;
c5aa993b 3467
50637b26
UW
3468 case TYPE_CODE_FLT:
3469 case TYPE_CODE_DECFLOAT:
3470 target_float_from_longest (buf, type, num);
3471 break;
3472
c906108c 3473 default:
14d06750
DJ
3474 error (_("Unexpected type (%d) encountered for integer constant."),
3475 TYPE_CODE (type));
c906108c 3476 }
14d06750
DJ
3477}
3478
3479
595939de
PM
3480/* Pack NUM into BUF using a target format of TYPE. */
3481
70221824 3482static void
595939de
PM
3483pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3484{
6b850546 3485 LONGEST len;
595939de
PM
3486 enum bfd_endian byte_order;
3487
3488 type = check_typedef (type);
3489 len = TYPE_LENGTH (type);
3490 byte_order = gdbarch_byte_order (get_type_arch (type));
3491
3492 switch (TYPE_CODE (type))
3493 {
3494 case TYPE_CODE_INT:
3495 case TYPE_CODE_CHAR:
3496 case TYPE_CODE_ENUM:
3497 case TYPE_CODE_FLAGS:
3498 case TYPE_CODE_BOOL:
3499 case TYPE_CODE_RANGE:
3500 case TYPE_CODE_MEMBERPTR:
3501 store_unsigned_integer (buf, len, byte_order, num);
3502 break;
3503
3504 case TYPE_CODE_REF:
aa006118 3505 case TYPE_CODE_RVALUE_REF:
595939de
PM
3506 case TYPE_CODE_PTR:
3507 store_typed_address (buf, type, (CORE_ADDR) num);
3508 break;
3509
50637b26
UW
3510 case TYPE_CODE_FLT:
3511 case TYPE_CODE_DECFLOAT:
3512 target_float_from_ulongest (buf, type, num);
3513 break;
3514
595939de 3515 default:
3e43a32a
MS
3516 error (_("Unexpected type (%d) encountered "
3517 "for unsigned integer constant."),
595939de
PM
3518 TYPE_CODE (type));
3519 }
3520}
3521
3522
14d06750
DJ
3523/* Convert C numbers into newly allocated values. */
3524
3525struct value *
3526value_from_longest (struct type *type, LONGEST num)
3527{
3528 struct value *val = allocate_value (type);
3529
3530 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3531 return val;
3532}
3533
4478b372 3534
595939de
PM
3535/* Convert C unsigned numbers into newly allocated values. */
3536
3537struct value *
3538value_from_ulongest (struct type *type, ULONGEST num)
3539{
3540 struct value *val = allocate_value (type);
3541
3542 pack_unsigned_long (value_contents_raw (val), type, num);
3543
3544 return val;
3545}
3546
3547
4478b372 3548/* Create a value representing a pointer of type TYPE to the address
cb417230 3549 ADDR. */
80180f79 3550
f23631e4 3551struct value *
4478b372
JB
3552value_from_pointer (struct type *type, CORE_ADDR addr)
3553{
cb417230 3554 struct value *val = allocate_value (type);
a109c7c1 3555
80180f79 3556 store_typed_address (value_contents_raw (val),
cb417230 3557 check_typedef (type), addr);
4478b372
JB
3558 return val;
3559}
3560
3561
012370f6
TT
3562/* Create a value of type TYPE whose contents come from VALADDR, if it
3563 is non-null, and whose memory address (in the inferior) is
3564 ADDRESS. The type of the created value may differ from the passed
3565 type TYPE. Make sure to retrieve values new type after this call.
3566 Note that TYPE is not passed through resolve_dynamic_type; this is
3567 a special API intended for use only by Ada. */
3568
3569struct value *
3570value_from_contents_and_address_unresolved (struct type *type,
3571 const gdb_byte *valaddr,
3572 CORE_ADDR address)
3573{
3574 struct value *v;
3575
3576 if (valaddr == NULL)
3577 v = allocate_value_lazy (type);
3578 else
3579 v = value_from_contents (type, valaddr);
012370f6 3580 VALUE_LVAL (v) = lval_memory;
1a088441 3581 set_value_address (v, address);
012370f6
TT
3582 return v;
3583}
3584
8acb6b92
TT
3585/* Create a value of type TYPE whose contents come from VALADDR, if it
3586 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3587 ADDRESS. The type of the created value may differ from the passed
3588 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3589
3590struct value *
3591value_from_contents_and_address (struct type *type,
3592 const gdb_byte *valaddr,
3593 CORE_ADDR address)
3594{
c3345124 3595 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3596 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3597 struct value *v;
a109c7c1 3598
8acb6b92 3599 if (valaddr == NULL)
80180f79 3600 v = allocate_value_lazy (resolved_type);
8acb6b92 3601 else
80180f79 3602 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3603 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3604 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3605 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3606 VALUE_LVAL (v) = lval_memory;
1a088441 3607 set_value_address (v, address);
8acb6b92
TT
3608 return v;
3609}
3610
8a9b8146
TT
3611/* Create a value of type TYPE holding the contents CONTENTS.
3612 The new value is `not_lval'. */
3613
3614struct value *
3615value_from_contents (struct type *type, const gdb_byte *contents)
3616{
3617 struct value *result;
3618
3619 result = allocate_value (type);
3620 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3621 return result;
3622}
3623
3bd0f5ef
MS
3624/* Extract a value from the history file. Input will be of the form
3625 $digits or $$digits. See block comment above 'write_dollar_variable'
3626 for details. */
3627
3628struct value *
e799154c 3629value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3630{
3631 int index, len;
3632
3633 if (h[0] == '$')
3634 len = 1;
3635 else
3636 return NULL;
3637
3638 if (h[1] == '$')
3639 len = 2;
3640
3641 /* Find length of numeral string. */
3642 for (; isdigit (h[len]); len++)
3643 ;
3644
3645 /* Make sure numeral string is not part of an identifier. */
3646 if (h[len] == '_' || isalpha (h[len]))
3647 return NULL;
3648
3649 /* Now collect the index value. */
3650 if (h[1] == '$')
3651 {
3652 if (len == 2)
3653 {
3654 /* For some bizarre reason, "$$" is equivalent to "$$1",
3655 rather than to "$$0" as it ought to be! */
3656 index = -1;
3657 *endp += len;
3658 }
3659 else
e799154c
TT
3660 {
3661 char *local_end;
3662
3663 index = -strtol (&h[2], &local_end, 10);
3664 *endp = local_end;
3665 }
3bd0f5ef
MS
3666 }
3667 else
3668 {
3669 if (len == 1)
3670 {
3671 /* "$" is equivalent to "$0". */
3672 index = 0;
3673 *endp += len;
3674 }
3675 else
e799154c
TT
3676 {
3677 char *local_end;
3678
3679 index = strtol (&h[1], &local_end, 10);
3680 *endp = local_end;
3681 }
3bd0f5ef
MS
3682 }
3683
3684 return access_value_history (index);
3685}
3686
3fff9862
YQ
3687/* Get the component value (offset by OFFSET bytes) of a struct or
3688 union WHOLE. Component's type is TYPE. */
3689
3690struct value *
3691value_from_component (struct value *whole, struct type *type, LONGEST offset)
3692{
3693 struct value *v;
3694
3695 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3696 v = allocate_value_lazy (type);
3697 else
3698 {
3699 v = allocate_value (type);
3700 value_contents_copy (v, value_embedded_offset (v),
3701 whole, value_embedded_offset (whole) + offset,
3702 type_length_units (type));
3703 }
3704 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3705 set_value_component_location (v, whole);
3fff9862
YQ
3706
3707 return v;
3708}
3709
a471c594
JK
3710struct value *
3711coerce_ref_if_computed (const struct value *arg)
3712{
3713 const struct lval_funcs *funcs;
3714
aa006118 3715 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3716 return NULL;
3717
3718 if (value_lval_const (arg) != lval_computed)
3719 return NULL;
3720
3721 funcs = value_computed_funcs (arg);
3722 if (funcs->coerce_ref == NULL)
3723 return NULL;
3724
3725 return funcs->coerce_ref (arg);
3726}
3727
dfcee124
AG
3728/* Look at value.h for description. */
3729
3730struct value *
3731readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3732 const struct type *original_type,
3733 const struct value *original_value)
dfcee124
AG
3734{
3735 /* Re-adjust type. */
3736 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3737
3738 /* Add embedding info. */
3739 set_value_enclosing_type (value, enc_type);
3740 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3741
3742 /* We may be pointing to an object of some derived type. */
3743 return value_full_object (value, NULL, 0, 0, 0);
3744}
3745
994b9211
AC
3746struct value *
3747coerce_ref (struct value *arg)
3748{
df407dfe 3749 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3750 struct value *retval;
dfcee124 3751 struct type *enc_type;
a109c7c1 3752
a471c594
JK
3753 retval = coerce_ref_if_computed (arg);
3754 if (retval)
3755 return retval;
3756
aa006118 3757 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3758 return arg;
3759
dfcee124
AG
3760 enc_type = check_typedef (value_enclosing_type (arg));
3761 enc_type = TYPE_TARGET_TYPE (enc_type);
3762
3763 retval = value_at_lazy (enc_type,
3764 unpack_pointer (value_type (arg),
3765 value_contents (arg)));
9f1f738a 3766 enc_type = value_type (retval);
dfcee124
AG
3767 return readjust_indirect_value_type (retval, enc_type,
3768 value_type_arg_tmp, arg);
994b9211
AC
3769}
3770
3771struct value *
3772coerce_array (struct value *arg)
3773{
f3134b88
TT
3774 struct type *type;
3775
994b9211 3776 arg = coerce_ref (arg);
f3134b88
TT
3777 type = check_typedef (value_type (arg));
3778
3779 switch (TYPE_CODE (type))
3780 {
3781 case TYPE_CODE_ARRAY:
7346b668 3782 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3783 arg = value_coerce_array (arg);
3784 break;
3785 case TYPE_CODE_FUNC:
3786 arg = value_coerce_function (arg);
3787 break;
3788 }
994b9211
AC
3789 return arg;
3790}
c906108c 3791\f
c906108c 3792
bbfdfe1c
DM
3793/* Return the return value convention that will be used for the
3794 specified type. */
3795
3796enum return_value_convention
3797struct_return_convention (struct gdbarch *gdbarch,
3798 struct value *function, struct type *value_type)
3799{
3800 enum type_code code = TYPE_CODE (value_type);
3801
3802 if (code == TYPE_CODE_ERROR)
3803 error (_("Function return type unknown."));
3804
3805 /* Probe the architecture for the return-value convention. */
3806 return gdbarch_return_value (gdbarch, function, value_type,
3807 NULL, NULL, NULL);
3808}
3809
48436ce6
AC
3810/* Return true if the function returning the specified type is using
3811 the convention of returning structures in memory (passing in the
82585c72 3812 address as a hidden first parameter). */
c906108c
SS
3813
3814int
d80b854b 3815using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3816 struct value *function, struct type *value_type)
c906108c 3817{
bbfdfe1c 3818 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3819 /* A void return value is never in memory. See also corresponding
44e5158b 3820 code in "print_return_value". */
667e784f
AC
3821 return 0;
3822
bbfdfe1c 3823 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3824 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3825}
3826
42be36b3
CT
3827/* Set the initialized field in a value struct. */
3828
3829void
3830set_value_initialized (struct value *val, int status)
3831{
3832 val->initialized = status;
3833}
3834
3835/* Return the initialized field in a value struct. */
3836
3837int
4bf7b526 3838value_initialized (const struct value *val)
42be36b3
CT
3839{
3840 return val->initialized;
3841}
3842
a844296a
SM
3843/* Load the actual content of a lazy value. Fetch the data from the
3844 user's process and clear the lazy flag to indicate that the data in
3845 the buffer is valid.
a58e2656
AB
3846
3847 If the value is zero-length, we avoid calling read_memory, which
3848 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3849 it. */
a58e2656 3850
a844296a 3851void
a58e2656
AB
3852value_fetch_lazy (struct value *val)
3853{
3854 gdb_assert (value_lazy (val));
3855 allocate_value_contents (val);
9a0dc9e3
PA
3856 /* A value is either lazy, or fully fetched. The
3857 availability/validity is only established as we try to fetch a
3858 value. */
3859 gdb_assert (VEC_empty (range_s, val->optimized_out));
3860 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3861 if (value_bitsize (val))
3862 {
3863 /* To read a lazy bitfield, read the entire enclosing value. This
3864 prevents reading the same block of (possibly volatile) memory once
3865 per bitfield. It would be even better to read only the containing
3866 word, but we have no way to record that just specific bits of a
3867 value have been fetched. */
3868 struct type *type = check_typedef (value_type (val));
a58e2656 3869 struct value *parent = value_parent (val);
a58e2656 3870
b0c54aa5
AB
3871 if (value_lazy (parent))
3872 value_fetch_lazy (parent);
3873
4875ffdb
PA
3874 unpack_value_bitfield (val,
3875 value_bitpos (val), value_bitsize (val),
3876 value_contents_for_printing (parent),
3877 value_offset (val), parent);
a58e2656
AB
3878 }
3879 else if (VALUE_LVAL (val) == lval_memory)
3880 {
3881 CORE_ADDR addr = value_address (val);
3882 struct type *type = check_typedef (value_enclosing_type (val));
3883
3884 if (TYPE_LENGTH (type))
3885 read_value_memory (val, 0, value_stack (val),
3886 addr, value_contents_all_raw (val),
3ae385af 3887 type_length_units (type));
a58e2656
AB
3888 }
3889 else if (VALUE_LVAL (val) == lval_register)
3890 {
41b56feb 3891 struct frame_info *next_frame;
a58e2656
AB
3892 int regnum;
3893 struct type *type = check_typedef (value_type (val));
3894 struct value *new_val = val, *mark = value_mark ();
3895
3896 /* Offsets are not supported here; lazy register values must
3897 refer to the entire register. */
3898 gdb_assert (value_offset (val) == 0);
3899
3900 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3901 {
41b56feb 3902 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3903
41b56feb 3904 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3905 regnum = VALUE_REGNUM (new_val);
3906
41b56feb 3907 gdb_assert (next_frame != NULL);
a58e2656
AB
3908
3909 /* Convertible register routines are used for multi-register
3910 values and for interpretation in different types
3911 (e.g. float or int from a double register). Lazy
3912 register values should have the register's natural type,
3913 so they do not apply. */
41b56feb 3914 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3915 regnum, type));
3916
41b56feb
KB
3917 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3918 Since a "->next" operation was performed when setting
3919 this field, we do not need to perform a "next" operation
3920 again when unwinding the register. That's why
3921 frame_unwind_register_value() is called here instead of
3922 get_frame_register_value(). */
3923 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3924
3925 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3926 register is found by reading it from NEXT_FRAME's next frame.
3927 frame_unwind_register_value should never return a value with
3928 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3929 either have two consecutive frames with the same frame id
3930 in the frame chain, or some code is trying to unwind
3931 behind get_prev_frame's back (e.g., a frame unwind
3932 sniffer trying to unwind), bypassing its validations. In
3933 any case, it should always be an internal error to end up
3934 in this situation. */
3935 if (VALUE_LVAL (new_val) == lval_register
3936 && value_lazy (new_val)
41b56feb 3937 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3938 internal_error (__FILE__, __LINE__,
3939 _("infinite loop while fetching a register"));
a58e2656
AB
3940 }
3941
3942 /* If it's still lazy (for instance, a saved register on the
3943 stack), fetch it. */
3944 if (value_lazy (new_val))
3945 value_fetch_lazy (new_val);
3946
9a0dc9e3
PA
3947 /* Copy the contents and the unavailability/optimized-out
3948 meta-data from NEW_VAL to VAL. */
3949 set_value_lazy (val, 0);
3950 value_contents_copy (val, value_embedded_offset (val),
3951 new_val, value_embedded_offset (new_val),
3ae385af 3952 type_length_units (type));
a58e2656
AB
3953
3954 if (frame_debug)
3955 {
3956 struct gdbarch *gdbarch;
41b56feb
KB
3957 struct frame_info *frame;
3958 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3959 so that the frame level will be shown correctly. */
a58e2656
AB
3960 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3961 regnum = VALUE_REGNUM (val);
3962 gdbarch = get_frame_arch (frame);
3963
3964 fprintf_unfiltered (gdb_stdlog,
3965 "{ value_fetch_lazy "
3966 "(frame=%d,regnum=%d(%s),...) ",
3967 frame_relative_level (frame), regnum,
3968 user_reg_map_regnum_to_name (gdbarch, regnum));
3969
3970 fprintf_unfiltered (gdb_stdlog, "->");
3971 if (value_optimized_out (new_val))
f6c01fc5
AB
3972 {
3973 fprintf_unfiltered (gdb_stdlog, " ");
3974 val_print_optimized_out (new_val, gdb_stdlog);
3975 }
a58e2656
AB
3976 else
3977 {
3978 int i;
3979 const gdb_byte *buf = value_contents (new_val);
3980
3981 if (VALUE_LVAL (new_val) == lval_register)
3982 fprintf_unfiltered (gdb_stdlog, " register=%d",
3983 VALUE_REGNUM (new_val));
3984 else if (VALUE_LVAL (new_val) == lval_memory)
3985 fprintf_unfiltered (gdb_stdlog, " address=%s",
3986 paddress (gdbarch,
3987 value_address (new_val)));
3988 else
3989 fprintf_unfiltered (gdb_stdlog, " computed");
3990
3991 fprintf_unfiltered (gdb_stdlog, " bytes=");
3992 fprintf_unfiltered (gdb_stdlog, "[");
3993 for (i = 0; i < register_size (gdbarch, regnum); i++)
3994 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3995 fprintf_unfiltered (gdb_stdlog, "]");
3996 }
3997
3998 fprintf_unfiltered (gdb_stdlog, " }\n");
3999 }
4000
4001 /* Dispose of the intermediate values. This prevents
4002 watchpoints from trying to watch the saved frame pointer. */
4003 value_free_to_mark (mark);
4004 }
4005 else if (VALUE_LVAL (val) == lval_computed
4006 && value_computed_funcs (val)->read != NULL)
4007 value_computed_funcs (val)->read (val);
a58e2656
AB
4008 else
4009 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4010
4011 set_value_lazy (val, 0);
a58e2656
AB
4012}
4013
a280dbd1
SDJ
4014/* Implementation of the convenience function $_isvoid. */
4015
4016static struct value *
4017isvoid_internal_fn (struct gdbarch *gdbarch,
4018 const struct language_defn *language,
4019 void *cookie, int argc, struct value **argv)
4020{
4021 int ret;
4022
4023 if (argc != 1)
6bc305f5 4024 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4025
4026 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4027
4028 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4029}
4030
c906108c 4031void
fba45db2 4032_initialize_values (void)
c906108c 4033{
1a966eab 4034 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4035Debugger convenience (\"$foo\") variables and functions.\n\
4036Convenience variables are created when you assign them values;\n\
4037thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4038\n\
c906108c
SS
4039A few convenience variables are given values automatically:\n\
4040\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4041\"$__\" holds the contents of the last address examined with \"x\"."
4042#ifdef HAVE_PYTHON
4043"\n\n\
4044Convenience functions are defined via the Python API."
4045#endif
4046 ), &showlist);
7e20dfcd 4047 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4048
db5f229b 4049 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4050Elements of value history around item number IDX (or last ten)."),
c906108c 4051 &showlist);
53e5f3cf
AS
4052
4053 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4054Initialize a convenience variable if necessary.\n\
4055init-if-undefined VARIABLE = EXPRESSION\n\
4056Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4057exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4058VARIABLE is already initialized."));
bc3b79fd
TJB
4059
4060 add_prefix_cmd ("function", no_class, function_command, _("\
4061Placeholder command for showing help on convenience functions."),
4062 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4063
4064 add_internal_function ("_isvoid", _("\
4065Check whether an expression is void.\n\
4066Usage: $_isvoid (expression)\n\
4067Return 1 if the expression is void, zero otherwise."),
4068 isvoid_internal_fn, NULL);
5fdf6324
AB
4069
4070 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4071 class_support, &max_value_size, _("\
4072Set maximum sized value gdb will load from the inferior."), _("\
4073Show maximum sized value gdb will load from the inferior."), _("\
4074Use this to control the maximum size, in bytes, of a value that gdb\n\
4075will load from the inferior. Setting this value to 'unlimited'\n\
4076disables checking.\n\
4077Setting this does not invalidate already allocated values, it only\n\
4078prevents future values, larger than this size, from being allocated."),
4079 set_max_value_size,
4080 show_max_value_size,
4081 &setlist, &showlist);
c906108c 4082}